WO2019124357A1 - Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package - Google Patents

Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package Download PDF

Info

Publication number
WO2019124357A1
WO2019124357A1 PCT/JP2018/046526 JP2018046526W WO2019124357A1 WO 2019124357 A1 WO2019124357 A1 WO 2019124357A1 JP 2018046526 W JP2018046526 W JP 2018046526W WO 2019124357 A1 WO2019124357 A1 WO 2019124357A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating material
predetermined temperature
sample
current integrator
Prior art date
Application number
PCT/JP2018/046526
Other languages
French (fr)
Japanese (ja)
Inventor
進吾 岡村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019561104A priority Critical patent/JPWO2019124357A1/en
Publication of WO2019124357A1 publication Critical patent/WO2019124357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/16Construction of testing vessels; Electrodes therefor

Definitions

  • the present disclosure relates generally to an evaluation system, an evaluation method, a sorting method, a manufacturing method, an insulating material, and a package.
  • the present disclosure relates to an evaluation system and an evaluation method for evaluating withstand voltage performance of an insulating material under a predetermined temperature, a method of selecting and manufacturing an insulating material, an insulating material for a power device, and a package.
  • Patent Document 1 discloses a withstand voltage tester.
  • the withstanding voltage tester includes a single-turn transformer that changes voltage, a transformer that boosts and isolates, a contactor that switches the power, a switch that switches the output of the transformer, a current transformer that detects the current flowing to the DUT, and a current detector It consists of
  • An object of the present disclosure is to evaluate the withstand voltage performance of the insulating material at a predetermined temperature with high accuracy.
  • An evaluation system includes a holding unit having a first electrode and a second electrode sandwiching a sample of an insulating material therebetween, and a housing that receives the holding unit therein, and the inside of the housing A chamber for maintaining the temperature of the sensor within a predetermined temperature range, and a current integrator.
  • the current integrator is interposed between a power supply that applies a DC voltage between the first electrode and the second electrode of the holder and the first electrode.
  • the wiring between the current integrator and the first electrode includes a conductor that is at least partially uncoated.
  • An evaluation system includes a holder, a chamber, and a current integrator.
  • the holding portion has a first electrode and a second electrode sandwiching a sample of the insulating material.
  • the chamber has a housing for accommodating the holding portion, and is configured to maintain the temperature inside the housing within a predetermined temperature range.
  • the current integrator is interposed between a power supply that applies a DC voltage between the first electrode and the second electrode of the holder and the first electrode.
  • the wiring between the current integrator and the first electrode includes a conductor at least a part of which is coated with an insulating coating.
  • the material of the insulating coating comprises polytetrafluoroethylene.
  • the evaluation method evaluates whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies a criterion based on the measurement value of the current integrator of the evaluation system.
  • the sorting method sorts out, from a plurality of insulating materials, insulating materials which are evaluated to have withstand voltage performance under a predetermined temperature by the evaluation method as a criterion.
  • the manufacturing method includes the step of preparing a plurality of samples of insulating material. Further, the manufacturing method includes the step of sorting out the samples of the insulating material which are evaluated that the withstand voltage performance under a predetermined temperature satisfies the standard from the samples of the plurality of insulating materials by the evaluation method. Furthermore, the manufacturing method includes the step of manufacturing an insulating material corresponding to the sample of the selected insulating material.
  • the insulating material according to an aspect of the present disclosure is an insulating material evaluated to have a withstand voltage performance under a predetermined temperature satisfying the standard by the evaluation method.
  • the package according to an aspect of the present disclosure is a package formed of the insulating material.
  • FIG. 1 is a schematic view of an evaluation system of one embodiment.
  • FIG. 2 is a perspective view of a holder in the evaluation system of the same.
  • FIG. 3 is a perspective view of the housing of the chamber in the above evaluation system.
  • FIG. 4 is a graph showing the time change of the measurement value of the current integrator in the evaluation system of the same.
  • FIG. 5 is a graph showing the relationship between the output voltage of the power supply device and the measurement value of the current integrator in the evaluation system of the same.
  • FIG. 6 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of the evaluation (25 ° C.) by the above evaluation system.
  • FIG. 1 is a schematic view of an evaluation system of one embodiment.
  • FIG. 2 is a perspective view of a holder in the evaluation system of the same.
  • FIG. 3 is a perspective view of the housing of the chamber in the above evaluation system.
  • FIG. 4 is a graph showing the time change of the measurement value of the current integrat
  • FIG. 7 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of evaluation (150 ° C.) by the above evaluation system.
  • FIG. 8 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of the evaluation (ratio of dielectric constants) by the above evaluation system.
  • FIG. 9 is a schematic view of an evaluation system of a modification.
  • FIG. 1 shows an evaluation system 10 of one embodiment.
  • the evaluation system 10 includes a holding unit 20, a chamber 30, and a current integrator 40.
  • the holding unit 20 has first and second electrodes 21 and 22 sandwiching the sample 100 of the insulating material.
  • the chamber 30 has a housing 31 that houses the holding unit 20 therein, and is configured to maintain the temperature inside the housing 31 within a predetermined temperature range.
