WO2019128096A1 - 一种基于混合光源的互动投影装置 - Google Patents

一种基于混合光源的互动投影装置 Download PDF

Info

Publication number
WO2019128096A1
WO2019128096A1 PCT/CN2018/088978 CN2018088978W WO2019128096A1 WO 2019128096 A1 WO2019128096 A1 WO 2019128096A1 CN 2018088978 W CN2018088978 W CN 2018088978W WO 2019128096 A1 WO2019128096 A1 WO 2019128096A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
group
color light
projection
lens
Prior art date
Application number
PCT/CN2018/088978
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2019128096A1 publication Critical patent/WO2019128096A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of digital projection display technology, and in particular to an interactive projection device based on a hybrid light source.
  • the common human-computer interaction system with infrared is to respectively pass the infrared light emitted by the infrared light source and the projection illumination source through different optical channels, use an ordinary incandescent light source projector to project an image, and additionally set an infrared light source to illuminate the screen, and set The infrared camera captures the infrared image on the screen to capture the movement of the user's finger on the screen to achieve human-computer interaction.
  • the above method makes the whole system too complicated, and the independent infrared light source is troublesome to set up, and the infrared light source needs to be repeatedly debugged and corrected during use, and the brightness of the incandescent light source is far from satisfactory.
  • the technical problem to be solved by the embodiments of the present application is to provide an interactive projection device based on a hybrid light source, which is used to solve the problem that the existing projection system has a complicated system and the projection interaction is not convenient and accurate.
  • a technical solution adopted by the embodiment of the present application is to provide an interactive projection device based on a hybrid light source, including:
  • Projection illumination source infrared illumination source, glued prism group, first reflection unit, fly-eye lens, beam guiding unit, image display chip and projection lens;
  • Light emitted by the projection illumination source is projected to the first reflection unit through the glue prism group, and the first reflection unit is configured to perform light emitted by the projection illumination source and light emitted by the infrared illumination source Merging, and projecting the combined mixed light to the fly-eye lens, after the compound eye lens is homogenized, the mixed light is projected to the beam guiding unit, and the beam guiding unit transmits the mixed light and And/or reflecting so that the mixed light is incident on the image display chip, and the mixed light emitted from the image display chip is reflected by the beam guiding unit to the projection lens.
  • the projection illumination source comprises a first color light source group, a second color light source group, and a third color light source group;
  • the first color light source group, the second color light source group, and the third color light source group each include an LED light source and a first collimating lens group, and the first collimating lens group is disposed in a light emitting direction of the LED light source.
  • the first color light source group is a red LED light source group
  • the second color light source group is a blue LED light source group
  • the third color light source group is a green LED light source group.
  • the infrared illumination source comprises an infrared light source and a second collimating lens group, and the second collimating lens group is disposed in a light emitting direction of the infrared light source.
  • the glue prism group is composed of four identical isosceles triangle prisms, and the first work formed by the glue prism group reflects the light emitted by the first color light source group and reflects The light emitted by the second color light source group is transmitted, and the second work formed by the glue prism group reflects the light emitted by the second color light source group and transmits the light emitted by the first color light source group.
  • the first working surface and the second working surface both transmit light emitted by the third color light source group, thereby combining light of three primary color light beams from three different directions.
  • the first reflecting unit is one of a plane mirror, a curved mirror, and a curved lens with a reflecting surface.
  • the beam guiding unit comprises a relay lens and a prism group, the prism group comprises a first triangular prism and a second triangular prism;
  • the relay lens is used to converge the mixed light.
  • the image display chip is specifically a DMD display chip.
  • the apparatus further includes an infrared camera device and a second reflection unit, the infrared camera device is disposed at one side of the projection lens, and the second reflection unit is disposed at the beam guiding unit and the projection Between the shots;
  • the infrared camera device is configured to collect infrared light reflected by the second reflecting unit of the projection lens.
  • the second reflecting unit is one of a plane mirror, a curved mirror, and a curved lens with a reflecting surface.
  • the embodiment of the present application provides an interactive projection device based on a hybrid light source
