WO2019127699A1 - 骨干网中超低损耗光纤替换调度方法及*** - Google Patents

骨干网中超低损耗光纤替换调度方法及*** Download PDF

Info

Publication number
WO2019127699A1
WO2019127699A1 PCT/CN2018/072984 CN2018072984W WO2019127699A1 WO 2019127699 A1 WO2019127699 A1 WO 2019127699A1 CN 2018072984 W CN2018072984 W CN 2018072984W WO 2019127699 A1 WO2019127699 A1 WO 2019127699A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
replacement
link
replaced
network
Prior art date
Application number
PCT/CN2018/072984
Other languages
English (en)
French (fr)
Inventor
沈纲祥
李泳成
蔡安亮
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/231,263 priority Critical patent/US10911138B2/en
Publication of WO2019127699A1 publication Critical patent/WO2019127699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the invention relates to an ultra-low loss fiber replacement scheduling method and system in a backbone network.
  • ultra-long-haul optical transmission systems are expected to use ultra-low loss fibers to increase transmission capacity and spectral efficiency.
  • Corning's ultra-low loss (ULL) fiber SMF-28 is commercially available. Thanks to the development of ultra-low loss fiber technology, it is possible to replace standard single-mode fiber with ultra-low loss fiber in order to meet future communication needs.
  • the time multiplied by the value of the frequency slot FS is 270 frequency slots FS x days, which corresponds to the 40-band gap FS x day gain available for ULL fiber replacement.
  • the time-weighted frequency slot FS usage is 230 frequency slots FS ⁇ day, which is equivalent to the 80-band gap FS ⁇ day gain that can be obtained by ULL fiber replacement.
  • S2 is 100% more than S1.
  • the designer actively researches and innovates, in order to create a super low-loss fiber replacement scheduling method and system in the backbone network, so that it has more industrial value.
  • an object of the present invention is to provide a reasonable replacement sequence for determining an optical fiber, save spectrum resources, provide additional service usage, and improve spectrum use efficiency.
  • the MG policy specifically includes:
  • S1 separately calculates the gain after replacement of each fiber link, that is, calculates the number of frequency slots FS reduced after each fiber link is replaced, and multiplies the time remaining until the rest of the remaining fiber links are completed; S2 selects one of the fiber link replacements Replace the fiber link with the highest gain; repeat S1 to S2 until all fiber links that need to be replaced are replaced.
  • linear programming model ILP is used to determine the fiber-switching scheduling strategy, which specifically includes:
  • the linear programming model ILP is constructed, with the replacement fiber link topology as the input, and the linear programming model ILP is operated to maximize the gain of the fiber link replacement process.
  • the gain formula of the replacement process is: ⁇ k ⁇ 1.. P C k-1 ⁇ T k ;
  • the constraints of the linear programming model ILP are:
  • Constraint 1 ensures that the maximum frequency slot FS used in the entire network is greater than the last frequency slot FS occupied by any one optical channel, the expression:
  • Constraint 2 guarantees that the optical channel service request between each pair of nodes after each fiber link replacement is satisfied, and the expression:
  • Constraints 3 and 4 ensure that the optical channels between different pairs of nodes do not overlap on the shared link if any, and the expressions are:
  • Constraint 5 calculates the optical signal-to-noise ratio of the optical channel after each fiber replacement, the expression:
  • Constraint 6 ensures that the modulation format selected for each optical channel meets the optical signal-to-noise ratio requirement, the expression:
  • Constraint 7 guarantees that after each fiber replacement, only one modulation format is selected between the pair of nodes, the expression:
  • Constraints 8 and 9 ensure that only one fiber link is replaced at each replacement, and constraints 8 and 10 guarantee that if selected as the fiber link to be replaced, it will be replaced by an ultra-low loss fiber in a replacement.
  • Constraint 11 calculates the time required for each replacement process, the expression:
  • the optical channel adopts the OSNR tolerance when the modulation format is m;
  • a linear programming model ILP is further included, the linear programming model ILP is input with a replacement fiber link topology, and the linear programming model ILP is operated to maximize the gain of the fiber link replacement process, ⁇ k ⁇ 1..P C k-1 ⁇ T k ;
  • the linear programming model ILP is subject to the following restrictions:
  • Constraint 7 guarantees that after each fiber replacement, only one modulation format is selected between the pair of nodes, the expression:
  • Constraints 8 and 9 ensure that only one fiber link is replaced at each replacement, and constraints 8 and 10 guarantee that if selected as the fiber link to be replaced, it will be replaced by an ultra-low loss fiber in a replacement.
  • I is a binary variable, when link l is replaced by 1 by ULL fiber in the kth cycle; otherwise 0;
  • a policy selection unit is further configured to determine a network size of the fiber link replacement network, determine a fiber replacement scheduling order method by using an MG strategy or a linear programming model, and determine a fiber using a linear programming model ILP based on a predetermined network size boundary value. Perform a calculation of the fiber replacement sequence by changing the scheduling strategy;
  • the MG policy is adopted
  • the predetermined network size demarcation value is determined according to the computing power of the hardware.
  • Figure 2 is the maximum used FS number for different replacement cycles
  • Figure 3 is a comparison of the method provided by the present invention with the other two strategies.
  • the ultra-low-loss fiber replacement scheduling method in the backbone network is referred to as an MG policy:
  • S1 respectively calculates the gain after replacement of each fiber link, that is, calculates the number of frequency slots FS reduced after each fiber link is replaced, and multiplies the remaining time of completing the replacement of the remaining fiber links;
  • two test networks are taken as an example, that is, a n6s9 network with 6 nodes and 9 links and a USNET with 24 nodes and 43 links.
  • On each fiber link there are up to 320 FS, each with a bandwidth of 12.5-GHz spectrum.
  • the optical amplifiers are deployed at equal distances with a distance of less than 80 kilometers between the amplifiers.
  • the ULL fiber is Corning SMF-28ULL fiber with an attenuation factor of 0.168 dB/km.
  • modulation formats in the network ie BPSK, QPSK, 16-QAM and 8-QAM for establishing optical channels.
  • the optical channel service request between each node pair is randomly generated within the range of [10,200] Gb/s.
  • the optical channel established between each pair of nodes always follows the shortest path and obeys the spectrum continuity constraint.
  • the fiber replacement scheduling policy in this embodiment is called a MG policy, and other strategies are respectively called a PL-based policy and a random policy, wherein the PL-based policy: according to the length of the replaced fiber link, is long enough Short order in order. Random strategy: Randomly generate an alternate sequence of fiber links.
  • Figure 2 shows the maximum used FS number for different replacement cycles.
