WO2019128227A1 - 检测组件、扫地机器人及检测其行走路况的方法和*** - Google Patents

检测组件、扫地机器人及检测其行走路况的方法和*** Download PDF

Info

Publication number
WO2019128227A1
WO2019128227A1 PCT/CN2018/098034 CN2018098034W WO2019128227A1 WO 2019128227 A1 WO2019128227 A1 WO 2019128227A1 CN 2018098034 W CN2018098034 W CN 2018098034W WO 2019128227 A1 WO2019128227 A1 WO 2019128227A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detecting
cleaning robot
reflecting surface
external
Prior art date
Application number
PCT/CN2018/098034
Other languages
English (en)
French (fr)
Inventor
禹钟植
路远
金海燕
Original Assignee
江苏美的清洁电器股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711479840.0A external-priority patent/CN108051824B/zh
Priority claimed from CN201721920082.7U external-priority patent/CN207937608U/zh
Application filed by 江苏美的清洁电器股份有限公司, 美的集团股份有限公司 filed Critical 江苏美的清洁电器股份有限公司
Priority to US16/128,531 priority Critical patent/US20190204442A1/en
Publication of WO2019128227A1 publication Critical patent/WO2019128227A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the invention claims the Chinese patent application number submitted by Jiangsu Meimei Clean Electric Co., Ltd. and Midea Group Co., Ltd. on December 29, 2017, entitled “Detection component, sweeping robot and method and system for detecting the walking condition” The priority of "201721920082.7” and "201711479840.0".
  • the present invention relates to the field of cleaning electrical appliances, and in particular to a detection assembly, a cleaning robot, and a method and system for detecting a walking condition thereof.
  • the current sweeper uses a PSD sensor (ie, a position distance sensor) or an infrared sensor to detect an obstacle or a ground.
  • PSD sensor ie, a position distance sensor
  • an infrared sensor to detect an obstacle or a ground.
  • the intensity of the reflected light will have an effect on the output signal of the sensing system.
  • the obstacle or the ground material is dark color, such as black, the ground will absorb a part of the light, so that the intensity of the reflected light is weakened, which interferes with the detection result of the sensing system; when there is a strong light source outside, such as sunlight, indoor lighting, etc., it will make the reflection Increased light intensity can also interfere with sensor system detection results.
  • PSD sensors are more expensive and costly.
  • the present application is intended to address at least one of the technical problems existing in the prior art.
  • the present invention proposes a detection assembly of a cleaning robot capable of reducing interference of an external environment with a detection result of a traveling road condition.
  • the invention also proposes a sweeping robot, a method for detecting the walking condition of the sweeping robot, and a system for detecting the running condition of the sweeping robot.
  • a detecting assembly of a cleaning robot includes: a light emitter for emitting test light; a dark room having an entrance hole for light entering; a plurality of light receivers, a plurality of light receivers disposed in pairs in the dark room, the light receivers for receiving light emitted by the light emitters and reflected by an external reflective surface to enter the dark room through the access holes, and The light intensity signal is converted into an electrical signal; the detecting circuit is electrically connected to the plurality of light receivers to perform differential operation processing on the electrical signals of each pair of the light receivers, and generate an output signal.
  • the detecting assembly of the cleaning robot by setting a pair of distributed light receivers in the dark room, the light intensity information of the light emitted by the light emitter and reflected by the external reflecting surface is collected, and the light intensity information is collected.
  • the electrical signal is fed back to the detection circuit, and the detection circuit performs differential operation processing on the electrical signals fed back by each pair of optical receivers.
  • the external environment is The effect of light intensity is removed to reduce the influence of external reflection surface color and external light intensity on the detection results of the detection components.
  • the detecting circuit includes a differential amplifier for differential operation processing, the differential amplifier having a non-inverting input terminal, an inverting input terminal, and an output terminal, and the non-inverting input terminal One of each pair of optical receivers is electrically coupled, the inverting input being electrically coupled to the other of each pair of optical receivers for outputting the output signal.
  • the detecting assembly of the cleaning robot is any one of a phototube, a photomultiplier tube, a photoresistor, a phototransistor, a solar cell, a color sensor, and an image sensor.
  • the photoreceiver is a photoresistor
  • the photoresistor is coupled to the detection circuit
  • the controller converts a resistance signal of the photoresistor into a voltage signal and performs the voltage signal Differential processing.
  • the number of the light receivers is two, and the two light receivers are symmetrically distributed with respect to a central axis of the access hole.
  • a detecting assembly of a cleaning robot further includes a lens disposed toward the light emitter to converge the test light emitted by the light emitter.
  • the light emitter, the light receiver, the darkroom, the detecting circuit, and the lens are integrated.
  • a traveling road condition detecting system for a cleaning robot includes: the detecting component; and a controller electrically connected to the detecting circuit to receive the output signal and receiving When the output signal is reached, the output signal is converted into a value between the detection component and the external reflection surface.
  • the controller when the external reflective surface is an obstacle, the controller is configured to determine that an obstacle exists when a distance value between the detecting component and an external reflective surface falls within a preset threshold range. And determining that there is no obstacle when the value of the spacing between the detecting component and the external reflecting surface does not fall within a preset threshold range.
  • the controller when the external reflective surface is a walking ground, the controller is configured to determine that the walking ground is flat when a distance value between the detecting component and the external reflective surface falls within a preset threshold range. And determining that the ground walking is uneven when the distance between the detecting component and the external reflecting surface does not fall within a preset threshold.