  • the device includes a projection illumination source, an infrared illumination source, a glue prism group, and a first reflection.
  • the device mixes the light emitted by the projection illumination source and the infrared illumination source, and the mixed light has an optical guiding optical path, so that the optical path is compact and simple, the structure of the whole projection device is simple, and the infrared illumination source is not required to be repeatedly debugged and corrected. The interaction is more convenient and accurate.
  • FIG. 1 is a schematic structural diagram of an interactive projection device based on a hybrid light source according to Embodiment 1;
  • FIG. 2 is a schematic structural diagram of an interactive projection device based on a hybrid light source according to Embodiment 2.
  • Projection device 100 Compound eye lens 50
  • Projection illumination source 10 Beam guiding unit 60
  • Second color light source group 12 Prism group 62
  • Third color light source group 13 Image display chip 70
  • Infrared illumination source 20 Projection lens 80
  • Glued prism set 30 Infrared camera 91
  • First reflection unit 40 Second reflection unit 92
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic structural diagram of an interactive projection device based on a hybrid light source according to an embodiment of the present application.
  • the device 100 includes: a projection illumination source 10 , an infrared illumination source 20 , and a cemented prism.
  • the light emitted by the projection illumination source 10 is projected to the first reflection unit 40 through the glue prism group 30, and the first reflection unit 40 is configured to emit the light emitted by the projection illumination source 10 and the
  • the light emitted by the infrared illumination source 20 is combined, and the combined mixed light is projected to the beam guiding unit 60, and the beam guiding unit 60 transmits and/or reflects the mixed light to make the mixed light
  • the image display chip 70 is injected.
  • the projection illumination source 10 includes one or more sets of color light sources.
  • the projection illumination source 10 includes three sets of color light sources, which are a first color light source group 11 and a second color light source group 12, respectively.
  • a third color light source group 13 each of which includes an LED light source (not shown) and a first collimating lens group (not shown), wherein the first collimating lens group is disposed at the LED In the light direction of the light source.
  • the first color light source group 11 is a red LED light source group
  • the second color light source group 12 is a blue LED light source group
  • the third color light source group 13 is a green LED light source group.
  • the projection illumination source 10 may further include more or less sets of color light sources, not only the three sets of color light sources shown in FIG. 1 , in addition, the colors of the three sets of color light sources are red, blue, and green. In addition, it can be a combination of other colors.
  • the first color light source group 11, the second color light source group 12, and the third color light source group 13 respectively pass through the cementing prism group 30.
  • the glued prism set 30 is composed of four identical isosceles triangular prisms, which are preferably isosceles right angle triangular prisms. As shown in FIG. 1, four identical isosceles triangular prisms are glued to form a first working surface S1 and a second working surface S2.
  • the first color light source group 11, the second color light source group 12, and the third color light source group 13 respectively pass through the first working surface S1 and the second working surface S2, specifically, the glue prism group 30
  • the first working surface S1 reflects the light emitted by the first color light source group 11 and transmits the light emitted by the second color light source group 12, and the second working surface S2 formed by the bonding prism group 30
  • the light emitted by the second color light source group 12 reflects and transmits the light emitted by the first color light source group 11, and the first working surface S1 and the second working surface S2 are both opposite to the third color light source.
  • the light emitted by the group 13 is transmitted through the bonding prism group 30, thereby combining the three primary color light beams from the first color light source group 11, the second color light source group 12, and the third color light source group 13.
  • the infrared illumination source 20 includes an infrared light source 21 and a second collimating lens group 22, and the second collimating lens group 22 is disposed in a light emitting direction of the infrared light source 21.
  • the infrared illumination source 20 is for generating infrared radiation.
  • the infrared light emitted by the infrared illumination source 20 passes through the first reflection unit 40, and the first reflection unit 40 changes the direction of the infrared illumination beam from the infrared illumination source 20, while at the same time
  • the first color light source group 11, the second color light source group 12, and the third color light source group 13 are passed through the bonding prism group 30 to pass through the first reflecting unit 40, thereby causing the The infrared illumination beam is combined with the three primary color beams.