  • the MG strategy always requires the minimum number of FSs in different replacement phases. This is because when the MG's strategy chooses to replace the fiber, the fiber with the most profit is selected for replacement.
  • a similar study was also conducted on the USNET network, the results of which are shown in Figure 3. Due to the large network, the ILP model cannot give a solution within the effective time. Like the n6s9 network, the MG strategy has the largest gain, 66% and 200% higher than the other two strategy gains, respectively.
  • the ultra-low-loss fiber replacement scheduling method in the backbone network is applicable to a small network with a small amount of computation.
  • the specific methods include:
  • the linear programming model ILP is constructed, with the replacement fiber link topology as the input, and the linear programming model ILP is operated to maximize the gain of the fiber link replacement process.
  • the gain formula of the replacement process is: ⁇ k ⁇ 1.. P C k-1 ⁇ T k ;
  • the constraints of the linear programming model ILP are:
  • Constraint 1 ensures that the maximum frequency slot FS used in the entire network is greater than the last frequency slot FS occupied by any one optical channel, the expression:
  • Constraint 2 guarantees that the optical channel service request between each pair of nodes after each fiber link replacement is satisfied, and the expression:
  • Constraints 3 and 4 ensure that the optical channels between different pairs of nodes do not overlap on the shared link if any, and the expressions are:
  • Constraint 5 calculates the optical signal-to-noise ratio of the optical channel after each fiber replacement, the expression:
  • Constraint 6 ensures that the modulation format selected for each optical channel meets the optical signal-to-noise ratio requirement, the expression:
  • Constraint 7 guarantees that after each fiber replacement, only one modulation format is selected between the pair of nodes, the expression:
  • Constraints 8 and 9 ensure that only one fiber link is replaced at each replacement, and constraints 8 and 10 guarantee that if selected as the fiber link to be replaced, it will be replaced by an ultra-low loss fiber in a replacement.
  • Constraint 11 calculates the time required for each replacement process, the expression:
  • the optical channel adopts the OSNR tolerance when the modulation format is m;
  • I is a binary variable, when link l is replaced by 1 by ULL fiber in the kth cycle; otherwise 0;
  • F d the number of frequency slots required by the k node for d
  • determining the network size of the fiber link replacement network determining the fiber replacement scheduling order by using the MG strategy or the linear programming model based on the predetermined network size demarcation value method, determining the fiber replacement scheduling strategy for fiber replacement by using the linear programming model ILP Sequential operation
  • the MG policy is adopted
  • the optical fiber switching scheduling strategy is determined by using the linear programming model ILP;
  • the predetermined network size demarcation value is determined according to the computing power of the hardware.
  • the linear programming model ILP determines that the replacement fiber link process is better than the fiber link replacement process calculated in Embodiment 1, the linear programming model ILP is used to determine the fiber link to be used.
  • the process of replacing the fiber link for a large-scale network of not less than 10 nodes, if the linear programming model ILP cannot obtain the optimal replacement fiber link process within a certain time, the fiber link calculated in Embodiment 1 is used. Replacement process.
  • the gain calculation unit is configured to calculate the gain after each fiber link replacement before the replacement of the link, that is, calculate the frequency FS number of each fiber link after replacement to be multiplied to complete all the remaining fiber links. Replace the remaining time;
  • a replacement link selection unit configured to select a fiber link with the highest gain after replacement of one of the fiber links to complete the current fiber link replacement according to the result of the gain calculation unit;
  • the gain calculation unit and the replacement link selection unit are repeatedly operated until all the fiber links that need to be replaced are completely replaced.
  • the present embodiment further comprising a linear programming model of the ILP, the ILP the linear programming model, to replace with the input fiber link topology to maximize the gain to maximize the optical fiber link is targeted to run the replacement process linear programming model ILP, ⁇ k ⁇ 1..P C k-1 ⁇ T k ;
  • the linear programming model ILP is subject to the following restrictions:
  • Constraint 1 ensures that the maximum frequency slot FS used in the entire network is greater than the last frequency slot FS occupied by any one optical channel, the expression:
  • Constraint 2 guarantees that the optical channel service request between each pair of nodes after each fiber link replacement is satisfied, and the expression:
  • Constraints 3 and 4 ensure that the optical channels between different pairs of nodes do not overlap on the shared link if any, and the expressions are:
  • Constraint 5 calculates the optical signal-to-noise ratio of the optical channel after each fiber replacement, the expression:
  • Constraint 6 ensures that the modulation format selected for each optical channel meets the optical signal-to-noise ratio requirement, the expression:
  • Constraint 7 guarantees that after each fiber replacement, only one modulation format is selected between the pair of nodes, the expression:
  • Constraints 8 and 9 ensure that only one fiber link is replaced at each replacement, and constraints 8 and 10 guarantee that if selected as the fiber link to be replaced, it will be replaced by an ultra-low loss fiber in a replacement.
  • Constraint 11 calculates the time required for each replacement process, the expression:
  • the optical channel adopts the OSNR tolerance when the modulation format is m;
  • I is a binary variable, when link l is replaced by 1 by ULL fiber in the kth cycle; otherwise 0;
  • F d the number of frequency slots required by the k node for d
  • a policy selection unit is further configured to determine a network size of the fiber link replacement network, and determine a method for determining a fiber replacement scheduling sequence by using an MG strategy or a linear programming model based on a predetermined network size demarcation value, using a linear programming model ILP. Determining the fiber replacement scheduling strategy to perform the fiber replacement sequence operation;
  • the MG policy is adopted
  • the optical fiber switching scheduling strategy is determined by using the linear programming model ILP;
  • the predetermined network size demarcation value is determined according to the computing power of the hardware. This embodiment is designed to implement the method described in the first embodiment, and the specific advantages have been described in the foregoing embodiment 1, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种骨干网中超低损耗光纤替换调度方法及***,为了提高运营商的频谱使用效率而设计。本发明所述的方包括:S1分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;S2选择其中一个光纤链路替换后的增益最高的光纤链路进行替换;重复S1至S2,直至所有需要被替换的光纤链路全部替换完成。本发明通过确定最合理安排光纤的替换顺序,为运营商尽可能的节省频谱资源,供额外的业务使用。