  • the controller is configured to issue a stop command or a turn command when there is an obstacle or ground unevenness to control the sweeping robot to stop moving or turning.
  • a cleaning robot includes: a body; and the walking road surface detecting system, the detecting component being located at a bottom and/or a side of the body to walk through a detecting component provided at the bottom Whether the ground is normally tested to detect the outer obstacle through the detection component provided on the side.
  • a method for detecting a walking condition of a cleaning robot includes: transmitting a test light to an external reflection surface; receiving light reflected by the external reflection surface in pairs, and converting the light intensity signal into an electrical signal; Performing differential operation processing on the electrical signal and outputting an output signal; converting the output signal into a distance value between the detecting component and the external reflecting surface, and determining whether the external reflecting surface is determined according to whether the spacing value falls within a preset threshold range location information.
  • the value of the spacing between the detecting component and the external reflective surface falls within a preset threshold range, it is determined that the walking road surface is flat or an obstacle is detected; when the detecting component and the external reflecting surface When the pitch value does not fall within the preset threshold range, it is judged that the walking road surface is uneven or no obstacle is detected.
  • FIG. 1 is a schematic diagram of a detection assembly of a cleaning robot in accordance with an embodiment of the present invention.
  • the light emitter 1, the darkroom 2, the entrance hole 21, the light receiver 3, the detection circuit 4, the lens 5, and the external reflection surface a The light emitter 1, the darkroom 2, the entrance hole 21, the light receiver 3, the detection circuit 4, the lens 5, and the external reflection surface a.
  • a detecting assembly 100 of a cleaning robot according to an embodiment of the present invention will be described below with reference to FIG.
  • a detecting assembly 100 of a cleaning robot includes a light emitter 1, a darkroom 2, a plurality of light receivers 3, and a detecting circuit 4.
  • the light emitter 1 is used to emit test light, and the light emitter 1 can use a light source capable of emitting light of a certain color, such as a 550 nm green light source, and the light emitter 1 can emit light toward the bottom of the sweeping robot or toward the left side of the sweeping robot. Light is emitted from the right side, front side or rear side.
  • the darkroom 2 has an access aperture 21 for light to enter, which provides a better collection environment for light emitted by the light emitter 1 and reflected by the external reflective surface a.
  • the dark room 2 may be provided with a blackout black box, and the light-shielding black box is left with a slit, and only the light beam within the detection range is passed through the slit, wherein the slit is formed as the entrance hole 21.
  • a plurality of light receivers 3 are disposed in pairs in the dark room 2, and the light receiver 3 is for receiving light emitted by the light emitter 1 and reflected by the external reflecting surface a to enter the darkroom 2 through the entrance hole 21, and the light is strong The signal is converted to an electrical signal.
  • the external reflection surface a refers to a reflection surface capable of reflecting the light emitted by the light emitter 1.
  • the light emitted by the light emitter 1 passes through the outside. After the reflection surface a is reflected, it enters the darkroom 2 from the entrance hole 21; conversely, when the external reflection surface a is not within the detection range of the detection component 100, the light emitted by the light emitter 1 cannot be reflected from the entrance aperture after being reflected by the external reflection surface a. 21 enters the darkroom 2.
  • the detecting circuit 4 is electrically connected to the plurality of light receivers 3 to perform differential operation processing on the electrical signals of each pair of the light receivers 3, and generate an output signal so that the two light receivers 3 disposed in pairs are collected.
  • the light intensity information in the environment is filtered out, and the influence of the external environment on the output signal is proposed.
  • the detecting assembly 100 of the cleaning robot collects the light intensity information of the light emitted by the light emitter 1 and reflected by the external reflecting surface a by arranging the pair of distributed light receivers 3 in the dark room 2,
  • the light intensity information is converted into an electrical signal and fed back to the detecting circuit 4, and the detecting circuit 4 performs differential operation processing on the electrical signals fed back by each pair of the optical receivers 3.
  • the electrical signals of each pair of optical receivers 3 are subjected to differential operation processing, and then passed.
  • the common mode signal is used to eliminate the influence of the external environment on the light intensity, so as to reduce the influence of the external reflection surface a color and the external light intensity on the detection result of the detection component 100.
  • the detecting component 100 of the cleaning robot of the present invention has the following advantages: 1. By constructing a common mode signal, the detecting circuit 4 is used to process and calculate the interference signal portion (part of which is independent of the influence of the external light source, and part of which is the influence of the obstacle material color). The detection detection accuracy is improved; 2. The PSD sensor or the infrared sensor detection only detects whether the light beam emitted by the transmitter is received, and the detecting component 100 of the embodiment of the invention passes through the light receiver 3 (including but not limited to the CDS photoresistor). ) detecting the intensity of light and performing differential calculations; 3. lower cost.
  • the detecting circuit 4 includes a differential amplifier having a non-inverting input terminal, an inverting input terminal, and an output terminal, and the non-inverting input terminal is electrically connected to one of each pair of optical receivers 3, and the inverting input terminal and each For the other electrical connection in the optical receiver 3, the output is used to output an output signal.
  • the differential amplifier is formed with a differential circuit on the detecting circuit 4, and the differential circuit is a circuit having such a function.
  • the input of the circuit is the input of two signals.
  • the difference between the two signals is the effective input signal of the circuit, and the output of the circuit is the amplification of the difference between the two input signals.
