WO2019127324A1 - 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用 - Google Patents

一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用 Download PDF

Info

Publication number
WO2019127324A1
WO2019127324A1 PCT/CN2017/119715 CN2017119715W WO2019127324A1 WO 2019127324 A1 WO2019127324 A1 WO 2019127324A1 CN 2017119715 W CN2017119715 W CN 2017119715W WO 2019127324 A1 WO2019127324 A1 WO 2019127324A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
grinding wheel
preparation
ceramic
composite
Prior art date
Application number
PCT/CN2017/119715
Other languages
English (en)
French (fr)
Inventor
肖卓豪
易晨浩
汪永清
易维民
吴敏
鲁什金·尼尔
Original Assignee
江西冠亿研磨股份有限公司
景德镇陶瓷大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西冠亿研磨股份有限公司, 景德镇陶瓷大学 filed Critical 江西冠亿研磨股份有限公司
Priority to CN201780002903.5A priority Critical patent/CN110461789B/zh
Priority to US16/349,588 priority patent/US10815146B2/en
Priority to PCT/CN2017/119715 priority patent/WO2019127324A1/zh
Publication of WO2019127324A1 publication Critical patent/WO2019127324A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/1045Forming solid beads by bringing hot glass in contact with a liquid, e.g. shattering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Definitions

  • the invention belongs to the field of grinding wheel binder materials, and particularly relates to a composite grinding wheel binder and a preparation method and application thereof.
  • the grinding wheel is a commonly used grinding tool, which is obtained by bonding abrasive grains together by a bonding agent and sintering at a high temperature.
  • commonly used binders mainly include ceramic binders, glass binders, and glass-ceramic binders. Ceramic bond has the advantages of low cost and simple preparation process. However, since the ceramic bond is made by mixing ball milling of various ceramic raw materials, it is difficult to achieve microscopic level homogenization, which inevitably leads to the local component of the bond.
  • the uneven binder and abrasive particles will form different phases after high temperature sintering, and the difference in phase will lead to the difference in local performance of the obtained grinding wheel, which will cause the performance of the grinding wheel to be unstable;
  • the ceramic binder is first formed into a liquid phase at a high temperature, and the ceramic binder has a higher liquefaction temperature, usually above 1200 ° C, so that the cost of preparing the grinding wheel with ceramic as a binder is higher. High and energy consumption.
  • the glass binder is prepared by cooling at a high temperature melt, and the liquid phase formed at a high temperature has achieved homogenization at the "molecular" level of various components thereof, and achieves homogeneity at a microscopic level;
  • the temperature at which the agent forms a liquid phase is low. Therefore, the use of glass as a grinding wheel binder can not only improve the performance stability of the grinding wheel, but also reduce the firing temperature of the grinding wheel and reduce energy consumption.
  • the internal atoms do not form a regular tight packing, so the mechanical strength of the grinding wheel made of glass as a binder is inferior to that of the ceramic material.
  • glass-ceramic is a glass by heat treatment and light irradiation. Or a chemical treatment or the like, a large amount of minute crystals are uniformly deposited in the glass to form a dense multi-phase composite of the microcrystalline phase and the glass phase.
  • the firing temperature of the grinding wheel is high, the type and proportion of crystals precipitated in the glass phase which has not been converted in the glass ceramics are difficult to control, so that when the firing temperature of the grinding wheel is slightly changed, the phase of the bonding agent changes significantly, and the grinding wheel is changed to the grinding wheel.
  • the performance stability has an adverse effect, resulting in a low yield of the finished product.
  • the above problems caused by the glass phase in the glass ceramics can be overcome by reducing the content of the glass phase in the glass ceramics to completely convert into the microcrystalline phase, but due to the limitation of the preparation materials, it is basically at a lower temperature. It is impossible to achieve complete conversion of the glass phase in the glass-ceramic, and if the temperature of the high-temperature heat treatment is increased to achieve complete conversion, since the crystallization temperature of the glass-ceramic composed entirely of the microcrystalline phase is high, the grinding wheel is used as the grinding wheel binder. The increase in sintering temperature undoubtedly increases the preparation cost and energy consumption of the grinding wheel again.
  • the first technical problem to be solved by the present invention is that the defects of the glass ceramics composed entirely of the microcrystalline phase can hardly be obtained at a relatively low temperature, thereby providing a crystallite which can be completely converted at a low temperature. Glass and its preparation method.
  • the second technical problem to be solved by the present invention is that the existing glass-ceramic has an unconverted glass phase, and is used as a binder to be sensitive to the temperature fluctuation of the grinding wheel, thereby providing a composite wheel binder. And further providing a preparation method and application of the composite grinding wheel binder.
  • a glass-ceramic material comprising kaolin, silica, boron trioxide, lithium dioxide, albite, potassium feldspar, talc, dolomite, phosphorus pentoxide and cerium oxide.
  • the mass ratio of kaolin, silica, boron trioxide, lithium dioxide, albite, potassium feldspar, talc, dolomite, phosphorus pentoxide and cerium oxide is (40-60) :(7-15):(5-10):(1-3):(10-15):(8-12):(5-10):(10-17):(2-7):( 0.5-2).
  • the glass particles are heat-treated at 900-1020 ° C for 0.5-2.5 hours to obtain the glass ceramics.
  • the raw material in the above preparation method, is not less than 120 mesh, melted into a liquid state at 1200-1450 ° C and kept for 1-2 h.
  • the glass liquid is poured into room temperature water to be water-quenched, and dried at 120 to 150 ° C to obtain glass particles.