  • the first reflecting unit 40 may be one of a plane mirror, a curved mirror, and a curved lens with a reflecting surface, and is preferably a plane mirror occupying a small volume.
  • the infrared illumination source 20 and the three primary color light sources are started in time division.
  • the fly-eye lens 50 is disposed between the first reflection unit 40 and the beam guiding unit 60.
  • the fly-eye lens 50 is configured to emit the infrared illumination beam and the three
  • the mixed light of the primary color light beam is homogenized, and the mixed light after the uniform light is projected to the light beam guiding unit 60.
  • the beam guiding unit 60 transmits and/or reflects the mixed light, thereby projecting the mixed light to the image display chip 70.
  • the beam guiding unit 60 includes a relay lens 61 and a prism group 62
  • the prism group 62 includes a first triangular prism and a second triangular prism
  • the first triangular prism and the second triangular prism A right angle triangular prism is preferred
  • the relay lens 61 is used to concentrate the mixed light.
  • the beam guiding unit 60 may also be composed of other structural forms, and need not be limited to the manner shown in FIG. 1.
  • the prism group 62 may be a TIR prism group or an RTIR prism group.
  • the prism group 62 can also be a freeform lens group or the like.
  • the image of the hybrid light projected onto the image display chip 70 may specifically be an optical component group projected onto the image display chip 70.
  • the image display chip 70 may specifically be a DMD display chip.
  • the apparatus further includes a projection lens 80 for receiving the mixed light reflected by the image display chip 70 through the beam guiding unit 60, specifically by the beam guiding unit 60.
  • the prism group 62 in the middle reflects the mixed light to the projection lens 80.
  • the working principle of the hybrid light source-based interactive projection device is that the light beams respectively generated by the first color light source group 11, the second color light source group 12 and the third color light source group 13 are projected to the glue prism group 30, and the cement prism The group 30 combines the three primary color beams, and the combined projected illumination beam enters the first reflection unit 40. At the same time, the infrared illumination beam generated by the infrared illumination source 20 is reflected and combined by the first reflection unit 40.
  • the rear projection illumination beam is mixed into the fly-eye lens 50, and the projected illumination beam and the infrared illumination beam that are homogenized by the fly-eye lens 50 form a mixed beam into the beam guiding unit 60 for transmission and/or reflection, thereby causing the mixed beam to be incident on the image.
  • the display chip 70, the mixed light beam emitted from the image display chip 70 is again reflected by the prism group 62 in the beam guiding unit 60 to the projection lens 80.
  • the embodiment of the present application provides an interactive projection device based on a hybrid light source
  • the device includes a projection illumination source, an infrared illumination source, a glue prism group, and a first reflection unit. , a fly-eye lens, a beam guiding unit, an image display chip, and a projection lens.
  • the device mixes the light emitted by the projection illumination source and the infrared illumination source, and the mixed light has an optical guiding optical path, so that the optical path is compact and simple, the structure of the whole projection device is simple, and the infrared illumination source is not required to be repeatedly debugged and corrected. The interaction is more convenient and accurate.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic structural diagram of an interactive projection device based on a hybrid light source according to an embodiment of the present application.
  • the device 100 further includes an infrared camera device 91 and Two reflection unit 92.
  • the infrared camera device 91 can be independently disposed, and can be specifically disposed on one side of the projection lens 80 for acquiring an image of the infrared projection area.
  • the second reflection unit 92 can be disposed according to the positional relationship between the infrared imaging device 91 and the projection lens 80, so that the infrared light beam emitted by the projection lens 80 is reflected by the second reflection unit 92 and enters the infrared imaging device. 91.
  • the specific position of the second reflecting unit 92 depends on the position of the infrared imaging device 91 and the projection lens 80.
  • the second reflecting unit 92 may be a plane mirror or a curved mirror or a curved lens with a reflecting surface, etc., which is preferably a plane mirror that occupies a small volume of space.
  • the embodiment of the present application not only makes the structure of the entire projection device simple, but also eliminates the need for alignment and adjustment of the infrared light source and the infrared camera, so that the entire device is more convenient and accurate in interactive operation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种基于混合光源的互动投影装置(100),包括:投影照明光源(10)、红外照明光源(20)、胶合棱镜组(30)、第一反射单元(40)、光束引导单元(60)以及图像显示芯片(70)。投影照明光源(10)发出的光通过胶合棱镜组(30)投射至第一反射单元(40)。第一反射单元(40)将投影照明光源(10)发出的光和红外照明光源(20)发出的光进行合并,并将合并后的混合光投射至光束引导单元(60)。光束引导单元(60)将混合光进行透射和/或反射,以使混合光射入图像显示芯片(70)。这种投影装置不需要反复调试校正红外照明光源,使投影互动更方便准确。