  • the effective input of the interference signal is zero, which achieves the purpose of resisting common mode interference.
  • the detecting assembly 100 of the cleaning robot is any one of a phototube, a photomultiplier tube, a photoresistor, a phototransistor, a solar cell, a color sensor, and an image sensor.
  • the photoreceiver 3 may be a photoresistor, and the photoresistor may change the resistance value according to the intensity of the received light, and is detected by the detecting circuit 4.
  • the photoresistor is connected to the detection circuit 4, and the controller converts the resistance signal of the photoresistor into a voltage signal and differentially processes the voltage signal.
  • the number of the photoreceivers 3 is two, and the two photoreceivers 3 are symmetrically distributed with respect to the central axis of the entrance hole 21.
  • the detecting assembly 100 of the cleaning robot further includes a lens 5 disposed toward the light emitter 1 to converge the test light emitted by the light emitter 1.
  • the lens 5 can be a shift Fresnel lens 5 for testing.
  • the light emitter 1, the light receiver 3, the darkroom 2, the detecting circuit 4, and the lens 5 may be integrated to form a detecting assembly 100, and the entire detecting assembly 100 is mounted on the cleaning robot.
  • a traveling road condition detecting system for a cleaning robot includes: the detecting component 100 of the above embodiment and a controller, wherein the controller is electrically connected to the detecting circuit 4 to receive an output signal, and when receiving the output signal The output signal is computationally converted to a value of the spacing between the detection component 100 and the external reflective surface a.
  • the controller is configured to determine that there is an obstacle and the detection component 100 and the external reflection surface when the distance value between the detection component 100 and the external reflection surface a falls within a preset threshold range When the distance value between a does not fall within the preset threshold range, it is judged that there is no obstacle.
  • the controller is configured to determine that the walking ground is flat and the detecting component 100 and the external reflecting surface when the spacing value between the detecting component 100 and the external reflecting surface a falls within a preset threshold range When the spacing value between a does not fall within the preset threshold range, it is judged that the walking ground is uneven.
  • the light emitter 1 can be arranged to emit light toward the underside of the sweeping robot to detect whether the robot walking the road surface is flat, and the light emitter 1 can also be arranged to face the left, right, and front of the sweeping robot. Light is emitted from the side or rear side to enable detection of obstacles around it.
  • the controller is configured to issue a stop command or a turn command when there is an obstacle or when the ground is uneven, to control the sweeping robot to stop moving or turning.
  • the light emitted by the light source is divergent, and is concentrated by the lens 5 to form an emission beam, which is reflected when the beam hits the surface of the obstacle or the surface of the ground.
  • the reflected light beam can be taken into the darkroom 2 through the entrance hole 21, and there is a chance to be irradiated on the light receiver 3.
  • the differential processing operation obtains an output signal and sends the output signal to the controller for analysis, and the controller determines that the external reflection surface a information is detected according to the analysis result, and controls the walking component of the cleaning robot (such as the driving wheel according to the determination result, The universal wheel performs the corresponding operation; when the reflecting surface is not within the set proper range, the reflected beam cannot be taken into the dark room 2 through the slit, the light receiver 3 does not receive the light beam, the electrical parameter does not change, and the detecting circuit 4 The output signal does not change, and the controller determines that the external reflection surface a information is not detected.
  • a cleaning robot includes: a body and the traveling road surface detecting system of the above embodiment, wherein the detecting assembly 100 is located at the bottom and/or the side of the body to detect whether the ground is passed through the detecting unit 100 provided at the bottom The detection is normally performed to detect the outer obstacle by the detecting unit 100 provided at the side.
  • the circuit board of the cleaning robot is further provided with a circuit board for installing and integrating some electrical components of the cleaning robot, and realizing electrical connection of the various electrical components.
  • the sweeping robot may include a body, a dust box, a fan, a circuit board, etc. disposed in the body, and the dust box is used to store and store dust, hair, and the like cleaned by the sweeping robot, and is used for implementing the cleaning function of the sweeping robot, and the peripheral body of the body.
  • There are components such as a driving wheel and a universal wheel, the driving wheel is used to realize the movement of the cleaning robot, the universal wheel is used to realize the steering of the cleaning robot, and the controller controls the universal wheel after receiving the output signal fed back by the detecting component 100 and The drive wheel performs the corresponding operation.
  • the controller may control the driving wheel to turn toward the right side to avoid the obstacle.
  • test light is emitted to the external reflection surface.
  • S4 Converting the output signal into a distance value between the detecting component and the external reflecting surface, and determining the position information of the external reflecting surface according to whether the spacing value falls within a preset threshold.
  • the electrical signals of each pair of optical receivers are subjected to differential operation processing, and the influence of the external environment on the light intensity is eliminated by the common mode signal. Drop to reduce the influence of external reflection surface color and external light intensity on the detection result of the detection component.
  • the walking road surface is judged to be normal or an obstacle is detected; when the detecting component is detected When the value of the distance between the 100 and the external reflection surface a does not fall within the preset threshold range, it is judged that the walking road surface is uneven or no obstacle is detected.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Manipulator (AREA)

