WO2019127086A1 - 调度方法、装置和*** - Google Patents

调度方法、装置和*** Download PDF

Info

Publication number
WO2019127086A1
WO2019127086A1 PCT/CN2017/118947 CN2017118947W WO2019127086A1 WO 2019127086 A1 WO2019127086 A1 WO 2019127086A1 CN 2017118947 W CN2017118947 W CN 2017118947W WO 2019127086 A1 WO2019127086 A1 WO 2019127086A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
rank value
sub
subband
base station
Prior art date
Application number
PCT/CN2017/118947
Other languages
English (en)
French (fr)
Inventor
巢志骏
李元杰
欧阳逢辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780096881.3A priority Critical patent/CN111357348B/zh
Priority to PCT/CN2017/118947 priority patent/WO2019127086A1/zh
Publication of WO2019127086A1 publication Critical patent/WO2019127086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a scheduling method, apparatus, and system.
  • MU-MIMO Multiple User Multiple Input and Multiple Output
  • LTE Long Term Evolution
  • TTI Transmission Time Interval
  • the MU-MIMO scheme improves the utilization of spatial degrees of freedom by allowing the network side to simultaneously schedule multiple UEs per TTI, thereby increasing the total number of transmission layers without increasing the number of UE antennas. Increased system capacity.
  • MU-MIMO needs to add an appropriate pairing algorithm on the evolved NodeB (eNB) side compared to the SU-MIMO scheme. support.
  • eNB evolved NodeB
  • the present application provides a scheduling method, apparatus, and system for solving the problem that the space frequency resources cannot be fully utilized in the downlink MU-MIMO transmission mode.
  • the present application provides a UE sub-band differential rank value transmission scheme in a downlink MU-MIMO mode.
  • the scheme achieves the scheduling of the UE's rank value in the sub-band granularity by allowing the values of the ranks of the UEs on different sub-bands to be independent. Therefore, the technical solution can avoid the work of unifying the full-band rank of the UE before or after the scheduling in the existing solution, thereby obtaining a more flexible and efficient space-frequency resource allocation result.
  • the present application provides a new LTE downlink pairing mode, downlink signaling and UE receiving mode, thereby allowing the system to have the capability of supporting the transmission characteristic.
  • the present application provides a scheduling method for scheduling a rank value transmitted by a user equipment between subbands, where the method includes:
  • the base station pairs the first user equipment with other user equipments in each sub-band on the full bandwidth according to the priority of the user equipment UE or the priority of the spatial data stream, and obtains a pairing result, where the full bandwidth includes multiple sub-bands; Determining, by the base station, a rank value of the first user equipment on each subband according to the pairing result, where a rank value of the first user equipment on each subband includes at least two different rank values; The first user equipment sends one or more DCIs, and the DCI is used to indicate a rank value of the first user equipment on each subband.
  • the base station may set different rank values and pairing results for the UE according to the characteristics of the UE on different subbands, so that the UE performs scheduling according to the best pairing result set by the base station on each subband, thereby avoiding The use of the same rank value results in the inability to fully utilize the space-frequency resources.
  • This method improves the utilization of the space-frequency resources and the throughput of the system.
  • the base station according to the priority of the user equipment, pairs the first user equipment with other user equipments on each subband of the full bandwidth, including:
  • the base station schedules, on the first sub-band of the full bandwidth, the first user equipment with the highest priority according to a rank value of 1; and the first user equipment and each subband in the full bandwidth.
  • the other user equipments are paired until the sum of the number of user equipments successfully matched with the first user equipment is greater than or equal to the maximum number of layers that the first sub-band can schedule, or the other user equipments are When the remaining user equipments other than the first user equipment successfully pairing do not meet the preset criteria, the pairing is stopped, where the preset criterion includes: the revenue of the already paired user equipment is greater than the total revenue of the user equipment before the pairing, The rank values of the other user equipments are all 1.
  • the preset criterion further includes: the sum of the number of user equipments that have been successfully paired with the first user equipment does not exceed the maximum number of pairing layers supported by the base station; in addition, the preset criterion may also be according to the system. Other restrictions are set in the case, and this application does not limit this.
  • the determining, by the base station, the rank value of the first user equipment on each subband according to the pairing result including:
  • the base station separately counts the sum of the number of user equipments successfully paired with the first user equipment on the first sub-band and other sub-bands; the sum of the numbers is smaller than the maximum layer that the first sub-band and other sub-bands can schedule
  • the rank value is increased for the first user equipment and other user equipments on each sub-band according to the priority order of the user equipment; and the user equipment that is successfully paired with the first user equipment after the promotion
  • the sum of the rank values reaches the maximum number of layers that the first subband and the other subbands can respectively schedule, or the first user equipment and other user equipments successfully paired with the first user equipment reach their respective supports.
  • the maximum rank value it is determined that the current rank value of the first user equipment is its rank value on the first subband and a rank value on other subbands.
  • the method provided by the implementation method replenishes the pairing method, which reduces the complexity, and realizes that the UE uses different rank value transmissions on different subbands, and can be paired to more. User.
  • the base station according to the priority of the spatial data stream, pairing the first user equipment with other user equipments in each subband on the full bandwidth, includes:
  • the base station divides the first user equipment and other user equipments on the sub-bands into a plurality of virtual user equipments with a rank value of 1; according to the priority of the spatial data stream, on each sub-band All virtual user equipments are paired until the sum of the number of successfully paired virtual user equipments is greater than or equal to the maximum number of layers that each sub-band can schedule, or the total revenue of the already paired virtual user equipments reaches a maximum value, and the pairing is stopped.
  • all user equipments are regarded as virtual user equipments with a rank value of 1, and a certain number of virtual user equipments are obtained according to the priority of the spatial data stream, so that the performance of the pairing result is superior, and the available space is selected. Larger, while achieving different rank transfer between subbands, it also matches more data streams.
  • the determining, by the base station, the rank value of the first user equipment on each subband according to the pairing result including:
  • the base station counts the number of virtual user equipments belonging to the first user equipment on each subband, and calculates the sum of the numbers of the subbands; and the sum of the numbers on the subbands is used as the The rank value of the first user equipment on each subband.
  • the pairing manner includes any one of the following: Pairing is performed sequentially; pairing is performed in order of sub-bands; pairing is performed in the order of partial sub-bands and partial layers.
  • the layer-by-layer pairing mode ensures that the number of layers and the load of each sub-band are relatively average, thereby ensuring the highest utilization of the frequency domain resources; the sub-band pairing mode can ensure that most of the paired sub-bands are sufficient.
  • the maximum number of matching layers is reached, and the utilization of airspace resources is maximized.
  • an average can be found between the utilization of airspace resources and frequency domain resources, and thus the space is guaranteed. Frequency resources and frequency domain resources can reach a relatively balanced state.
  • the base station sends a DCI to the first user equipment, where the DCI includes at least two layer indication fields, and each of the layer indication field indications The rank value is the same.
  • the implementation adopts the indication of a single DCI, so that the receiving end UE can acquire the rank value of the transmission on all subbands at one time, and the efficiency is high.
  • the base station sends multiple DCIs to the first user equipment, where each of the DCIs includes a layer indication field, and each of the DCIs The rank indicator indicated by the layer indication field is the same.
  • the base station sends multiple DCIs to the first user equipment, each of the DCIs includes a transport block indication field, and each of the transport blocks The indication field indicates a rank value and a resource allocation situation of the first user equipment on at least one subband.
  • This implementation manner is indicated by multiple DCIs, on the one hand, the transmission robustness is increased, and on the other hand, the transmission flexibility is improved, and the number of DCIs is prevented from exceeding the PDCCH capacity limit.
  • the application further provides a scheduling method, the method comprising: receiving, by a user equipment, at least one DCI from a base station; the user equipment determining, according to the at least one DCI, that the transmission is performed on each subband on a full bandwidth. a rank value and a subband number corresponding to each of the rank values, the full bandwidth includes a plurality of subbands, and the plurality of subbands includes at least two different rank values; the user equipment according to the rank The value is communicated with the base station for transmission.
  • the method further includes: the user equipment performs parallelization processing and filtering on each sub-band to generate a signal of each sub-band; the user equipment Decoding the signals of the respective sub-bands by using the at least two different rank values to obtain data stream information corresponding to each rank value; the user equipment combines all the data stream information to form a codeword.
  • the UE obtains at least one DCI from the base station, each of the DCIs carries a rank value of the UE on each subband, and indicates a resource allocation situation of the UE in each subband, thereby implementing the UE in the UE.
  • Different rank transmissions on different sub-bands improve the utilization of space-frequency resources.
  • the present application further provides a scheduling method, where the method includes: the user equipment acquires at least one DCI from a base station; and the user equipment determines, according to the DCI, whether there is information belonging to itself in a subsequent transmission; If yes, perform blind value detection on each subband in the full bandwidth, wherein the number of blind check rank values on each of the subbands is less than or equal to that of the user equipment in each subband.
  • the maximum number of layers in the blind detection process, if the current blind detection rank value is the same as the base station preset rank value, the current blind detection rank value is used to demultiplex the signal on the subband thereof.
  • the user equipment performs blind detection on the received data, that is, demultiplexing using different rank values, thereby determining the rank value of the communication with the base station, and also achieving the different rank of the UE on different subbands.
  • the beneficial effect of value transmission is,
  • the present application further provides a scheduling apparatus, which is used to perform the method steps in the foregoing first aspect and various implementation manners of the first aspect, and further, the apparatus includes: an acquiring unit, a processing unit, and The transmitting unit may additionally include a storage unit or the like.
  • the acquiring unit is configured to acquire each subband on the full bandwidth, the full bandwidth includes at least two subbands
  • the processing unit is configured to: the first user equipment according to the priority of the user equipment or the priority of the spatial data stream Pairing with other user equipments on the respective sub-bands, and obtaining a pairing result, and determining a rank value of the first user equipment on each sub-band according to the pairing result, wherein the first user equipment is in each The rank value on the subband includes at least two different rank values; the sending unit is configured to send one or more DCIs to the first user equipment, where the DCI is used to indicate that the first user equipment is in each subband The rank value on.
  • the device may be a network device, and the network device may be a base station, an enhanced base station, or a relay having a scheduling function, or a device having a base station function.
  • the present application further provides a rank value determining apparatus, which is used to perform the method steps in the foregoing second aspect and the second aspect, and further, the apparatus includes: an acquiring unit, configured to: Receiving at least one DCI from the base station; the processing unit, configured to determine, according to the at least one DCI, a rank value transmitted on each subband on the full bandwidth and a subband sequence number corresponding to each of the rank values, the whole The bandwidth includes a plurality of subbands, and the plurality of subbands includes at least two different rank values, and the sending unit is configured to perform communication transmission with the base station according to the rank value.
  • the processing unit is further configured to perform parallelization processing and filtering on each subband to generate signals of the respective subbands, and to decompose the signals of the subbands by using the at least two different rank values. And obtaining data stream information corresponding to each rank value; and combining all of the data stream information to form a codeword.
  • the terminal device may be a user equipment referred to as a UE or a mobile terminal.
  • the present application further provides another scheduling apparatus, where the apparatus includes: an obtaining unit and a processing unit, and further includes a sending unit, a storage unit, and the like. Used to perform the method steps in the third aspect above.
  • the acquiring unit is configured to acquire at least one DCI from the base station, and the processing unit is configured to determine, according to the DCI, whether there is information belonging to itself in subsequent transmissions; if yes, each subband in the full bandwidth Performing blind detection of the rank value, wherein the number of blind detection rank values on each of the sub-bands is less than or equal to the maximum number of layers that the user equipment can schedule in each sub-band; the processing unit is also used for In the blind detection process, if the current blind detection rank value is the same as the base station preset rank value, the current blind detection rank value is used to demultiplex the signal on the subband thereof, and the current current current The data stream information corresponding to the rank value of the blind check, and all the data stream information are combined to form a codeword, wherein the rank value on each subband in the blind detection process includes at least two different rank values.
  • the present application further provides a base station, including: a functional component such as a transceiver, a processor, and a memory, where the processor can execute a program or an instruction stored in the memory, thereby implementing the first Aspects of the scheduling method described in various implementations.
  • a base station including: a functional component such as a transceiver, a processor, and a memory, where the processor can execute a program or an instruction stored in the memory, thereby implementing the first Aspects of the scheduling method described in various implementations.
  • the base station includes: a medium access control MAC layer and a physical layer PHY, where the MAC layer is used to pair UEs on each subband, determine a rank value of a UE of each subband, and provide a DCI for generating a DCI. All information, and the information is sent to the PHY layer; the PHY layer is used to receive the information and assemble according to the information into the final at least one DCI for transmission to the UE.
  • the present application further provides a computer storage medium, which can store a program, and when executed, can implement some or all of the steps in the embodiments including the scheduling method provided by the present application.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method steps described in the above aspects.
  • the present application further provides a system, where the system includes: a base station and at least one UE, configured to implement a rank value determining method in various implementation manners of the foregoing first to third aspects.
  • the base station includes the apparatus according to the above fourth aspect
  • the UE includes the apparatus according to the fifth aspect or the sixth aspect.
  • the base station may set different rank values and pairing results for the UE according to the characteristics of the UE on different subbands, so that the UE performs scheduling according to the best pairing result set by the base station on each subband, thereby avoiding The use of the same rank value results in the inability to fully utilize the space-frequency resources.
  • This method improves the utilization of the space-frequency resources and the throughput of the system.
  • the base station indicates the resource allocation of each UE by using the downlink DCI, and sends the UE to the UE in a single or multiple DCI manners, or indicates the resource allocation of the UE on each sub-band by using a layer indication or a transport block as a granularity to adapt to A variety of different scenarios increase the flexibility and variety of transmission mode selection.
  • 1 is a relationship diagram of communication between a base station and a user by using MU-MIMO according to the present application
  • FIG. 3 is a schematic diagram of a DCI format indicated by a single DCI provided by the present application.
  • FIG. 4 is a schematic diagram of a DCI format indicated by multiple DCI layer granularities according to the present application
  • FIG. 5 is a schematic diagram of a DCI format indicated by multiple DCIs and TB granularity according to the present application
  • FIG. 7a is a schematic diagram of scheduling performed in a layer-by-layer sequence according to the present application.
  • FIG. 7b is a schematic diagram of scheduling according to a sub-band sub-sequence according to the present application.
  • FIG. 7c is a schematic diagram of scheduling a pairing according to a sequence of a partial sub-band and a partial layer according to the present application.
  • FIG. 8 is a flowchart of a data receiving method provided by the present application.
  • FIG. 10 is a schematic structural diagram of a scheduling apparatus provided by the present application.
  • FIG. 11 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 1 a relationship diagram is used for communication between a base station and a user by using MU-MIMO on a certain sub-band, wherein the base station uses MU-MIMO technology to simultaneously transmit multiple data streams to three UEs, which are respectively UE1.
  • UE2 and UE3, and the three user equipments do not affect each other in space, which is also called a pairing user.