Description

一种基于混合光源的互动投影装置 技术领域
本申请涉及数字投影显示技术领域,特别是涉及一种基于混合光源的互动投影装置。
背景技术
目前常见的带红外的人机交互***,是将红外光源发出的红外光与投影照明光源分别经过不同的光通道,使用普通白炽灯光源投影机来投影图像,另外设置红外光源来照射屏幕,设置红外摄像机来拍摄屏幕上的红外影像,以此捕捉使用者在屏幕上手指的动作,以实现人机交互。
然而,上述方式使得整个***过于复杂,独立的红外光源设置起来比较麻烦,使用过程中需要反复调试校正红外光源,而且白炽灯的光源亮度远远达不到要求。
实用新型内容
本申请实施例主要解决的技术问题是提供一种基于混合光源的互动投影装置,用于解决现有的投影***存在***复杂、投影互动不够方便准确的问题。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种基于混合光源的互动投影装置,包括:
投影照明光源、红外照明光源、胶合棱镜组、第一反射单元、复眼透镜、光束引导单元、图像显示芯片以及投影镜头;
所述投影照明光源发出的光通过所述胶合棱镜组投射至所述第一反射单元,所述第一反射单元用于将所述投影照明光源发出的光和所述红外照明光源发出的光进行合并,并将合并后的混合光投射至所述复眼透镜,经所述复眼透镜匀光后,所述混合光投射至所述光束引导单元,所述光束引导单元将所述混合光进行透射和/或反射,以使所述混合光射入所述图像显示芯片,从所述图像显示芯片出射的混合光再经过所述光束引导单元反射至所述投影镜头。
可选地,所述投影照明光源包括第一色光源组、第二色光源组以及第三色光源组;
所述第一色光源组、第二色光源组以及第三色光源组均包括LED光源和第一准直透镜组,所述第一准直透镜组设置在所述LED光源的出光方向上。
可选地,所述第一色光源组为红色LED光源组,所述第二色光源组为蓝色LED光源组,所述第三色光源组为绿色LED光源组。
可选地,所述红外照明光源包括红外光源和第二准直透镜组,所述第二准直透镜组设置在所述红外光源的出光方向上。
可选地,所述胶合棱镜组由四个相同的等腰三角棱镜胶合组成,所述胶合棱镜组所形成的第一工作面对所述第一色光源组发出的光进行反射并且对所述第二色光源组发出的光进行透射,所述胶合棱镜组所形成的第二工作面对所述第二色光源组发出的光进行反射并且对所述第一色光源组发出的光进行透射,所述第一工作面和第二工作面均对所述第三色光源组发出的光进行透射,从而对来自三个不同方向的三基色光束进行合光。
可选地,所述第一反射单元为平面反射镜、弧形反射镜、带反射面的曲面透镜中的一种。
可选地,所述光束引导单元包括中继透镜和棱镜组,所述棱镜组包括第一三角棱镜和第二三角棱镜;
所述中继透镜用于汇聚所述混合光。
可选地,所述图像显示芯片具体为DMD显示芯片。
可选地,所述装置还包括红外摄像装置和第二反射单元,所述红外摄像装置设置在所述投影镜头的一侧,所述第二反射单元设置在所述光束引导单元和所述投影镜头之间;
所述红外摄像装置用于采集所述投影镜头经所述第二反射单元反射的红外光。
可选地,所述第二反射单元为平面反射镜、弧形反射镜、带反射面的曲面透镜中的一种。
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施 例提供一种基于混合光源的互动投影装置,该装置包括投影照明光源、红外照明光源、胶合棱镜组、第一反射单元、光束引导单元以及图像显示芯片。该装置将投影照明光源和红外照明光源所发出的光进行混合,混合光共有光学引导光路,使得光路紧凑简单,整个投影装置的结构变得简单,并且不需要反复调试校正红外照明光源,使投影互动更方便准确。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是实施例一提供的一种基于混合光源的互动投影装置的结构示意图;