  • a composite grinding wheel binder comprising: glass-ceramics and glass having a mass ratio of (20-50): (50-80), wherein the glass-ceramics is the above-mentioned glass-ceramic or the glass-ceramic prepared by the above preparation method;
  • the raw material for preparing the glass ceramic is the same as the raw material for preparing the glass.
  • a method for preparing the above composite grinding wheel binder comprising mixing the glass ceramic obtained in the step (3) with the glass particles obtained in the step (2) to obtain the composite grinding wheel binder
  • the above preparation method further comprises the steps of crushing the mixed glass particles and the glass ceramics to not less than 20 mesh and then ball milling to not less than 500 mesh.
  • the composite grinding wheel binder or the composite grinding wheel binder prepared by the above preparation method is used for preparing a grinding wheel blank.
  • the wheel blank comprising the composite wheel binder is compression molded at 20-50 MPa.
  • the shaped grinding wheel blank is incubated at 750-810 ° C for 3-12 h to obtain a grinding wheel.
  • the present invention provides a glass-ceramic material comprising kaolin, silica, boron trioxide, lithium dioxide, albite, potassium feldspar, talc, dolomite, phosphorus pentoxide and cerium oxide.
  • the glass obtained from the above raw materials can obtain a crystallized glass composed entirely of a microcrystalline phase at 900-1020 ° C, realizing complete conversion of the glass phase at a lower temperature.
  • the present invention also provides a composite wheel binder comprising a glass-ceramic and glass having a mass ratio of (20-50):(50-80), and the glass phase of the binder of the invention has a lower flow temperature , which can form a coating of the abrasive particles together with the glass-ceramic phase, realize low-temperature sintering of the grinding wheel, and the presence of the microcrystalline phase in the binder makes the mechanical strength of the obtained grinding wheel higher; moreover, due to the bonding agent of the invention
  • the glass-ceramics are completely microcrystalline, and when combined with glass to form a composite wheel binder, the amount of microcrystalline phase and glass phase is clear, which avoids the change of the performance of the grinding wheel caused by the fluctuation of the firing temperature of the grinding wheel.
  • the stability of the performance, the mechanical strength of the grinding wheel obtained by the binding agent of the invention was found to be relatively stable.
  • the composite grinding wheel binder provided by the invention comprises kaolin, silica, boron trioxide, lithium dioxide, albite, potassium feldspar, talc, dolomite, phosphorus pentoxide and cerium oxide.
  • Composition, in which kaolin, talc, dolomite, potassium feldspar and albite are mineral raw materials, which can significantly reduce the cost of binder raw materials; at the same time, due to the lower melting point of mineral raw materials, plus boron trioxide, potassium feldspar and albite
  • the fluxing property enables the raw material of the invention to be melted into a glass liquid at a lower temperature, thereby reducing energy consumption; moreover, the glass ceramics obtained from the raw material of the invention are matched with the expansion coefficient of the corundum abrasive to avoid the grinding wheel micro during sintering. The generation of cracks increases the strength of the grinding wheel.
  • the preparation method of the composite grinding wheel binder provided by the invention has the same chemical composition as the glass, so that the chemical composition of the bonding agent itself is uniform, and the uniform chemical composition is inevitably beneficial to the stability of the mechanical strength of the grinding wheel. .
  • the composite grinding wheel binder provided by the invention has a grinding wheel firing temperature lower than the temperature of the microcrystallization treatment by 50 ° C or more in the process of preparing the grinding wheel, and the firing temperature does not structure the glass ceramic particles. It has an effect on the performance, and for the glass particles, the temperature has not reached the temperature at which it is decrystallized, so it can ensure its stability at this temperature, even if there is a certain range of temperature fluctuation during the grinding process of the grinding wheel, as long as the fluctuation If the upper limit of the amplitude does not reach the microcrystallization temperature of the glass, the performance of the composite of the glass-ceramic and the glass composite will not be affected, and thus the mechanical strength of the grinding wheel prepared by using the bonding agent of the invention is relatively stable and the yield is high.
  • the preparation method of the composite grinding wheel binder of the invention not only overcomes the disadvantages of the non-uniform composition of the traditional ceramic binder, but also avoids the disadvantage of low strength of the glass binder, and simultaneously solves the problem of the conventional glass-ceramics.
  • the mechanical strength of the grinding wheel produced by the bonding agent is unstable, and the defect rate is low.
  • Example 1 is an XRD pattern of glass ceramic particles converted into glass particles by microcrystallization heat treatment in Example 1 of the present invention
  • Fig. 2 is an XRD chart of the glass granules in Example 1 of the present invention after heat treatment at the sintering temperature of the grinding wheel.