Description

骨干网中超低损耗光纤替换调度方法及*** 技术领域
本发明涉及一种骨干网中超低损耗光纤替换调度方法及***。
背景技术
为满足日益增长的通信业务需求,超长距离的光传输***有望采用超低损耗光纤,以提高传输容量和频谱效率。康宁公司生产的超低损耗(Ultra-low loss,ULL)光纤SMF-28已经商用。得益于超低损耗光纤技术的发展,为满足未来的通信需求,超低损耗光纤全面取代标准单模光纤成为可能。
在针对超低损耗光纤优势的研究中,有一个重要的现实问题,即网络运营商用于替换光纤的人力资源是有限的,将已有的光纤被替换成超低损耗光纤,往往需要花费几周甚至几个月的时间。一旦某条超低损耗光纤替换完成,进行网络优化,有可能会减少当前正在使用的频谱资源,而新的可用频谱资源则可以携带额外的网络服务来获得额外的收入。例如:假设有三个链接,即N0-N1,N0-N2和N1-N2被替换。替换时间分别与链路长度成比例,即10,13和8天。分别考虑两个替换序列S1和S2。(S1:N1-N2;N0-N2;N0-N1,S2:N0-N2;N0-N1;N1-N2)。如果采用S1,由于链路N0-N2具有最高的频隙FS使用,在8天后完成链路N1-N2的替换,用于承载所有光信道的频隙FS的最大数量没有变化。相比之下,如果采用S2,在13天后完成链路N0-N2的替换,用于承载所有光信道的频隙FS的数量从10减少到6(6是链路N0-N1上使用的频隙FS的数量)。这意味着,对于S1中第二阶段(或者,更换第二个光纤链路时),仍使用相同的最大频隙FS。而对于S2中的第二阶段,仅需要更少的频隙FS,更多的频隙FS可用于提供额外的服务。类似地,当替换第二根光纤链路时,在S1中,链路N0-N2被替换,频隙FS从10减少到6。在S2中,链路N0-N1被替换,使用的频隙FS从6减到5。现在我们可以评估ULL光纤链路替换这两个序列的收益。我们使用图1中两条曲线下面的区域来衡量效率,因为面积越小意味着替换时间乘以频 谱资源的值越低。对于S1,其时间乘以频隙FS的值为270频隙FS×天,这对应于ULL光纤替换可获得的40-频隙FS×天收益。对于S2,其时间加权频隙FS使用量为230频隙FS×天,相当于ULL光纤替换可获得的80-频隙FS×天收益。显然,S2比S1增加了100%。
上面的例子显示了有效调度的ULL光纤链路替换策略的重要性。网络运营商希望在每条光纤链路替换后立即重新优化网络,以提高频谱效率。但同时,不同的超低损耗光纤替换顺序将严重影响网络运营商的优化效果。因此,如何安排光纤的替换顺序将是非常重要的研究课题。
鉴于上述,本设计人积极加以研究创新,以期创设一种骨干网中超低损耗光纤替换调度方法及***,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种确定光纤的合理替换顺序,节省频谱资源,供额外的业务使用,提高了频谱使用效率。
为达到上述发明目的本发明骨干网中超低损耗光纤替换调度方法,所述的方法称为MG策略,所述的MG策略具体包括:
S1分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;S2选择其中一个光纤链路替换后的增益最高的光纤链路进行替换;重复S1至S2,直至所有需要被替换的光纤链路全部替换完成。
进一步地,利用线性规划模型ILP确定光纤换调度策略,具体包括:
构建线性规划模型ILP,以带替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,其中替换过程的增益公式为:∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
Figure PCTCN2018072984-appb-000001
约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
Figure PCTCN2018072984-appb-000002
约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
Figure PCTCN2018072984-appb-000003
Figure PCTCN2018072984-appb-000004
约束5计算每一次光纤替换后光通道的光信噪比,表达式:
Figure PCTCN2018072984-appb-000005
约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
Figure PCTCN2018072984-appb-000006
约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
Figure PCTCN2018072984-appb-000007
约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证,如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
Figure PCTCN2018072984-appb-000008
Figure PCTCN2018072984-appb-000009
Figure PCTCN2018072984-appb-000010
约束11计算每个替换过程所需的时间,表达式:
Figure PCTCN2018072984-appb-000011
所述的表达式中字母代表含义分别为:
Figure PCTCN2018072984-appb-000012
节点对d采用调制格式m时需要的频隙FS数;
Figure PCTCN2018072984-appb-000013
光通道采用调制格式m时OSNR容限;
Figure PCTCN2018072984-appb-000014
当节点对之间的最短路由经过链路l;否则为0;
Figure PCTCN2018072984-appb-000015
当节点对d和t间最短路由共享链路;否则为0;
P总共需要替换的光纤个数;
θ l=1当链路l将计划被替换;否则为0;
Figure PCTCN2018072984-appb-000016
是光纤l被替换的周期;
Figure PCTCN2018072984-appb-000017
是链路l使用标准单模光纤时的OSNR值;
Figure PCTCN2018072984-appb-000018
是链路l使用ULL光纤时的OSNR值;
Figure PCTCN2018072984-appb-000019
是一个极大值;
S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
Figure PCTCN2018072984-appb-000020
二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
Figure PCTCN2018072984-appb-000021
是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
Figure PCTCN2018072984-appb-000022
在第k个周期后,节点对d间光通道的OSNR值;
Figure PCTCN2018072984-appb-000023
二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
F d,k节点对d所需的频隙数;
C k在第k个周期以后,网络最大频隙数;
T k第k个替换周期耗费时间。
进一步地,还包括通过线性规划模型ILP确定待光纤链路的过程,若线性规划模型ILP确定待光纤链路的过程与权利要求1计算的光纤链路的替换过程不一致时,采用线性规划模型ILP确定待光纤链路的过程进行光纤链路的替换。
为达到上述发明目的,本发明骨干网中超低损耗光纤替换调度***,包括:
增益计算单元,用于选择当次替换链路前,分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;
替换链路选择单元,用于根据增益计算单元的结果,选择其中一个光纤链路替换后的增益最高的光纤链路完成当次光纤链路替换;
增益计算单元、替换链路选择单元重复运行直至所有需要被替换的光纤链路全部替换完成。
进一步地,还包括线性规划模型ILP,所述线性规划模型ILP,以带替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
Figure PCTCN2018072984-appb-000024
约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
