WO2019128484A1 - 用于3d打印的碳纳米管改性tpu材料及其制备方法 - Google Patents

用于3d打印的碳纳米管改性tpu材料及其制备方法 Download PDF

Info

Publication number
WO2019128484A1
WO2019128484A1 PCT/CN2018/114370 CN2018114370W WO2019128484A1 WO 2019128484 A1 WO2019128484 A1 WO 2019128484A1 CN 2018114370 W CN2018114370 W CN 2018114370W WO 2019128484 A1 WO2019128484 A1 WO 2019128484A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
modified
carbon nanotube
reaction
tpu material
Prior art date
Application number
PCT/CN2018/114370
Other languages
English (en)
French (fr)
Inventor
代金辉
陈淑海
李龙飞
张宁
罗杰
Original Assignee
山东一诺威聚氨酯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东一诺威聚氨酯股份有限公司 filed Critical 山东一诺威聚氨酯股份有限公司
Publication of WO2019128484A1 publication Critical patent/WO2019128484A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the invention belongs to the field of polymer material synthesis, and particularly relates to a carbon nanotube modified TPU material used for 3D printing and a preparation method thereof.
  • Thermoplastic polyurethane (TPU) materials have been widely used in various fields due to their excellent comprehensive properties.
  • the TPU material itself has some shortcomings, which limits its application.
  • TPU materials have the disadvantages of insufficient wear resistance and insufficient antistatic performance. Therefore, TPU materials are difficult to be used as structural materials alone.
  • carbon nanomaterials can greatly improve the strength, wear resistance and antistatic properties of various materials. Therefore, carbon nanotubes are ideal reinforcements for polymer composites, but because the carbon nanotubes are easily aggregated or entangled, the surface is relatively "inert” and has low dispersion in common organic solvents or polymer materials. This greatly restricts its wide application.
  • the key issue of carbon nanotube doping TPU is how to realize the compatibility and dispersibility of carbon nanotubes in the matrix material, so as to give full play to the excellent performance of carbon nanotubes and enhance the comprehensive performance of TPU materials.
  • the object of the present invention is to provide a carbon nanotube modified TPU material for 3D printing, which has excellent wear resistance, antistatic property and thermal stability, and can be used as a 3D printing material.
  • the invention also provides a process for its preparation.
  • the carbon nanotube modified TPU material for 3D printing according to the present invention comprises the following raw materials: thermoplastic polyurethane elastomer, modified carbon nanotube, hydrolysis resistance agent, ultraviolet absorber, plasticizer and antioxidant;
  • the carbon nanotubes are obtained by subjecting the carbon nanotubes to oxidation treatment, silylation treatment and amination treatment.
  • the carbon nanotubes are ultrasonically dispersed, heated, and concentrated sulfuric acid and concentrated nitric acid are sequentially added to carry out an oxidation reaction. After the reaction is completed, the oxidized carbon nanotubes are obtained by post-treatment;
  • the oxidized carbon nanotubes, methacryloxypropyltrimethoxysilane, absolute ethanol and deionized water are mixed and ultrasonically dispersed; and then heated to carry out a silylation reaction, and N 2 is passed through the reaction process, and the reaction is completed. , after treatment, to obtain silanized carbon nanotubes;
  • Nitrogen gas is introduced into the reaction flask, and the silanized carbon nanotubes, N,N-methylenebisacrylamide, deionized water and potassium persulfate aqueous solution are sequentially added to the reaction flask to form a mixed solution, which is ultrasonically dispersed and then heated.
  • the polymerization reaction is carried out by stirring, and after completion of the reaction, the modified carbon nanotubes are obtained by post-treatment.
  • the preparation methods of the carbon nanotubes include an arc discharge method, a chemical vapor deposition method (hydrocarbon gas pyrolysis method), a solid phase pyrolysis method, a gas combustion method, and a polymerization reaction synthesis method.
  • the carbon nanotubes before modification of the invention are prepared by chemical vapor deposition, and the ultrasonic stripping is firstly used to reduce the multi-layer nanotubes and agglomeration.
  • the ratio of carbon nanotubes, concentrated sulfuric acid and concentrated nitric acid in step (1) is 5:95-105:45-55, the carbon nanotubes are in g, concentrated sulfuric acid and concentrated nitric acid are in mL; oxidation in step (1)
  • the reaction temperature was 48-52 ° C and the reaction time was 95-105 minutes.
  • the ratio of the oxidized carbon nanotubes, methacryloxypropyltrimethoxysilane, absolute ethanol and deionized water in the step (2) is 3:0.4-0.5:42-48:14-16,
  • the oxidized carbon nanotubes are in terms of g, methacryloxypropyltrimethoxysilane, absolute ethanol and deionized water in terms of mL;
  • the temperature of the silylation reaction in the step (2) is 60-65 ° C,
  • the reaction time is 115-125 minutes.