  • the composite grinding wheel binder provided by the embodiment is composed of glass ceramics and glass with a mass ratio of 42:58; the raw materials for preparing the crystal glass and the glass are the same, and the raw materials are: kaolin 47g, silica 6g, and trioxide. Boron 6g, lithium dioxide 2g, albite 10g, potassium feldspar 10g, talc 5g, dolomite 10g, phosphorus pentoxide 2g, cerium oxide 2g;
  • the embodiment further provides a preparation method of the above composite grinding wheel bonding agent, comprising the following steps:
  • the corundum abrasive, the composite grinding wheel binder and the modified starch are mixed, and the grinding wheel blank is pressed at 20 MPa, and then the grinding wheel blank is kept at 780 ° C for 9 hours to obtain a corundum grinding wheel;
  • the composite grinding wheel binder provided by the embodiment is composed of glass ceramics and glass with a mass ratio of 35:65; the raw materials for preparing the crystal glass and the glass are the same, and the raw materials are: kaolin 42g, silica 8g, and trioxide. Boron 7g, lithium dioxide 1g, albite 11g, potassium feldspar 9g, talc 7g, dolomite 11g, phosphorus pentoxide 3g, cerium oxide 1g;
  • the embodiment further provides a preparation method of the above composite grinding wheel bonding agent, comprising the following steps:
  • the corundum abrasive, the composite grinding wheel binder and the modified starch are mixed, and the grinding wheel blank is pressed at 50 MPa, and then the grinding wheel blank is kept at 810 ° C for 6 hours to obtain a corundum grinding wheel;
  • the composite grinding wheel binder provided in this embodiment is composed of glass ceramics and glass with a mass ratio of 20:80; the raw materials for preparing glass ceramics and glass are the same, and the raw materials thereof are: kaolin 40g, silica 15g, and trioxide. Boron 5g, lithium dioxide 3g, albite 10g, potassium feldspar 12g, talc 5g, dolomite 17g, phosphorus pentoxide 2g, cerium oxide 2g;
  • the embodiment further provides a preparation method of the above composite grinding wheel bonding agent, comprising the following steps:
  • the embodiment also provides a preparation method of the grinding wheel which is prepared by the above-mentioned prepared composite grinding wheel binder and abrasive.
  • the corundum abrasive, the composite grinding wheel binder and the modified starch are mixed, and the grinding wheel blank is pressed at 30 MPa, and then the grinding wheel blank is kept at 760 ° C for 7 hours to obtain a corundum grinding wheel;
  • the composite grinding wheel binder provided by the embodiment is composed of glass ceramics and glass with a mass ratio of 50:51; the raw materials for preparing the crystal glass and the glass are the same, and the raw materials are: kaolin 60g, silica 7g, and trioxide. Boron 10g, lithium dioxide 1g, albite 15g, potassium feldspar 8g, talc 10g, dolomite 10g, phosphorus pentoxide 7g, cerium oxide 0.5g;
  • the embodiment further provides a preparation method of the above composite grinding wheel bonding agent, comprising the following steps:
  • the embodiment also provides a preparation method of the grinding wheel which is prepared by the above-mentioned prepared composite grinding wheel binder and abrasive.
  • the corundum abrasive, the composite grinding wheel binder and the modified starch are mixed, and the grinding wheel blank is pressed at 40 MPa, and then the grinding wheel blank is kept at 770 ° C for 8 hours to obtain a corundum grinding wheel;
  • the composite grinding wheel binder provided in this embodiment is composed of glass ceramics and glass with a mass ratio of 35:77; the raw materials for preparing the crystal glass and the glass are the same, and the raw materials are: kaolin 50g, silica 12g, and trioxide. Boron 8g, lithium dioxide 2g, albite 13g, potassium feldspar 10g, talc 7g, dolomite 12g, phosphorus pentoxide 5g, cerium oxide 1g;
  • the embodiment further provides a preparation method of the above composite grinding wheel bonding agent, comprising the following steps:
  • the embodiment also provides a preparation method of the grinding wheel which is prepared by the above-mentioned prepared composite grinding wheel binder and abrasive.
  • the corundum abrasive, the composite grinding wheel binder and the modified starch are mixed, and the grinding wheel blank is pressed at 35 MPa, and then the grinding wheel blank is kept at 790 ° C for 8 hours to obtain a corundum grinding wheel;
  • a glass-ceramic binder and a corundum grinding wheel were prepared by the method of Example 1 of the Chinese patent CN107160296A.
  • Example 1 The glass particles prepared in Example 1 were heat-treated at 1010 ° C for 1.0 hour, and the XRD patterns of the obtained glass ceramic particles were tested. The results are shown in FIG. 1. As can be seen from FIG. 1, the glass particles obtained in Example 1 were at 1010 ° C. After 1.0 hour of heat treatment, all of the glass phase has been converted into a glass-ceramic phase;
  • Example 2 After the glass particles prepared in Example 1 were heat-treated at 780 ° C for 9 hours, the XRD pattern of the product was tested. The results are shown in FIG. 2. As can be seen from FIG. 2, the glass particles obtained in Example 1 were heat-treated at 780 ° C for 9 hours. It is still a glass phase and is not converted to a glass-ceramic phase.
  • the composite grinding wheel binder in the embodiment of the present invention can maintain the stability of the phase thereof, so that the mechanical strength of the grinding wheel prepared by using the bonding agent is relatively stable.
  • Examples 1-5 and Comparative Example 1 of the present invention 200 corundum grinding wheels were respectively prepared, and the corundum grinding wheel prepared by the corundum grinding wheel having a flexural strength greater than 50 MPa is a qualified product, and the corundum grinding wheels prepared in Examples 1-5 and Comparative Example 1 are used.
  • the number of passes is shown in Table 1.