Abstract

一种扫地机器人的检测组件(100)包括:光发射器(1),该光发射器(1)用于发射测试光线;暗室(2),该暗室(2)具有供光线进入的进入孔(21);多个光接收器(3),该多个光接收器(3)在该暗室(2)内成对设置,该光接收器(3)用于接收经该光发射器(3)发射并被外界反射面(a)反射以经该进入孔(21)进入该暗室(2)内的光,并将光强信号转换为电信号;检测电路(4),该检测电路(4)与该多个光接收器(3)电连接,以将每对光接收器(3)的电信号进行差分运算处理,并生成输出信号。

Description

检测组件、扫地机器人及检测其行走路况的方法和***
相关申请的交叉引用
本发明要求江苏美的清洁电器股份有限公司、美的集团股份有限公司于2017年12月29日提交的、名称为“检测组件、扫地机器人及检测其行走路况的方法和***”的、中国专利申请号“201721920082.7”、“201711479840.0”的优先权。
技术领域
本发明涉及清洁电器技术领域,具体而言,涉及一种检测组件、扫地机器人及检测其行走路况的方法和***。
背景技术
相关技术中,目前扫地机使用PSD传感器(即位置距离传感器)或红外传感器来检测障碍物或地面。反射光的强弱会对传感***的输出信号结果产生影响。当障碍物或地面材质为深颜色时,如黑色,地面会吸收掉一部分光,使得反射光强度减弱,干扰传感***检测结果;当外界存在强光源,如日光、室内灯光等,会使得反射光强度增强,也会干扰传感***检测结果。此外,PSD传感器售价较贵,造成成本压力。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种能够降低外界环境对行走路况的检测结果的干扰的扫地机器人的检测组件。
本发明还提出了一种扫地机器人、检测扫地机器人行走路况的方法、检测扫地机器人行走路况的***。
根据本发明第一方面实施例的扫地机器人的检测组件包括:光发射器,所述光发射器用于发射测试光线;暗室,所述暗室具有供光线进入的进入孔;多个光接收器,所述多个光接收器在所述暗室内成对设置,所述光接收器用于接收经所述光发射器发射并被外界反射面反射以经所述进入孔进入所述暗室内的光,并将光强信号转换为电信号;检测电路,所述检测电路与所述多个光接收器电连接,以将每对所述光接收器的电信号进行差分运算处理,并生成输出信号。
根据本发明实施例的扫地机器人的检测组件,通过在暗室内设置成对分布的光接收器,以采集经光发射器发射并经外界反射面反射的光线的光强信息,并将光强信息转化为电信 号反馈到检测电路,检测电路对每对光接收器反馈的电信号进行差分运算处理,每对光接收器的电信号经差分运算处理后,通过共模信号的方式使外界环境对光强产生的影响被剔除掉,以减少外界反射面颜色以及外界光强等因素对检测组件的检测结果造成的影响。
根据本发明一个实施例的扫地机器人的检测组件,所述检测电路包括用于差分运算处理的差分放大器,所述差分放大器具有同相输入端、反相输入端、输出端,所述同相输入端与每对光接收器中的一个电连接,所述反相输入端与每对光接收器中的另一个电连接,所述输出端用于输出所述输出信号。
根据本发明另一个实施例的扫地机器人的检测组件,所述光接收器为光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、色彩传感器、图像传感器中的任一种。
在一些实施例中,所述光接收器为光敏电阻,所述光敏电阻接入所述检测电路中,所述控制器将所述光敏电阻的电阻信号转化为电压信号并对所述电压信号进行差分处理。
根据本发明实施例的扫地机器人的检测组件,所述光接收器的个数为两个,两个所述光接收器相对于所述进入孔的中心轴线对称分布。
根据本发明实施例的扫地机器人的检测组件,还包括透镜,所述透镜朝向所述光发射器设置,以对所述光发射器发出的测试光线进行汇聚。
可选地,所述光发射器、所述光接收器、所述暗室、所述检测电路、所述透镜集成为一体。
根据本发明第二方面实施例的扫地机器人的行走路况检测***,包括:所述的检测组件;以及控制器,所述控制器与所述检测电路电连接以接收所述输出信号,且在接收到所述输出信号时将输出信号运算转换为检测组件与外界反射面之间的间距值。
在一些实施例中,当所述外界反射面为障碍物时,所述控制器被构造成在所述检测组件与外界反射面之间的间距值落在预设阈值范围内时判断存在障碍物且在所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时判断不存在障碍物。
在一些实施例中,当所述外界反射面为行走地面时,所述控制器被构造成在所述检测组件与外界反射面之间的间距值落在预设阈值范围内时判断行走地面平坦且在所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时判断行走地面不平。
在一些实施例中,所述控制器被构造成在存在障碍物或者行走地面不平时发出停止指令或拐弯指令,以控制所述扫地机器人停止运动或拐弯。