  • the current integrator 40 is interposed between the first electrode 21 and the power supply 50 for applying a DC voltage between the first and second electrodes 21 and 22 of the holder 20.
  • the wiring (first wiring) 61 between the current integrator 40 and the first electrode 21 includes a conductor 611 at least a part of which is not covered.
  • the current integrator 40 integrates the current flowing from the current integrator 40 to the sample 100 to output the amount of charge as a measurement value. Therefore, when charge accumulation occurs in the first wiring 61, the measurement value of the current integrator 40 includes the charge amount accumulated in the first wiring 61, and the amount of charge actually accumulated in the sample 100 is included. Errors can occur with respect to this.
  • the wiring (first wiring) 61 between the current integrator 40 and the first electrode 21 includes the conductor 611 at least a part of which is not coated.
  • the influence of the charge accumulation in the first wiring 61 (for example, The influence of stray capacitance generated between one wire 61 and the surrounding objects is reduced. This improves the accuracy of measurement of the amount of charge accumulated in the sample 100. If the measurement accuracy of the amount of charge accumulated in the sample 100 is improved, evaluation of the withstand voltage performance at a predetermined temperature of the insulating material (sample 100) can be performed with high accuracy.
  • the evaluation system 10 is a system for evaluating the withstand voltage performance of the insulating material under a predetermined temperature. In the present embodiment, it is evaluated whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard. In this evaluation, the dielectric constant of the insulating material under a predetermined temperature is used. Then, in order to obtain the dielectric constant of the insulating material under a predetermined temperature, the amount of charge accumulated in the sample 100 at a predetermined temperature is measured using the sample 100 of the insulating material.
  • the sample 100 used in the evaluation system 10 corresponds to the insulation material to be evaluated.
  • the insulating material is an insulating material whose shape is not fixed or an insulating part whose shape is fixed.
  • Examples of the insulating material include insulating materials for electronic materials such as a substrate (laminated plate), a prepreg, and a sealing material (particularly, a sealing material for high voltage).
  • the insulating material is used, for example, in a power device (power semiconductor device).
  • Examples of power devices include air conditioners, automobiles, solar power generation devices, and semiconductor devices for inverters used in power conditioners.
  • An example of such a semiconductor device is a package in which a silicon chip is sealed. In this case, the package is formed of an insulating material.
  • the sample 100 is a disk of uniform thickness (see FIG. 2) formed of the insulating material.
  • the first surface 101 and the second surface 102 in the thickness direction of the sample 100 are both flat.
  • the sample 100 may be the insulating component itself.
  • the evaluation system 10 includes a holding unit 20, a chamber 30, a current integrator 40, a power supply device 50, first to fourth wires 61 to 64, and an evaluation device 70. ing.
  • the holding unit 20 holds the sample 100.
  • the holding part 20 is provided with the 1st electrode 21, the 2nd electrode 22, and the guard electrode 23, as shown in FIG.
  • the first electrode 21 has a disk shape.
  • the material of the first electrode 21 is a metal (for example, stainless steel).
  • the first electrode 21 is disposed on the first surface 101 of the sample 100.
  • the surface 210 of the first electrode 21 in contact with the sample 100 is a flat surface. This is to bring the first electrode 21 into close contact with the first surface 101 of the sample 100 without a gap being generated between the first electrode 21 and the sample 100.
  • the second electrode 22 has a disk shape.
  • the material of the second electrode 22 is metal (for example, stainless steel).
  • the second electrode 22 is disposed on the second surface 102 of the sample 100.
  • the surface 220 in contact with the sample 100 at the second electrode 22 is a flat surface.
  • the diameter of the first electrode 21 is smaller than the diameter of the second electrode 22.
  • the first electrode 21 and the second electrode 22 are positioned such that the entire first electrode 21 is located inside the second electrode 22. Be placed.
  • the guard electrode 23 is used to suppress such creeping discharge.
  • the guard electrode 23 is cylindrical.
  • the inner diameter of the guard electrode 23 is larger than the diameter of the first electrode 21.
  • the material of the guard electrode 23 is a metal (for example, stainless steel).
  • the guard electrode 23 is disposed on the first surface 101 of the sample 100 such that the first electrode 21 is positioned inside the guard electrode 23.
  • the chamber 30 has a housing 31 that houses the holding unit 20 therein, and is configured to maintain the temperature inside the housing 31 within a predetermined temperature range. More specifically, the chamber 30 includes a housing 31 and a temperature controller 32, as shown in FIG.
  • the housing 31 can house the holding unit 20 together with the sample 100 therein.
  • the housing 31 has thermal insulation to maintain the temperature.
  • the temperature controller 32 is a device for setting the temperature inside the housing 31 to a temperature within a predetermined temperature range.
  • the upper limit value of the predetermined temperature range is at least 85 ° C. or more, preferably 100 ° C. or more, and more preferably 150 ° C. or more.
  • the lower limit value of the predetermined temperature range is not particularly limited.
  • the lower limit value is not particularly limited because the chamber 30 may be capable of measurement at a predetermined temperature or higher.
  • the temperature controller 32 has, for example, a heater for adjusting the temperature in the housing 31 and a temperature sensor for measuring the temperature in the housing 31. The temperature controller 32 adjusts the amount of current supplied to the heater so that the measurement value of the temperature sensor matches the predetermined temperature.