Figure PCTCN2018072984-appb-000025
约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
Figure PCTCN2018072984-appb-000026
Figure PCTCN2018072984-appb-000027
约束5计算每一次光纤替换后光通道的光信噪比,表达式:
Figure PCTCN2018072984-appb-000028
约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
Figure PCTCN2018072984-appb-000029
约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
Figure PCTCN2018072984-appb-000030
约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证,如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
Figure PCTCN2018072984-appb-000031
Figure PCTCN2018072984-appb-000032
Figure PCTCN2018072984-appb-000033
约束11计算每个替换过程所需的时间,表达式:
Figure PCTCN2018072984-appb-000034
所述的表达式中字母代表含义分别为:
Figure PCTCN2018072984-appb-000035
节点对d采用调制格式m时需要的频隙FS数;
Figure PCTCN2018072984-appb-000036
光通道采用调制格式m时OSNR容限;
Figure PCTCN2018072984-appb-000037
当节点对之间的最短路由经过链路l;否则为0;
Figure PCTCN2018072984-appb-000038
当节点对d和t间最短路由共享链路;否则为0;
P总共需要替换的光纤个数;
θ l=1当链路l将计划被替换;否则为0;
Figure PCTCN2018072984-appb-000039
是光纤l被替换的周期;
Figure PCTCN2018072984-appb-000040
是链路l使用标准单模光纤时的OSNR值;
Figure PCTCN2018072984-appb-000041
是链路l使用ULL光纤时的OSNR值;
Figure PCTCN2018072984-appb-000042
是一个极大值;
S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
Figure PCTCN2018072984-appb-000043
二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
Figure PCTCN2018072984-appb-000044
是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
Figure PCTCN2018072984-appb-000045
在第k个周期后,节点对d间光通道的OSNR值;
Figure PCTCN2018072984-appb-000046
二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
F d,k节点对d所需的频隙数;
C k在第k个周期以后,网络最大频隙数;
T k第k个替换周期耗费时间。
进一步地,还包括策略选择单元,用于确定光纤链路替换网络的网络规模,基于预定的网络规模分界值,确定利用MG策略或线性规划模型确定光纤替换调度顺序方法利用线性规划模型ILP确定光纤换调度策略进行光纤替换顺序的运算;
若网络模型大于、等于预定网络规模分界值,则采用MG策略;
若网络模型小于预定网络规划分界值,则采用利用线性规划模型ILP确定光纤换调度策略;
其中,所述的预定网络规模分界值根据硬件的运算能力确定。
借由上述方案,本发明骨干网中超低损耗光纤替换调度方法及***具有以下优点:
本发明由于技术方案中选择增益最高的光牵链路进行替换,可以为运营商尽可能的节省频谱资源,供额外的业务使用,有效提高了运营商的频谱使用效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是在n6s9网络中,随着替换比例的增加,FS乘以时间的增益不断增加;
图2是不同替换周期的最大使用FS数;
图3是本发明提供的方法与其他两个策略增益比较。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例骨干网中超低损耗光纤替换调度方法,所述的方法称为MG策略: 具体包括:
S1分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;
S2选择其中一个光纤链路替换后的增益最高的光纤链路进行替换;
重复S1至S2,直至所有需要被替换的光纤链路全部替换完成。
本实施例中,以两种测试网络为例,即6节点9条链路的n6s9网络和24节点43链路的USNET。在每个光纤链路,最多有320个FS,每个FS具有12.5-GHz频谱的带宽。在每个光纤链路中,光放大器被部署在等距离上,放大器之间的距离小于80公里。ULL光纤为Corning SMF-28ULL光纤,衰减系数0.168分贝/公里。网络中有四调制格式(即BPSK、QPSK、16-QAM和8-QAM)可供建立光通道。每个节点对之间的光通道业务请求[10,200]Gb/s的范围内随机生成。每个节点对之间建立的光信道始终遵循最短路径,服从频谱连续性约束。
本实施例的光纤替换调度策略称为MG的策略,其他还有的策略分别称为:基于PL的策略、随机策略,其中,基于PL的策略:按被替换的光纤链路长度,有长到短依次替换顺序。随机策略:随机生成光纤链路的替换序列。
如图1至3所示,在n6s9网络中,随着替换比例的增加,FS乘以时间的增益不断增加。这种现象很合理,当替换光纤的比例越高,网络中光纤通道能够使用更高效的调制格式的机会更大,从而增加频谱利用率。对三种启发式算法的比较,MG策略获得的增益最高,其性能几乎与ILP模型的最佳性能相同。MG策略与其他两种算法的性能差异分别达到66%和36%。
假设n6s9网络中ULL光纤替代率为80%时,图2显示了不同替换周期的最大使用FS数。与其他两种策略相比,MG策略在不同的替换阶段总是需要最少的最大FS数。这是因为MG的策略选择替换光纤时,选取了收益最大的光纤进行替换。类似的研究也在USNET网络上进行,其结果如图3所示。由于网络较大, ILP模型无法在有效时间内给出解。与n6s9网络一样,MG策略的增益最大,比其他两个策略增益分别高66%和200%。
实施例2
本实施例骨干网中超低损耗光纤替换调度方法,本实施例适用于运算量较小的小型网络,具体方法包括:
构建线性规划模型ILP,以带替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,其中替换过程的增益公式为:∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
Figure PCTCN2018072984-appb-000047
约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
Figure PCTCN2018072984-appb-000048
约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
Figure PCTCN2018072984-appb-000049
Figure PCTCN2018072984-appb-000050
约束5计算每一次光纤替换后光通道的光信噪比,表达式:
Figure PCTCN2018072984-appb-000051
约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
Figure PCTCN2018072984-appb-000052
约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
Figure PCTCN2018072984-appb-000053
约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证,如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