图2是实施例二提供的一种基于混合光源的互动投影装置的结构示意图。
其中,图中各附图标记:
投影装置 100 复眼透镜 50
投影照明光源 10 光束引导单元 60
第一色光源组 11 中继透镜 61
第二色光源组 12 棱镜组 62
第三色光源组 13 图像显示芯片 70
红外照明光源 20 投影镜头 80
胶合棱镜组 30 红外摄像装置 91
第一反射单元 40 第二反射单元 92
红外光源 21 第二准直透镜组 22
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件, 它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一:
请参阅图1,图1是本申请实施例提供的一种基于混合光源的互动投影装置的结构示意图,如图1所示,该装置100包括:投影照明光源10、红外照明光源20、胶合棱镜组30、第一反射单元40、复眼透镜50、光束引导单元60、图像显示芯片70以及投影镜头80。
其中,所述投影照明光源10发出的光通过所述胶合棱镜组30投射至所述第一反射单元40,所述第一反射单元40用于将所述投影照明光源10发出的光和所述红外照明光源20发出的光进行合并,并将合并后的混合光投射至所述光束引导单元60,所述光束引导单元60将所述混合光进行透射和/或反射,以使所述混合光射入所述图像显示芯片70。
上述投影照明光源10包括一组或者多组色光源,比如,如图1所示,所述投影照明光源10包括三组色光源,分别是第一色光源组11、第二色光源组12以及第三色光源组13,这三个色光源组均各自包含LED光源(图未示)和第一准直透镜组(图未示),其中,该第一准直透镜组设置在所述LED光源的出光方向上。在本实施例中,所述第一色光源组11为红色LED光源组,所述第二色光源组12为蓝色LED光源组,所述第三色光源组13为绿色LED光源组。需要说明的是,投影照明光源10还可以包括更多或者更少组色光源,不仅仅是图1所示的三组色光源,此外,三组色光源的颜色除了为红色、蓝色、绿色之外,还可以是其他颜色的组合。
在本实施例中,上述第一色光源组11、第二色光源组12以及第三色光源组13分别穿过胶合棱镜组30。所述胶合棱镜组30是由四个相同的等腰三角棱镜胶合组成,这四个相同的等腰三角棱镜优选为等腰直角三角棱镜。如图1所示,四个相同的等腰三角棱镜胶合后形成第一工作面S1和第二工作面S2。上述第一色光源组11、第二色光源组12以及第三色光源组13分别穿过所述第一工作面S1和第二工作面S2,具体地,所述胶合棱镜组30所形成的第一工作面S1对所述第一色光源组11发出的光进行反射并且对所述第二色光源组12发出的光进行透射,所述胶合棱镜组30所形成的第二工作面S2对所述第二色光源组12发出的光进行反射并且对所述第一色光源组11发出的光进行透射,所述第一工作面S1和第二工作面S2均对所述第三色光源组13发出的光进行透射,通过所述胶合棱镜组30,从而对来自第一色光源组11、第二色光源组12以及第三色光源组13的三基色光束进行合光。
上述红外照明光源20包括红外光源21和第二准直透镜组22,所述第二准直透镜组22设置在所述红外光源21的出光方向上。所述红外照明光源20用于产生红外辐射。在本实施例中,所述红外照明光源20所发出的红外光束穿过所述第一反射单元40,所述第一反射单元40改变来自红外照明光源20的红外照明光束的方向,与此同时,上述第一色光源组11、第二色光源组12以及第三色光源组13三基色光束经过胶合棱镜组30合光后也穿过所述第一反射单元40,由此,使所述红外照明光束与所述三基色光束进行合光。
其中,所述第一反射单元40可以是平面反射镜、弧形反射镜、带反射面的曲面透镜中的一种,优选为占空间体积较小的平面反射镜。
其中,上述红外照明光源20和上述三基色光源分时启动。