  • the temperature controller 32 is not particularly limited, and a conventionally known configuration can be employed.
  • the chamber 30 has the stage 33 which supports the holding
  • the stage 33 is disposed inside the housing 31 and connected to the ground.
  • the chamber 30 also has an insertion hole 34 connecting the inside and the outside of the housing 31. The insertion hole 34 is used to connect the power supply device 50 to the first electrode 21 of the holding unit 20 via the current integrator 40.
  • the current integrator 40 is a device for measuring the amount of charge accumulated in the sample 100. As shown in FIG. 1, the current integrator 40 includes a first terminal 41, a second terminal 42, a capacitor 43 for measurement, a protective resistor 44, and a measuring instrument 45.
  • the capacitor 43 is electrically connected between the first terminal 41 and the second terminal 42.
  • the resistor 44 is electrically connected between the first terminal 41 and the capacitor 43.
  • the measuring device 45 measures the voltage across the capacitor 43. If the capacitance of the capacitor 43 is known, the charge accumulated in the capacitor 43 can be determined from the voltage across the capacitor 43.
  • the power supply device 50 is used to apply a DC voltage between the first electrode 21 and the second electrode 22 of the holder 20.
  • the power supply device 50 includes a first output terminal 51, a second output terminal 52, and a DC power supply 53.
  • the output voltage of the DC power supply 53 can be changed within a predetermined range.
  • the DC power supply 53 is configured to be able to output a relatively high voltage (for example, 50 kV) suitable for the withstand voltage test of the insulating material.
  • the DC power supply 53 is electrically connected between the first output terminal 51 and the second output terminal 52. More specifically, the positive electrode of the DC power supply 53 is connected to the first output terminal 51, and the negative electrode of the DC power supply 53 is connected to the second output terminal 52. Therefore, the power supply device 50 applies a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a higher potential than the second electrode 22.
  • the first wiring 61 is a wiring that electrically connects the first terminal 41 of the current integrator 40 and the first electrode 21 of the holding unit 20.
  • the first wiring 61 includes a first conductor 611 and a second conductor 612 as shown in FIG.
  • the first conductor 611 is a rod made of metal (for example, stainless steel).
  • the first conductor 611 is not coated with insulation.
  • the second conductor 612 is a wire (so-called bare wire) which is not coated with insulation.
  • the second conductor 612 is, for example, a copper bare wire. In the present embodiment, a looped bare electric wire is used as the second conductor 612 in consideration of handling.
  • the first end of the first conductor 611 is connected to the first terminal 41 of the current integrator 40, and the second end of the first conductor 611 is inserted into the chamber 30 (inside the housing 31) through the insertion hole 34 of the chamber 30. Be done.
  • the second end of the first conductor 611 is connected to the first electrode 21 in the chamber 30 via the second conductor 612.
  • the second wiring 62 is a wiring that electrically connects the second electrode 22 of the holding unit 20 and the second output terminal 52 of the power supply device 50.
  • the third wire 63 is a wire for electrically connecting the first output terminal 51 of the power supply device 50 and the second terminal 42 of the current integrator 40.
  • the fourth wiring 64 is a wiring that electrically connects the second terminal 42 of the current integrator 40 and the guard electrode 23 of the holding unit 20.
  • Each of the second wiring 62, the third wiring 63, and the fourth wiring 64 may be a coated electric wire.
  • the first electrode 21 and the second electrode 22 are disposed so as to sandwich the sample 100 in the thickness direction of the sample 100. Since the first electrode 21 and the second electrode 22 are conductors, and the sample 100 is a dielectric, the first electrode 21, the second electrode 22, and the sample 100 constitute a capacitor.
  • the current integrator 40 is interposed between the power supply device 50 and the first electrode 21 of the holding unit 20.
  • the capacitor 43 of the current integrator 40 is connected in series to the capacitor formed of the first electrode 21, the second electrode 22, and the sample 100. Therefore, the amount of charge stored in the capacitor 43 is equal to the amount of charge stored in the capacitor formed of the first electrode 21, the second electrode 22, and the sample 100. Therefore, the amount of charge accumulated in the sample 100 at a predetermined temperature can be obtained from the measurement value of the current integrator 40.
  • the first wiring 61 connecting the current integrator 40 and the first electrode 21 of the holding unit 20 is composed of the first conductor 611 and the second conductor 612 which are not all coated with insulation. Therefore, it can be expected that the amount of charge accumulated in the first wiring 61 will be substantially zero. Therefore, compared with the case where the 1st wiring 61 is a well-known covered wire, the influence which accumulation of the electric charge in the 1st wiring 61 gives to the measured value of current integrator 40 can be reduced.
  • the holding unit 20, the chamber 30, the current integrator 40, the power supply device 50, and the first to fourth wires 61 to 64 are the amounts of charges accumulated in the sample 100 at a predetermined temperature.
  • the evaluation device 70 can be realized by, for example, one or more computer systems.
  • the one or more computer systems have one or more processors (microprocessors), one or more memories, one or more human interfaces, and one or more communication interfaces.