  • the ratio of the silanized carbon nanotubes, N,N-methylenebisacrylamide, deionized water and potassium persulfate aqueous solution in step (3) is 2:0.07-0.08:24-26:1-1.1, persulfuric acid
  • concentration of the potassium aqueous solution is 1-1.1 mmol/L
  • the silanized carbon nanotubes, N,N-methylenebisacrylamide are measured in g
  • the deionized water and the potassium persulfate aqueous solution are in mL
  • the reaction temperature is 65-70 ° C and the reaction time is 300-360 minutes.
  • steps (1), (2) and (3) were as follows: the product was washed with absolute ethanol, suction filtered and dried in vacuo.
  • the carbon nanotube modified TPU material for 3D printing according to the present invention comprises the following parts by weight of raw materials:
  • the thermoplastic polyurethane elastomer includes one or two of a polyether polyurethane elastomer or a polyester polyurethane elastomer having a Shore hardness of 55A to 75D and a particle size of 3 to 5 mm.
  • the hydrolysis resistance agent is industrial grade monocarbodiimide or industrial grade polycarbodiimide
  • the ultraviolet absorber is one or more of a benzophenone, a benzotriazole or a hindered amine;
  • the plasticizer is one or more of an aliphatic dibasic acid ester, a phthalic acid ester, a benzene polyester or a benzoic acid ester;
  • the antioxidant is one or more of a hindered phenol antioxidant, a phosphite antioxidant or a thioester antioxidant;
  • the organic solvent is any one of DMF (N, N dimethylformamide) or DMA (N, N dimethyl acetamide).
  • the method for preparing a carbon nanotube modified TPU material for 3D printing according to the present invention is characterized in that it comprises the following steps:
  • thermoplastic polyurethane elastomer and the modified carbon nanotube are sequentially added to an organic solvent, ultrasonically dispersed into a mixed liquid, heated to form a paste mixture, vacuum-dried and pelletized, and the product is a TPU modified primary mother particle;
  • Step (1) The particle size of the pellet after vacuum drying is 6 mm * 3 mm * 6 mm.
  • the carbon nanotubes are subjected to surface oxidation treatment, a carbonyl group and a hydroxyl functional group are introduced, followed by silanization treatment, and an active site is introduced, and finally the surface of the carbon nanotube is graft-modified, and an amino functional group is introduced to obtain a modified carbon nanotube.
  • the TPU material and the modified carbon nanotubes are thoroughly mixed by solution blending and then dried and granulated to obtain a TPU modified primary masterbatch; then the TPU modified primary masterbatch, plasticizer, antioxidant, hydrolysis resistance After the agents were uniformly mixed, they were finally extruded into pellets by a twin-screw extruder.
  • the present invention has the following advantages:
  • the carbon nanotube-modified TPU prepared by the invention utilizes the excellent mechanical properties, electrical conductivity and thermodynamic stability of the carbon nanotubes.
  • substantially less Layer or single-walled carbon nanotubes, with targeted surface modification of carbon nanotubes can significantly improve the compatibility between carbon nanotubes and matrix materials, enabling them to be uniformly dispersed in the TPU matrix material. .
  • the present invention also provides a preparation method thereof.
  • the solution blending method can significantly improve the dispersibility of the carbon nanotubes in the matrix material, and at the same time introduce an antioxidant, a hydrolysis resistance agent, a plasticizer, etc.
  • Auxiliary, modified TPU material has excellent wear resistance, antistatic properties, thermal stability, and can be used as a 3D printing material.
  • a carbon nanotube modified TPU material for 3D printing made of the following parts by weight:
  • TPU particles thermoplastic polyurethane elastomer
  • modified carbon nanotubes 100 g were weighed, and 50 mL of dimethylformamide was sequentially added thereto, and the mixture was dispersed in an ultrasonic disperser to be dissolved into a mixed liquid. Then, the mixed solution was placed in an evaporating dish, and heated at 50 ° C for 40 min to finally form a paste mixture, which was vacuum dried and pelletized to have a particle size of 6 mm * 3 mm * 6 mm, and the product was a TPU modified primary master batch.
  • TPU modified primary masterbatch 100g
  • carbodiimide 0.1g
  • antioxidant 0.1g
  • UV absorber 0.5g
  • plasticizer 0.5g
  • plasticizer 0.5g
  • the twin-screw extruder was subjected to extrusion granulation.
  • the product was dried in a vacuum oven, and the dried product was a carbon nanotube-modified TPU material that could be used for 3D printing.
  • the preparation method of the modified carbon nanotubes is as follows:
  • Nitrogen gas was introduced into a three-necked flask prepared in advance, and 2 g of silanized carbon nanotubes, 0.075 g of N,N-methylenebisacrylamide, 25 mL of deionized water, and 1 mL of 2 mmol/L potassium persulfate aqueous solution were sequentially added to a three-necked flask.
  • the mixture was formed, and the three-necked flask containing the mixed solution was placed on an ultrasonic disperser to be dispersed, and then the three-necked flask containing the mixed solution was placed on an electric heating stirrer, and stirred at 70 ° C for 360 minutes to carry out polymerization.