  • FIG. 1 a relationship diagram is used for communication between a base station and a user by using MU-MIMO on a certain sub-band, wherein the base station uses MU-MIMO technology to simultaneously transmit multiple data streams to three UEs, which are respectively UE1.
  • UE2 and UE3 the three user equipments do not affect each other in space, which is also called a pairing user.
  • UE1 and the base station transmit corresponding two data streams, so the rank value corresponding to UE1 is 2; similarly, the rank values corresponding to UE2 and UE3 are 1 and 2, respectively.
  • the rank value of the UE is related to the following factors: the number of antennas of the eNB, the number of antennas of the UE, and the environment of the wireless network.
  • each of the sub-bands may include at least one Resource Block Group (RBG); the sub-bands that can be divided according to the natural order of sub-bands or RBGs Or RBGs are numbered, for example, sub-band 1 to sub-band 4 in Table 1 may be sequentially represented as sub-band 1, sub-band 2, sub-band 3, and sub-band 4. Among them, the rank value assigned by UE1 on different subbands is different.
  • RBG Resource Block Group
  • rank value of 2 rank value of 2
  • the rank value of UE1 since the rank value of UE1 does not reach 2 on subband 2 and subband 4, communication transmission cannot be performed on these subbands, thereby causing null Frequency resources are wasted.
  • UE1 is finally transmitted in rank1, since the rank value is 2 on subband 1 and subband 3, the layer needs to be deleted to have a rank value of 1, which also causes waste of resources. Therefore, in order to improve the space frequency resources, Utilization, increased flexibility and diversity of transmission modes, the present application provides the following specific embodiments.
  • This embodiment provides a scheduling method for scheduling a rank value of a UE on each subband, so that the rank value of the UE transmitted on different subbands is different.
  • the method may be performed by a base station or other network device.
  • This embodiment uses a base station as an example for description. Before the base station schedules the rank value of the UE, the full bandwidth of the network is divided into multiple frequency domain subbands, and the base station pairs multiple UEs on each subband, and sets each UE on each subband. Rank value.
  • the method includes the following steps:
  • Step 101 The base station acquires one subband in the full bandwidth, for example, the first subband.
  • the base station may select the first sub-band according to a preset priority order, or determine the first sub-band according to the ID order of the natural arrangement of each sub-band.
  • Step 102 The base station schedules the UE with the highest priority on the first sub-band according to the priority of each UE.
  • the UE with the highest priority is selected among all the UEs to be paired, for example, the priority of the first UE or UE1 is the highest, the rank value of UE1 is set to 1, and UE1 is scheduled on the first subband with rank1.
  • the priority of the UE may be determined by the priority of the data stream corresponding to each UE, for example, the priority of a certain data stream or the priority average of multiple data streams, and may also be determined according to a certain An algorithm, such as a weighting algorithm, is used to calculate the determination, which is not limited in this application.
  • Step 103 The base station pairs UE1 with other UEs on the first sub-band, where the rank values of other UEs other than UE1 on the first sub-band are all 1.
  • the process includes: selecting, in the remaining UEs, the UE with the second highest priority, such as UE2, in the order of the priority of the user, and pairing the UE2 with the UE1 according to a preset criterion, where the preset criterion includes :
  • the new user obtains a performance benefit greater than the total revenue of the user before pairing, that is, the performance benefit obtained by the new user after pairing is greater than the performance benefit of the user who has been paired.
  • the performance includes a transmission rate and the like.
  • the preset criterion may further include that the sum of the number of UEs that have successfully paired with the UE1 does not exceed the maximum number of layers that the first subband can schedule, and the sum of the number of UEs that have successfully paired with the UE1 does not exceed The maximum number of pairing layers supported by the base station.
  • the preset criteria may also include other restrictions, which are not limited in this application.
  • the maximum number of layers that the first sub-band can schedule can be determined by the processing capability of the first sub-band itself.
  • the maximum number of matching layers supported by the base station can also be determined by the base station.
  • the pairing result is that at least one UE allocated on the same subband does not affect each other in spatial transmission, that is, each UE can simultaneously communicate with the base station. Under one possible condition, if all UEs and UE1 cannot be paired successfully, the number of paired UEs on the subband is only one for UE1.
  • Step 104 Repeat step 103 until the sum of the number of user equipments successfully matched with UE1 is equal to the maximum number of layers K that the first subband can schedule, or other UEs on the first subband are apart from UE1.
  • the remaining user equipments other than the successful pairing do not satisfy the preset criterion, that is, when the revenue of the paired UE is not satisfied that the total revenue of the UE before the pairing is greater than the total revenue of the UE before the pairing, the pairing operation for the UE1 is stopped.
  • the total number of paired UEs K1 includes the UE1.
  • Step 105 After the pairing is stopped, it is determined whether the total number of UEs K1 that have been paired is smaller than the maximum number of matching layers K. If yes, the rank value may be raised for the UEs whose rank value is greater than 1 in the K1 UEs.
  • the rank value of the UE1 with the highest priority may be first raised according to the priority order of the UE, for example, the rank of each boost is 1 liter of rank; and after the UE1 reaches its maximum rank value, the rank is raised.
  • the rank value may be raised according to certain criteria, for example, according to the preset criterion in the pairing process, or according to other criteria, but no matter which method is adopted, All should meet the improved performance of the improved UE than the user performance before the upgrade.
  • Step 106 Step 105 is continuously repeated until the sum of the rank values of the paired UEs after the rank value is equal to the maximum number of paired layers K that the first subband can schedule, or each UE that has successfully paired has reached its own When the upper limit of the rank value, that is, the ability to raise its own rank value, the scheduling is stopped and the scheduling result is generated.
  • the rank value of the current time UE1 is the rank value of the UE1 on the first subband, and similarly, at the current moment, the rank value of other UEs that have successfully paired with the UE1 on the first subband. For their respective corresponding rank values.
  • Steps 101 to 106 are the same, so they will not be described again.
  • the base station The UE can set different rank values and pairing results for the UE according to the characteristics of the UE on different subbands, so that the UE performs scheduling according to the best pairing result set by the base station on each subband, thereby avoiding nulling by using the same rank value.
  • the frequency resource cannot be fully utilized, and the method improves the utilization of the space frequency resource and the throughput of the system.
  • the method provided in this embodiment reduces the complexity compared to the method of replenishing the pairing after the general Rank value leveling operation.
  • the rank value leveling operation includes: deleting all allocated resources of the UE for the subband whose rank value is lower than the final transmission rank; deleting the excess layer number for the subband with the rank value higher than the final rank, and causing the rank value Reduce to a value equal to the final rank.
  • the method further includes: the base station transmitting each of the rank values to each UE by using a Downlink Control Indicator (DCI).
  • DCI Downlink Control Indicator
  • the base station includes: a Media Access Control (MAC) layer and a physical layer (PHY), where the MAC layer is used to pair UEs on each subband to determine each subband.
  • the rank value of the UE and provides all the information for generating the DCI, and sends this information to the PHY layer.
  • the PHY layer receives the information and assembles the final DCI for transmission to the UE based on the information.
  • the MAC layer is further configured to generate scheduling information, which is sent to the PHY layer, and the PHY layer is configured to process and send data information to be sent to the UE according to the scheduling information.
  • the PHY layer maps each UE data (such as video, audio, picture information, and the like) to the corresponding space-frequency and time-frequency resources according to the scheduling information provided by the MAC layer, and generates a MU-MIMO signal or the like according to the mapping result.
  • the base station may give the UE by one or more DCIs.
  • an implementation manner is that the method is delivered in a single DCI manner.
  • the resource overhead is in a positive linear relationship with the number of subbands paired by the UE, and is suitable for UEs with fewer subbands.
  • the base station generates a DCI according to the determined rank value, and is used to indicate a rank value of the UE1 on each subband, where the DCI includes at least two layer indication fields, and each of the layer indications Fields indicate the same rank value.
  • each DCI can also be used to indicate the case where the UE1 allocates resources on each sub-band, and also indicates the rank value corresponding to each sub-band. If UE1 is paired on K/group subbands after pairing, there are K layer indication fields in the DCI, which in turn indicate the rank values corresponding to K/group subbands in the resource allocation domain.
  • the base station can obtain the rank value of the transmission on all the subbands in one time by using the indication of the single DCI, and the efficiency is high.
  • Another implementation manner is that the layer is distributed in multiple DCI manners.
  • the resource overhead is in a positive linear relationship with the rank value of the UE, and is suitable for a UE with a relatively small number of paired layers.
  • the base station generates two or more DCIs according to the rank value of each subband, where each of the DCIs includes a layer indication field, and the layer indication field in each of the DCIs is indicated by The rank value is the same.
  • each DCI indicates the UE's resource allocation on each sub-band in one or more layers. If the maximum rank value of each subband in UE1 is N, the resource allocation state of the UE on each layer or layers may be indicated by using at most N DCIs, and the layer is indicated in the layer indication field in each DCI. Which layer or layers of resource allocation apply.
  • the layer indication field in DCI 1 indicates that the rank value of UE1 is 1, and the resource allocation type field indicates that the rank1 is applicable to the first sub-band and the third sub-band.
  • the layer indication field in DCI 2 indicates that the rank value of UE1 is 2, and the resource allocation type field indicates that the rank2 is applicable to the second sub-band and the fourth sub-band.
  • the robustness of the transmission is increased. It is avoided that the reception of other DCIs is affected by the failure of one DCI reception.
  • the UE can also obtain information on the corresponding sub-bands according to the successfully received DCI.
  • the flexibility of transmission is also improved, and a limited PDCCH capacity can be allocated to more UEs, wherein each UE can indicate its rank value on a partial subband by one or more DCIs, and further Achieving scheduling of multiple UEs at a time avoids allocating all PDCCH capacity to DCI indicating one UE, which increases scheduling flexibility.
  • the number of bearers passing through the PDCCH can be flexibly set by multiple DCI indications, thereby avoiding excessive DCI to be transmitted and exceeding the maximum capacity of the PDCCH.
  • the transmission block (TB) is delivered in multiple DCI manners. This implementation can be applied to scenarios that are sensitive to DCI overhead.
  • the base station generates two or more DCIs according to the rank value of each subband, where each of the DCIs includes one TB indication field, and each of the TB indication fields is used to indicate that the UE is in the UE.
  • multiple DCIs are delivered in a TB granularity, which increases the flexibility of DCI indication scheduling.
  • a TB field is used to indicate a rank value, and the number of DCIs is reduced, thereby reducing DCI resource overhead.
  • the base station indicates the resource allocation of each UE by using the downlink DCI, and sends the UE to the UE in a single or multiple DCI manner, or indicates the resource allocation of the UE on each sub-band by using the layer indication or the TB as the granularity. It is beneficial to increase the flexibility and diversity of the transmission mode, and can affect the format of the signaling, the control channel resource allocation mode, and the adjustment of the UE receiving process, thereby increasing the flexibility of the selection of the transmission scheme and the initiative to obtain the technical improvement.
  • the embodiment also provides a method for determining the rank value.
  • the difference from the first embodiment is that the margin value is more varied, and a more superior pairing result can be obtained.
  • the method includes The following steps:
  • Step 201 The base station acquires one subband in the full bandwidth, for example, the first subband, where the first subband may be any one of the full bandwidths, and the full bandwidth includes multiple subbands.
  • Step 202 The base station divides the first user equipment, for example, UE1 and other UEs on the first sub-band into a plurality of virtual user equipments with a rank value of 1. Each rank1 corresponds to one data stream, and all data streams are sorted according to the priority order of the spatial data streams.
  • Step 203 The base station pairs all the virtual user equipments on the first sub-band according to the priority of the spatial data stream, until the sum of the number of successfully paired virtual user equipments is greater than or equal to the maximum number of layers that the first sub-band can schedule. Or, if the total revenue of the paired virtual user equipment reaches the maximum value, that is, the performance gain obtained by the re-paired new virtual user is not greater than the performance benefit of the currently paired user loss, the pairing is stopped, and the pairing is successfully matched. The number of virtual UEs.
  • the virtual UE with the higher priority is selected to be paired with the UE1.
  • the virtual UEs with higher priority are sequentially selected according to the order of the spatial data streams until the virtual users that do not meet the pairing criteria are included in the remaining virtual UEs, or the total number of already paired virtual UEs (ie, the sum of rank1) reaches the first When the maximum number of layers that the two subbands can schedule, the pairing operation is stopped.
  • Step 204 Count the number of virtual user equipments belonging to the UE1, determine the rank value of the UE1 according to the number of the virtual user equipments, and use the rank value as the rank value of the UE1 on the first subband.
  • UE1, UE2, and UE3, respectively there are three UEs, which are UE1, UE2, and UE3, respectively, and their respective maximum rank values are 1, 2, and 3, respectively, so the three UEs are virtualized into six rank values according to the rank value of 1.
  • the sum of the ranks of the currently virtualized UEs is 6, which is smaller than the maximum number of layers 16, and no other virtual UEs can satisfy the preset criterion, and then determine that the number of virtual UEs corresponding to the current UE3 is 3, and UE2 The number of corresponding virtual UEs is 2, and the number of virtual UEs corresponding to UE1 is 1. Therefore, the determined rank value of UE3 is 3, the rank value of UE2 is 2, and the rank value of UE1 is 1.
  • the set value of the UE3 on the second subband is 2.
  • Step 205 Repeat the foregoing method of determining the rank value of each UE on the first subband, and determine the rank value of the UE on the remaining subbands.
  • Step 206 The status message of the same UE is sent in the manner of a single or multiple DCIs.
  • the manner of issuing the DCI is different from the foregoing implementation manners of the first embodiment, and therefore will not be described again.
  • the method provided in this embodiment is to obtain a virtual UE with a rank value of 1 and obtain a certain number of virtual UEs according to certain criteria and spatial data flow priority order, and then determine the actual UE by each virtual UE.
  • the rank value since the virtual UEs are users with a rank value of 1, the pairing result is less constrained, and thus the possibility of pairing traversal of more UE combinations is increased, and the pairing result is more globally optimal than that of the first embodiment. Sex, space-frequency and time-frequency resources can be more fully utilized.
  • one pairing manner is to perform pairing according to a layer-by-layer scheduling sequence.
  • the base station performs scheduling pairing on at least one UE in each sub-band, until the sum of the rank values of the respective paired UEs reaches the maximum number of matching layers corresponding to each sub-band ( The next subband is scheduled only when the number of layers that can no longer be paired.
  • pairing can be performed in order of sub-bands. As shown in FIG. 7b, in the order of sub-band priority, the base station first schedules one UE for each sub-band, and then pairs each sub-band with a second UE, a third UE, and so on, and so on. Until all sub-bands are scheduled to be paired.
  • Another way of pairing is to pair the partial sub-bands and the partial layers in a sequence, that is, a combination of the above two matching methods.
  • a pair of UEs to be paired are grouped according to a partial subband and a partial layer on the first subband and the second subband, and after the pairing scheduling of the two subbands is completed, the third subband is further performed. Pairing with the UE on the fourth sub-band.
  • the layer-by-layer pairing mode ensures that the number of pairs and the load of each sub-band are relatively average, thereby ensuring the highest utilization of the frequency domain resources; the sub-band pairing mode can ensure that most of the paired sub-bands are sufficient.
  • the maximum number of matching layers is reached, and the utilization of airspace resources is maximized.
  • an average can be found between the utilization of airspace resources and frequency domain resources, and thus the space is guaranteed. Frequency resources and frequency domain resources can reach a relatively balanced state.
  • the UE In order to enable the UE to transmit the difference rank between the sub-bands, the UE needs to receive and process the rank values of different sub-bands.
  • the UE1 is taken as an example, and the embodiment provides a data receiving method of the UE, where the UE has the capability of receiving different rank value information of each transmission subband, for example, receiving DCI from the base station.
  • the method includes:
  • Step 301 The UE1 receives at least one DCI from the base station.
  • the UE1 belongs to all DCIs of its own in each TTI received signal and the received PDCCH, and determines whether there is information belonging to itself in the subsequent transmission according to the DCI.