上述复眼透镜50设置在所述第一反射单元40和光束引导单元60之间,在本实施例中,所述复眼透镜50用于将所述第一反射单元40发出红外照明光束和所述三基色光束的混合光进行匀光,匀光后的混合光投射至所述光束引导单元60。所述光束引导单元60将所述混合光进行透射和/或反射,从而使所述混合光投射至所述图像显示芯片70。
其中,如图1所示,所述光束引导单元60包括中继透镜61和棱镜 组62,所述棱镜组62包括第一三角棱镜和第二三角棱镜,该第一三角棱镜和第二三角棱镜优选为直角三角棱镜,所述中继透镜61用于汇聚所述混合光。需要说明的是,所述光束引导单元60还可以由其他结构形式组成,不需仅拘泥于图1所示的方式,比如,所述棱镜组62可以是TIR棱镜组或者RTIR棱镜组,所述棱镜组62还可以是自由曲面透镜组等等。
其中,上述混合光投射至所述图像显示芯片70具体可以是投射至所述图像显示芯片70的光学元件组。
其中,所述图像显示芯片70具体可以是DMD显示芯片。
同样请参阅图1,所述装置还包括投影镜头80,所述投影镜头80用于接收所述图像显示芯片70通过所述光束引导单元60反射的所述混合光,具体是通过光束引导单元60中的棱镜组62将所述混合光反射至所述投影镜头80。
本实施例提供的基于混合光源的互动投影装置的工作原理是:第一色光源组11、第二色光源组12以及第三色光源组13分别产生的光束投射至胶合棱镜组30,胶合棱镜组30对该三基色光束进行合光,合光后的投影照明光束进入第一反射单元40,与此同时,红外照明光源20产生的红外照明光束在第一反射单元40发生反射后与合光后的投影照明光束混合同向进入复眼透镜50,经复眼透镜50匀光后的投影照明光束和红外照明光束组成混合光束进入光束引导单元60进行透射和/或反射,从而使混合光束射入图像显示芯片70,从图像显示芯片70出射的混合光束再经过光束引导单元60中的棱镜组62反射至投影镜头80。
本实施例的有益效果是:区别于现有技术的情况,本申请实施方式提供一种基于混合光源的互动投影装置,该装置包括投影照明光源、红外照明光源、胶合棱镜组、第一反射单元、复眼透镜、光束引导单元以、图像显示芯片以及投影镜头。该装置将投影照明光源和红外照明光源所发出的光进行混合,混合光共有光学引导光路,使得光路紧凑简单,整个投影装置的结构变得简单,并且不需要反复调试校正红外照明光源,使投影互动更方便准确。
实施例二:
请参阅图2,图2是本申请实施例提供的一种基于混合光源的互动投影装置的结构示意图,图2与上述图1的主要区别在于,所述装置100还包括红外摄像装置91和第二反射单元92。
其中,所述红外摄像装置91可以独立的设置,其具体可以设置在投影镜头80的一侧,其用于采集红外投影区域的图像。在本实施例中,可以根据红外摄像装置91与投影镜头80的位置关系,设置第二反射单元92,从而使投影镜头80发出的红外光束经第二反射单元92反射后进入所述红外摄像装置91。其中,第二反射单元92的具***置根据红外摄像装置91与投影镜头80的位置而定。
其中,所述第二反射单元92可以是平面反射镜或者弧形反射镜或者带有反射面的曲面透镜等,其优选为占空间体积较小的平面反射镜。
本申请实施例在上述实施例的基础上,不仅使整个投影装置的结构变得简单,而且无需进行红外光源和红外摄像的对准及调节,使得整个装置在互动操作上更为方便准确。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施方式,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施方式,这些实施方式不作为对本申请内容的额外限制,提供这些实施方式的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施方式,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (10)