  • the final product was CC 22 H 38 N 4 O 8 Si: aminated carbon nanotubes. After the final washing, suction filtration, vacuum drying, and drying, the modified carbon nanotubes are modified by amination.
  • a carbon nanotube modified TPU material for 3D printing made of the following parts by weight:
  • TPU modified primary masterbatch 100 g
  • carbodiimide 100 g
  • antioxidant 100 g
  • UV absorber 100 g
  • plasticizer 0.5 g
  • the twin-screw extruder was added for extrusion granulation.
  • the product was dried in a vacuum oven, and the dried product was a carbon nanotube-modified TPU material that could be used for 3D printing.
  • the modified carbon nanotubes used were the same as in Example 1.
  • a carbon nanotube modified TPU material for 3D printing made of the following parts by weight:
  • TPU modified primary master batch 100 g of dry TPU particles, 3 g of modified carbon nanotubes were weighed, 50 mL of dimethylformamide was sequentially added, and the mixture was dispersed in an ultrasonic disperser to be dissolved into a mixed solution. Then, the mixed solution was placed in an evaporating dish, and heated at 50 ° C for 40 min to finally form a paste mixture, which was vacuum dried and pelletized to have a particle size of 6 mm * 3 mm * 6 mm, and the product was a TPU modified primary master batch.
  • TPU modified primary masterbatch 100g of TPU modified primary masterbatch, 0.1g of carbodiimide, 0.1g of antioxidant, 0.1g of UV absorber, 0.5g of plasticizer, and mix well in high speed mixer to add the above premix.
  • the twin-screw extruder was subjected to extrusion granulation.
  • the product was dried in a vacuum oven, and the dried product was a carbon nanotube-modified T
  • the modified carbon nanotubes used were the same as in Example 1.
  • a carbon nanotube modified TPU material for 3D printing made of the following parts by weight:
  • TPU modified primary masterbatch 100 g
  • carbodiimide 100 g
  • antioxidant 100 g
  • UV absorber 100 g
  • plasticizer 0.5 g
  • the twin-screw extruder was subjected to extrusion granulation.
  • the product was dried in a vacuum oven, and the dried product was a carbon nanotube-modified TPU material that could be used for 3D printing.
  • TPU material 100g, dissolve it in 50mL DMF, dry it, regranulate, then add TPU particles, carbodiimide 0.1g, antioxidant 0.1g, UV absorber 0.1g, plasticizer 0.5g The mixture was thoroughly mixed in a high speed mixer, and the above premix was placed in a twin screw extruder for extrusion granulation. The product was dried in a vacuum oven, and the dried product was a carbon nanotube-modified TPU material that could be used for 3D printing.