  • one or more computer systems function as the evaluation device 70 by one or more processors executing one or more programs stored in one or more memories.
  • the one or more programs may be pre-recorded in the memory, or may be provided by being recorded on a non-transitory recording medium such as a memory card through a telecommunication line such as the Internet.
  • the evaluation device 70 has a function of setting the temperature inside the housing 31 to a predetermined temperature by the temperature controller 32, a function of setting the output voltage of the power supply device 50 to a predetermined value, and data of measurement values from the current integrator It has a function of acquiring time series data).
  • the evaluation device 70 is configured to evaluate whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the measurement value of the current integrator 40 of the measurement system. In particular, the evaluation device 70 evaluates whether the withstand voltage performance of the insulating material under the predetermined temperature satisfies the standard based on the relative dielectric constant of the sample 100 under the predetermined temperature obtained from the measurement value of the current integrator 40. Configured as. That is, the evaluation device 70 obtains the relative dielectric constant of the sample 100 under the predetermined temperature from the measurement value of the current integrator 40.
  • ⁇ r can be obtained based on the relational expression represented by the following equation (1).
  • the measured value of the current integrator 40 is Q [F]
  • the contact area of the holding unit 20 with the sample 100 is S [m 2].
  • the thickness of the sample 100 is d [m]
  • the value of the DC voltage applied between the first electrode 21 and the second electrode 22 is V [V].
  • the dielectric constant of vacuum is set to ⁇ 0 [F / m].
  • the contact area S is given by the area of the contact portion between the first electrode 21 and the first surface 101 of the sample 100. As shown in FIG. 2, since the entire surface 210 of the first electrode 21 contacts the first surface 101 of the sample 100, the contact area S is equal to the area of the surface 210 of the first electrode 21.
  • the diameter of the sample 100 be twice or more the diameter of the first electrode 21 because the influence of the creeping discharge can be easily reduced.
  • the measurement value Q of the current integrator 40 may change according to the time during which a DC voltage is applied between the first electrode 21 and the second electrode 22.
  • FIG. 4 shows an example of the time change of the measured value Q.
  • G11 and G12 in FIG. 4 are graphs of samples 100 of different insulating materials.
  • T0 in FIG. 4 indicates the point in time when the value of the output voltage of the power supply device 50 has reached the set value.
  • the measured value Q increases after the time point t0, and one of the causes of the increase is the leakage current due to the volume resistivity of the insulating material.
  • the first electrode 21, the second electrode 22, and the sample 100 may be considered as capacitors up to the time point t0 at which charge is accumulated by the instantaneous charging current. Therefore, in order to obtain the relative dielectric constant ⁇ r, it is preferable to use, as the measurement value Q, the measurement value Q0 of the current integrator 40 when the output voltage of the power supply device 50 reaches the set value (point t0).
  • the capacitor 43 and the resistor 44 of the current integrator 40 are present between the power supply device 50 and the first electrode 21. Therefore, the value V of the direct current voltage applied between the first electrode 21 and the second electrode 22 does not necessarily match the value of the output voltage of the power supply device 50. Therefore, in order to obtain the relative dielectric constant rr under a predetermined temperature, the measurement value Q0 of the current integrator 40 is obtained for the value of the output voltage of the power supply device 50 of at least 2 with respect to the predetermined temperature. As an example, the value of the output voltage of the power supply device 50 is changed by 1000 V in the range of 1000 V to 5000 V to obtain the measurement value Q0 for each value of the output voltage. Assuming that the value of the output voltage of the power supply device 50 is V0, the relationship represented by the following equation (2) holds. In the following equation (2), k is a constant.
  • FIG. 5 shows graphs G21 and G22 of the measured value Q0 of the current integrator 40 with respect to the value V0 of the output voltage of the power supply device 50 for the samples 100 of different insulating materials.
  • the slope ( ⁇ r ⁇ ⁇ 0 ⁇ S / d) may be determined by a conventionally known approximation method (for example, the least squares method).
  • the evaluation device 70 is configured to evaluate whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the relative dielectric constant ⁇ r of the sample 100 under the predetermined temperature.
  • the condition of the relative dielectric constant ⁇ r satisfying the reference and the reference is appropriately determined according to the application of the insulating material and the like. Examples of criteria include those relating to the use of insulation in power devices.
  • the evaluation device 70 evaluates that the withstand voltage performance of the insulating material under the predetermined temperature satisfies the standard if the relative dielectric constant ⁇ r of the sample 100 under the predetermined temperature is less than the predetermined value set in advance. .
  • the evaluation device 70 evaluates that the withstand voltage performance of the insulating material under the predetermined temperature is good if the relative dielectric constant ⁇ r of the sample 100 under the predetermined temperature is less than the preset specified value.
  • the prescribed value is a numerical value corresponding to the standard of withstand voltage performance, and is 7 as an example.
  • the graph G20 in FIG. 5 corresponds to the case where the relative dielectric constant ⁇ r is 7. Therefore, the insulating material having the relative dielectric constant ⁇ r corresponding to the graph G21 of FIG. 5 is evaluated as the withstand voltage performance under a predetermined temperature satisfies the standard.