  1. 一种基于混合光源的互动投影装置,其特征在于,包括:
    投影照明光源(10)、红外照明光源(20)、胶合棱镜组(30)、第一反射单元(40)、复眼透镜(50)、光束引导单元(60)、图像显示芯片(70)以及投影镜头(80);
    所述投影照明光源(10)发出的光通过所述胶合棱镜组(30)投射至所述第一反射单元(40),所述第一反射单元(40)用于将所述投影照明光源(10)发出的光和所述红外照明光源(20)发出的光进行合并,并将合并后的混合光投射至所述复眼透镜(50),经所述复眼透镜(50)匀光后,所述混合光投射至所述光束引导单元(60),所述光束引导单元(60)将所述混合光进行透射和/或反射,以使所述混合光射入所述图像显示芯片(70),从所述图像显示芯片(70)出射的混合光再经过所述光束引导单元(60)反射至所述投影镜头(80)。
  2. 根据权利要求1所述的装置,其特征在于,所述投影照明光源(10)包括第一色光源组(11)、第二色光源组(12)以及第三色光源组(13);
    所述第一色光源组(11)、第二色光源组(12)以及第三色光源组(13)均包括LED光源和第一准直透镜组,所述第一准直透镜组设置在所述LED光源的出光方向上。
  3. 根据权利要求2所述的装置,其特征在于,所述第一色光源组(11)为红色LED光源组,所述第二色光源组(12)为蓝色LED光源组,所述第三色光源组(13)为绿色LED光源组。
  4. 根据权利要求1所述的装置,其特征在于,所述红外照明光源(20)包括红外光源(21)和第二准直透镜组(22),所述第二准直透镜组(22)设置在所述红外光源(21)的出光方向上。
  5. 根据权利要求2所述的装置,其特征在于,所述胶合棱镜组(30)由四个相同的等腰三角棱镜胶合组成,所述胶合棱镜组(30)所形成的第一工作面(S1)对所述第一色光源组(11)发出的光进行反射并且对所述第二色光源组(12)发出的光进行透射,所述胶合棱镜组(30)所形成的第二工作面(S2)对所述第二色光源组(12)发出的光进行反射并且对所述第一色光源组(11)发出的光进行透射,所述第一工作面(S1)和第二工作面(S2)均对所述第三 色光源组(13)发出的光进行透射,从而对来自三个不同方向的三基色光束进行合光。
  6. 根据权利要求1所述的装置,其特征在于,所述第一反射单元(40)为平面反射镜、弧形反射镜、带反射面的曲面透镜中的一种。
  7. 根据权利要求1所述的装置,其特征在于,所述光束引导单元(60)包括中继透镜(61)和棱镜组(62),所述棱镜组(62)包括第一三角棱镜和第二三角棱镜;
    所述中继透镜(61)用于汇聚所述混合光。
  8. 根据权利要求1至7任一项所述的装置,其特征在于,所述图像显示芯片70具体为DMD显示芯片。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括红外摄像装置(91)和第二反射单元(92),所述红外摄像装置(91)设置在所述投影镜头(80)的一侧,所述第二反射单元(92)设置在所述光束引导单元(60)和所述投影镜头(80)之间;
    所述红外摄像装置(91)用于采集所述投影镜头(80)经所述第二反射单元(92)反射的红外光。
  10. 根据权利要求9所述的装置,其特征在于,所述第二反射单元(92)为平面反射镜、弧形反射镜、带反射面的曲面透镜中的一种。
PCT/CN2018/088978 2017-12-29 2018-05-30 一种基于混合光源的互动投影装置 WO2019128096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721921521.6 2017-12-29
CN201721921521.6U CN207601492U (zh) 2017-12-29 2017-12-29 一种基于混合光源的互动投影装置