  • the modified TPU materials obtained in Examples 1-3 and Comparative Examples 1-2 were subjected to carbon nanotube modified TPU using a universal tensile machine, a thermal analysis instrument (TGA), a DIN abrader, and a four-probe resistivity tester. The materials were characterized and analyzed. The test results are shown in Table 1.
  • the carbon nanotube-modified TPU material prepared by the invention can significantly improve the tensile strength, thermal stability, wear resistance and surface resistivity of the TPU material compared with the TPU raw material.
  • the product prepared by using the modified carbon nanotubes has a significantly improved performance compared with the unmodified product, and the modified carbon nanotube doped TPU material has a significant improvement compared with the comparative example 2, which also verifies the invention.
  • the doping modification of carbon nanotubes can improve the dispersion and compatibility of TPU materials, thereby improving the mechanical strength, thermal stability, wear resistance and antistatic properties of TPU materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于3D打印的碳纳米管改性TPU材料及其制备方法,包括以下原料:热塑性聚氨酯弹性体、改性碳纳米管、耐水解剂、紫外线吸收剂、增塑剂和抗氧剂;将碳纳米管进行表面氧化处理,引入羰基、羟基官能团,随后经硅烷化处理,引入活性位点,最后对碳纳米管表面接枝修饰,引入氨基官能团,得到改性碳纳米管。

Description

用于3D打印的碳纳米管改性TPU材料及其制备方法 技术领域
本发明属于高分子材料合成领域,具体涉及一种用于3D打印的碳纳米管改性TPU材料及其制备方法。
背景技术
热塑性聚氨酯弹性体(Thermoplastic polyurethane,TPU)材料凭借其优异的综合性能在各领域得到了广泛的应用。然而TPU材料本身性能也存在一些缺点,限制了其应用,相对于其他的工程塑料,目前TPU材料存在着耐磨性能不足、抗静电性能不足的缺点,因此TPU材料很难单独做为结构材料。碳纳米材料作为潜在价值很高的纳米填充物,可以极大提高各类材料的强度、耐磨性、抗静电性能。因此碳纳米管成为聚合物复合材料理想的增强体,但由于碳纳米管易聚集成束或缠绕,其表面是相对“惰性”的,在常见的有机溶剂或聚合物材料中的分散度低,这极大地制约了其广泛应用。目前,碳纳米管掺杂TPU的关键问题是如何实现碳纳米管在基体材料中的相容性及分散性问题,从而充分发挥碳纳米管的优异性能,增强TPU材料的综合性能。
近年来,3D打印技术在国内高速发展,3D打印最重要的一部分就是3D打印耗材的选择。TPU作为一种新型的有机高分子合成材料,各项性能优异,将此优异性能的材料推广并充分应用于3D打印技术,最大的瓶颈是如何制备性能优异的3D打印材料。
发明内容
针对现有技术的不足,本发明的目的是提供一种用于3D打印的碳纳米管改性TPU材料,具有优异的耐磨性能、抗静电性能,热稳定性,可以作为一种3D打印材料;本发明还提供其制备方法。
本发明所述的用于3D打印的碳纳米管改性TPU材料,包括以下原料:热塑性聚氨酯弹性体、改性碳纳米管、耐水解剂、紫外线吸收剂、增塑剂和抗氧剂;改性碳纳米管为将碳纳米管进行氧化处理、硅烷化处理和氨基化处理得到。
其中:改性碳纳米管的制备方法如下:
(1)氧化处理碳纳米管
将碳纳米管超声分散,加热,依次加入浓硫酸和浓硝酸,进行氧化反应,反应完成后,经后处理得到氧化处理的碳纳米管;
(2)硅烷化处理氧化碳纳米管
将氧化处理的碳纳米管、甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水混合超声分散;再加热进行硅烷化反应,反应过程中全程通N 2,反应完成后,经后处理得到硅烷化碳纳米管;
(3)硅烷化碳纳米管的氨基化处理
向反应瓶中通入氮气,将硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺、去离子水和过硫酸钾水溶液依次加入反应瓶中,形成混合液,再超声分散,然后加热搅拌进行聚合反应,反应完成后,经后处理得到改性碳纳米管。
目前碳纳米管的制备方法有电弧放电法、化学气相沉积法(碳氢气体热解法)、固相热解法、气体燃烧法以及聚合反应合成法等。本发明改性前的碳纳米管为化学气相沉积法制备的,改性时先超声剥离减少多层纳米管以及团聚现象。
步骤(1)中碳纳米管、浓硫酸和浓硝酸的投料比为5:95-105:45-55,碳纳米管以g计,浓硫酸和浓硝酸以mL计;步骤(1)中氧化反应的温度为48-52℃,反应时间为95-105分钟。
步骤(2)中氧化处理的碳纳米管、甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水的投料比为3:0.4-0.5:42-48:14-16,氧化处理的碳纳米管以g计,甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水以mL计;步骤(2)中硅烷化反应的温度为60-65℃,反应时间为115-125分钟。