  • the specified value is not limited to 7, and may be appropriately set according to the application of the insulating material (for example, the type of power device in which the insulating material is used).
  • the evaluation system 10 of the present embodiment described above evaluates whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the measurement value of the current integrator 40. Run.
  • the first wiring 61 connecting the current integrator 40 and the first electrode 21 of the holding unit 20 is composed of the first conductor 611 and the second conductor 612 which are not coated with insulation. . Therefore, compared with the case where the 1st wiring 61 is a well-known covered wire, the influence which accumulation of the electric charge in the 1st wiring 61 gives to the measured value of current integrator 40 can be reduced. As a result, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • Q is a measurement value of the current integrator 40
  • S is a contact area of the holding unit 20 with the sample 100
  • d is a thickness of the sample 100.
  • V is a value of a DC voltage applied between the first electrode 21 and the second electrode 22, and ⁇ 0 is a dielectric constant of vacuum.
  • V0 is a value of the output voltage of the power supply device 50
  • Q0 is a measured value of the current integrator 40 when the value V0 of the output voltage of the power supply device 50 reaches a set value (time t0) .
  • the high temperature reverse bias test is a test that applies a relatively high DC voltage to a power device in a high temperature environment of 150 ° C. to evaluate the withstand voltage deterioration of the power device.
  • the relative dielectric constant r r at a predetermined temperature of the insulating material is evaluated by the amount of charge accumulated in the sample 100 of the insulating material at a predetermined temperature.
  • a high temperature such as 150 ° C. can be selected as the predetermined temperature.
  • the evaluation system 10 as in the high temperature reverse bias test, a DC voltage is applied, so that it is possible to evaluate the insulating material under conditions relatively similar to the high temperature reverse bias test. Therefore, the evaluation of the insulation by the evaluation system 10 can be used as an indicator of whether the insulation can cope with the high temperature reverse bias test.
  • the high temperature reverse bias test it is usually necessary to spend a long time such as 1000 hours, but according to the evaluation method of the present embodiment, it is possible to evaluate the insulating material in a shorter time than the high temperature reverse bias test.
  • Table 1 shows the results of the high temperature reverse bias test and the evaluation by the evaluation method of the present embodiment for the samples A to H of the insulating material.
  • the HTRB resistant area (HTRB resistant area) is “1”, “2”, “3” for a device having a so-called “TO-3P” structure manufactured using samples A to H. It evaluated by.
  • “1” indicates that the device failed the 24 hour test.
  • “2” indicates that the device failed the 72 hour test.
  • “3” indicates that the device passed the 1000 hour test.
  • “Semiconductor Device Environmental and Durability Test Method (Life Test I)” defined in JEITA ED-4701 / 100A was used.
  • the relative dielectric constant ⁇ r (150) under a predetermined temperature here, 150 ° C.
  • the relative dielectric constant r r (25) under a lower specified temperature here, 25 ° C.
  • FIG. 6 is a graph showing the relationship between the result of the high temperature reverse bias test (HTRB resistant region) and the result of evaluation by the evaluation system ( ⁇ r (25)).
  • FIG. 7 is a graph showing the relationship between the result of the high temperature reverse bias test (HTRB resistant region) and the result of evaluation by the evaluation system ( ⁇ r (150)).
  • samples A, B, C, D, E, F, G and H are respectively indicated by “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “ ⁇ "and” ⁇ "are shown.
  • relative permittivity
  • ⁇ r 150
  • the evaluation in the HTRB resistant region is higher as the ratio r is closer to 1. That is, when the ratio r is less than the predetermined value, it is considered that the evaluation in the HTRB resistant region is high.
  • the sorting method is a method of sorting, from a plurality of insulating materials, insulating materials which are evaluated to have withstand voltage performance at a predetermined temperature satisfying the standard by the evaluation method. That is, according to the evaluation method described above, since the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy, the evaluation method is performed by using the evaluation method to select the insulating material.
  • the insulation material evaluated that the withstand voltage performance under predetermined temperature fulfills a standard can be obtained. That is, an insulating material having excellent withstand voltage performance at a predetermined temperature can be obtained.
  • This manufacturing method is a method of manufacturing an insulating material, and includes a first step, a second step, and a third step.
  • the first step is a step of preparing a plurality of insulating material samples 100.
  • samples 100 of a plurality of insulating materials to be manufactured are prepared.
  • the samples 100 of the insulating material evaluated as satisfying the criteria by the withstand voltage performance under a predetermined temperature by the evaluation method of the present embodiment are sorted out from the plurality of samples 100 of the insulating material prepared in the first step. It is a step. That is, with respect to each of the plurality of samples 100 of the insulating material, it is evaluated whether the withstand voltage performance under a predetermined temperature satisfies the standard by the above evaluation method. By this, it is possible to select an insulating material whose withstand voltage performance at a predetermined temperature satisfies the standard from among a plurality of insulating materials planned to be manufactured.
  • the third step is a step of manufacturing the insulating material corresponding to the sample 100 of the insulating material sorted in the second step. That is, among a plurality of insulating materials planned to be manufactured, only the insulating material whose withstand voltage performance under a predetermined temperature satisfies the standard is manufactured. Thereby, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
  • the evaluation device 70 may evaluate the insulating material at the rate of increase in charge over time.