根据本发明第三方面实施例的扫地机器人包括:机体;以及所述的行走路面检测***,所述检测组件位于所述机体的底部和/或侧部,以通过设于底部的检测组件对行走地面是否正常进行检测,以通过设于侧部的检测组件对外侧障碍物进行检测。
根据本发明第四方面实施例的检测扫地机器人行走路况的方法包括:向外界反射面发 射测试光线;成对接收到经外界反射面反射的光线,并将光强信号转化为电信号;对每对电信号进行差分运算处理并发出输出信号;将输出信号运算转换为检测组件与外界反射面之间的间距值,并根据所述间距值是否落在预设阈值范围内以判断外界反射面的位置信息。
在一些实施例中,当所述检测组件与外界反射面之间的间距值落在预设阈值范围内时,判断行走路面平坦或检测到障碍物;当所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时,判断行走路面不平或未检测到障碍物。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的扫地机器人的检测组件的示意图。
附图标记:
检测组件100,
光发射器1,暗室2,进入孔21,光接收器3,检测电路4,透镜5,外界反射面a。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考图1描述根据本发明实施例的扫地机器人的检测组件100。
如图1所示,根据本发明第一方面实施例的扫地机器人的检测组件100包括:光发射器1、暗室2、多个光接收器3以及检测电路4。
光发射器1用于发射测试光线,光发射器1可以采用能够发射某种颜色的光线的光源,如550nm绿色光源,光发射器1可以朝向扫地机器人的下方发射光线或者朝向扫地机器人的左侧、右侧、前侧或后侧发射光线。
暗室2具有供光线进入的进入孔21,暗室2为经光发射器1发射并被外界反射面a反射的光线提供了较好的采集环境。暗室2可选用遮光黑盒,遮光黑盒留有狭缝,仅使在检测范围内的光束通过狭缝,其中狭缝形成为进入孔21。
多个光接收器3在暗室2内成对设置,光接收器3用于接收经光发射器1发射并被外界反射面a反射以经进入孔21进入暗室2内的光,并将光强信号转换为电信号。
需要说明的是,外界反射面a是指能够对光发射器1发出的光线进行反射的反射面,当外界反射面a处于检测组件100的检测量程内时,光发射器1发出的光线经外界反射面a反射后从进入孔21进入暗室2内;反之,当外界反射面a不处于检测组件100的检测量程内时,光发射器1发出的光线经外界反射面a反射后不能从进入孔21进入暗室2。
检测电路4与多个光接收器3电连接,以将每对光接收器3的电信号进行差分运算处理,并生成输出信号,以使成对设置的两个光接收器3采集到的外界环境里的光强信息被过滤掉,提出了外界环境对输出信号的影响。
根据本发明实施例的扫地机器人的检测组件100,通过在暗室2内设置成对分布的光接收器3,以采集经光发射器1发射并经外界反射面a反射的光线的光强信息,并将光强信息转化为电信号反馈到检测电路4,检测电路4对每对光接收器3反馈的电信号进行差分运算处理,每对光接收器3的电信号经差分运算处理后,通过共模信号的方式使外界环境对光强产生的影响被剔除掉,以减少外界反射面a颜色以及外界光强等因素对检测组件100的检测结果造成的影响。
由此,本发明的扫地机器人的检测组件100具有如下优点:1、通过构建共模信号,利用检测电路4处理运算掉干扰信号部分(一部分是无关外界光源影响,一部分是障碍物材质颜色影响),提高传感检测精度;2、PSD传感器或红外传感器检测仅仅检测是否接收到发射器发来的光束,而本发明实施例的检测组件100是通过光接收器3(包括但不限于CDS光敏电阻)检测光的强度,并进行差分运算;3、成本较低。
为方便进行差分运算,检测电路4包括差分放大器,差分放大器具有同相输入端、反相输入端、输出端,同相输入端与每对光接收器3中的一个电连接,反相输入端与每对光接收器3中的另一个电连接,输出端用于输出输出信号。
差分放大器在检测电路4上形成有差分电路,差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
根据本发明另一个实施例的扫地机器人的检测组件100,光接收器3为光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、色彩传感器、图像传感器中的任一种。
具体地,光接收器3可以是光敏电阻,光敏电阻会随着接收到的光的强弱发生电阻值改变,被检测电路4检测到。光敏电阻接入检测电路4中,控制器将光敏电阻的电阻信号转化为电压信号并对电压信号进行差分处理。
在图1所示的具体实施例中,光接收器3的个数为两个,两个光接收器3相对于进入 孔21的中心轴线对称分布。
根据本发明实施例的扫地机器人的检测组件100还包括透镜5,透镜5朝向光发射器1设置,以对光发射器1发出的测试光线进行汇聚。其中,透镜5可采用测试用的shift菲涅尔透镜5。
光发射器1、光接收器3、暗室2、检测电路4、透镜5可以集成为一体,以形成检测组件100,整个检测组件100安装在扫地机器人上。