Figure PCTCN2018072984-appb-000054
Figure PCTCN2018072984-appb-000055
Figure PCTCN2018072984-appb-000056
约束11计算每个替换过程所需的时间,表达式:
Figure PCTCN2018072984-appb-000057
所述的表达式中字母代表含义分别为:
Figure PCTCN2018072984-appb-000058
节点对d采用调制格式m时需要的频隙FS数;
Figure PCTCN2018072984-appb-000059
光通道采用调制格式m时OSNR容限;
Figure PCTCN2018072984-appb-000060
当节点对之间的最短路由经过链路l;否则为0;
Figure PCTCN2018072984-appb-000061
当节点对d和t间最短路由共享链路;否则为0;
P总共需要替换的光纤个数;
θ l=1当链路l将计划被替换;否则为0;
Figure PCTCN2018072984-appb-000062
是光纤l被替换的周期;
Figure PCTCN2018072984-appb-000063
是链路l使用标准单模光纤时的OSNR值;
Figure PCTCN2018072984-appb-000064
是链路l使用ULL光纤时的OSNR值;
Figure PCTCN2018072984-appb-000065
是一个极大值;
S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
Figure PCTCN2018072984-appb-000066
二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
Figure PCTCN2018072984-appb-000067
是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
Figure PCTCN2018072984-appb-000068
在第k个周期后,节点对d间光通道的OSNR值;
Figure PCTCN2018072984-appb-000069
二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
F d,k节点对d所需的频隙数;
C k在第k个周期以后,网络最大频隙数;
T k第k个替换周期耗费时间。
上述实施例中,确定光纤链路替换网络的网络规模,基于预定的网络规模分界值,确定利用MG策略或线性规划模型确定光纤替换调度顺序方法利用线性规划模型ILP确定光纤换调度策略进行光纤替换顺序的运算;
若网络模型大于、等于预定网络规模分界值,则采用MG策略;
若网络模型小于预定网络规划分界值,则采用利用线性规划模型ILP确定光纤换调度策略;
其中,所述的预定网络规模分界值根据硬件的运算能力确定。
例如,针对少于10个节点的小规模网络,若线性规划模型ILP确定替换光纤链路的过程优于实施例1计算的光纤链路的替换过程,则采用线性规划模型ILP确定待光纤链路的过程进行光纤链路的替换,针对不小于10节点的大规模网络,若线性规划模型ILP无法在一定时间内获得最优的替换光纤链路过程,则采用实施例1计算的光纤链路的替换过程。
实施例3
本实施例骨干网中超低损耗光纤替换调度***,包括:
增益计算单元,用于选择当次替换链路前,分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链 路全部替换剩余的时间;
替换链路选择单元,用于根据增益计算单元的结果,选择其中一个光纤链路替换后的增益最高的光纤链路完成当次光纤链路替换;
增益计算单元、替换链路选择单元重复运行直至所有需要被替换的光纤链路全部替换完成。
本实施例,还包括线性规划模型ILP,所述线性规划模型ILP,以带替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
Figure PCTCN2018072984-appb-000070
约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
Figure PCTCN2018072984-appb-000071
约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
Figure PCTCN2018072984-appb-000072
Figure PCTCN2018072984-appb-000073
约束5计算每一次光纤替换后光通道的光信噪比,表达式:
Figure PCTCN2018072984-appb-000074
约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
Figure PCTCN2018072984-appb-000075
约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
Figure PCTCN2018072984-appb-000076
约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证, 如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
Figure PCTCN2018072984-appb-000077
Figure PCTCN2018072984-appb-000078
Figure PCTCN2018072984-appb-000079
约束11计算每个替换过程所需的时间,表达式:
Figure PCTCN2018072984-appb-000080
所述的表达式中字母代表含义分别为:
Figure PCTCN2018072984-appb-000081
节点对d采用调制格式m时需要的频隙FS数;
Figure PCTCN2018072984-appb-000082
光通道采用调制格式m时OSNR容限;
Figure PCTCN2018072984-appb-000083
当节点对之间的最短路由经过链路l;否则为0;
Figure PCTCN2018072984-appb-000084
当节点对d和t间最短路由共享链路;否则为0;
P总共需要替换的光纤个数;
θ l=1当链路l将计划被替换;否则为0;
Figure PCTCN2018072984-appb-000085
是光纤l被替换的周期;
Figure PCTCN2018072984-appb-000086
是链路l使用标准单模光纤时的OSNR值;
Figure PCTCN2018072984-appb-000087
是链路l使用ULL光纤时的OSNR值;
Figure PCTCN2018072984-appb-000088
是一个极大值;
S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
Figure PCTCN2018072984-appb-000089
二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
Figure PCTCN2018072984-appb-000090
是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
Figure PCTCN2018072984-appb-000091
在第k个周期后,节点对d间光通道的OSNR值;
Figure PCTCN2018072984-appb-000092
二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
F d,k节点对d所需的频隙数;
C k在第k个周期以后,网络最大频隙数;
T k第k个替换周期耗费时间。
本实施例中,还包括策略选择单元,用于确定光纤链路替换网络的网络规模,基于预定的网络规模分界值,确定利用MG策略或线性规划模型确定光纤替换调度顺序方法利用线性规划模型ILP确定光纤换调度策略进行光纤替换顺序的运算;
若网络模型大于、等于预定网络规模分界值,则采用MG策略;
若网络模型小于预定网络规划分界值,则采用利用线性规划模型ILP确定光纤换调度策略;
其中,所述的预定网络规模分界值根据硬件的运算能力确定。本实施例,为了实现上述实施例1中所述的方法而设计,具体优点在上述实施例1中已经叙述过了,在此不再赘述。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (6)