  • Step 302 The UE1 determines, according to the at least one DCI, a rank value transmitted on each subband and a subband sequence number corresponding to each rank value, where the full bandwidth includes multiple subbands, and the multiple subbands There are at least two different rank values in the middle.
  • a single DCI indicates that the rank value of UE1 is 2, and the subband number corresponding to the transmission is 1.
  • the DCI also indicates that the rank value of UE1 in the subband sequence number 2 is 3.
  • Step 303 The UE1 performs communication transmission with the base station according to the at least two different rank values.
  • Step 304 The UE1 performs parallelization processing and filtering on each sub-band to generate signals of the respective sub-bands.
  • Step 305 The UE1 demultiplexes the signals of the respective subbands by using the rank value to obtain data stream information corresponding to each rank value.
  • the multiplexing refers to that when a UE transmits with a rank value greater than 1, the time-frequency resources where the information is located are reused, and multiple reused information are superimposed together to be separated by a special demultiplexing technique.
  • the UE1 performs parallelization processing on the transmission sub-bands, separately obtains each sub-band signal, and demultiplexes each sub-band to obtain each data stream information;
  • Step 306 The UE1 combines all the data stream information to form a codeword.
  • DCI 1 indicates that UE1 receives the first data in the first subband according to the rank value x1;
  • DCI 2 indicates that UE1 receives the second data in the second subband according to the rank value x2; ...,
  • DCI k indicates that UE1 is in The kth subband receives the third data according to the rank value x3.
  • the UE1 performs parallelization processing on the transmission subbands, separately obtains the respective subband signals, and demultiplexes the respective rank values to obtain corresponding data stream information.
  • UE1 filters the first subband, and demultiplexes to obtain a first demodulation sequence, for example, 010101;
  • UE1 filters the second subband, and demultiplexes to obtain a second demodulation sequence, for example, 101010;
  • UE1 filters the kth subband, and demultiplexes to obtain a third demodulation sequence, for example, 10001;
  • the UE combines all demodulated sequences to form a codeword.
  • the method provided in this embodiment by using the DCI sent by the base station, indicates the rank value of the UE on each sub-band, thereby implementing the different rank transmission of the UE on different sub-bands, avoiding adopting the same rank value, resulting in the space frequency.
  • the waste of resources the method improves the utilization of space-frequency resources and the throughput of the system.
  • This embodiment further provides another method for the UE to determine the rank value. Specifically, the UE performs blind detection on the received data and demultiplexes using different rank values.
  • the method includes the following steps:
  • Step 401 The UE receives the DCI that belongs to the PDCCH in the PDCCH.
  • the format of the DCI may be a single layer indicating DCI, a DCI indicated by multiple layers, or multiple DCIs with a TB granularity, and may be one DCI or multiple.
  • Step 402 The UE performs parallelization processing on the transmission subbands, and respectively filters and obtains each subband signal.
  • Step 403 The UE has the capability of blind detection of the rank, and determines the rank value of the signal in each sub-band by blind detection, wherein the number of blind detections is less than or equal to the maximum number of layers supported by the UE in each sub-band;
  • Step 404 The UE demultiplexes the signal by using the rank obtained in the blind detection process to obtain each data stream information.
  • Step 405 The UE combines the data stream information of each subband into a codeword.
  • the UE blindly checks the rank value, if the current rank value of the UE can demodulate the information sent by the base station, that is, the current blind detection rank value is the same as the base station preset rank value, then it is determined. The rank value is appropriate. If it is detected that the current rank value cannot be demodulated, the rank value is increased by unit step size 1, and demodulation and detection are repeated until the data stream information can be correctly demodulated.
  • the UE can determine the rank value corresponding to the base station by blind detection, and then use different rank values for communication on each sub-band to ensure full utilization of the allocated resources.
  • the embodiment of the present application further provides an apparatus embodiment of a corresponding network device, terminal device, and the like.
  • FIG. 10 is a schematic structural diagram of a scheduling apparatus according to an embodiment of the present application.
  • the apparatus may be configured in a base station for performing a rank value determination method as shown in FIG. 2 or FIG. 6.
  • the apparatus may include an obtaining unit 1001, a processing unit 1002, and a transmitting unit 1003.
  • the obtaining unit 1001 is configured to acquire each subband on the full bandwidth, where the full bandwidth includes at least two subbands.
  • the processing unit 1002 is configured to pair the first user equipment with other user equipments on the respective subbands of the full bandwidth according to the priority of the user equipment or the priority of the spatial data stream, and obtain a pairing result, and according to the pairing As a result, the rank value of the first user equipment on each subband is determined, wherein the rank value of the first user equipment on each subband includes at least two different rank values.
  • the sending unit 1003 is configured to send, to the first user equipment, one or more downlink control indication DCIs, where the DCI is used to indicate a rank value of the first user equipment on each subband.
  • the acquiring unit 1001 is further configured to acquire a first subband, where the first subband is any one of the full bandwidths.
  • the processing unit 1002 is specifically configured to schedule, on the first sub-band of the full bandwidth, the first user equipment with the highest priority according to a rank value of 1, and the first user equipment and the The other user equipments in the sub-bands on the full bandwidth are paired until the sum of the number of user equipments successfully matched with the first user equipment is greater than or equal to the maximum number of layers that the first sub-band can schedule, or The pairing is stopped when the remaining user equipments other than the first user equipment successfully pairing do not satisfy the preset criterion.
  • the preset criterion includes: the revenue of the already paired user equipment is greater than the total revenue of the user equipment before the pairing, and the rank values of the other user equipments are all 1.
  • the preset criterion may further include: a sum of the number of user equipments that have been successfully paired with the first user equipment is equal to a maximum number of layers that each sub-band can schedule; a user that has successfully paired with the first user equipment The sum of the number of devices does not exceed the maximum number of matching layers supported by the base station.
  • the processing unit 1002 is specifically configured to determine, according to the pairing result, a rank value of the first user equipment on the first subband.
  • the processing unit 1002 is specifically configured to separately count the sum of the number of user equipments successfully paired with the first user equipment on the first sub-band and the other sub-bands, where the sum of the numbers is smaller than the first
  • the rank value is raised to the first user equipment and other user equipments on each sub-band according to the priority order of the user equipment;
  • the sum of the value and the rank value of each successfully paired user equipment reaches the maximum number of layers that the first subband and the other subbands can respectively schedule, or the first user equipment and the first user equipment are successfully paired with each other
  • the other user equipments reach the maximum rank value supported by each user, it is determined that the current rank value of the first user equipment is its rank value on the first subband and a rank value on other subbands.
  • the acquiring unit 1001 is further configured to acquire a second sub-band, where the second sub-band is any one of the full bandwidths.
  • the processing unit 1002 is specifically configured to divide the first user equipment and other user equipments on the sub-bands into multiple virtual user equipments with a rank value of 1; according to the priority of the spatial data stream Pair all virtual user equipments on each sub-band until the sum of the number of successfully paired virtual user equipments is greater than or equal to the maximum number of layers that each sub-band can schedule, or the total revenue of the paired virtual user equipments is maximized. When the value is reached, the pairing is stopped.
  • the processing unit 1002 is specifically configured to count the number of virtual user equipments belonging to the first user equipment on each subband, and calculate each subband. And the rank value on each of the subbands is used as the rank value of the first user equipment on each subband.
  • the processing unit 1002 is further configured to: use the first user equipment and other user equipments on each sub-band according to any one of the following pairing manners: Pairing: pairing is performed in parallel units; sub-bands are paired in parallel units; partial sub-bands and partial layers are paired in parallel units.
  • the processing unit 1002 is further configured to generate, according to each rank value, a DCI, where the first user equipment is used on each subband. a rank value, wherein the DCI includes at least two layer indication fields, and each of the layer indication fields indicates the same rank value.
  • the sending unit 1003 is specifically configured to send a DCI to the first user equipment.
  • the processing unit 1002 is further configured to generate two or more DCIs according to rank values of the respective subbands, where each of the DCIs is used.
  • a layer indication field is included, and the rank value indicated by the layer indication field in each of the DCIs is the same.
  • the sending unit 1003 is specifically configured to send multiple DCIs to the first user equipment.
  • the processing unit 1002 is further configured to generate two or more DCIs according to rank values of the respective subbands, where each of the DCIs is used.
  • a transport block indication field is included, and each of the transport block indication fields is used to indicate a rank value and a resource allocation situation of the first user equipment on at least one subband.
  • the sending unit 1003 is specifically configured to send multiple DCIs to the first user equipment.
  • the embodiment further provides a network device, such as a base station, for implementing the method steps in the foregoing embodiments.
  • a network device such as a base station
  • the base station can include a transceiver 110, a processor 120, and a memory 130, which can include components such as a receiver, a transmitter, and an antenna.
  • the base station may also include more or less components, or a combination of certain components, or different component arrangements, which is not limited in this application.
  • the processor 120 is a control center of the base station that connects various portions of the entire base station using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 130, and recalling data stored in the memory 130, Perform various functions and/or process data of the base station.
  • the processor 120 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 120 may include only a central processing unit (CPU), or may be a GPU, a digital signal processor (DSP), and a control chip (for example, a baseband chip) in the transceiver module. The combination.
  • the transceiver 110 is configured to establish a communication channel, and enable the base station to connect to a receiving device, such as a UE, through a network channel, thereby implementing data transmission between the base station and each UE.
  • the transceiver 110 may include a wireless local area network (WLAN) module, a Bluetooth module, a base band module, and the like, and a radio frequency (RF) circuit corresponding to the communication module.
  • WLAN wireless local area network
  • RF radio frequency
  • Bluetooth communication Infrared communication, and/or cellular communication system communication, such as wideband code division multiple access (WCDMA) and/or high speed downlink packet access (high speed) Downlink packet access, HSDPA).
  • WCDMA wideband code division multiple access
  • HSDPA high speed downlink packet access
  • the transceiver module is configured to control communication of components in the terminal device and can support direct memory access.
  • various transceiver modules in the transceiver 110 generally appear in the form of integrated circuit chips, and can be selectively combined without including all transceiver modules and corresponding Antenna group.
  • the transceiver 110 may include only a baseband chip, a radio frequency chip, and a corresponding antenna to provide communication functionality in a cellular communication system.
  • the terminal device can be connected to a cellular network or the internet via a wireless communication connection established by the transceiver module, such as wireless local area network access or WCDMA access.
  • the memory 130 may include a volatile memory such as a random access memory (RAM), and may also include a non-volatile memory such as a flash memory.
  • RAM random access memory
  • a non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • a program or code may be stored in the memory, and the processor may implement a function such as determining a rank value of each UE by the base station by executing the program or code in the memory.
  • the functions to be implemented by the obtaining unit 1001 and the sending unit 1003 may be implemented by the transceiver 110 of the base station or by the transceiver 110 controlled by the processor 120; the processing unit 1002 The functions to be implemented can then be implemented by the processor 120.
  • the present application further provides another scheduling apparatus, which is applicable to any UE in the foregoing embodiment, for performing a rank value scheduling method as shown in FIG. 8.
  • the device may include an obtaining unit, a processing unit, and a sending unit.
  • the acquiring unit is configured to receive at least one DCI from the base station.
  • a processing unit configured to determine, according to the at least one DCI, a rank value transmitted on each subband and a location corresponding to the respective subband, wherein at least two different values are included in rank values corresponding to all subbands Rank value.
  • a sending unit configured to perform communication transmission with the base station according to the at least two different rank values.
  • the processing unit is further configured to perform parallelization processing and filtering on each sub-band to generate signals of the respective sub-bands; using the at least two different The rank value demultiplexes the signals of the respective subbands to obtain data stream information corresponding to each rank value; and combines all the data stream information to form a codeword.
  • the rank value determining apparatus in this embodiment is further configured to implement a function of determining a rank value by using a blind check.
  • an acquiring unit is configured to acquire a DCI from a base station, and a processing unit is configured to determine, according to the DCI, Whether there is information belonging to itself in the subsequent transmission; if there is, a blind value detection of the rank value is performed on each sub-band, wherein the number of blind detection rank values on each of the sub-bands is less than or equal to the user equipment The maximum number of layers that can be scheduled by each sub-band; the processing unit is further configured to use the current blind detection if the current blind detection rank value is the same as the base station preset rank value during the blind detection process The rank value demultiplexes the signals on each subband to obtain data stream information corresponding to each rank value; and combines all of the data stream information to form a codeword.
  • the rank value determining apparatus of this embodiment may be configured in a UE, where the UE includes a transceiver, a processor, and a memory, and the transceiver may include a receiver, a transmitter, an antenna, and the like. component.
  • the base station may also include more or less components, or a combination of certain components, or different component arrangements, which is not limited in this application.
  • the function to be implemented by the acquiring unit and the sending unit in the rank value determining apparatus may be implemented by a transceiver of the UE, or may be implemented by a processor controlled by the UE; the function to be implemented by the processing unit may be Implemented by the processor.
  • a program or code may be stored in the memory of the UE, and the processor may implement receiving the DCI from the base station, the different rank value transmission on each subband, and the rank determined by the blind check by executing the program or code in the memory. Value and other functions.
  • the present application also provides a computer storage medium, wherein the computer storage medium can store a program that, when executed, can include some or all of the steps in various embodiments of the scheduling method provided herein.
  • the storage medium may be a magnetic disk, an optical disk, a read only memory (ROM) or a random access memory (RAM).
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the scheduling method described in the foregoing embodiments.
  • the embodiment of the present application further provides a MIMO transmission system, which can be applied to the technical scenario shown in FIG. 1 , or can also apply scheduling and pairing of uplink D-MIMO scene resource allocation with multiple antennas of the UE, or other related Technical scenario.
  • the system includes: a base station and at least one UE, which are used to implement the scheduling method described in the foregoing embodiments.
  • the base station and the UE include the scheduling apparatus described in the foregoing embodiment; further, the base station may be a network device, and the network device may be a base station, an enhanced base station, or a relay with scheduling function, or have A device such as a base station function.
  • the base station may be an evolved Node B (eNB) in the LTE system, or may be a base station in other systems.
  • eNB evolved Node B
  • the embodiment of the present application is not limited.
  • the base station provided by the embodiment further has a blind detection function, which is used for blindly testing the received data, and specifically includes demultiplexing using different rank values, thereby obtaining a rank value suitable for transmission with the base station on each subband. At least two different rank values are included in the sub-bands, so that the base station transmits different ranks between different sub-bands, thereby achieving the beneficial effects of improving the utilization of the space-frequency resources and the system throughput.
  • the UE may be any terminal.
  • the terminal may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, may be portable, pocket-sized, handheld Mobile, built-in or in-vehicle mobile devices that exchange language and or data with a wireless access network.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • AT access terminal
  • UT user terminal
  • U user agent
  • UE user equipment
  • UE user equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种调度定方法、装置和***,所述方法包括:基站根据用户设备UE的优先级或者空间数据流的优先级将第一UE与全带宽上各个子带上的其他UE进行配对,并得到配对结果,所述全带宽包括多个子带;基站根据所述配对结果确定第一UE在各子带上的rank值,其中,第一UE在各子带上的rank值至少包括两个不同的rank值,基站向第一UE发送一个或多个DCI,所述DCI用于指示第一UE在各子带上的rank值。本方法基站可以根据UE在不同子带上的特性,为UE设置不同的rank值和配对结果,以使UE在每个子带上按照基站设置的最佳配对结果进行调度,从而避免了采用同一rank值导致空频资源不能充分利用。