根据本发明第二方面实施例的扫地机器人的行走路况检测***,包括:上述实施例的检测组件100以及控制器,控制器与检测电路4电连接以接收输出信号,且在接收到输出信号时将输出信号运算转换为检测组件100与外界反射面a之间的间距值。
当外界反射面a为障碍物时,控制器被构造成在检测组件100与外界反射面a之间的间距值落在预设阈值范围内时判断存在障碍物且在检测组件100与外界反射面a之间的间距值未落在预设阈值范围内时判断不存在障碍物。
当外界反射面a为行走地面时,控制器被构造成在检测组件100与外界反射面a之间的间距值落在预设阈值范围内时判断行走地面平坦且在检测组件100与外界反射面a之间的间距值未落在预设阈值范围内时判断行走地面不平。
相应地,光发射器1可以被设置成朝向扫地机器人的下方发射光线,以在对机器人行走路面是否平坦进行检测,光发射器1还可以被设置成朝向扫地机器人的左侧、右侧、前侧或后侧发射光线以实现对四周的障碍物的检测。
作为优选实施方式,控制器被构造成在存在障碍物或者行走地面不平时发出停止指令或拐弯指令,以控制扫地机器人停止运动或拐弯。
根据本发明实施例的扫地机器人的检测***,光源发出的光是发散的,经过透镜5的会聚作用,形成发射光束,当光束碰到障碍物表面或地面表面,发生反射。当外界反射面a在检测量程内时,反射光束可通过进入孔21摄入暗室2,有机会照射在光接收器3上,光接收器3接收到光束后发生电参数改变,被检测电路4检测到,差分处理运算得到输出信号并将该输出信号发送给控制器进行分析,控制器根据分析结果判断检测到外界反射面a信息,并根据判断结果控制扫地机器人的行走部件(如驱动轮、万向轮)执行相应的操作;当反射面不在设定合适范围内,反射光束无法通过狭缝摄入暗室2,光接收器3未接收到光束,电参数不会发生改变,检测电路4的输出信号不会发生变化,控制器判断未检测到外界反射面a信息。
根据本发明第三方面实施例的扫地机器人包括:机体以及上述实施例的行走路面检测***,检测组件100位于机体的底部和/或侧部,以通过设于底部的检测组件100对行走地面是否正常进行检测,以通过设于侧部的检测组件100对外侧障碍物进行检测。
具体地,扫地机器人的外壳内还设有电路板,电路板用于安装并集成扫地机器人的一些电器元件,并实现各个电器元件的电连接。
其中,扫地机器人可以包括机体、设于机体内的尘盒、风机、电路板等,尘盒用来容纳并储存扫地机器人清理的灰尘、毛发等,用于实现扫地机器人的清洁功能,机体外设有驱动轮、万向轮等组件,驱动轮用于实现扫地机器人的移动,万向轮用于实现扫地机器人的转向,控制器在接收到检测组件100反馈的输出信号后相应控制万向轮以及驱动轮执行相应地操作。
举例而言,当设于扫地机器人左侧的检测组件100发出指示碰到障碍物的输出信号后,控制器可以控制驱动轮朝向右侧拐弯以避开障碍物。
根据本发明第四方面实施例的检测扫地机器人行走路况的方法包括:
S1:向外界反射面发射测试光线。
S2:成对接收到经外界反射面反射的光线,并将光强信号转化为电信号。
S3:对每对电信号进行差分运算处理并发出输出信号;
S4:将输出信号运算转换为检测组件与外界反射面之间的间距值,并根据所述间距值是否落在预设阈值范围内以判断外界反射面的位置信息。
由此,通过对每对光接收器反馈的电信号进行差分运算处理,每对光接收器的电信号经差分运算处理后,通过共模信号的方式使外界环境对光强产生的影响被剔除掉,以减少外界反射面颜色以及外界光强等因素对检测组件的检测结果造成的影响。
根据本发明实施例的检测扫地机器人行走路况的方法,当检测组件100与外界反射面a之间的间距值落在预设阈值范围内时,判断行走路面正常或检测到障碍物;当检测组件100与外界反射面a之间的间距值未落在预设阈值范围内时,判断行走路面不平或未检测到障碍物。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领 域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种扫地机器人的检测组件,其特征在于,包括:
    光发射器,所述光发射器用于发射测试光线;
    暗室,所述暗室具有供光线进入的进入孔;
    多个光接收器,所述多个光接收器在所述暗室内成对设置,所述光接收器用于接收经所述光发射器发射并被外界反射面反射以经所述进入孔进入所述暗室内的光,并将光强信号转换为电信号;
    检测电路,所述检测电路与所述多个光接收器电连接,以将每对所述光接收器的电信号进行差分运算处理,并生成输出信号。
  2. 根据权利要求1所述的扫地机器人的检测组件,其特征在于,所述检测电路包括用于差分运算处理的差分放大器,所述差分放大器具有同相输入端、反相输入端、输出端,所述同相输入端与每对光接收器中的一个电连接,所述反相输入端与每对光接收器中的另一个电连接,所述输出端用于输出所述输出信号。
  3. 根据权利要求1或2所述的扫地机器人的检测组件,其特征在于,所述光接收器为光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、色彩传感器、图像传感器中的任一种。