  • the yield of the corundum grinding wheel prepared in Examples 1-5 of the present invention is high, and it can be seen from this that the grinding wheel prepared by using the bonding agent of the present invention has a relatively stable mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用,所述微晶玻璃的原料包括高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇,由上述原料制得的玻璃可以在900-1020℃下得到完全由微晶相组成的微晶玻璃,实现了在较低温度下玻璃相的完全转化;此外,提供了一种复合砂轮结合剂,其包括质量比为(20-50):(50-80)的微晶玻璃和玻璃,该结合剂中的玻璃相具有较低的流动温度,其可与微晶玻璃相一起形成对磨料颗粒的包裹,实现砂轮的低温烧结,加之结合剂中微晶相的存在使得制得的砂轮的机械强度较高。

Description

一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用 技术领域
本发明属于砂轮结合剂材料领域,具体涉及一种复合砂轮结合剂及其制备方法与应用。
背景技术
砂轮是一种常用磨具,是通过结合剂将磨料颗粒粘结在一起经过高温烧结而成。目前,常用的结合剂主要包括陶瓷结合剂、玻璃结合剂和微晶玻璃结合剂等。陶瓷结合剂具有成本低、制备工艺简单等优势,但由于陶瓷结合剂是通过多种陶瓷原料经混合球磨制成,其很难达到微观层次的均质,这必然会导致结合剂局部成分的不均匀,这种不均匀的结合剂和磨料颗粒经过高温烧结后会形成不同的物相,而物相的不同会导致制得的砂轮局部性能的差异,从而使得砂轮存在性能不稳定的现象;此外,采用陶瓷作为结合剂烧结制备砂轮时,首先要将陶瓷结合剂在高温下形成液相,而陶瓷结合剂液化温度较高,通常在1200℃以上,使得以陶瓷作为结合剂制备砂轮的成本较高、能耗较大。
玻璃结合剂是高温熔体冷却后制备而成,其在高温下形成的液相已将自身的各种成分实现了“分子”级别的均化,达到了微观层次的均质;此外,玻璃结合剂形成液相的温度较低。因此,采用玻璃为砂轮结合剂不仅能够提高砂轮的性能稳定性,同时也能降低砂轮的烧成温度,降低能耗。然而,由于玻璃结构的无序性,其内部原子并没有形成有规律的紧密堆积,所 以以玻璃作为结合剂制得的砂轮的机械强度相比陶瓷材料较差。
为了提高以玻璃作为结合剂制得的砂轮的机械强度性能,现有技术尝试将玻璃进行高温热处理使其形成微晶玻璃作为结合剂之用,众所周知,微晶玻璃是玻璃通过热处理、光照射,或化学处理等手段,在玻璃内均匀地析出大量的微小晶体,形成致密的微晶相和玻璃相的多相复合体。当砂轮烧成温度较高时,微晶玻璃中尚未转化的玻璃相析出晶体的种类与比例难以控制,从而当砂轮烧成温度稍有变动时使得结合剂的物相发生显著变化,对砂轮的性能稳定性带来不利影响,从而使得成品的合格率低。当然可以通过减少微晶玻璃中玻璃相的含量使其完全转化为微晶相,来克服微晶玻璃中的玻璃相带来的上述问题,但是由于受到制备原料的限制,在较低温度下基本无法实现微晶玻璃中玻璃相的完全转化,而如果提高高温热处理的温度实现完全转化,由于完全由微晶相组成的微晶玻璃的液化温度很高,以其作为砂轮结合剂时,使得砂轮的烧结温度提高,无疑又一次提高了砂轮的制备成本和能耗。
发明内容
为此,本发明所要解决的第一个技术问题在于,在较低温度下基本无法制得完全由微晶相组成的微晶玻璃的缺陷,进而提供一种可以低温下实现完全转化的微晶玻璃及其制备方法。
本发明所要解决的第二个技术问题在于,现有的微晶玻璃中存在尚未转化的玻璃相,以其作为结合剂时对砂轮烧成温度波动敏感的缺陷,进而提供一种复合砂轮结合剂,并进一步提供了该复合砂轮结合剂的制备方法和应用。
为此,本申请采取的技术方案为,
一种微晶玻璃,原料包括高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇。
上述微晶玻璃中,高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇的质量比为(40-60):(7-15):(5-10):(1-3):(10-15):(8-12):(5-10):(10-17):(2-7):(0.5-2)。
一种制备微晶玻璃的方法,
(1)将原料混合均匀,融化成液态并保温,制得玻璃液,以重量份计,所述原料包括高岭土40-60份、二氧化硅7-15份、三氧化二硼5-10份、二氧化锂1-3份、钠长石10-15份、钾长石8-12份、滑石5-10份、白云石10-17份、五氧化二磷2-7份、氧化钇0.5-2份;
(2)将所述玻璃液水淬、烘干,得到玻璃颗粒;
(3)取玻璃颗粒于900-1020℃热处理0.5-2.5小时,得到所述微晶玻璃。
上述制备方法,步骤(1)中,所述原料不小于120目,在1200-1450℃融化成液态并保温1-2h。步骤(2)中,将所述玻璃液倒入室温水中进行水淬、在120-150℃烘干,得到玻璃颗粒。
一种复合砂轮结合剂,包括质量比为(20-50):(50-80)的微晶玻璃和玻璃,所述微晶玻璃为上述微晶玻璃或上述制备方法制备得到的微晶玻璃;制备所述微晶玻璃的原料和制备所述玻璃的原料相同。
一种制备上述复合砂轮结合剂的方法,包括,将步骤(3)得到的微 晶玻璃与步骤(2)制得的玻璃颗粒混合,制得所述复合砂轮结合剂
上述制备方法还包括将混合后的玻璃颗粒与微晶玻璃破碎至不小于20目,而后球磨至不小于500目的步骤。
上述复合砂轮结合剂或上述制备方法制备得到的复合砂轮结合剂在制备砂轮坯体中的应用。
包含所述复合砂轮结合剂的砂轮坯体在20-50MPa下压制成型。