Description

调度方法、装置和*** 技术领域
本申请涉及通信技术领域,特别是涉及调度方法、装置和***。
背景技术
多用户-多输入多输出(Multiple User Multiple Input and Multiple Output,MU-MIMO)传输技术通过在发射端与接收端各设立多根天线,形成多条独立的数据流,在时频资源之外利用了空间自由度,从而提升***容量。然而,由于用户设备(User Equipment,UE)侧的尺寸和处理能力的限制因素,导致当前下行链路接收天线数量受到极大的限制,例如每个UE的天线数量不超过4个。同时,在当前LTE协议的下行单用户-多输入多输出(Single User Multiple Input and Multiple Output,SU-MIMO)方案中,由于每个传输时间间隔(Transmission Time Interval,TTI)仅允许一个UE被调度,从而极大程度地限制了独立的空间传输流数(即层数或rank数),从而难以充分利用空间自由度,该问题在大规模MIMO场景下更加突出。
为了解决该问题,MU-MIMO方案通过允许网络侧在每TTI同时调度多个UE,从而在不增加UE天线数量的前提下增加总的传输层数,从而提升了空间自由度的利用率,进一步提升了***容量。在调度中由于需要在待调度的UE集合中选择出最适合传输的部分UE,因此相比SU-MIMO方案,MU-MIMO需要在演进的基站(evaluated NodeB,eNB)侧增加合适的配对算法来支撑。
发明内容
本申请提供了一种调度方法、装置和***,用于解决下行MU-MIMO传输模式下空频资源无法充分利用的问题。
本申请提供了一种下行MU-MIMO模式下的UE子带间异rank值传输方案。该方案通过允许配对时各UE在不同子带上的rank独立取值,从而实现UE的rank值以子带为粒度的调度传输。因此,本技术方案可以避免现有方案中必须在调度前或调度后统一UE全带rank的工作,从而得到更加灵活与高效的空频资源分配结果。基于上述目标,本申请提供了新的LTE下行配对方式,下行信令与UE接收方式,从而允许***具有支持该传输特性的能力。
第一方面,本申请提供了一种调度方法,用于调度用户设备在各个子带间传输的rank值,所述方法包括:
基站根据用户设备UE的优先级或者空间数据流的优先级将第一用户设备与全带宽上各子带中的其他用户设备进行配对,并得到配对结果,所述全带宽包括多个子带;所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,其中,所述第一用户设备在各子带上的rank值至少包括两个不同的rank值;向所述第一用户设备发送一个或多个DCI,所述DCI用于指示所述第一用户设备在各子带上的rank值。
本方面提供的方法,基站可以根据UE在不同子带上的特性,为UE设置不同的rank 值和配对结果,以使UE在每个子带上按照基站设置的最佳配对结果进行调度,从而避免了采用同一rank值导致空频资源不能充分利用,本方法提升了空频资源的利用率和***的吞吐量。
结合第一方面,在第一方面一种实现方式中,所述基站根据用户设备的优先级将第一用户设备与全带宽上各子带上的其他用户设备进行配对,包括:
所述基站对优先级最高的所述第一用户设备按照rank值为1调度在所述全带宽中的第一子带上;将所述第一用户设备与所述全带宽上各子带中的其他用户设备进行配对,直到满足与所述第一用户设备成功配对的用户设备的数量总和大于或者等于所述第一子带能够调度的最大层数,或者,所述其他用户设备中除了与所述第一用户设备成功配对之外的剩余用户设备均不满足预设准则时,停止配对,其中,所述预设准则包括:已经配对的用户设备的收益大于配对前用户设备的总收益,所述其他用户设备的rank值均为1。
可选的,所述预设准则还包括:已经与所述第一用户设备成功配对的用户设备的数量总和不超过基站所支持的最大配对层数;此外,所述预设准则还可以根据***情况设置其他限制条件,本申请对此不予限制。
结合第一方面,在第一方面另一种实现方式中,所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,包括:
所述基站分别统计在第一子带和其他子带上与所述第一用户设备成功配对的用户设备的数量总和;在所述数量总和小于第一子带和其他子带能够调度的最大层数的情况下,按照所述用户设备的优先级顺序对所述第一用户设备和各子带上的其他用户设备提升rank值;当提升之后的rank值与第一用户设备成功配对的用户设备的rank值的总和分别达到第一子带和其他子带能够调度的最大层数时,或者,所述第一用户设备以及与所述第一用户设备成功配对的其他用户设备均达到各自所支持的最大rank值时,则确定当前第一用户设备的rank值为其在所述第一子带上的rank值和其他子带上的rank值。
本实现方式提供的方法相比于一般的rank值拉平操作后再补充配对的方法,降低了复杂度,同时实现了UE在不同的子带上采用不同的rank值传输,并且能够配对到更多的用户。
结合第一方面,在第一方面又一种实现方式中,所述基站根据所述空间数据流的优先级将第一用户设备与全带宽上各子带中的其他用户设备进行配对包括:
所述基站将所述第一用户设备和所述各子带上的其他用户设备均划分成rank值为1的多个虚拟用户设备;根据所述空间数据流的优先级对各子带上的所有虚拟用户设备进行配对,直到成功配对的虚拟用户设备的数量总和大于或者等于各子带所能够调度的最大层数,或者,已经配对的虚拟用户设备的总收益达到最大值时,停止配对。
本实现方式中,通过将所有用户设备都当成rank值为1的虚拟用户设备,并根据空间数据流的优先级获取一定数量的虚拟用户设备,使得配对结果得到的性能更优越,可选择的空间更大,在实现了子带间异rank传输的同时,还匹配到了更多的数据流。
结合第一方面,在第一方面又一种实现方式中,所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,包括:
所述基站统计各子带上属于所述第一用户设备的虚拟用户设备的数量,并计算各子带的所述数量之和;将所述各子带上的所述数量之和作为所述第一用户设备在各子带上的 rank值。
结合第一方面,在第一方面又一种实现方式中,在将第一用户设备与各个子带上的其他用户设备进行配对的过程中,所述配对方式包括以下任意一种:按照逐层顺序进行配对;按照逐个子带顺序进行配对;按照部分子带和部分层为一组的顺序进行配对。
本实现方式中,采用逐层配对方式可以保证每个子带配对层数和负载相对平均,进而保证频域资源的利用率最高;采用逐个子带配对方式可以保证大部分配对了的子带都够达到其所对应的最大配对层数,进而保证空域资源的利用率最高;采用部分子带和部分层组合的方式配对,可以在空域资源和频域资源的利用率之间寻找平均,进而保证空频资源和频域资源的可达到相对平衡的状态。
结合第一方面,在第一方面又一种实现方式中,所述基站向所述第一用户设备发送一个DCI,所述DCI包括至少两个层指示字段,且每个所述层指示字段指示的rank值相同。
本实现方式采用单个DCI的指示,使得接收端UE能够一次性地获取所有子带上的传输的rank值,效率较高。
结合第一方面,在第一方面又一种实现方式中,所述基站向所述第一用户设备发送多个DCI,每个所述DCI包括一个层指示字段,且每个所述DCI中的层指示字段所指示的rank值相同。
结合第一方面,在第一方面又一种实现方式中,所述基站向所述第一用户设备发送多个DCI,每个所述DCI包括一个传输块指示字段,且每个所述传输块指示字段指示所述第一用户设备在至少一个子带上的rank值和资源分配情况。
本实现方式通过多个DCI来指示,一方面增加了传输的鲁棒性,另一方面还提高了传输的灵活性,避免DCI数量过多超出PDCCH容量限制。
第二方面,本申请还提供了一种调度方法,所述方法包括:用户设备接收来自基站的至少一个DCI;所述用户设备根据所述至少一个DCI确定其在全带宽上各个子带上传输的rank值和每个所述rank值所对应的子带序号,所述全带宽包括多个子带,且所述多个子带中至少包括两个不同的rank值;所述用户设备按照所述rank值与所述基站进行通信传输。
结合第二方面,在第二方面的一种实现方式中,所述方法还包括:所述用户设备对各个子带进行并行化处理和滤波,生成所述各个子带的信号;所述用户设备利用所述至少两个不同的rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息;所述用户设备将所有所述数据流信息进行组合形成码字。
本方面提供的方法,UE通过获取来自基站的至少一个DCI,每个所述DCI中携带UE在各个子带上的rank值,以及指示UE在各子带的资源分配情况,从而实现了UE在不同子带上的异rank传输,提高了空频资源的利用率。
第三方面,本申请还提供了一种调度方法,所述方法包括:用户设备获取来自基站的至少一个DCI;所述用户设备根据所述DCI确定在后续的传输中是否有属于自己的信息;如果有,则在全带宽中的各个子带上进行rank值盲检,其中,在每个所述子带上做盲检rank值的次数小于等于所述用户设备在每个子带所能调度的最大层数;在盲检过程中,如果当前盲检的rank值与所述基站预设的rank值相同,则利用所述当前盲检的rank值对其所在子带上的信号解复用,得到所述当前盲检的rank值对应的数据流信息,其中,在 所述盲检过程中各个子带上的rank值至少包括两个不同的rank值;所述用户设备将所有所述数据流信息进行组合形成码字。
本方面中,用户设备通过对接收的数据进行盲检测试,即使用不同的rank值进行解复用,进而来确定其与基站通信的rank值,也能达到UE在不同子带上的异rank值传输的有益效果。
第四方面,本申请还提供了一种调度装置,该装置用于执行上述第一方面及第一方面的各种实现方式中方法步骤,进一步地,所述装置包括:获取单元、处理单元和发送单元,另外还可以包括存储单元等。
进一步地,获取单元,用于获取全带宽上的各个子带,所述全带宽包括至少两个子带;处理单元,用于根据用户设备的优先级或者空间数据流的优先级将第一用户设备与各个子带上的其他用户设备进行配对,并得到配对结果,以及,根据所述配对结果确定所述第一用户设备在各个子带上的rank值,其中,所述第一用户设备在各子带上的rank值至少包括两个不同的rank值;发送单元,用于向所述第一用户设备发送一个或多个DCI,所述DCI用于指示所述第一用户设备在各子带上的rank值。
所述装置可以是一种网络设备,所述网络设备可以是基站、增强型基站、或具有调度功能的中继、或具有基站功能的设备等。
第五方面,本申请还提供一种rank值确定装置,该装置用于执行上述第二方面及第二方面各中实现方式中的方法步骤,进一步地,所述装置包括:获取单元,用于接收来自基站的至少一个DCI;处理单元,用于根据所述至少一个DCI确定其在全带宽上各个子带上传输的rank值和每个所述rank值所对应的子带序号,所述全带宽包括多个子带,且所述多个子带中至少包括两个不同的rank值,发送单元,用于按照所述rank值与所述基站进行通信传输。
此外,所述处理单元,还用于对各个子带进行并行化处理和滤波,生成所述各个子带的信号;利用所述至少两个不同的rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息;以及将所有所述数据流信息进行组合形成码字。
具体地,所述终端设备可以是用户设备简称UE或移动终端等。
第六方面,本申请还提供了另一种调度装置,所述装置包括:获取单元和处理单元,另外,还可以包括发送单元和存储单元等。用于执行上述第三方面中的方法步骤。
进一步地,获取单元,用于获取来自基站的至少一个DCI;处理单元,用于根据所述DCI确定在后续的传输中是否有属于自己的信息;如果有,则在全带宽中的各个子带上进行rank值盲检,其中,在每个所述子带上做盲检rank值的次数小于等于所述用户设备在每个子带所能调度的最大层数;所述处理单元,还用于在盲检过程中,如果当前盲检的rank值与所述基站预设的rank值相同,则利用所述当前盲检的rank值对其所在子带上的信号解复用,得所述当前盲检的rank值对应的数据流信息,以及将所有所述数据流信息进行组合形成码字,其中,在所述盲检过程中各个子带上的rank值至少包括两个不同的rank值。
第七方面,本申请还提供了一种基站,该基站包括:收发器、处理器和存储器等功能组件,所述处理器可以执行所述存储器中所存储的程序或指令,从而实现上述第一方面各种实现方式所述的调度方法。
进一步地,所述基站包括:媒体接入控制MAC层和物理层PHY,其中,MAC层用于对各个子带上的UE进行配对,确定每个子带的UE的rank值,并提供生成DCI的全部信息,以及将这些信息发送给PHY层;所述PHY层用于接收这些信息,并根据这些信息拼装成最终的用于发送给UE的至少一个DCI。
第八方面,本申请还提供了一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时可实现包括本申请提供的调度方法各实施例中的部分或全部步骤。
第九方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行上述各方面所述的方法步骤。
第十方面,本申请还提供了一种***,所述***包括:基站和至少一个UE,用于实现上述第一方面至第三方面各种实现方式中的rank值确定方法。进一步地,所述基站包括上述第四方面所述的装置,所述UE包括上述第五方面或第六方面所述的装置。
本申请的技术方案,基站可以根据UE在不同子带上的特性,为UE设置不同的rank值和配对结果,以使UE在每个子带上按照基站设置的最佳配对结果进行调度,从而避免了采用同一rank值导致空频资源不能充分利用,本方法提升了空频资源的利用率和***的吞吐量。
基站通过下行DCI指示各个UE的资源分配情况,并且以单个或多个DCI的方式下发给UE,或者以层指示或者传输块为粒度指示UE在各个子带上的资源分配情况,以适应于多种不同的场景,增加了传输模式选择的灵活性和多样性。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种基站与用户间利用MU-MIMO进行通信的关系图;
图2为本申请提供的一种调度方法的流程图;
图3为本申请提供的一种以单个DCI指示的DCI格式示意图;
图4为本申请提供的一种以多个DCI层粒度指示的DCI格式示意图;
图5为本申请提供的一种以多个DCI且TB粒度指示的DCI格式示意图;
图6为本申请提供的另一种调度方法的流程图;
图7a为本申请提供的一种按照逐层顺序进行配对的调度示意图;
图7b为本申请提供的一种按照逐个子带顺序进行配对的调度示意图;
图7c为本申请提供的一种按照部分子带和部分层为一组的顺序进行配对的调度示意图;
图8为本申请提供的一种数据接收方法的流程图;
图9为本申请提供的又一种调度方法的流程图;
图10为本申请提供的一种调度装置的结构示意图;