  1. 一种骨干网中超低损耗光纤替换调度方法,其特征在于,所述的方法称为MG策略,所述的MG策略具体包括:
    S1分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;S2选择其中一个光纤链路替换后的增益最高的光纤链路进行替换;重复S1至S2,直至所有需要被替换的光纤链路全部替换完成。
  2. 根据权利要求1所述的骨干网中超低损耗光纤替换调度方法,其特征在于,还包括:利用线性规划模型ILP确定光纤换调度策略,具体包括:
    构建线性规划模型ILP,以待替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,其中替换过程的增益公式为:∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
    约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
    Figure PCTCN2018072984-appb-100001
    约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
    Figure PCTCN2018072984-appb-100002
    约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
    Figure PCTCN2018072984-appb-100003
    Figure PCTCN2018072984-appb-100004
    约束5计算每一次光纤替换后光通道的光信噪比,表达式:
    Figure PCTCN2018072984-appb-100005
    约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
    Figure PCTCN2018072984-appb-100006
    约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
    Figure PCTCN2018072984-appb-100007
    约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证,如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
    Figure PCTCN2018072984-appb-100008
    Figure PCTCN2018072984-appb-100009
    Figure PCTCN2018072984-appb-100010
    约束11计算每个替换过程所需的时间,表达式:
    Figure PCTCN2018072984-appb-100011
    所述的表达式中字母代表含义分别为:
    Figure PCTCN2018072984-appb-100012
    节点对d采用调制格式m时需要的频隙FS数;
    Figure PCTCN2018072984-appb-100013
    光通道采用调制格式m时OSNR容限;
    Figure PCTCN2018072984-appb-100014
    当节点对之间的最短路由经过链路l;否则为0;
    Figure PCTCN2018072984-appb-100015
    当节点对d和t间最短路由共享链路;否则为0;
    P总共需要替换的光纤个数;
    θl=1当链路l将计划被替换;否则为0;
    Figure PCTCN2018072984-appb-100016
    是光纤l被替换的周期;
    Figure PCTCN2018072984-appb-100017
    是链路l使用标准单模光纤时的OSNR值;
    Figure PCTCN2018072984-appb-100018
    是链路l使用ULL光纤时的OSNR值;
    Figure PCTCN2018072984-appb-100019
    是一个极大值;
    S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
    Figure PCTCN2018072984-appb-100020
    二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
    Figure PCTCN2018072984-appb-100021
    是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
    Figure PCTCN2018072984-appb-100022
    在第k个周期后,节点对d间光通道的OSNR值;
    Figure PCTCN2018072984-appb-100023
    二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
    F d,k节点对d所需的频隙数;
    C k在第k个周期以后,网络最大频隙数;
    T k第k个替换周期耗费时间。
  3. 根据权利要求2所述的骨干网中超低损耗光纤替换调度方法,其特征在于,确定光纤链路替换网络的网络规模,基于预定的网络规模分界值,确定利用MG策略或线性规划模型确定光纤替换调度顺序方法利用线性规划模型ILP确定光纤换调度策略进行光纤替换顺序的运算;
    若网络模型大于、等于预定网络规模分界值,则采用MG策略;
    若网络模型小于预定网络规划分界值,则采用利用线性规划模型ILP确定光纤换调度策略;
    其中,所述的预定网络规模分界值根据硬件的运算能力确定。
  4. 一种骨干网中超低损耗光纤替换调度***,其特征在于,包括:
    增益计算单元,用于选择当次替换链路前,分别计算各光纤链路替换后的增益,也即计算各光纤链路进行替换后减少的频隙FS数乘以到完成其余光纤链路全部替换剩余的时间;
    替换链路选择单元,用于根据增益计算单元的结果,选择其中一个光纤链路替换后的增益最高的光纤链路完成当次光纤链路替换;
    增益计算单元、替换链路选择单元重复运行直至所有需要被替换的光纤链路全部替换完成。