  4. 根据权利要求3所述的扫地机器人的检测组件,其特征在于,所述光接收器为光敏电阻,所述光敏电阻接入所述检测电路中,所述控制器将所述光敏电阻的电阻信号转化为电压信号并对所述电压信号进行差分处理。
  5. 根据权利要求1-4中任一项所述的扫地机器人的检测组件,其特征在于,所述光接收器的个数为两个,两个所述光接收器相对于所述进入孔的中心轴线对称分布。
  6. 根据权利要求1-5中任一项所述的扫地机器人的检测组件,其特征在于,还包括透镜,所述透镜朝向所述光发射器设置,以对所述光发射器发出的测试光线进行汇聚。
  7. 根据权利要求1-6中任一项所述的扫地机器人的检测组件,其特征在于,所述光发射器、所述光接收器、所述暗室、所述检测电路、所述透镜集成为一体。
  8. 一种检测扫地机器人行走路况的***,其特征在于,包括:
    如权利要求1-7中任一项所述的检测组件;以及
    控制器,所述控制器与所述检测电路电连接以接收所述输出信号,且在接收到所述输出信号时将输出信号运算转换为检测组件与外界反射面之间的间距值。
  9. 根据权利要求8所述的检测扫地机器人行走路况的***,其特征在于,当所述外界反射面为障碍物时,所述控制器被构造成在所述检测组件与外界反射面之间的间距值落在 预设阈值范围内时判断存在障碍物且在所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时判断不存在障碍物。
  10. 根据权利要求8所述的检测扫地机器人行走路况的***,其特征在于,当所述外界反射面为行走地面时,所述控制器被构造成在所述检测组件与外界反射面之间的间距值落在预设阈值范围内时判断行走地面平坦且在所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时判断行走地面不平。
  11. 根据权利要求9或10所述的检测扫地机器人行走路况的***,其特征在于,所述控制器被构造成在存在障碍物或者行走地面不平时发出停止指令或拐弯指令,以控制所述扫地机器人停止运动或拐弯。
  12. 一种扫地机器人,其特征在于,包括:
    机体;以及
    如权利要求8-11中任一项所述的检测扫地机器人行走路况的***,所述检测组件位于所述机体的底部和/或侧部,以通过设于底部的检测组件对行走地面是否正常进行检测,以通过设于侧部的检测组件对外侧障碍物进行检测。
  13. 一种检测扫地机器人行走路况的方法,其特征在于,包括:
    向外界反射面发射测试光线;
    成对接收到经外界反射面反射的光线,并将光强信号转化为电信号;
    对每对电信号进行差分运算处理并发出输出信号;
    将输出信号运算转换为检测组件与外界反射面之间的间距值,并根据所述间距值是否落在预设阈值范围内以判断外界反射面的位置信息。
  14. 根据权利要求13所述的检测扫地机器人行走路况的方法,其特征在于,当所述检测组件与外界反射面之间的间距值落在预设阈值范围内时,判断行走路面平坦或检测到障碍物;当所述检测组件与外界反射面之间的间距值未落在预设阈值范围内时,判断行走路面不平或未检测到障碍物。
PCT/CN2018/098034 2017-12-29 2018-08-01 检测组件、扫地机器人及检测其行走路况的方法和*** WO2019128227A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/128,531 US20190204442A1 (en) 2017-12-29 2018-09-12 Detection assembly, cleaning robot and method and system for detecting walking condition thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711479840.0A CN108051824B (zh) 2017-12-29 2017-12-29 检测组件、扫地机器人及检测其行走路况的方法和***
CN201721920082.7U CN207937608U (zh) 2017-12-29 2017-12-29 检测组件、扫地机器人及检测其行走路况的***
CN201721920082.7 2017-12-29
CN201711479840.0 2017-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/128,531 Continuation US20190204442A1 (en) 2017-12-29 2018-09-12 Detection assembly, cleaning robot and method and system for detecting walking condition thereof