步骤(3)中硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺、去离子水和过硫酸钾水溶液的投料比为2:0.07-0.08:24-26:1-1.1,过硫酸钾水溶液的浓度为1-1.1mmol/L,硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺以g计,去离子水和过硫酸钾水溶液以mL计;步骤(3)中聚合反应温度为65-70℃,反应时间为300-360分钟。
步骤(1)、(2)和(3)中后处理均为:将产物通过无水乙醇洗涤,抽滤,真空干燥。
优选地,本发明所述的用于3D打印的碳纳米管改性TPU材料,包括以下重量份数的原料:
Figure PCTCN2018114370-appb-000001
热塑性聚氨酯弹性体包括聚醚型聚氨酯弹性体或聚酯型聚氨酯弹性体中的一种或两种,邵氏硬度为55A~75D,颗粒尺寸为3~5mm。
耐水解剂为工业级单碳化二亚胺或工业级聚碳化二亚胺;
紫外线吸收剂为苯酮类、苯并***类或受阻胺类中的一种或几种;
增塑剂为脂肪族二元酸酯类、苯二甲酸酯类、苯多酸酯类或苯甲酸酯类中的一种或几种;
抗氧化剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫代酯类抗氧剂中的一种或几种;
有机溶剂为DMF(N,N二甲基甲酰胺)或DMA(N,N二甲基乙酰胺)中的任意一种。
本发明所述的用于3D打印的碳纳米管改性TPU材料的制备方法,其特征在于:包括以下步骤:
(1)将热塑性聚氨酯弹性体、改性碳纳米管依次加入有机溶剂中,超声分散成混合液,加热形成糊状混合物,真空干燥后切粒,产物为TPU改性初级母粒;
(2)称取TPU改性初级母粒、耐水解剂、抗氧化剂、紫外线吸收剂、增塑剂置于高速混炼机中充分混合,再加入双螺杆挤出机进行挤出造粒;真空干燥后得到产品。
步骤(1)真空干燥后切粒的颗粒大小为6mm*3mm*6mm。
本发明将碳纳米管进行表面氧化处理,引入羰基、羟基官能团,随后经硅烷化处理,引入活性位点,最后对碳纳米管表面接枝修饰,引入氨基官能团,得到改性碳纳米管。
随后通过溶液共混法将TPU材料和改性碳纳米管充分混合后烘干造粒,得到TPU改性初级母粒;再将TPU改性初级母粒、增塑剂、抗氧剂、耐水解剂均匀混合后,最后通过双螺杆挤出机挤出造粒。
与现有技术相比,本发明具有以下优点:
(1)本发明制备的碳纳米管改性TPU是利用碳纳米管的优异的力学性能、导电性能以及热力学稳定性,在制备过程中,碳纳米管材料经研磨、超声剥离后,基本以少层或单层碳纳米管为主,对碳纳米管进行有针对性的表面改性,可显著提升碳纳米管和基体材料之间的相容性,使其能够均匀地分散于TPU基体材料中。
(2)本发明还提供其制备方法,相较熔融共混法,溶液共混法可以显著改善碳纳米管在基体材料中的分散性,同时引入抗氧剂、耐水解剂、增塑剂等助剂,改性后的TPU材料具有优异的耐磨性能、抗静电性能,热稳定性,可以作为一种3D打印材料。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1
一种用于3D打印的碳纳米管改性TPU材料,由以下重量份数的原料制成:
Figure PCTCN2018114370-appb-000002
具体制备步骤如下:
称取干燥TPU粒子(热塑性聚氨酯弹性体)100g,改性碳纳米管1g,依次加入50mL二甲基甲酰胺,置于超声波分散仪中进行分散,溶解成混合液。随后将混合溶液置于蒸发皿中,50℃条件下,加热时间40min,最后形成糊状混合物,真空干燥后切粒,颗粒大小为6mm*3mm*6mm,产物为TPU改性初级母粒。称取TPU改性初级母粒100g,碳化二亚胺0.1g,抗氧剂0.1g,紫外线吸收剂0.1g,增塑剂0.5g置于高速混炼机中充分混合,将上述预混物加入双螺杆挤出机进行挤出造粒。将产物置于真空干燥箱中进行干燥,干燥后产物即为可用于3D打印的碳纳米管改性TPU材料。
改性碳纳米管的制备方法如下:
1、氧化处理碳纳米管
取5g碳纳米管加入三口烧瓶中,置于超声波分散仪上进行超声分散30min。将三口烧瓶置于电热磁力搅拌器上,依次加入100mL浓硫酸、50mL浓硝酸,在50℃下进行氧化反应,反应100min后停止加热,反应液冷却至25℃。剩余产物通过无水乙醇洗涤、抽滤,真空干燥,干燥后的氧化碳纳米管具有丰富的羰基、羧基、羟基官能团;
2、硅烷化处理氧化碳纳米管
将氧化处理碳纳米管3g、甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)0.5mL、无水乙醇45mL、去离子水15mL加入三口烧瓶中;将三口烧瓶置于超声波分散仪上进行超声分散30min;分散后,将三口烧瓶置于电热搅拌器上,在加热温度65℃下进行硅烷化反应120min,全程开始输入N 2,反应产物为硅烷化碳纳米管C-C 9H 17O 5Si。随后用无水乙醇洗涤抽滤,留存滤饼,真空干燥,干燥后产物为硅烷化碳纳米管。
3、硅烷化碳纳米管的氨基化修饰
向预先准备好的三口烧瓶中通入氮气,硅烷化碳纳米管2g、N,N-亚甲基双丙烯酰胺0.075 g、去离子水25mL、2mmol/L过硫酸钾水溶液1mL依次加入三口烧瓶中,形成混合液,将盛有混合液的三口烧瓶置于超声波分散仪上进行分散,随后将盛有混合液的三口烧瓶置于电加热搅拌器上,70℃条件下,搅拌360min,进行聚合反应,最后产物为C-C 22H 38N 4O 8Si:氨基化的碳纳米管。最后洗涤、抽滤、真空干燥,干燥后为胺基化修饰的改性碳纳米管。
实施例2
一种用于3D打印的碳纳米管改性TPU材料,由以下重量份数的原料制成:
Figure PCTCN2018114370-appb-000003
制备工艺具体步骤如下:
称取干燥TPU粒子100g,改性碳纳米管2g,依次加入50mL二甲基甲酰胺,置于超声波分散仪中进行分散,溶解成混合液。随后将混合溶液置于蒸发皿中,50℃条件下,加热时间40min,最后形成糊状混合物,真空干燥后切粒,颗粒大小为6mm*3mm*6mm,产物为TPU改性初级母粒。称取TPU改性初级母粒100g、碳化二亚胺0.1g、抗氧剂0.1g、紫外线吸收剂0.1g、增塑剂0.5g依次置于高速混炼机中充分混合,将上述预混物加入双螺杆挤出机进行挤出造粒。将产物置于真空干燥箱中进行干燥,干燥后产物即为可用于3D打印的碳纳米管改性TPU材料。
所用的改性碳纳米管与实施例1相同。
实施例3
一种用于3D打印的碳纳米管改性TPU材料,由以下重量份数的原料制成:
Figure PCTCN2018114370-appb-000004
Figure PCTCN2018114370-appb-000005
制备工艺具体步骤如下:
称取干燥TPU粒子100g,改性碳纳米管3g,依次加入50mL二甲基甲酰胺,置于超声波分散仪中进行分散,溶解成混合液。随后将混合溶液置于蒸发皿中,50℃条件下,加热时间40min,最后形成糊状混合物,真空干燥后切粒,颗粒大小为6mm*3mm*6mm,产物为TPU改性初级母粒。称取TPU改性初级母粒100g,碳化二亚胺0.1g,抗氧剂0.1g,紫外线吸收剂0.1g,增塑剂0.5g置于高速混炼机中充分混合,将上述预混物加入双螺杆挤出机进行挤出造粒。将产物置于真空干燥箱中进行干燥,干燥后产物即为可用于3D打印的碳纳米管改性TPU材料。
所用的改性碳纳米管与实施例1相同。
对比例1
一种用于3D打印的碳纳米管改性TPU材料,由以下重量份数的原料制成:
Figure PCTCN2018114370-appb-000006
具体制备步骤如下:
称取干燥TPU粒子100g,原始未经改性的碳纳米管1g,依次加入50mL二甲基甲酰胺,置于超声波分散仪中进行分散,溶解成混合液。随后将混合溶液置于蒸发皿中,50℃条件下,加热时间40min,最后形成糊状混合物,真空干燥后切粒,颗粒大小为6mm*3mm*6mm,产物为TPU改性初级母粒。称取TPU改性初级母粒100g、碳化二亚胺0.1g、抗氧剂0.1g、紫外线吸收剂0.1g、增塑剂0.5g置于高速混炼机中充分混合,将上述预混物加入双螺杆挤出机进行挤出造粒。将产物置于真空干燥箱中进行干燥,干燥后产物即为可用于3D打印的碳纳米管改性TPU材料。
对比例2
Figure PCTCN2018114370-appb-000007
Figure PCTCN2018114370-appb-000008
制备工艺具体步骤如下:
称取TPU材料100g,溶于50mL DMF中,烘干后,重新造粒,随后将TPU粒子、碳化二亚胺0.1g、抗氧剂0.1g、紫外线吸收剂0.1g,增塑剂0.5g置于高速混炼机中充分混合,将上述预混物加入双螺杆挤出机进行挤出造粒。将产物置于真空干燥箱中进行干燥,干燥后产物即为可用于3D打印的碳纳米管改性TPU材料。
将实施例1-3和对比例1-2获得的改性TPU材料,运用万能拉力机、热分析仪器(TGA)、DIN磨耗机、四探针电阻率测试仪对碳纳米管改性的TPU材料进行表征分析,测试结果见表1。
表1改性TPU材料性能
Figure PCTCN2018114370-appb-000009
由表1数据可以看出,对比TPU原材料,本发明制备的碳纳米管改性TPU材料可以显著提高其拉伸强度、热稳定性,耐磨性能、降低其表面电阻率。采用改性碳纳米管制备的产品比采用未改性的产品性能提升明显,而改性后的碳纳米管掺杂TPU材料相较对比例2更有明显的提升,这也验证了本发明对碳纳米管掺杂改性可以提升其在TPU材料中的分散性及相容性,从而提升TPU材料的力学强度、热稳定性、耐磨性能及抗静电性能。

Claims (10)

  1. 一种用于3D打印的碳纳米管改性TPU材料,其特征在于:包括以下原料:热塑性聚氨酯弹性体、改性碳纳米管、耐水解剂、紫外线吸收剂、增塑剂和抗氧剂;改性碳纳米管为将碳纳米管进行氧化处理、硅烷化处理和氨基化处理得到。
  2. 根据权利要求1所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:改性碳纳米管的制备方法如下:
    (1)氧化处理碳纳米管
    将碳纳米管超声分散,加热,依次加入浓硫酸和浓硝酸,进行氧化反应,反应完成后,经后处理得到氧化处理的碳纳米管;
    (2)硅烷化处理氧化碳纳米管
    将氧化处理的碳纳米管、甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水混合超声分散;再加热进行硅烷化反应,反应过程中全程通N 2,反应完成后,经后处理得到硅烷化碳纳米管;
    (3)硅烷化碳纳米管的氨基化处理
    向反应瓶中通入氮气,将硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺、去离子水和过硫酸钾水溶液依次加入反应瓶中,形成混合液,再超声分散,然后加热搅拌进行聚合反应,反应完成后,经后处理得到改性碳纳米管。
  3. 根据权利要求2所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:步骤(1)中碳纳米管、浓硫酸和浓硝酸的投料比为5:95-105:45-55,碳纳米管以g计,浓硫酸和浓硝酸以mL计;步骤(1)中氧化反应的温度为48-52℃,反应时间为95-105分钟。
  4. 根据权利要求2所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:步骤(2)中氧化处理的碳纳米管、甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水的投料比为3:0.4-0.5:42-48:14-16,氧化处理的碳纳米管以g计,甲基丙烯酰氧基丙基三甲氧基硅烷、无水乙醇和去离子水以mL计;步骤(2)中硅烷化反应的温度为60-65℃,反应时间为115-125分钟。
  5. 根据权利要求2所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:步骤(3)中硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺、去离子水和过硫酸钾水溶液的投料比为2:0.07-0.08:24-26:1-1.1,过硫酸钾水溶液的浓度为1-1.1mmol/L,硅烷化碳纳米管、N,N-亚甲基双丙烯酰胺以g计,去离子水和过硫酸钾水溶液以mL计;步骤(3)中聚合反应温度为65-70℃,反应时间为300-360分钟。
  6. 根据权利要求2所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:步骤 (1)、(2)和(3)中后处理均为:将产物通过无水乙醇洗涤,抽滤,真空干燥。
  7. 根据权利要求1所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:包括以下重量份数的原料:
    Figure PCTCN2018114370-appb-100001
  8. 根据权利要求1所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:热塑性聚氨酯弹性体包括聚醚型聚氨酯弹性体或聚酯型聚氨酯弹性体中的一种或两种,邵氏硬度为55A~75D,颗粒尺寸为3~5mm。