  5. 根据权利要求4所述的骨干网中超低损耗光纤替换调度***,其特征在于,还包括线性规划模型ILP,所述线性规划模型ILP,以带替换光纤链路拓扑为输入,以最大化光纤链路替换过程的增益最大化为目标运行线性规划模型ILP,∑ k∈1..PC k-1·T k;线性规划模型ILP的限制条件为:
    约束1确保整个网络中使用的最大频隙FS数大于任何一条光通道的所占用的最后一个频隙FS,表达式:
    Figure PCTCN2018072984-appb-100024
    约束2保证满足每一个光纤链路替换后每个节点对之间光通道业务请求,表达式:
    Figure PCTCN2018072984-appb-100025
    约束3和4确保不同节点对之间的光信道在共享链路上如果有的话分配的频谱不重叠,表达式:
    Figure PCTCN2018072984-appb-100026
    Figure PCTCN2018072984-appb-100027
    约束5计算每一次光纤替换后光通道的光信噪比,表达式:
    Figure PCTCN2018072984-appb-100028
    约束6确保每个光通道选择的调制格式满足光信噪比的要求,表达式:
    Figure PCTCN2018072984-appb-100029
    约束7保证在每次光纤替换后,节点对之间只选择一个调制格式,表达式:
    Figure PCTCN2018072984-appb-100030
    约束8和9确保在每次替换,只有一条光纤链接被替换,约束8和10保证,如果被选为要替换的光纤链路,它一定会在某次替换中内被超低损耗光纤替换,表达式:
    Figure PCTCN2018072984-appb-100031
    Figure PCTCN2018072984-appb-100032
    Figure PCTCN2018072984-appb-100033
    约束11计算每个替换过程所需的时间,表达式:
    Figure PCTCN2018072984-appb-100034
    所述的表达式中字母代表含义分别为:
    Figure PCTCN2018072984-appb-100035
    节点对d采用调制格式m时需要的频隙FS数;
    Figure PCTCN2018072984-appb-100036
    光通道采用调制格式m时OSNR容限;
    Figure PCTCN2018072984-appb-100037
    当节点对之间的最短路由经过链路l;否则为0;
    Figure PCTCN2018072984-appb-100038
    当节点对d和t间最短路由共享链路;否则为0;
    P总共需要替换的光纤个数;
    θ l=1当链路l将计划被替换;否则为0;
    Figure PCTCN2018072984-appb-100039
    是光纤l被替换的周期;
    Figure PCTCN2018072984-appb-100040
    是链路l使用标准单模光纤时的OSNR值;
    Figure PCTCN2018072984-appb-100041
    是链路l使用ULL光纤时的OSNR值;
    Figure PCTCN2018072984-appb-100042
    是一个极大值;
    S d,k,整数变量,节点对d在第k个周期占用的起始频隙;
    Figure PCTCN2018072984-appb-100043
    二进制变量,在第第k个周期后,当节点对d间光通道占用的起始频隙大于节点对t时,为1,即S d,k>S t,k;否则为0;
    Figure PCTCN2018072984-appb-100044
    是二进制变量,当链路l在第k个周期被ULL光纤替换为1;否则为0;
    Figure PCTCN2018072984-appb-100045
    在第k个周期后,节点对d间光通道的OSNR值;
    Figure PCTCN2018072984-appb-100046
    二进制变量,当第k个周期后,节点对d使用调制格式m则为1;否则为0;
    F d,k节点对d所需的频隙数;
    C k在第k个周期以后,网络最大频隙数;
    T k第k个替换周期耗费时间。
  6. 根据权利要求5所述的骨干网中超低损耗光纤替换调度***,其特征在于,还包括策略选择单元,用于确定光纤链路替换网络的网络规模,基于预定的网络规模分界值,确定利用MG策略或线性规划模型确定光纤替换调度顺序方 法利用线性规划模型ILP确定光纤换调度策略进行光纤替换顺序的运算;
    若网络模型大于、等于预定网络规模分界值,则采用MG策略;
    若网络模型小于预定网络规划分界值,则采用利用线性规划模型ILP确定光纤换调度策略;
    其中,所述的预定网络规模分界值根据硬件的运算能力确定。
PCT/CN2018/072984 2017-12-29 2018-01-17 骨干网中超低损耗光纤替换调度方法及*** WO2019127699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/231,263 US10911138B2 (en) 2017-12-29 2018-12-21 Replacement scheduling method and system for ultra-low loss optical fibers in backbone network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711486912.4 2017-12-29
CN201711486912.4A CN108199881B (zh) 2017-12-29 2017-12-29 骨干网中超低损耗光纤替换调度方法及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/231,263 Continuation-In-Part US10911138B2 (en) 2017-12-29 2018-12-21 Replacement scheduling method and system for ultra-low loss optical fibers in backbone network