图11为本申请提供的一种基站的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例中的技术方案,并使本申请实施例 的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例中的技术方案作进一步详细的说明。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。如图1所示,为在某一个子带上基站与用户间利用MU-MIMO进行通信的关系图,其中,基站采用MU-MIMO技术将多条数据流同时发送给三个UE,分别是UE1、UE2和UE3,且这三个用户设备在空间上传输互不影响,即又被称为配对用户。进一步地,参见图1,UE1与基站传输对应两条数据流,所以UE1所对应的rank值为2;同理地,UE2和UE3对应的rank值分别是1和2。该网络空间中共有五条独立的数据流,因此可称为5层数据,对应的rank值总数为5。
其中,所述UE的rank(秩)值与以下因素有关:eNB的天线数量、UE的天线数量和无线网络的环境等。
如下表1所示为现有的一种以UE为粒度的rank值匹配结果。
  子带1 子带2 子带3 子带4
层4 UE3 UE3 UE3 UE3
层3 UE2 UE3 UE3 UE3
层2 UE1 UE2 UE1 UE2
层1 UE1 UE1 UE1 UE1
表1
其中,***的全带宽预先被划分成多个子带,每个所述子带可以包括至少一个资源块组(Resource Block Group,RBG);按照子带或者RBG的自然顺序,可以对划分的子带或RBG进行编号,例如,表1中的子带1至子带4可以依次表示为子带1、子带2、子带3和子带4。其中,UE1在不同的子带上分配的rank值不同。
如果UE1最终决定以rank 2(rank值为2)进行发送,则在子带2和子带4上由于UE1的rank值达不到2,所以不能在这些子带上进行通信传输,进而导致了空频资源被浪费。如果UE1最终以rank1传输,则在子带1和子带3上由于rank值为2,则还需要删除一层,使其rank值为1,同样会造成资源浪费,因此,为提升空频资源的利用率,增加传输模式的灵活性和多样性,本申请提供了如下具体的实施例。
实施例一
本实施例提供了一种调度方法,用于调度UE在各个子带上的rank值,使该UE在不同的子带上传输的rank值不同。
所述方法可以由基站或者其他网络设备来执行,本实施例以基站为例进行说明。在基站调度UE的rank值之前,预先对网络的全带宽进行划分,分成多个频域子带,基站在每个子带上为多个UE进行配对,并设置每个UE在每个子带上的rank值。
具体地,方法包括以下步骤:
步骤101:基站获取全带宽中的一个子带,例如第一子带。
可选的,基站可以按照预先设置的优先级顺序选择第一子带,或者,按照各个子带的自然排列的ID顺序来确定第一子带。
步骤102:基站根据各个UE的优先级在第一子带上对优先级最高的UE进行调度。
具体地,在待配对的所有UE中选择优先级最高的UE,例如第一UE或UE1的优先级最 高,设置UE1的rank值为1,并将UE1以rank1调度在第一子带上。
其中,所述UE的优先级可以由各个UE所对应的数据流的优先级来确定,例如,以某一个数据流的优先级或者多个数据流的优先级平均值来确定,还可以按照某种算法,例如加权算法来计算确定,本申请对此不予限制。
步骤103:基站将UE1与第一子带上的其他UE进行配对,其中,第一子带上除UE1之外的其他UE的rank值均为1。
具体地过程包括:在剩余的UE中,按照用户优先级的顺序选择优先级第二高的UE,例如UE2,并将该UE2与UE1按照预设准则进行配对,其中,所述预设准则包括:配对后新的用户获得的性能收益大于配对前用户的总收益,即配对后新的用户获得的性能收益大于已经配对的用户损失的性能收益。其中,所述性能包括传输速率等。
另外,所述预设准则还可以包括:已经与UE1成功配对的UE的数量总和不超过所述第一子带能够调度的最大层数,和,已经与UE1成功配对的UE的数量总和不超过基站所支持的最大配对层数。此外,所述预设准则还可以包括其他限制条件,本申请对此不予限制。并且所述第一子带能够调度的最大层数可以由第一子带自身的处理能力来决定,同理地,基站所支持的最大配对层数也可以由基站决定。
在步骤102中,所述配对结果是被分配在同一子带上的至少一个UE在空间上传输互不影响,即每个UE可以同时与基站进行通信。在一种可能的条件下,如果所有UE与UE1都不能配对成功,则该子带上的配对UE数量仅为UE1一个。
步骤104:不断地重复步骤103,直到满足与UE1成功配对的用户设备的数量总和K1等于第一子带能够调度的最大层数K,或者,第一子带上的其他用户设备中除了与UE1成功配对之外的剩余用户设备均不满足预设准则,即不满足已经配对的UE的收益大于配对前UE的总收益时,则停止对UE1的配对操作。所述配对UE总数K1包括所述UE1。
步骤105:停止配对后,判断已经配对的UE总数K1是否小于所述最大配对层数K,如果是,则可以对K1个UE中rank值能力大于1的UE提升rank值。
具体地,可以按照所述UE的优先级顺序,对优先级最高的UE1先提升rank值,例如,以每次提升的步长为1升rank;当UE1达到它的最大rank值之后,再提升第二优先级的UE2的rank值,以此类推。
需要说明的是,在为UE提升rank值的过程中,可以按照一定的准则,例如按照配对过程中的所述预设准则,也可以按照其他准则来提升rank值,但是无论采用哪种方式,都应当满足提升后的UE的综合性能优于提升之前的用户性能。
步骤106:不断地重复步骤105,直到升rank值之后的配对UE的rank值总和等于所述第一子带能够调度的最大配对层数K,或者,已经成功配对的各个UE中均已达到各自rank值的上限时,即没有再提升自身rank值的能力时,则停止调度,并生成调度结果。
所述调度结果中,当前时刻UE1的rank值为UE1在第一子带上的rank值,同理地,在所述当前时刻,第一子带上已经与UE1成功配对的其他UE的rank值为它们各自对应的rank值。
对第一子带上的UE1和剩余的UE配对完,并确定各自rank值之后,再对第二子带和第三子带上的UE进行配对,具体地配对和确定rank值的方法与前面步骤101至步骤106相同,所以不再赘述。
由于无线信道的频率选择性衰落特性,一个UE在***带宽的不同子带上的信道衰落特性不尽相同,从而导致其在各个子带上传输的rank值不同,本实施例提供的方法,基站可以根据UE在不同子带上的特性,为UE设置不同的rank值和配对结果,以使UE在每个子带上按照基站设置的最佳配对结果进行调度,从而避免了采用同一rank值导致空频资源不能充分利用,本方法提升了空频资源的利用率和***的吞吐量。
此外,本实施例提供的方法相比于一般的rank值拉平操作后再补充配对的方法,降低了复杂度。所述rank值拉平操作包括:对于rank值低于最终传输rank的子带,删除该UE在其上的全部分配资源;对于rank值高于最终rank的子带,删除多余层数,使rank值降低到与最终rank相等的值。
上述方法还包括:基站将每个所述rank值通过下行控制指示(Downlink Control Indicator,DCI)发送给各个UE。
具体地,所述基站包括:媒体接入控制(Media Access Control,MAC)层和物理层(physical layer,PHY),其中,MAC层用于对各个子带上的UE进行配对,确定每个子带的UE的rank值,并提供生成DCI的全部信息,以及将这些信息发送给PHY层。所述PHY层接收这些信息,并根据这些信息拼装成最终的用于发送给UE的DCI。
此外,MAC层还用于生成调度信息,并发送给PHY层,PHY层用于根据所述调度信息对待发送给UE的数据信息处理和发送。例如,PHY层根据MAC层提供的调度信息将各UE数据(如视频、音频、图片信息等)映射至对应的空频及时频资源,以及根据映射结果生成MU-MIMO信号等。
基站在确定各个UE的rank值之后,可以通过一个或者多个DCI的方式给UE。
具体地,一种实现方式是,以单个DCI方式下发。利用资源开销与UE配对的子带数成正线性关系,适合于配对子带数较少的UE。
如图3所示,基站根据确定的rank值生成一个DCI,用于指示UE1在各个子带上的rank值,其中,所述DCI中包括至少两个层指示字段,且每个所述层指示字段指示相同的rank值。另外,每个DCI还可以用于指示UE1在各个子带上资源分配的情况,并且还指示各个子带对应的rank值。若UE1在配对后在K个/组子带上都有配对,则在DCI中存在K个层指示域,依次指示资源分配域中的K个/组子带对应的rank值。
本实现方式,基站通过单个DCI的指示,使得接收端UE能够一次性地获取所有子带上的传输的rank值,效率较高。
另一种实现方式是,以层为粒度多个DCI方式下发。利用资源开销与UE的rank值成正线性关系,适合于配对层数相对较少的UE。
如图4所述,基站根据各个子带的rank值生成两个或两个以上DCI,其中,每个所述DCI中包括一个层指示字段,且每个所述DCI中的层指示字段所指示的rank值相同。具体地,每个DCI以一层或多层为粒度来指示UE在各个子带上资源分配的情况。若UE1在配对后各子带最大rank值为N,则可以采用至多N条DCI指示该UE在各层或几层上的资源分配状态,并在每一条DCI中的层指示域中说明该层中的资源分配适用于哪一层或几层。例如,DCI 1中的层指示字段指示UE1的rank值为1,资源分配类型字段中指示该rank1适用于第一子带和第三子带。DCI 2中的层指示字段指示UE1的rank值为2,资源分配类型字段中指示该rank2适用于第二子带和第四子带。
采用本实现方式通过多个DCI来指示,一方面增加了传输的鲁棒性。避免由于一个DCI接收失败,而影响其他DCI的接收,此外,UE还可以根据成功接收的DCI,获取对应的各个子带上的信息。
另一方面,还提高了传输的灵活性,可以将有限的PDCCH容量分配给更多的UE,其中,每个UE可通过一个或多个DCI来指示其在部分子带上的rank值,进而实现一次调度多个UE,避免将所有PDCCH容量都分配给指示一个UE的DCI,增加了调度的灵活性。此外,通过多个DCI指示下发可以灵活地设置通过PDCCH承载的数量,从而避免需要发送的DCI过多而超过PDCCH最大容量。
又一种实现方式是,以传输块(Transmission Block,TB)为粒度多个DCI方式下发。本实现方式可以应用于对DCI开销敏感的场景。
如图5所示,基站根据各个子带的rank值生成两个或两个以上DCI,其中,每个所述DCI中包括一个TB指示字段,且每个所述TB指示字段用于指示UE在至少一个子带上的rank值和资源分配情况。若UE1在配对后传输TB数为M,则可以采用至多M条DCI指示该UE1在每个或数个TB上的资源分配状态,并在每一条DCI中的层指示域中说明该层中的资源分配适用于哪一个或几个TB。
采用本实现方式,以TB为粒度多个DCI下发,既增加了DCI指示调度的灵活性,比如一个TB字段用于指示一个rank值,又可以减少DCI的数量,从而减少了DCI的资源开销。
本实施例中,基站通过下行DCI指示各个UE的资源分配情况,并且以单个或多个DCI的方式下发给UE,或者以层指示或者TB为粒度指示UE在各个子带上的资源分配情况,有益于增加传输模式的灵活性和多样性,可以牵动信令的格式,控制信道资源分配模式及UE接收流程的调整,从而增加了传输方案的选择灵活度,以及获取技术改进的主动性。
实施例二
本实施例还提供了一种确定rank值的方法,与实施例一的区别在于对rank值选择的余地更大,可以获得更加优越的配对结果,具体地,如图6所示,该方法包括以下步骤:
步骤201:基站获取全带宽中的一个子带,例如第一子带,所述第一子带可以为所述全带宽中的任意一个子带,所述全带宽包括多个子带。
步骤202:基站将第一用户设备,例如UE1和第一子带上的其他UE均划分成rank值均为1的多个虚拟用户设备。其中,每个rank1对应一个数据流,且所有数据流按照空间数据流的优先级顺序排序。
步骤203:基站根据空间数据流的优先级对第一子带上的所有虚拟用户设备进行配对,直到成功配对的虚拟用户设备的数量总和大于或者等于第一子带所能够调度的最大层数K,或者,满足已经配对的虚拟用户设备的总收益达到最大值,即再配对的新的虚拟用户获得的性能收益不会大于当前已经配对的用户损失的性能收益时,停止配对,并得到成功配对的虚拟UE数量。
具体地,根据预设准则中的已经配对的UE收益大于配对前UE的总收益的原则,选择优先级较高的虚拟UE与UE1进行配对。按照空间数据流的顺序依次地选择优先级较高的虚拟UE,直到剩余的虚拟UE中没有满足所述配对准则的虚拟用户,或者,已经配对的虚拟UE的总数(即rank1的总和)达到第二子带所能够调度的最大层数时,停止配对操作。
步骤204:统计属于UE1的虚拟用户设备的数量,并根据所述虚拟用户设备的数量确定UE1的rank值,以及将所述rank值作为UE1在所述第一子带上的rank值。
具体地,例如,有三个UE,分别是UE1、UE2和UE3,其各自对应的最大rank值分别是1、2和3,所以按照rank值为1将这3个UE虚拟成6个rank值均为1的虚拟UE。
按照空间数据流的优先级顺序排列如下:
数据流优先级 虚拟的UE对应的数据流 Rank值
1 UE3的数据流1 1
2 UE2的数据流2 1
3 UE1的数据流1 1
4 UE3的数据流2 1
5 UE2的数据流1 1
6 UE3的数据流3 1
假设对应的第二子带所能够调度的最大层数为16;
获取当前虚拟的6个UE的rank值的和为6,小于所述最大层数16,且没有其他虚拟UE能够满足所述预设准则,那么确定当前UE3对应的虚拟UE个数为3、UE2对应的虚拟UE个数为2、UE1对应的虚拟UE个数为1,因此,确定的UE3的rank值为3,UE2的rank值为2,UE1的rank值为1。
可选的,如果参与配对的UE3的数据流仅有两条,即属于UE3的虚拟UE个数是2,则设置的UE3在第二子带上的rank值为2。
步骤205:重复上述在第一子带上确定各个UE的rank值的方法,确定其余子带上的UE的rank值。
步骤206:将属于同一个UE的rank值以单个或多个DCI的方式下发指示消息。
具体地,下发DCI的方式与前述实施例一的各种实现方式,所以不再赘述。
本实施例提供的方法,通过将所有的UE当成rank值为1的虚拟UE,并按照一定准则以及空间数据流优先级顺序获取一定数目的虚拟UE,再通过这些虚拟UE确定实际每个UE的rank值,由于虚拟UE都是rank值为1的用户,所以配对结果受到的约束更少,进而配对遍历更多UE组合的可能性增大,配对结果相比于实施例一更具全局最优性,空频及时频资源能够得到更充分的利用。
在上述实施例一和实施例二中,将选择的UE与同一子带上的其他UE进行配对的过程中,一种配对方式是,按照逐层的调度顺序进行配对。如图7a所示,按照层数优先的顺序调度,基站在每个子带都对至少一个UE进行调度配对,直到各个配对的UE的rank值之和达到每个子带所对应的最大配对层数(即不能再配对的层数)时,才对下一个子带进行调度。