将所述成型后的砂轮坯体在750-810℃下保温3-12h制得砂轮。
本发明技术方案,具有如下优点:
1.本发明提供了一种微晶玻璃,其原料包括高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇,由上述原料制得的玻璃可以在900-1020℃下得到完全由微晶相组成的微晶玻璃,实现了在较低温度下玻璃相的完全转化。
2.本发明还提供了一种复合砂轮结合剂,包括质量比为(20-50):(50-80)的微晶玻璃和玻璃,本发明结合剂中的玻璃相具有较低的流动温度,其可与微晶玻璃相一起形成对磨料颗粒的包裹,实现砂轮的低温烧结,加之结合剂中微晶相的存在使得制得的砂轮的机械强度较高;此外,由于本发明结合剂中的微晶玻璃完全为微晶相,在与玻璃复配形成复合砂轮结合剂时,微晶相与玻璃相的用量明确,避免了由于砂轮烧成温度的波动,造成的砂轮性能的改变,提高了性能的稳定性,经检测发现本发明结合剂制得的砂轮的机械强度较稳定。
3.本发明提供的复合砂轮结合剂,其原料均由高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和 氧化钇组成,其中高岭土、滑石、白云石、钾长石和钠长石均属于矿物原料,可显著降低结合剂原料成本;同时由于矿物原料的熔点较低,加之三氧化二硼、钾长石和钠长石的助熔特性,使得本发明原料可在较低温度下融化成玻璃液,降低了能耗;此外,由本发明原料制得的微晶玻璃与刚玉磨料膨胀系数相匹配,避免烧结过程中砂轮微裂纹的产生,提高了砂轮的强度。
4.本发明提供的复合砂轮结合剂的制备方法,微晶玻璃与玻璃具有相同的化学组成,因而结合剂本身的化学成分是均匀的,而均匀的化学成分必然有利于砂轮机械强度性能的稳定。
5.本发明提供的复合砂轮结合剂在制备砂轮的过程中,砂轮烧成温度比微晶化处理的温度低50℃以上,对微晶玻璃颗粒而言,该烧成温度不会对其结构与性能形成影响,而对玻璃颗粒而言,该温度尚未达到其析晶的温度,因此能够确保其在该温度下的稳定性,即使在砂轮烧成过程中有一定范围的温度波动,只要波动幅度上限不达到玻璃的微晶化温度,就不会对微晶玻璃与玻璃复合的结合剂性能造成影响,由此采用本发明的结合剂制备的砂轮的机械强度较稳定,合格率较高。
综上,采用本发明的复合砂轮结合剂的制备方法,既克服了传统陶瓷结合剂组成成分不均匀的弊端,也避开了玻璃结合剂强度低的缺点,同时又解决了传统微晶玻璃作为结合剂时制得的砂轮的机械强度不稳定,合格率较低的缺陷。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1将玻璃颗粒经微晶化热处理后转化成的微晶玻璃颗粒的XRD图;
图2是本发明实施例1中的玻璃颗粒在砂轮烧结温度下热处理后的XRD图。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供的复合砂轮结合剂由质量比为42:58的微晶玻璃和玻璃组成;制备微晶玻璃和玻璃的原料相同,其原料均为:高岭土47g、二氧化硅6g、三氧化二硼6g、二氧化锂2g、钠长石10g、钾长石10g、滑石5g、白云石10g、五氧化二磷2g、氧化钇2g;
本实施例还提供了上述复合砂轮结合剂的制备方法,包括如下步骤:
(1)取选定重量份的原料过120目筛,而后将过筛后的原料混合均 匀,在1320℃融化成玻璃液并保温1.5小时,促进玻璃液均化;
(2)将玻璃液倒入室温水中进行进行水淬,而后在140℃下烘干,得到玻璃颗粒;
(3)取玻璃颗粒于1010℃热处理1.0小时,得到微晶玻璃颗粒;
(4)将微晶玻璃颗粒与步骤(2)制得的玻璃颗粒以42:58的比例进行混合,而后机械破碎、过20目筛、放入球磨机器中进行球磨、再次过500目筛,即得所述复合砂轮结合剂。
本实施例还提供了上述制备得到的复合砂轮结合剂与磨料烧制成砂轮的制备方法:
将刚玉磨料、复合砂轮结合剂和改性淀粉混合,以20MPa压制成砂轮坯体,而后将砂轮坯体在780℃下保温9小时,即得刚玉砂轮;
经测定,本刚玉砂轮的抗弯强度为62.6MPa。
实施例2
本实施例提供的复合砂轮结合剂由质量比为35:65的微晶玻璃和玻璃组成;制备微晶玻璃和玻璃的原料相同,其原料均为:高岭土42g、二氧化硅8g、三氧化二硼7g、二氧化锂1g、钠长石11g、钾长石9g、滑石7g、白云石11g、五氧化二磷3g、氧化钇1g;
本实施例还提供了上述复合砂轮结合剂的制备方法,包括如下步骤:
(1)取选定重量份的原料过120目筛,而后将过筛后的原料混合均匀,在1270℃融化成玻璃液并保温2.0小时,促进玻璃液均化;
(2)将玻璃液倒入室温水中进行进行水淬,而后在130℃下烘干,得到玻璃颗粒;
(3)取玻璃颗粒于970℃热处理1.5小时,得到微晶玻璃颗粒;
(4)将微晶玻璃颗粒与步骤(2)制得的玻璃颗粒以35:65的比例进行混合,而后机械破碎、过20目筛、放入球磨机器中进行球磨、再次过500目筛,即得所述复合砂轮结合剂。
本实施例还提供了上述制备得到的复合砂轮结合剂与磨料烧制成砂轮的制备方法:
将刚玉磨料、复合砂轮结合剂和改性淀粉混合,以50MPa压制成砂轮坯体,而后将砂轮坯体在810℃下保温6小时,即得刚玉砂轮;
经测定,本刚玉砂轮的抗弯强度为63.5MPa。
实施例3
本实施例提供的复合砂轮结合剂由质量比为20:80的微晶玻璃和玻璃组成;制备微晶玻璃和玻璃的原料相同,其原料均为:高岭土40g、二氧化硅15g、三氧化二硼5g、二氧化锂3g、钠长石10g、钾长石12g、滑石5g、白云石17g、五氧化二磷2g、氧化钇2g;
本实施例还提供了上述复合砂轮结合剂的制备方法,包括如下步骤:
(1)取选定重量份的原料过120目筛,而后将过筛后的原料混合均匀,在1200℃融化成玻璃液并保温2.0小时,促进玻璃液均化;
(2)将玻璃液倒入室温水中进行进行水淬,而后在120℃下烘干,得到玻璃颗粒;
(3)取玻璃颗粒于1020℃热处理0.5小时,得到微晶玻璃颗粒;