  9. 根据权利要求1所述的用于3D打印的碳纳米管改性TPU材料,其特征在于:
    耐水解剂为工业级单碳化二亚胺或工业级聚碳化二亚胺;
    紫外线吸收剂为苯酮类、苯并***类或受阻胺类中的一种或几种;
    增塑剂为脂肪族二元酸酯类、苯二甲酸酯类、苯多酸酯类或苯甲酸酯类中的一种或几种;
    抗氧化剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫代酯类抗氧剂中的一种或几种;
    有机溶剂为DMF或DMA中的任意一种。
  10. 一种权利要求1-9任一所述的用于3D打印的碳纳米管改性TPU材料的制备方法,其特征在于:包括以下步骤:
    (1)将热塑性聚氨酯弹性体、改性碳纳米管依次加入有机溶剂中,超声分散成混合液,加热形成糊状混合物,真空干燥后切粒,产物为TPU改性初级母粒;
    (2)称取TPU改性初级母粒、耐水解剂、抗氧化剂、紫外线吸收剂、增塑剂置于高速混炼机中充分混合,再加入双螺杆挤出机进行挤出造粒;真空干燥后得到产品。
PCT/CN2018/114370 2017-12-28 2018-11-07 用于3d打印的碳纳米管改性tpu材料及其制备方法 WO2019128484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711460942.8 2017-12-28
CN201711460942.8A CN108164980A (zh) 2017-12-28 2017-12-28 用于3d打印的碳纳米管改性tpu材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019128484A1 true WO2019128484A1 (zh) 2019-07-04

Family

ID=62519144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114370 WO2019128484A1 (zh) 2017-12-28 2018-11-07 用于3d打印的碳纳米管改性tpu材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108164980A (zh)
WO (1) WO2019128484A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123356B1 (ko) * 2019-05-23 2020-06-16 재단법인 한국탄소융합기술원 필라멘트 절단장치를 포함하는 탄소섬유-고분자 복합재 3d프린터
CN112063155A (zh) * 2020-09-07 2020-12-11 裕克施乐塑料制品(太仓)有限公司 一种用于sls成型抗冲击防暴晒汽车仪表面板的功能化tpu专用粉体及其制备方法
CN114683663A (zh) * 2022-04-16 2022-07-01 南通纳科达聚氨酯科技有限公司 一种抗老化tpu膜及其加工工艺
EP4219141A1 (en) * 2022-01-28 2023-08-02 Rohr, Inc. Surface film for composite laminates
US11903101B2 (en) 2019-12-13 2024-02-13 Goodrich Corporation Internal heating trace assembly
US11910495B2 (en) 2019-12-13 2024-02-20 Goodrich Corporation Conductive ink with enhanced mechanical fatigue resistance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164980A (zh) * 2017-12-28 2018-06-15 山东诺威聚氨酯股份有限公司 用于3d打印的碳纳米管改性tpu材料及其制备方法
CN109096740B (zh) * 2018-07-20 2021-09-17 山东一诺威聚氨酯股份有限公司 抗菌抗静电tpu薄膜材料及其制备方法
CN108929410A (zh) * 2018-08-27 2018-12-04 宁波市石生科技有限公司 一种用于光固化三维制造的材料以及用该材料应用
CN109456458A (zh) * 2018-09-28 2019-03-12 山东诺威聚氨酯股份有限公司 用于鞋材的聚醚酯型tpu及其制备方法
CN111040111A (zh) * 2019-08-23 2020-04-21 苏州纤创智造新材料科技有限公司 一种抗静电热塑性聚氨酯及其制备方法
CN111574824B (zh) * 2019-11-25 2022-02-25 江苏集萃先进高分子材料研究所有限公司 一种用于选择性激光烧结3d打印的具有电磁屏蔽功能的聚氨酯粉体材料
CN115537065B (zh) * 2022-11-04 2023-07-25 北京理工大学 一种3d打印耐火压力传感器用墨水、制备及打印方法
CN116178930B (zh) * 2023-01-17 2024-04-19 昆明理工大学 一种3d打印制备碳纳米管基柔性温敏材料的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164980A (zh) * 2017-12-28 2018-06-15 山东诺威聚氨酯股份有限公司 用于3d打印的碳纳米管改性tpu材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030270B (zh) * 2014-06-18 2016-02-10 天津大学 高分子功能化碳纳米管及其制备方法
CN104910609A (zh) * 2015-06-03 2015-09-16 四川大学 一种用于3d打印的聚氨酯复合材料及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164980A (zh) * 2017-12-28 2018-06-15 山东诺威聚氨酯股份有限公司 用于3d打印的碳纳米管改性tpu材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI SHASHA: "Preparation of Hydroxyl and (3-aminopropyl) Triethoxysilane Functionalized Multiwall Carbon Nanotubes for Use as Conductive Fillers in the Polyurethane Composite", POLYMER COMPOSITES, vol. 39, no. 4, 17 May 2016 (2016-05-17), pages 1212 - 1222, XP055623217, ISSN: 0272-8397 *