此外,另一种配对方式是,可以按照逐个子带顺序进行配对。如图7b所示,按照子带优先的顺序调度,首先基站会依次给每个子带调度一个UE,然后再依次给每个子带配对第二个UE、第三个UE……,以此类推,直到所有子带都调度配对完成为止。
又一种配对方式是,按照部分子带和部分层为一组的顺序进行配对,即上面两种配对方式的组合。如图7c所示,在第一子带和第二子带上按照部分子带和部分层为一组对待配对的UE进行配对,待这两个子带配对调度完成后,再对第三子带和第四子带上的UE进 行配对。
本实施例中,采用逐层配对方式可以保证每个子带配对层数和负载相对平均,进而保证频域资源的利用率最高;采用逐个子带配对方式可以保证大部分配对了的子带都够达到其所对应的最大配对层数,进而保证空域资源的利用率最高;采用部分子带和部分层组合的方式配对,可以在空域资源和频域资源的利用率之间寻找平均,进而保证空频资源和频域资源的可达到相对平衡的状态。
需要说明的是,由于每个UE实际传输的数据量有限,所以,当某一UE所需要传输的数据已经被分配了足够多的资源后,就不再参与后续的资源分配,进而导致后续参与分配的UE总数减少,因此按照上述不同的调度配对方式,导致的调度配对结果可能不同。
实施例三
为了能够实现UE在各个子带间差异rank的传输,UE需要针对不同子带的rank值进行接收并分别处理。
具体地,以UE1为例,本实施例提供了一种UE的数据接收方法,其中,UE具有接收各个传输子带不同的rank值信息的能力,例如接收来自基站的DCI。
如图8所示,所述方法包括:
步骤301:UE1接收来自基站的至少一个DCI。
具体地,UE1在每个TTI接收信号以及接收的PDCCH中属于自己的全部DCI,并根据所述DCI确定在后续的传输中是否有属于自己的信息。
步骤302:UE1根据所述至少一个DCI确定其在各个子带上传输的rank值和每个rank值所对应的子带序号,其中,所述全带宽包括多个子带,且所述多个子带中至少包括两个不同的rank值。
例如,一种通过单个DCI指示UE1的rank值为2,对应传输的子带序号是1;另外该DCI还指示UE1在子带序号2的rank值为3。
步骤303:UE1按照所述至少两个不同的rank值与所述基站进行通信传输。
步骤304:UE1对各个子带进行并行化处理和滤波,生成所述各个子带的信号。
步骤305:UE1利用所述rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息。
所述复用是指一个UE以大于1的rank值进行传输时,信息所在的时频资源被重复使用,多个重复使用的信息叠加在一起需要用专门的解复用技术才能分离。
进一步地,UE1对传输子带进行并行化处理,分别滤波获得各子带信号,并根据各子带rank解复用,获得各数据流信息;
步骤306:UE1将所有所述数据流信息进行组合形成码字。
例如,DCI 1指示UE1在第一子带按照rank值为x1来接收第一数据;DCI 2指示UE1在第二子带按照rank值为x2来接收第二数据;……,DCI k指示UE1在第k子带按照rank值为x3来接收第三数据。
UE1对传输子带进行并行化处理,分别滤波得到各个子带信号,并根据各个rank值解复用,获得对应的各条数据流信息。
UE1对第一子带进行滤波,解复用得到第一解调序列,例如,010101;
UE1对第二子带进行滤波,解复用得到第二解调序列,例如,101010;
……,
UE1对第k子带进行滤波,解复用得到第三解调序列,例如,100001;
UE将所有解调的序列进行组合形成码字。
本实施例提供的方法,通过基站下发的DCI,指示UE在各个子带上的rank值,从而实现了UE在不同子带上的异rank传输,避免了采用同一个rank值,导致空频资源的浪费,本方法提升了空频资源的利用率和***的吞吐量。
实施例四
本实施例还提供了另一种UE确定rank值的方法,具体地,UE通过对接收的数据进行盲检测试,并使用不同的rank值进行解复用。
进一步地,如图9所示,该方法包括以下步骤:
步骤401:UE接收PDCCH中属于自己的DCI,所述DCI的格式可以是单个层指示DCI、多个层指示的DCI或者多个以TB为粒度的DCI,可以是一个DCI也可以是多个。
步骤402:UE对传输子带进行并行化处理,分别滤波获得各子带信号;
步骤403:UE具备rank盲检的能力,通过盲检判断各子带内信号rank值,其中,所述盲检次数小于等于UE在每个子带内支持的最大层数;
步骤404:UE利用盲检过程中获得的rank对信号解复用,获得各个数据流信息;
步骤405:UE将各子带的数据流信息组合成码字。
其中,在步骤403中,UE盲检rank值时,如果UE当前检测用的rank值能够解调出基站发送的信息,即当前盲检的rank值与基站预设的rank值相同时,则确定该rank值合适。如果检测当前rank值不能解调,则以单位步长1增加rank值,再重复解调和检测,直到能够正确解调得到数据流信息为止。
本实施例中,UE通过盲检能够确定基站对应的rank值,进而在各个子带上采用不同的rank值进行通信,保证分配资源的充分利用。
相对于上面的方法实施例,本申请实施例还提供了相应的网络设备、终端设备等装置实施例。
参见图10,为本申请实施例提供的一种调度装置的结构示意图。该装置可配置在基站中,用于执行如图2或图6所示的rank值确定方法。其中,该装置可以包括获取单元1001、处理单元1002和发送单元1003。
进一步地,获取单元1001,用于获取全带宽上的各个子带,所述全带宽包括至少两个子带。
处理单元1002,用于根据用户设备的优先级或者空间数据流的优先级将第一用户设备与全带宽上各个子带上的其他用户设备进行配对,并得到配对结果,以及,根据所述配对结果确定所述第一用户设备在各个子带上的rank值,其中,所述第一用户设备在各子带上的rank值至少包括两个不同的rank值。
发送单元1003,用于向所述第一用户设备发送一个或多个下行控制指示DCI,所述DCI用于指示所述第一用户设备在各子带上的rank值。
可选的,在本实施例的一种具体实现方式中,所述获取单元1001,还用于获取第一子 带,所述第一子带为所述全带宽中的任意一个子带。
所述处理单元1002,具体用于对优先级最高的所述第一用户设备按照rank值为1调度在所述全带宽中的第一子带上,以及,将所述第一用户设备与所述全带宽上各子带中的其他用户设备进行配对,直到满足与所述第一用户设备成功配对的用户设备的数量总和大于或者等于所述第一子带能够调度的最大层数,或者,所述其他用户设备中除了与所述第一用户设备成功配对之外的剩余用户设备均不满足预设准则时,停止配对。
其中,所述预设准则包括:已经配对的用户设备的收益大于配对前用户设备的总收益,所述其他用户设备的rank值均为1。此外,所述预设准则还可以包括:已经与所述第一用户设备成功配对的用户设备的数量总和等于各子带能够调度的最大层数;已经与所述第一用户设备成功配对的用户设备的数量总和不超过基站所支持的最大配对层数。
可选的,在本实施例的另一种具体实现方式中,所述处理单元1002,具体用于根据所述配对结果确定第一用户设备在所述第一子带上的rank值。
其中,所述处理单元1002,具体还用于分别统计在第一子带和其他子带上与所述第一用户设备成功配对的用户设备的数量总和;在所述数量总和小于所述第一子带和其他子带能够调度的最大层数的情况下,按照所述用户设备的优先级顺序对所述第一用户设备和各子带上的其他用户设备提升rank值;当提升之后的rank值与各个成功配对的用户设备的rank值的总和分别达到第一子带和其他子带能够调度的最大层数时,或者,所述第一用户设备以及与所述第一用户设备成功配对的其他用户设备均达到各自所支持的最大rank值时,则确定当前所述第一用户设备的rank值为其在所述第一子带上的rank值和其他子带上的rank值。
可选的,在本实施例的又一种具体实现方式中,所述获取单元1001,还用于获取第二子带,所述第二子带为所述全带宽中的任意一个子带。
所述处理单元1002,具体用于将所述第一用户设备和所述各子带上的其他用户设备均划分成rank值为1的多个虚拟用户设备;根据所述空间数据流的优先级对各子带上的所有虚拟用户设备进行配对,直到成功配对的虚拟用户设备的数量总和大于或者等于各子带所能够调度的最大层数,或者,已经配对的虚拟用户设备的总收益达到最大值时,停止配对。
可选的,在本实施例的又一种具体实现方式中,所述处理单元1002,具体用于统计各个子带上属于所述第一用户设备的虚拟用户设备的数量,并计算各子带的所述数量之和;以及将所述各个子带上的rank值作为所述第一用户设备在各子带上的rank值。
可选的,在本实施例的又一种具体实现方式中,所述处理单元1002,具体还用于按照以下任意一种配对方式对所述第一用户设备和各个子带上的其他用户设备进行配对:以层为并行单位进行配对;以子带为并行单位进行配对;以部分子带和部分层为并行单位进行配对。
可选的,在本实施例的又一种具体实现方式中,所述处理单元1002,还用于根据每个rank值生成一个DCI,用于指示所述第一用户设备在各个子带上的rank值,其中,所述DCI中包括至少两个层指示字段,且每个所述层指示字段指示相同的rank值。
所述发送单元1003,具体用于向所述第一用户设备发送一个DCI。
可选的,在本实施例的又一种具体实现方式中,所述处理单元1002,还用于根据各个 子带的rank值生成两个或两个以上DCI,其中,每个所述DCI中包括一个层指示字段,且每个所述DCI中的层指示字段所指示的rank值相同。
所述发送单元1003,具体用于向所述第一用户设备发送多个DCI。
可选的,在本实施例的又一种具体实现方式中,所述处理单元1002,还用于根据各个子带的rank值生成两个或两个以上DCI,其中,每个所述DCI中包括一个传输块指示字段,且每个所述传输块指示字段用于指示所述第一用户设备在至少一个子带上的rank值和资源分配情况。
所述发送单元1003,具体用于向所述第一用户设备发送多个DCI。
在具体实现的硬件层面,本实施例还提供了一种网络设备,例如基站,用于实现前述实施例中的方法步骤。
如图11所示,所述基站可以包括收发器110、处理器120和存储器130,所述收发器110可以包括接收机、发射机与天线等部件。所述基站还可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置,本申请对此不进行限定。
处理器120为基站的控制中心,利用各种接口和线路连接整个基站的各个部分,通过运行或执行存储在存储器130内的软件程序和/或模块,以及调用存储在存储器130内的数据,以执行基站的各种功能和/或处理数据。
所述处理器120可以由集成电路(integrated circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器120可以仅包括中央处理器(central processing unit,CPU),也可以是GPU、数字信号处理器(digital signal processor,DSP)、及收发模块中的控制芯片(例如基带芯片)的组合。
所述收发器110用于建立通信信道,使基站通过网络信道以连接至接收设备,例如UE,从而实现基站与各个UE之间的数据传输。
进一步地,所述收发器110可以包括无线局域网(wireless local area network,WLAN)模块、蓝牙模块、基带(base band)模块等通信模块,以及所述通信模块对应的射频(radio frequency,RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信***通信,例如宽带码分多重接入(wideband code division multiple access,WCDMA)及/或高速下行封包存取(high speed downlink packet access,HSDPA)。所述收发模块用于控制终端设备中的各组件的通信,并且可以支持直接内存存取(direct memory access)。
在本申请的不同实施方式中,所述收发器110中的各种收发模块一般以集成电路芯片(integrated circuit chip)的形式出现,并可进行选择性组合,而不必包括所有收发模块及对应的天线组。例如,所述收发器110可以仅包括基带芯片、射频芯片以及相应的天线以在一个蜂窝通信***中提供通信功能。经由所述收发模块建立的无线通信连接,例如无线局域网接入或WCDMA接入,所述终端设备可以连接至蜂窝网(cellular network)或因特网(internet)。
存储器130可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive, SSD);所述存储器还可以包括上述种类的存储器的组合。所述存储器中可以存储有程序或代码,处理器通过执行所述存储器中程序或代码可以实现基站确定各个UE的rank值等功能。
在本申请的装置实施例中,所述获取单元1001和发送单元1003所要实现的功能可以由所述基站的收发器110实现,或者由处理器120控制的收发器110实现;所述处理单元1002所要实现的功能则可以由所述处理器120实现。
此外,本申请还提供了另一种调度装置,该装置可应用于前述实施例中的任意UE,用于执行如图8所示的rank值调度方法。其中,该装置可以包括获取单元、处理单元和发送单元。
具体地,获取单元,用于接收来自基站的至少一个DCI。
处理单元,用于根据所述至少一个DCI确定其在各个子带上传输的rank值和对应于所述各个子带的位置,其中,在所有子带所对应的rank值中至少包括两个不同的rank值。
发送单元,用于按照所述至少两个不同的rank值与所述基站进行通信传输。
可选的,在本实施例的一种具体实现方式中,所述处理单元还用于对各个子带进行并行化处理和滤波,生成所述各个子带的信号;利用所述至少两个不同的rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息;以及将所有所述数据流信息进行组合形成码字。
另外,本实施例所述的rank值确定装置,还用于实现盲检确定rank值的功能,具体地,获取单元,用于获取来自基站的DCI;处理单元,用于根据所述DCI确定在后续的传输中是否有属于自己的信息;如果有,则在每个子带上进行rank值盲检,其中,在每个所述子带上做盲检rank值的次数小于等于所述用户设备在每个子带所能调度的最大层数;所述处理单元,还用于在盲检过程中,如果当前盲检的rank值与所述基站预设的rank值相同,则利用所述当前盲检的rank值对各个子带上的信号解复用,得到每个rank值对应的数据流信息;以及将所有所述数据流信息进行组合形成码字。
在具体的硬件实现层面,本实施例的rank值确定装置可被配置在UE中,所述UE包括可以包括收发器、处理器和存储器,所述收发器可以包括接收机、发射机与天线等部件。所述基站还可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置,本申请对此不进行限定。