(4)将微晶玻璃颗粒与步骤(2)制得的玻璃颗粒以20:80的比例进行混合,,而后机械破碎、过20目筛、放入球磨机器中进行球磨、再 次过500目筛,即得所述复合砂轮结合剂。
本实施例还提供了上述制备得到的复合砂轮结合剂与磨料烧制而成的砂轮的制备方法:
将刚玉磨料、复合砂轮结合剂和改性淀粉混合,以30MPa压制成砂轮坯体,而后将砂轮坯体在760℃下保温7小时,即得刚玉砂轮;
经测定,本刚玉砂轮的抗弯强度为63.0MPa。
实施例4
本实施例提供的复合砂轮结合剂由质量比为50:51的微晶玻璃和玻璃组成;制备微晶玻璃和玻璃的原料相同,其原料均为:高岭土60g、二氧化硅7g、三氧化二硼10g、二氧化锂1g、钠长石15g、钾长石8g、滑石10g、白云石10g、五氧化二磷7g、氧化钇0.5g;
本实施例还提供了上述复合砂轮结合剂的制备方法,包括如下步骤:
(1)取选定重量份的原料过120目筛,而后将过筛后的原料混合均匀,在1450℃融化成玻璃液并保温1.0小时,促进玻璃液均化;
(2)将玻璃液倒入室温水中进行进行水淬,而后在150℃下烘干,得到玻璃颗粒;
(3)取玻璃颗粒于900℃热处理2.5小时,得到微晶玻璃颗粒;
(4)将微晶玻璃颗粒与步骤(2)制得的玻璃颗粒以50:51的比例进行混合,而后机械破碎、过20目筛、放入球磨机器中进行球磨、再次过500目筛,即得所述复合砂轮结合剂。
本实施例还提供了上述制备得到的复合砂轮结合剂与磨料烧制而成的砂轮的制备方法:
将刚玉磨料、复合砂轮结合剂和改性淀粉混合,以40MPa压制成砂轮坯体,而后将砂轮坯体在770℃下保温8小时,即得刚玉砂轮;
经测定,本刚玉砂轮的抗弯强度为63.1MPa。
实施例5
本实施例提供的复合砂轮结合剂由质量比为35:77的微晶玻璃和玻璃组成;制备微晶玻璃和玻璃的原料相同,其原料均为:高岭土50g、二氧化硅12g、三氧化二硼8g、二氧化锂2g、钠长石13g、钾长石10g、滑石7g、白云石12g、五氧化二磷5g、氧化钇1g;
本实施例还提供了上述复合砂轮结合剂的制备方法,包括如下步骤:
(1)取选定重量份的原料过120目筛,而后将过筛后的原料混合均匀,在1350℃融化成玻璃液并保温1.5小时,促进玻璃液均化;
(2)将玻璃液倒入室温水中进行进行水淬,而后在140℃下烘干,得到玻璃颗粒;
(3)取玻璃颗粒于1000℃热处理2.0小时,得到微晶玻璃颗粒;
(4)将微晶玻璃颗粒与步骤(2)制得的玻璃颗粒以35:77的比例进行混合,而后机械破碎、过20目筛、放入球磨机器中进行球磨、再次过500目筛,即得所述复合砂轮结合剂。
本实施例还提供了上述制备得到的复合砂轮结合剂与磨料烧制而成的砂轮的制备方法:
将刚玉磨料、复合砂轮结合剂和改性淀粉混合,以35MPa压制成砂轮坯体,而后将砂轮坯体在790℃下保温8小时,即得刚玉砂轮;
经测定,本刚玉砂轮的抗弯强度为63.3MPa。
对比例1
采用中国专利CN107160296A实施例1中的方法制备微晶玻璃结合剂和刚玉砂轮。
实验例1
将实施例1制得的玻璃颗粒于1010℃热处理1.0小时,测试得到的微晶玻璃颗粒的XRD图,结果如图1所示,由图1可知,实施例1制得的玻璃颗粒于1010℃热处理1.0小时后已经全部由玻璃相转换为微晶玻璃相;
将实施例1制得的玻璃颗粒在780℃热处理9小时后,测试产物的XRD图,结果如图2所示,由图2可知,实施例1制得的玻璃颗粒于780℃热处理9小时后仍为玻璃相,并未转化为微晶玻璃相。
由图1和图2可知,本发明实施例中的复合砂轮结合剂能维持其物相的稳定性,使得以其为结合剂制得的砂轮的机械强度较稳定。
实验例2
按本发明实施例1-5与对比例1的制备方法分别制备200件刚玉砂轮,所制刚玉砂轮的抗弯强度大于50MPa即为合格品,实施例1-5与对比例1制备的刚玉砂轮的合格数如表1所示。
表1 实施例1-5与对比例1制备的100件陶瓷制品的合格率
合格率
实施例1 96%
实施例2 97%
实施例3 98%
实施例4 96%
实施例5 97%
对比例1 85%
由表1可知,本发明实施例1-5制备的刚玉砂轮的合格率较高,由此可知,由此可知,采用本发明的结合剂制备的砂轮,其机械强度较稳定。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种微晶玻璃,其特征在于,原料包括高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇。
  2. 根据权利要求1所述的微晶玻璃,其特征在于,高岭土、二氧化硅、三氧化二硼、二氧化锂、钠长石、钾长石、滑石、白云石、五氧化二磷和氧化钇的质量比为(40-60):(7-15):(5-10):(1-3):(10-15):(8-12):(5-10):(10-17):(2-7):(0.5-2)。
  3. 一种制备微晶玻璃的方法,其特征在于,
    (1)将原料混合均匀,融化成液态并保温,制得玻璃液,以重量份计,所述原料包括高岭土40-60份、二氧化硅7-15份、三氧化二硼5-10份、二氧化锂1-3份、钠长石10-15份、钾长石8-12份、滑石5-10份、白云石10-17份、五氧化二磷2-7份、氧化钇0.5-2份;
    (2)将所述玻璃液水淬、烘干,得到玻璃颗粒;
    (3)取玻璃颗粒于900-1020℃热处理0.5-2.5小时,得到所述微晶玻璃。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述原料不小于120目,在1200-1450℃融化成液态并保温1-2h。
  5. 根据权利要求3或4所述的制备方法,其特征在于,步骤(2)中,将所述玻璃液倒入室温水中进行水淬、在120-150℃烘干,得到玻璃颗粒。
  6. 一种复合砂轮结合剂,其特征在于,包括质量比为(20-50):(50-80)的微晶玻璃和玻璃,所述微晶玻璃为权利要求1或2所述的微晶玻璃或权利要求3-5任一项所述制备方法制备得到的微晶玻璃;制备所述微晶玻璃的原料和制备所述玻璃的原料相同。