Publications (1)

Publication Number Publication Date
WO2019128227A1 true WO2019128227A1 (zh) 2019-07-04

Family

ID=67065027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098034 WO2019128227A1 (zh) 2017-12-29 2018-08-01 检测组件、扫地机器人及检测其行走路况的方法和***

Country Status (1)

Country Link
WO (1) WO2019128227A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166354A1 (en) * 2004-01-30 2005-08-04 Funai Electric Co., Ltd. Autonomous vacuum cleaner
CN203396952U (zh) * 2013-09-02 2014-01-15 哈尔滨智的机器人技术有限公司 用于agv小车的微分电路光电避障装置
CN103675829A (zh) * 2012-09-11 2014-03-26 苹果公司 用于传感器***的虚拟检测器
CN103852888A (zh) * 2012-12-03 2014-06-11 北阳电机株式会社 偏转装置、光扫描装置以及扫描式测距装置
CN104245244A (zh) * 2012-09-21 2014-12-24 艾罗伯特公司 移动机器人上的接近度感测
CN108051824A (zh) * 2017-12-29 2018-05-18 江苏美的清洁电器股份有限公司 检测组件、扫地机器人及检测其行走路况的方法和***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166354A1 (en) * 2004-01-30 2005-08-04 Funai Electric Co., Ltd. Autonomous vacuum cleaner
CN103675829A (zh) * 2012-09-11 2014-03-26 苹果公司 用于传感器***的虚拟检测器
CN104245244A (zh) * 2012-09-21 2014-12-24 艾罗伯特公司 移动机器人上的接近度感测
CN103852888A (zh) * 2012-12-03 2014-06-11 北阳电机株式会社 偏转装置、光扫描装置以及扫描式测距装置
CN203396952U (zh) * 2013-09-02 2014-01-15 哈尔滨智的机器人技术有限公司 用于agv小车的微分电路光电避障装置
CN108051824A (zh) * 2017-12-29 2018-05-18 江苏美的清洁电器股份有限公司 检测组件、扫地机器人及检测其行走路况的方法和***

Similar Documents

Publication Publication Date Title
US10912433B2 (en) Mobile robot
CN108051824B (zh) 检测组件、扫地机器人及检测其行走路况的方法和***
EP0904723B1 (en) Vacuum Cleaner
KR102032516B1 (ko) 이동 로봇 및 그 제어방법
TW201705897A (zh) 行動機器人及其控制方法
CN111796290B (zh) 地面探测方法、地面探测器和自主移动设备
JP2006526211A (ja) 火災報知器
KR101103910B1 (ko) 로봇청소기용 먼지감지센서 구조
KR102070283B1 (ko) 청소기 및 그 제어방법
US10300596B2 (en) Moving robot and control method thereof
WO2019080500A1 (zh) 移动机器人
JP2015512041A (ja) 位置検出用のパッシブ赤外線センサシステム
US11666194B2 (en) Ultrasonic sensor and robot cleaner equipped therewith
US10488557B2 (en) Integrated rain and solar radiation sensing module
JPH0981867A (ja) 位置判別赤外線センサとそれを用いた感知方法
US20190204442A1 (en) Detection assembly, cleaning robot and method and system for detecting walking condition thereof
WO2019128227A1 (zh) 检测组件、扫地机器人及检测其行走路况的方法和***
CN110888178A (zh) 接近检测电路及终端设备
KR20180136244A (ko) 광학식 미세먼지 측정 센서의 영점 교정 방법
CN207937608U (zh) 检测组件、扫地机器人及检测其行走路况的***
WO2021156416A1 (en) Robotic device and method of operating the same
US20170102714A1 (en) Self-propelled apparatus with an anti-drop system
KR20020080898A (ko) 로봇 청소기의 장애물 감지 오차 보정 장치 및 그 방법
US20230248203A1 (en) Method for controlling robot cleaner
CN110946507A (zh) 一种扫地机器人及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894308

Country of ref document: EP

Kind code of ref document: A1