ZHICHAO LI: "Selective Laser Sintering 3D Printing: A Way to Construct 3D Electrically Conductive Segregated Network in Polymer Matrix", MACROMOLECULAR MATERIALS AND ENGINEERING, vol. 302, no. 11, 1 August 2017 (2017-08-01), pages 1700211, XP055623215, ISSN: 1438-7492 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123356B1 (ko) * 2019-05-23 2020-06-16 재단법인 한국탄소융합기술원 필라멘트 절단장치를 포함하는 탄소섬유-고분자 복합재 3d프린터
US11903101B2 (en) 2019-12-13 2024-02-13 Goodrich Corporation Internal heating trace assembly
US11910495B2 (en) 2019-12-13 2024-02-20 Goodrich Corporation Conductive ink with enhanced mechanical fatigue resistance
CN112063155A (zh) * 2020-09-07 2020-12-11 裕克施乐塑料制品(太仓)有限公司 一种用于sls成型抗冲击防暴晒汽车仪表面板的功能化tpu专用粉体及其制备方法
EP4219141A1 (en) * 2022-01-28 2023-08-02 Rohr, Inc. Surface film for composite laminates
CN114683663A (zh) * 2022-04-16 2022-07-01 南通纳科达聚氨酯科技有限公司 一种抗老化tpu膜及其加工工艺

Also Published As

Publication number Publication date
CN108164980A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019128484A1 (zh) 用于3d打印的碳纳米管改性tpu材料及其制备方法
Lee et al. Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry
JP6124227B2 (ja) ナノカーボンを含有する天然ゴム
CN106674825B (zh) 一种石墨烯/pvc复合材料用母料的制备方法及母料
CN105924767A (zh) 聚丙烯-石墨烯复合材料及其制备方法
KR20080103029A (ko) 나노튜브, 특히 탄소 나노튜브 기재의 예비복합체의 제조방법
TW200806718A (en) Composites
KR20090090738A (ko) 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
CN107501646A (zh) 石墨烯量子点/橡胶纳米复合材料的制备方法
KR101471577B1 (ko) 탄소나노튜브와 고분자의 기계화학적 공유결합 기능화에 의한 기계적 강도가 향상된 나노복합체 제조방법
KR101436016B1 (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
Yu et al. Dispersing carbon dots in non-polar rubber by slurry compounding and in situ compatibilizing
EP1777259B1 (en) Carbon nanotubes reinforced polymers and production process therefor
CN1793216A (zh) 一种碳纳米管/聚苯乙烯纳米导电复合材料的制备方法
JP6076484B2 (ja) 炭素ナノ物質が結合された熱可塑性高分子及びその製造方法
Mohammadi et al. Synthesis of high-reinforcing-silica@ nanodiamond nanohybrids as efficient particles for enhancement of mechanical, thermal, and rolling resistance of styrene-butadiene rubber
KR101637632B1 (ko) 나일론 복합체 및 이의 제조방법
KR101300606B1 (ko) 기계적 특성 및 물성이 우수한 탄소나노튜브/폴리올레핀 복합재료의 제조방법
KR101654638B1 (ko) 하이브리드 필러 복합체 및 이의 제조방법
KR101093056B1 (ko) 우수한 기계적 물성과 전기전도성을 갖는 폴리트리메틸렌 테레프탈레이트/그래핀 복합체 및 그 제조방법
KR101234258B1 (ko) 폴리부틸렌 테레프탈레이트/그래핀 복합체와 그 제조방법
CN109456586A (zh) 熔融共混法改性碳纳米粒子/聚碳酸酯纳米复合薄膜及其制备方法
KR20150026277A (ko) 탄소나노물질이 결합된 열가소성 고분자 및 이의 제조방법
CN112852021A (zh) 复合导电剂及其制备方法、导电塑料
KR20120078469A (ko) 전도성이 향상된 고분자/탄소나노튜브 복합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893609

Country of ref document: EP

Kind code of ref document: A1