  7. 一种制备权利要求6所述的复合砂轮结合剂的方法,包括,将步骤(3)得到的微晶玻璃与步骤(2)制得的玻璃颗粒混合,制得所述复合砂轮结合剂
  8. 根据权利要求7所述的制备方法,其特征在于,还包括将混合后的玻璃颗粒与微晶玻璃破碎至不小于20目,而后球磨至不小于500目的步骤。
  9. 权利要求6所述的复合砂轮结合剂或权利要求7或8所述制备方法制备得到的复合砂轮结合剂在制备砂轮坯体中的应用。
  10. 根据权利要求9所述的应用,其特征在于,包含所述复合砂轮结合剂的砂轮坯体在20-50MPa下压制成型。
  11. 根据权利要求10所述的应用,其特征在于,将所述成型后的砂轮坯体在750-810℃下保温3-12h制得砂轮。
PCT/CN2017/119715 2017-12-29 2017-12-29 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用 WO2019127324A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780002903.5A CN110461789B (zh) 2017-12-29 2017-12-29 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用
US16/349,588 US10815146B2 (en) 2017-12-29 2017-12-29 Glass ceramic and preparation method thereof, and a bond for composite grinding wheel comprising the glass ceramics and preparation method and application thereof
PCT/CN2017/119715 WO2019127324A1 (zh) 2017-12-29 2017-12-29 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119715 WO2019127324A1 (zh) 2017-12-29 2017-12-29 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/349,588 Continuation US10815146B2 (en) 2017-12-29 2017-12-29 Glass ceramic and preparation method thereof, and a bond for composite grinding wheel comprising the glass ceramics and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2019127324A1 true WO2019127324A1 (zh) 2019-07-04

Family

ID=67064336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119715 WO2019127324A1 (zh) 2017-12-29 2017-12-29 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用

Country Status (3)

Country Link
US (1) US10815146B2 (zh)
CN (1) CN110461789B (zh)
WO (1) WO2019127324A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948403A (zh) * 2019-12-20 2020-04-03 江西冠亿研磨股份有限公司 一种低温烧成陶瓷结合剂砂轮及其制造方法
CN112521165A (zh) * 2020-11-25 2021-03-19 白鸽磨料磨具有限公司 一种陶瓷结合剂及其制备方法、磨具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187004A (zh) * 2020-01-16 2020-05-22 信阳申特精密磨具有限公司 一种新型高强陶瓷结合剂
CN113910116B (zh) * 2021-10-29 2024-01-09 江西冠亿研磨股份有限公司 一种陶瓷砂轮成型用可溶性无机液体粘结剂制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061056A1 (en) * 1999-06-15 2000-12-20 Agfa-Gevaert N.V. A fluoro glass ceramic showing photostimulabe properties
CN102923958A (zh) * 2012-10-31 2013-02-13 广东博德精工建材有限公司 新型微晶玻璃陶瓷复合板及其制备方法
CN105252435A (zh) * 2015-11-03 2016-01-20 白鸽磨料磨具有限公司 一种微晶玻璃陶瓷结合剂及其制备方法,sg砂轮及其制备方法
CN107160296A (zh) * 2017-06-16 2017-09-15 江西冠亿研磨股份有限公司 一种高强度低温烧结微晶玻璃结合剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157897A (en) * 1977-04-14 1979-06-12 Norton Company Ceramic bonded grinding tools with graphite in the bond