  • the rate of increase is given by Q1 / Q0.
  • Q1 is a measurement value of the current integrator 40 when a predetermined time has elapsed from time t0 when the output voltage of the power supply device 50 reaches the set value.
  • the predetermined time is, for example, 600 seconds.
  • the increase ratio Q1 / Q0 of the sample 100 of the insulating material is equal to or less than a predetermined value of 1 or more, it may be evaluated that the withstand voltage performance under the predetermined temperature of the insulating material satisfies the standard.
  • the insulating material may be evaluated by two parameters of the relative permittivity rr and the increase ratio Q1 / Q0. That is, as for the insulating material, it is more preferable that the relative dielectric constant ⁇ r is less than the specified value, and the increase ratio Q1 / Q0 is equal to or less than the predetermined value.
  • the first wire 61 may be a bare wire. That is, the first wiring 61 may not necessarily include the first conductor 611. Moreover, the 1st wiring 61 may be a covered electric wire which one part exposed. In short, the first wiring 61 may include a conductor that is not at least partially covered. That is, the first wiring 61 may include a partially covered conductor. However, in this case, when the DC voltage is applied between the first electrode 21 and the second electrode 22 by the power supply device 50, the first wiring 61 has the amount of charge accumulated in the first wiring 61 It is preferable to be configured to be 1/10 or less of the amount of charge accumulated in the sample 100. Here, the amount of charge accumulated in the sample 100 is not the amount of charge actually accumulated in the sample 100 but the assumed amount of charge accumulated in the sample 100 at the above-mentioned time point t0.
  • the term "uncoated conductor” does not necessarily mean that all of the conductors are not covered by the insulating coating. For example, if it is considered that the amount of charge stored in the insulation coating is small and the conductor is not covered with the insulation coating even though the entire conductor is covered with the insulation coating, then the term “uncoated conductor” You may One example is when the insulating coating is not in contact with the surface of the conductor and sufficiently separated. Specifically, it is conceivable that a pipe made of an insulating material is used as the insulation coating, and the conductor is disposed inside the pipe so that the surface does not contact the pipe. In such a case, although it can be interpreted that the surface of the conductor is covered with the insulating coating, it may be referred to as an "uncoated conductor” if it is not substantially affected by the insulating coating.
  • the insulating coating may be substantially insulating.
  • the wire 61 between the current integrator 40 and the first electrode 21 may include a conductor 611 covered at least in part by the insulating coating 613.
  • the material of the insulation coating 613 includes polytetrafluoroethylene.
  • the insulating coating 613 is formed only of polytetrafluoroethylene. That is, depending on the material of the insulating coating 613, the entire conductor 611 may be covered with the insulating coating 613.
  • the insulation coating 613 can be used as a guideline whether the result of the evaluation by the evaluation system 10 is completely different depending on the presence or absence of the insulation coating 613 .
  • the power supply device 50 applies a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a higher potential than the second electrode 22.
  • the power supply device 50 may apply a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a lower potential than the second electrode 22.
  • the shapes (for example, the outer shape) of the first electrode 21 and the second electrode 22 are not limited. However, it is preferable that the surface 210 of the first electrode 21 and the surface 220 of the second electrode 22 be shaped to be in close contact with the sample 100. Moreover, in the said embodiment, although the area of the surface 210 of the 1st electrode 21 is used as the contact area S, when the 2nd electrode 22 is smaller than the 1st electrode 21, the area of the surface 220 of the 2nd electrode 22 Is used as the contact area S. In addition, in the holding unit 20, the guard electrode 23 is not essential.
  • the configuration of the chamber 30 is not limited to the configuration of the embodiment.
  • the chamber 30 does not necessarily have to have the insertion hole 34, and may have a connector for connection with the current integrator 40.
  • 175 ° C., 200 ° C., 250 ° C., etc. may be required as the predetermined temperature, so the upper limit of the temperature range of the chamber 30 is preferably as high as possible.
  • the configuration of the current integrator 40 is not limited to the configuration of the embodiment.
  • a known current integrator can be used as the current integrator 40.
  • the configuration of the power supply device 50 is not limited to the configuration of the embodiment.
  • a conventionally known DC power supply device can be used as the power supply device 50.
  • the evaluation system 10 has at least a holding unit 20, a chamber 30, and a current integrator 40, and at least a part of a wire 61 between the current integrator 40 and the first electrode 21 is covered. It is sufficient if there is no conductor 611. That is, the evaluation device 70 is not essential, and the evaluation method of the embodiment may be performed by a person using a computer or the like.
  • the evaluation system (10) of the first aspect includes the holding unit (20), the chamber (30), and the current integrator (40).
  • the holding portion (20) has a first electrode (21) and a second electrode (22) sandwiching a sample (100) of an insulating material.
  • the chamber (30) has a housing (31) for housing the holding portion (20), and is configured to maintain the temperature inside the housing (31) within a predetermined temperature range. .
  • the current integrator (40) comprises a power supply (50) for applying a DC voltage between the first electrode (21) and the second electrode (22) of the holder (20), and the first electrode It is interposed between (21) and
  • the wire (61) between the current integrator (40) and the first electrode (21) includes a conductor (611) that is at least partially uncoated. According to the first aspect, the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with high accuracy.