Publications (1)

Publication Number Publication Date
WO2019127699A1 true WO2019127699A1 (zh) 2019-07-04

Family

ID=62587105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072984 WO2019127699A1 (zh) 2017-12-29 2018-01-17 骨干网中超低损耗光纤替换调度方法及***

Country Status (2)

Country Link
CN (1) CN108199881B (zh)
WO (1) WO2019127699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542939A (zh) * 2021-07-12 2021-10-22 苏州大学 基于超低损耗光纤的多周期升级调度方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543314B (zh) * 2018-11-27 2022-04-15 苏州大学 一种光纤升级后弹性光网络的光放大器重排列方法
CN113067661B (zh) 2021-03-26 2021-12-28 苏州大学 光通道性能保证下的osnr感知频谱分配方法及***
CN113114365B (zh) * 2021-04-13 2021-12-07 苏州大学 一种光纤部署方法、存储介质、电子设备及***
CN114186700B (zh) * 2021-12-06 2023-10-10 国网江苏省电力有限公司扬州供电分公司 一种电力光缆多周期运维入站站点选择方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420321A (zh) * 2008-11-27 2009-04-29 电子科技大学 一种多模块化光纤的sdh网络规划设计方法
CN106487685A (zh) * 2016-11-15 2017-03-08 苏州大学 一种光网络中的光纤替换方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015570B2 (en) * 2014-02-12 2018-07-03 Centurylink Intellectual Property Llc Touchless fiber network
CN107231301B (zh) * 2017-07-24 2020-11-13 华信咨询设计研究院有限公司 一种光缆替代路由确定方法及***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420321A (zh) * 2008-11-27 2009-04-29 电子科技大学 一种多模块化光纤的sdh网络规划设计方法
CN106487685A (zh) * 2016-11-15 2017-03-08 苏州大学 一种光网络中的光纤替换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUAN, YANXIN ET AL.: "Migrating Elastic Optical Networks from Standard Single-Mode Fibers to Ultra-Low Loss Fibers: Strategies and Benefits", IEEE 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC, 23 March 2017 (2017-03-23), pages 1 - 3, XP033101461 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542939A (zh) * 2021-07-12 2021-10-22 苏州大学 基于超低损耗光纤的多周期升级调度方法

Also Published As

Publication number Publication date
CN108199881B (zh) 2020-09-01
CN108199881A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019127699A1 (zh) 骨干网中超低损耗光纤替换调度方法及***
Walkowiak et al. Dynamic routing in spectrally spatially flexible optical networks with back-to-back regeneration
Yao et al. Core, mode, and spectrum assignment based on machine learning in space division multiplexing elastic optical networks
CN106487685B (zh) 一种光网络中的光纤替换方法
Klinkowski et al. Impact of crosstalk estimation methods on the performance of spectrally and spatially flexible optical networks
Yuan et al. A RMSA algorithm for elastic optical network with a tradeoff between consumed resources and distance to boundary
Vincent et al. Scalable capacity estimation for nonlinear elastic all-optical core networks
Ahmad et al. Power-aware logical topology design heuristics in wavelength-routing networks
CN113114365B (zh) 一种光纤部署方法、存储介质、电子设备及***
CN113489617A (zh) 基于流量疏导的最小网络能耗优化方法及***
US10911138B2 (en) Replacement scheduling method and system for ultra-low loss optical fibers in backbone network
Luo et al. Survivable routing, spectrum, core and band assignment in multi-band space division multiplexing elastic optical networks
Lechowicz Regression-based fragmentation metric and fragmentation-aware algorithm in spectrally-spatially flexible optical networks
Wei et al. Optimizing energy and spectrum efficiency of virtual optical network embedding in elastic optical networks
Li et al. Risk and traffic based service routing optimization for electric power communication network
Li et al. A crosstalk-and fragmentation-aware RMSCA strategy in SDM-EONs based on aligned prime-partition of spectrum resources
Jara et al. A topology-based spectrum assignment solution for static elastic optical networks with ring topologies
CN113542939B (zh) 基于超低损耗光纤的多周期升级调度方法
Cheng et al. Routing and spectrum assignment algorithm based on spectrum fragment assessment of arriving services
Chen Power-aware virtual optical network provisioning in flexible bandwidth optical networks
Din et al. The RBCMLSA problem on space division multiplexing elastic optical networks
CN112203168A (zh) 一种基于任播和多播的节能路由频谱分配方法
Liu et al. A survivable VON embedding algorithm based on resource awareness of correlation lightpaths in elastic optical networks
Li et al. A precise partition strategy for proactive fragmentation avoidance in SDM-EONs with crosstalk awareness
Wang et al. Network for AI: Communication-Efficient Federated Learning with MST-based Scheduling and Multi-Aggregation over Optical Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897070

Country of ref document: EP

Kind code of ref document: A1