US5116392A (en) * 1988-12-30 1992-05-26 Tyrolit - Schleifmittelwerke Swarovski K.G. Abrasive article and abrasive
JP2980457B2 (ja) * 1992-08-04 1999-11-22 東陶機器株式会社 衛生陶器用素地及びその製造方法
JP4977406B2 (ja) * 2006-06-06 2012-07-18 株式会社オハラ 結晶化ガラス及び結晶化ガラスの製造方法
CN101445325A (zh) * 2008-12-25 2009-06-03 广东博德精工建材有限公司 一种具有新型微晶相的微晶玻璃陶瓷复合板生产方法
JP6761344B2 (ja) * 2013-08-30 2020-09-23 コーニング インコーポレイテッド イオン交換可能なガラス、ガラスセラミック、およびその製造方法
JP6815087B2 (ja) * 2016-03-28 2021-01-20 日鉄ケミカル&マテリアル株式会社 球状ユークリプタイト粒子およびその製造方法
CN105856079B (zh) * 2016-05-11 2018-08-21 江苏耐锐特磨料磨具股份有限公司 一种低温烧结高强微晶玻璃陶瓷砂轮及其制备方法
CN105948507B (zh) * 2016-05-11 2018-10-26 江苏耐锐特磨料磨具有限公司 一种磨具用低温低软化微晶玻璃陶瓷结合剂及其制备方法
CN112566993B (zh) * 2018-08-17 2023-04-11 圣戈班磨料磨具有限公司 包括包含氮化物的填料的粘结磨料制品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061056A1 (en) * 1999-06-15 2000-12-20 Agfa-Gevaert N.V. A fluoro glass ceramic showing photostimulabe properties
CN102923958A (zh) * 2012-10-31 2013-02-13 广东博德精工建材有限公司 新型微晶玻璃陶瓷复合板及其制备方法
CN105252435A (zh) * 2015-11-03 2016-01-20 白鸽磨料磨具有限公司 一种微晶玻璃陶瓷结合剂及其制备方法,sg砂轮及其制备方法
CN107160296A (zh) * 2017-06-16 2017-09-15 江西冠亿研磨股份有限公司 一种高强度低温烧结微晶玻璃结合剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948403A (zh) * 2019-12-20 2020-04-03 江西冠亿研磨股份有限公司 一种低温烧成陶瓷结合剂砂轮及其制造方法
CN112521165A (zh) * 2020-11-25 2021-03-19 白鸽磨料磨具有限公司 一种陶瓷结合剂及其制备方法、磨具

Also Published As

Publication number Publication date
US20200165157A1 (en) 2020-05-28
CN110461789A (zh) 2019-11-15
US10815146B2 (en) 2020-10-27
CN110461789B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2019127324A1 (zh) 一种微晶玻璃及其制备方法和包含微晶玻璃的复合砂轮结合剂及其制备方法与应用
CN101381240B (zh) 一种堇青石耐热/耐火材料的制备方法
CN103395996A (zh) Cbn 磨具用铝硼硅系低熔点玻璃陶瓷结合剂的制备方法
CN106078537B (zh) 用于超硬材料砂轮的微晶玻璃结合剂及其制备方法,超硬材料砂轮及其制备方法,复合砂轮
CN109551382B (zh) 一种微晶玻璃陶瓷结合剂及用其制备cbn砂轮的方法
CN107160296A (zh) 一种高强度低温烧结微晶玻璃结合剂及其制备方法
CN113336534B (zh) 一种不含锂矿物的低热膨胀日用陶瓷及其制备方法
CN110526694B (zh) 一种热膨胀系数可调的大理石瓷砖坯料及其制备方法
CN109095778B (zh) 一种微晶玻璃瓷砖及其制备方法
CN103819181A (zh) 一种中温烧结堇青石质耐热瓷及其制备方法
CN115010367B (zh) 一种低温快烧全抛结晶釉、包含该全抛结晶釉的艺术岩板及制备方法
CN108675804A (zh) 一种高抗热震莫来石砖及其生产工艺
CN112521133A (zh) 一种超高温刚玉-莫来石陶瓷制品的制备方法
CN102786300B (zh) 一种辐射热强化吸收剂及其制备方法
CN106316134A (zh) 一种透辉石和长石主晶相微晶玻璃及其制备方法
CN114014639A (zh) 一种热风炉用低蠕变高铝砖及其制备方法
CN103467078A (zh) 一种堇青石材料制备方法
CN111675534B (zh) 一种高抗热震的耐热瓷
CN108083644B (zh) 一种利用熔融高炉渣制备微晶玻璃的方法
CN102924046A (zh) 一种陶瓷玻化砖、其坯料及其制备方法
CN113955943B (zh) 一种复相微晶玻璃及其制备方法
CN109942273A (zh) 炻瓷及其制备方法
CN105481382A (zh) 一种堇青石耐火材料的制备方法
CN114907015A (zh) 玻璃陶瓷、其制备方法及修复材料
CN108585512B (zh) 一种尾矿mas系玻璃陶瓷绝缘材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936120

Country of ref document: EP

Kind code of ref document: A1