其中,所述rank值确定装置中的获取单元和发送单元所要实现的功能可以由UE的收发器来实现,或者由UE的处理器控制收发器来实现;所述处理单元所要实现的功能则可以由处理器实现。
进一步地,在UE的存储器中可以存储有程序或代码,处理器通过执行所述存储器中程序或代码可以实现接收来自基站的DCI、在各个子带上异rank值传输,以及盲检确定的rank值等功能。
本申请还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的调度方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。
另外,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各个实施例所述的调度方法。
本申请实施例还提供了一种MIMO传输***,可应用于如图1所示的技术场景,或者还可以应用与UE具有多天线的上行D-MIMO场景资源分配的调度和配对,或者其他相关技术场景。
参见图1,所述***包括:基站和至少一个UE,用于实现上述各个实施例所述的调度方法。其中,所述基站和UE包括前述实施例所述的调度装置;进一步地,所述基站可以是网络设备,所述网络设备可以是基站、增强型基站、或具有调度功能的中继、或具有基站功能的设备等。其中,基站可以是LTE***中的演进型基站(evolved Node B,eNB),也可以其他***中的基站,本申请实施例并不限定。
此外,本实施例提供的基站还具有盲检功能,用于对接收的数据进行盲目测试,具体包括使用不同的rank值进行解复用,进而得到各个子带上适合与基站传输的rank值,其中,在所述各子带上至少包括两个不同的rank值,从而实现了基站在不同子带间的异rank传输,达到提升空频资源利用率和***吞吐量的有益效果。
此外,所述UE可以是任意终端,进一步地,所述终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或车载的移动装置,它们与无线接入网交换语言和或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还可以是接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、用户设备、或用户装备(user equipment,UE),本申请实施例并不限定。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种调度方法,其特征在于,所述方法包括:
    基站根据用户设备的优先级或者空间数据流的优先级将第一用户设备与全带宽上各子带中的其他用户设备进行配对,并得到配对结果,所述全带宽包括多个子带;
    所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,其中,所述第一用户设备在各子带上的rank值至少包括两个不同的rank值;
    所述基站向所述第一用户设备发送一个或多个下行控制指示DCI,所述DCI用于指示所述第一用户设备在各子带上的rank值。
  2. 根据权利要求1所述的方法,其特征在于,所述基站根据用户设备的优先级将第一用户设备与全带宽上各子带中的其他用户设备进行配对,包括:
    所述基站对优先级最高的所述第一用户设备按照rank值为1调度在所述全带宽中的第一子带上;
    将所述第一用户设备与所述全带宽上各子带中的其他用户设备进行配对,直到满足与所述第一用户设备成功配对的用户设备的数量总和大于或者等于所述第一子带能够调度的最大层数,或者,所述其他用户设备中除了与所述第一用户设备成功配对之外的剩余用户设备均不满足预设准则时,停止配对,
    其中,所述预设准则包括:已经配对的用户设备的收益大于配对前用户设备的总收益,所述其他用户设备的rank值均为1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,包括:
    所述基站分别统计在第一子带和其他子带上与所述第一用户设备成功配对的用户设备的数量总和;
    在所述数量总和小于第一子带和其他子带能够调度的最大层数的情况下,按照所述用户设备的优先级顺序对所述第一用户设备和各子带上的其他用户设备提升rank值;
    当提升之后的rank值与第一用户设备成功配对的用户设备的rank值的总和分别达到第一子带和其他子带能够调度的最大层数时,或者,所述第一用户设备以及与所述第一用户设备成功配对的其他用户设备均达到各自所支持的最大rank值时,则确定当前第一用户设备的rank值为其在所述第一子带上的rank值和其他子带上的rank值。
  4. 根据权利要求1所述的方法,其特征在于,所述基站根据所述空间数据流的优先级将第一用户设备与全带宽上各子带中的其他用户设备进行配对包括:
    所述基站将所述第一用户设备和所述各子带上的其他用户设备均划分成rank值为1的多个虚拟用户设备;
    根据所述空间数据流的优先级对各子带上的所有虚拟用户设备进行配对,直到成功配对的虚拟用户设备的数量总和大于或者等于各子带所能够调度的最大层数,或者,已经配对的虚拟用户设备的总收益达到最大值时,停止配对。
  5. 根据权利要求4所述的方法,其特征在于,所述基站根据所述配对结果确定所述第一用户设备在各子带上的rank值,包括:
    所述基站统计各子带上属于所述第一用户设备的虚拟用户设备的数量,并计算各子带的所述数量之和;
    将所述各子带上的所述数量之和作为所述第一用户设备在各子带上的rank值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在将第一用户设备与全带 宽上各个子带中的其他用户设备进行配对的过程中,所述配对方式包括以下任意一种:
    按照逐层顺序进行配对;
    按照逐个子带顺序进行配对;
    按照部分子带和部分层为一组的顺序进行配对。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述基站向所述第一用户设备发送一个DCI,所述DCI包括至少两个层指示字段,且每个所述层指示字段指示的rank值相同。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述基站向所述第一用户设备发送多个DCI,每个所述DCI包括一个层指示字段,且每个所述DCI中的层指示字段所指示的rank值相同。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述基站向所述第一用户设备发送多个DCI,每个所述DCI包括一个传输块指示字段,且每个所述传输块指示字段指示所述第一用户设备在至少一个子带上的rank值和资源分配情况。
  10. 一种调度方法,其特征在于,所述方法包括:
    用户设备接收来自基站的至少一个DCI;
    所述用户设备根据所述至少一个DCI确定其在全带宽上各个子带上传输的rank值和每个所述rank值所对应的子带序号,所述全带宽包括多个子带,且所述多个子带中至少包括两个不同的rank值;
    所述用户设备按照所述rank值与所述基站进行通信传输。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述用户设备对各个子带进行并行化处理和滤波,生成所述各个子带的信号;
    所述用户设备利用所述至少两个不同的rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息;
    所述用户设备将所有所述数据流信息进行组合形成码字。
  12. 一种调度方法,其特征在于,所述方法包括:
    用户设备获取来自基站的至少一个DCI;
    所述用户设备根据所述DCI确定在后续的传输中是否有属于自己的信息;
    如果有,则在全带宽中的各个子带上进行rank值盲检,其中,在每个所述子带上做盲检rank值的次数小于等于所述用户设备在每个子带所能调度的最大层数;
    在盲检过程中,如果当前盲检的rank值与所述基站预设的rank值相同,则利用所述当前盲检的rank值对其所在子带上的信号解复用,得到所述当前盲检的rank值对应的数据流信息,其中,在所述盲检过程中各个子带上的rank值至少包括两个不同的rank值;
    所述用户设备将所有所述数据流信息进行组合形成码字。
  13. 一种调度装置,其特征在于,所述装置包括:
    处理单元,用于根据用户设备的优先级或者空间数据流的优先级将第一用户设备与全带宽上各个子带中的其他用户设备进行配对,并得到配对结果,所述全带宽包括多个子带;
    所述处理单元,还用于根据所述配对结果确定所述第一用户设备在各子带上的rank值,其中,所述第一用户设备在各子带上的rank值至少包括两个不同的rank值;
    发送单元,用于向所述第一用户设备发送一个或多个下行控制指示DCI,所述DCI用于指示所述第一用户设备在各子带上的rank值。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理单元,具体用于对优先级最高的所述第一用户设备按照rank值为1调度 在所述全带宽中的第一子带上,以及,将所述第一用户设备与所述全带宽上各子带中的其他用户设备进行配对,直到满足与所述第一用户设备成功配对的用户设备的数量总和大于或者等于所述第一子带能够调度的最大层数,或者,所述其他用户设备中除了与所述第一用户设备成功配对之外的剩余用户设备均不满足预设准则时,停止配对,其中,所述预设准则包括:已经配对的用户设备的收益大于配对前用户设备的总收益,所述其他用户设备的rank值均为1。
  15. 根据权利要求13或14所述的装置,其特征在于,
    所述处理单元,具体用于分别统计在第一子带和其他子带上与所述第一用户设备成功配对的用户设备的数量总和,在所述数量总和小于第一子带和其他子带能够调度的最大层数的情况下,按照所述用户设备的优先级顺序对所述第一用户设备和各子带上的其他用户设备提升rank值;当提升之后的rank值与第一用户设备成功配对的用户设备的rank值的总和分别达到第一子带和其他子带能够调度的最大层数时,或者,所述第一用户设备以及与所述第一用户设备成功配对的其他用户设备均达到各自所支持的最大rank值时,则确定当前第一用户设备的rank值为其在所述第一子带上的rank值和其他子带上的rank值。
  16. 根据权利要求13所述的装置,其特征在于,
    所述处理单元,具体用于将所述第一用户设备和所述各子带上的其他用户设备均划分成rank值为1的多个虚拟用户设备;根据所述空间数据流的优先级对各子带上的所有虚拟用户设备进行配对,直到成功配对的虚拟用户设备的数量总和大于或者等于各子带所能够调度的最大层数,或者,已经配对的虚拟用户设备的总收益达到最大值时,停止配对。
  17. 根据权利要求16所述的装置,其特征在于,
    所述处理单元,具体用于统计各子带上属于所述第一用户设备的虚拟用户设备的数量,并计算各子带的所述数量之和;以及将所述各子带上的rank值之和作为所述第一用户设备在各子带上的rank值。
  18. 根据权利要求13-17任一项所述的装置,其特征在于,
    所述处理单元,具体还用于按照以下任意一种配对方式对所述第一用户设备和各个子带上的其他用户设备进行配对;
    按照逐层顺序进行配对;
    按照逐个子带顺序进行配对;
    按照部分子带和部分层为一组的顺序进行配对。
  19. 根据权利要求13-17任一项所述的装置,其特征在于,
    所述发送单元,具体用于向所述第一用户设备发送一个DCI,所述DCI包括至少两个层指示字段,且每个所述层指示字段指示的rank值相同。
  20. 根据权利要求13-17任一项所述的装置,其特征在于,
    所述发送单元,具体用于向所述第一用户设备发送多个DCI,每个所述DCI包括一个层指示字段,且每个所述DCI中的层指示字段所指示的rank值相同。
  21. 根据权利要求13-17任一项所述的装置,其特征在于,
    所述发送单元,具体用于向所述第一用户设备发送多个DCI,每个所述DCI包括一个传输块指示字段,且每个所述传输块指示字段指示所述第一用户设备在至少一个子带上的rank值和资源分配情况。
  22. 一种调度装置,其特征在于,所述装置包括:
    获取单元,用于接收来自基站的至少一个DCI;
    处理单元,用于根据所述至少一个DCI确定其在全带宽上各个子带上传输的rank 值和每个所述rank值所对应的子带序号,所述全带宽包括多个子带,且所述多个子带中至少包括两个不同的rank值;
    发送单元,用于按照所述rank值与所述基站进行通信传输。
  23. 根据权利要求22所述的装置,其特征在于,
    所述处理单元,还用于对各个子带进行并行化处理和滤波,生成所述各个子带的信号;利用所述至少两个不同的rank值对所述各个子带的信号解复用,得到每个rank值对应的数据流信息;以及将所有所述数据流信息进行组合形成码字。
  24. 一种调度装置,其特征在于,所述装置包括:
    获取单元,用于获取来自基站的至少一个DCI;
    处理单元,用于根据所述DCI确定在后续的传输中是否有属于自己的信息;如果有,则在全带宽中的各个子带上进行rank值盲检,其中,在每个所述子带上做盲检rank值的次数小于等于所述用户设备在每个子带所能调度的最大层数;
    所述处理单元,还用于在盲检过程中,如果当前盲检的rank值与所述基站预设的rank值相同,则利用所述当前盲检的rank值对其所在子带上的信号解复用,得到所述当前盲检的rank值对应的数据流信息,以及将所有所述数据流信息进行组合形成码字,其中,在所述盲检过程中各个子带上的rank值至少包括两个不同的rank值。
  25. 一种调度***,其特征在于,所述***包括:基站和至少一个用户设备,用于实现如权利要求1-11任一项所述的rank值确定方法,
    其中,所述基站包括如权利要求13-21任一项所述的调度装置;
    所述用户设备包括如权利要求22或23所述的调度装置。
PCT/CN2017/118947 2017-12-27 2017-12-27 调度方法、装置和*** WO2019127086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780096881.3A CN111357348B (zh) 2017-12-27 2017-12-27 调度方法、装置和***
PCT/CN2017/118947 WO2019127086A1 (zh) 2017-12-27 2017-12-27 调度方法、装置和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118947 WO2019127086A1 (zh) 2017-12-27 2017-12-27 调度方法、装置和***