  • the evaluation system (10) of the second aspect can be realized in combination with the first aspect.
  • the wiring (61) is accumulated in the conductor (611) when the DC voltage is applied between the first electrode (21) and the second electrode (22). To be less than one-tenth of the amount of charge stored in the sample (100).
  • the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation system (10) of the third aspect can be realized by a combination with the first or second aspect.
  • the conductor (611) is not coated on the whole of the conductor (611).
  • the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation system (10) of the fourth aspect can be realized by combination with any one of the first to third aspects.
  • the current integrator (40) is disposed outside the housing (31).
  • the chamber (30) has an insertion hole (34) connecting the inside and the outside of the housing (31).
  • the conductor (611) passes through the insertion hole (34) so as not to contact the inner surface of the insertion hole (34).
  • the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation system (10) of the fifth aspect may be realized by combination with any one of the first to fourth aspects.
  • the conductor (611) is a metal rod. According to the fifth aspect, compared with the case where the conductor (611) is a wire, unexpected contact between the conductor (611) and the surrounding object can be suppressed.
  • the evaluation system (10) of the sixth aspect includes a holder (20), a chamber (30), and a current integrator (40).
  • the holding portion (20) has a first electrode (21) and a second electrode (22) sandwiching a sample (100) of an insulating material.
  • the chamber (30) has a housing (31) for housing the holding portion (20), and is configured to maintain the temperature inside the housing (31) within a predetermined temperature range. .
  • the current integrator (40) comprises a power supply (50) for applying a DC voltage between the first electrode (21) and the second electrode (22) of the holder (20), and the first electrode It is interposed between (21) and
  • the wire (61) between the current integrator (40) and the first electrode (21) includes a conductor (611) at least a part of which is covered with an insulating coating (613).
  • the material of the insulation coating (613) comprises polytetrafluoroethylene. According to the sixth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation system (10) of the seventh aspect may be realized in combination with any one of the first to sixth aspects.
  • the upper limit value of the predetermined temperature range is 85 ° C. or more.
  • the withstand voltage performance of the insulating material under high temperature can be evaluated with high accuracy.
  • the insulation material is resistant to a predetermined temperature. Evaluate whether the voltage performance meets the criteria. According to the eighth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation method of the ninth aspect can be realized by a combination with the eighth aspect.
  • the withstand voltage performance of the insulating material under the predetermined temperature is used as a standard. Evaluate whether to meet.
  • the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
  • the evaluation method of the tenth aspect can be realized by a combination with the ninth aspect.
  • the measurement value of the current integrator (40) is Q
  • the contact area of the holding unit (20) with the sample (100) is S
  • the thickness of the sample (100) is d.
  • the value of the DC voltage is V
  • the permittivity of vacuum is ⁇ 0
  • the relative permittivity of the sample (100) at a predetermined temperature is ⁇ r.
  • the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with high accuracy.
  • the evaluation method of the eleventh aspect can be realized by a combination with the ninth or tenth aspect.
  • the predetermined value of the insulating material when the ratio of the relative dielectric constant at a specified temperature lower than the predetermined temperature to the relative dielectric constant at a predetermined temperature of the sample (100) is less than a predetermined value, the predetermined value of the insulating material It is evaluated that the withstand voltage performance under temperature satisfies the standard. According to the eleventh aspect, the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with higher accuracy.
  • the predetermined temperature may be 100 ° C. or higher, and the specified temperature may be less than 100 ° C. Furthermore, the difference between the predetermined temperature and the specified temperature may be 100 ° C. or more. Furthermore, the specified temperature may be 25 ° C.
  • the predetermined value may be two. Furthermore, in the eleventh aspect, the predetermined value may be 1.2.
  • the sorting method according to the twelfth aspect sorts out, from among a plurality of insulating materials, an insulating material which is evaluated to have a withstand voltage performance under a predetermined temperature satisfying the standard according to any one of the evaluation methods according to the eighth to eleventh aspects. . According to the twelfth aspect, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
  • the method of manufacturing an insulating material according to the thirteenth aspect includes the step of preparing a plurality of samples of insulating material (100). Moreover, the said manufacturing method is an insulating material evaluated that the withstand voltage performance under predetermined temperature satisfy
  • the insulating material of the fourteenth aspect is an insulating material evaluated to have withstand voltage performance under a predetermined temperature satisfying the standard according to any one of the evaluation methods of the eighth to eleventh aspects. According to the fourteenth aspect, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
  • the package of the fifteenth aspect is a package formed of the insulating material of the fourteenth aspect. According to the fifteenth aspect, a package excellent in withstand voltage performance at a predetermined temperature can be obtained.

Abstract

The present invention addresses the problem of evaluating an electric charge accumulated in an insulating material with a high degree of accuracy. An evaluation system (10) is provided with a holding portion (20) including a first electrode (21) and a second electrode (22) sandwiching a sample (100) of an insulating material, a chamber (30) accommodating the holding portion (20), and a current integrator (40). The current integrator (40) is interposed between a power source device (50) which applies a direct current voltage between the first electrode (21) and the second electrode (22) of the holding portion (20), and the first electrode (21). A wire (61) between the current integrator (40) and the first electrode (21) includes a conductor (611) at least part of which is not coated.