Publications (1)

Publication Number Publication Date
WO2019128096A1 true WO2019128096A1 (zh) 2019-07-04

Family

ID=62769083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088978 WO2019128096A1 (zh) 2017-12-29 2018-05-30 一种基于混合光源的互动投影装置

Country Status (2)

Country Link
CN (1) CN207601492U (zh)
WO (1) WO2019128096A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669533B (zh) * 2018-08-01 2019-08-21 宏達國際電子股份有限公司 頭戴式顯示器以及多深度的成像裝置
CN113433785B (zh) * 2021-06-22 2023-01-24 歌尔光学科技有限公司 一种增强投影画面亮度的***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454840A (zh) * 2012-05-31 2013-12-18 苏州智能泰克有限公司 一种投影装置
CN104076914A (zh) * 2013-03-28 2014-10-01 联想(北京)有限公司 一种电子设备和投影显示方法
US20140313489A1 (en) * 2010-08-20 2014-10-23 Delta Electronics, Inc. Visible and infrared light source for illumination system and projection device comprising the same
CN106990651A (zh) * 2017-03-30 2017-07-28 广景视睿科技(深圳)有限公司 一种红外投影***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313489A1 (en) * 2010-08-20 2014-10-23 Delta Electronics, Inc. Visible and infrared light source for illumination system and projection device comprising the same
CN103454840A (zh) * 2012-05-31 2013-12-18 苏州智能泰克有限公司 一种投影装置
CN104076914A (zh) * 2013-03-28 2014-10-01 联想(北京)有限公司 一种电子设备和投影显示方法
CN106990651A (zh) * 2017-03-30 2017-07-28 广景视睿科技(深圳)有限公司 一种红外投影***

Also Published As

Publication number Publication date
CN207601492U (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2015172536A1 (zh) 直线型dlp微型投影机
TWI571694B (zh) 照明系統與投影裝置
WO2018176613A1 (zh) 一种红外投影***
CN104024935B (zh) 带红外监控的投影***
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
TW200523660A (en) Combined light source for projection display
WO2018209723A1 (zh) 一种投影照明光路及其投影装置
CN103529629B (zh) Dlp微型投影机
WO2015172537A1 (zh) Dlp微型投影机
WO2016095619A1 (zh) 直线型dlp微型投影机
CN102193294A (zh) 照明***
WO2017012220A1 (zh) 一种紧凑型投影装置
CN203012334U (zh) 带红外光源的投影***
WO2016023281A1 (zh) Dlp微型投影机
WO2018171042A1 (zh) 一种投影机
WO2019128096A1 (zh) 一种基于混合光源的互动投影装置
US8757818B2 (en) Projection display apparatus
JP2020064206A (ja) 投射型表示装置および偏光分離素子
WO2013063835A1 (zh) Dlp微型投影机
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
CN105143943B (zh) 带红外光源的投影***
US8979274B2 (en) Display device
WO2017050026A1 (zh) 一种投影照明光路
CN101976011B (zh) Md短焦距投影显示装置
CN112666781A (zh) 一种投影仪的五通道led光源结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895975

Country of ref document: EP

Kind code of ref document: A1