Publications (1)

Publication Number Publication Date
WO2019127086A1 true WO2019127086A1 (zh) 2019-07-04

Family

ID=67062808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118947 WO2019127086A1 (zh) 2017-12-27 2017-12-27 调度方法、装置和***

Country Status (2)

Country Link
CN (1) CN111357348B (zh)
WO (1) WO2019127086A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698134A (zh) * 2020-12-31 2022-07-01 中兴通讯股份有限公司 数据传输方法和装置、存储介质和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264129A (zh) * 2010-05-31 2011-11-30 株式会社Ntt都科摩 一种资源分配方法及装置
CN103947130A (zh) * 2011-09-29 2014-07-23 英特尔公司 用于lte-a的更高阶mu-mimo
CN104936233A (zh) * 2014-03-19 2015-09-23 电信科学技术研究院 一种资源调度分配方法及装置
WO2016033953A1 (zh) * 2014-09-02 2016-03-10 中兴通讯股份有限公司 资源分配方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325375A (zh) * 2011-06-29 2012-01-18 中兴通讯股份有限公司 资源分配方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264129A (zh) * 2010-05-31 2011-11-30 株式会社Ntt都科摩 一种资源分配方法及装置
CN103947130A (zh) * 2011-09-29 2014-07-23 英特尔公司 用于lte-a的更高阶mu-mimo
CN104936233A (zh) * 2014-03-19 2015-09-23 电信科学技术研究院 一种资源调度分配方法及装置
WO2016033953A1 (zh) * 2014-09-02 2016-03-10 中兴通讯股份有限公司 资源分配方法及装置

Also Published As

Publication number Publication date
CN111357348B (zh) 2022-03-29
CN111357348A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
JP7149654B2 (ja) 無線局、通信方法および集積回路
JP7297868B2 (ja) 情報送信/受信方法、装置、デバイス、および可読記憶媒体
CN111030957B (zh) 用于正交频分多址接入通信的***和方法
WO2019029401A1 (zh) 参考信号信息的配置方法及装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、***及装置
US20120281646A1 (en) Signaling Methods for UE-Specific Dynamic Downlink Scheduler in OFDMA Systems
WO2019052455A1 (zh) 数据信道参数配置方法及装置
CN107683580B (zh) 在多用户多入多出***中实现频率资源分配的方法
WO2018059362A1 (zh) 获取、下发dmrs端口配置信息的方法和装置
WO2018059391A1 (zh) 一种资源配置的方法及装置
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
WO2018050059A1 (zh) 时频资源空分调度方法和装置
JP5361902B2 (ja) 無線通信装置および無線通信方法
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
US10368361B2 (en) Adaptive communication resource allocation in a wireless network
US10080235B2 (en) Base station, mobile station and method for downlink scheduling
WO2021159453A1 (zh) 一种信息发送方法、信息接收方法和装置
EP3398283A1 (en) System, method, and apparatus for selecting downlink control information format
WO2014201620A1 (zh) 下行控制信息的检测与发送方法及设备
WO2019127086A1 (zh) 调度方法、装置和***
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2019010762A1 (zh) 一种数据传输方法及设备
JPWO2018128042A1 (ja) 通信装置、端末および通信方法
US10873383B2 (en) Communications in spatial streams
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936970

Country of ref document: EP

Kind code of ref document: A1