Description

評価システム、評価方法、選別方法、製造方法、絶縁材、及び、パッケージEvaluation system, evaluation method, sorting method, manufacturing method, insulating material, and package
 本開示は、一般に、評価システム、評価方法、選別方法、製造方法、絶縁材、及び、パッケージに関する。本開示は、特に、絶縁材の所定温度下の耐電圧性能を評価するための評価システム及び評価方法、絶縁材の選別方法及び製造方法、パワーデバイス用の絶縁材及びパッケージに関する。 The present disclosure relates generally to an evaluation system, an evaluation method, a sorting method, a manufacturing method, an insulating material, and a package. In particular, the present disclosure relates to an evaluation system and an evaluation method for evaluating withstand voltage performance of an insulating material under a predetermined temperature, a method of selecting and manufacturing an insulating material, an insulating material for a power device, and a package.
 特許文献1は、耐電圧試験器を開示する。耐電圧試験器は、電圧を可変する単巻変圧器、昇圧および絶縁するトランス、電源を入り切りするコンタクター、トランスの出力を開閉するスイッチおよび被試験物へ流れる電流を検出する電流変成器、電流検出器で構成される。 Patent Document 1 discloses a withstand voltage tester. The withstanding voltage tester includes a single-turn transformer that changes voltage, a transformer that boosts and isolates, a contactor that switches the power, a switch that switches the output of the transformer, a current transformer that detects the current flowing to the DUT, and a current detector It consists of
特開平6-273475号公報Japanese Patent Application Laid-Open No. 6-273475
 特許文献1の耐電圧試験器(評価システム)では、被試験物(絶縁材の試料)の温度条件を設定することは考慮されていなかった。 In the withstand voltage tester (evaluation system) of Patent Document 1, setting the temperature condition of the test object (sample of the insulating material) was not considered.
 本開示の課題は、絶縁材の所定温度下での耐電圧性能の評価を高精度に行うことである。 An object of the present disclosure is to evaluate the withstand voltage performance of the insulating material at a predetermined temperature with high accuracy.
 本開示の一態様の評価システムは、絶縁材の試料を間に挟む第1電極及び第2電極を有する保持部と、前記保持部を内部に収容する筐体を有し、前記筐体の内部の温度を所定の温度範囲内に維持するチャンバと、電流積分計と、を備える。前記電流積分計は、前記保持部の前記第1電極と前記第2電極との間に直流電圧を印加する電源装置と前記第1電極との間に介在される。前記電流積分計と前記第1電極との間の配線は、少なくとも一部が被覆されていない導体を含む。 An evaluation system according to an aspect of the present disclosure includes a holding unit having a first electrode and a second electrode sandwiching a sample of an insulating material therebetween, and a housing that receives the holding unit therein, and the inside of the housing A chamber for maintaining the temperature of the sensor within a predetermined temperature range, and a current integrator. The current integrator is interposed between a power supply that applies a DC voltage between the first electrode and the second electrode of the holder and the first electrode. The wiring between the current integrator and the first electrode includes a conductor that is at least partially uncoated.
 本開示の一態様の評価システムは、保持部と、チャンバと、電流積分計と、を備える。前記保持部は、絶縁材の試料を間に挟む第1電極及び第2電極を有する。前記チャンバは、前記保持部を収容する筐体を有し、前記筐体の内部の温度を所定の温度範囲内に維持するように構成されている。前記電流積分計は、前記保持部の前記第1電極と前記第2電極との間に直流電圧を印加する電源装置と前記第1電極との間に介在される。前記電流積分計と前記第1電極との間の配線は、少なくとも一部が絶縁被覆で被覆された導体を含む。前記絶縁被覆の材料は、ポリテトラフルオロエチレンを含む。 An evaluation system according to an aspect of the present disclosure includes a holder, a chamber, and a current integrator. The holding portion has a first electrode and a second electrode sandwiching a sample of the insulating material. The chamber has a housing for accommodating the holding portion, and is configured to maintain the temperature inside the housing within a predetermined temperature range. The current integrator is interposed between a power supply that applies a DC voltage between the first electrode and the second electrode of the holder and the first electrode. The wiring between the current integrator and the first electrode includes a conductor at least a part of which is coated with an insulating coating. The material of the insulating coating comprises polytetrafluoroethylene.
 本開示の一態様の評価方法は、前記評価システムの前記電流積分計の測定値に基づいて、前記絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する。 The evaluation method according to an aspect of the present disclosure evaluates whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies a criterion based on the measurement value of the current integrator of the evaluation system.
 本開示の一態様の選別方法は、複数の絶縁材から、前記評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材を選別する。 The sorting method according to an aspect of the present disclosure sorts out, from a plurality of insulating materials, insulating materials which are evaluated to have withstand voltage performance under a predetermined temperature by the evaluation method as a criterion.
 本開示の一態様の製造方法は、複数の絶縁材の試料を用意するステップを含む。また、前記製造方法は、前記複数の絶縁材の試料から前記評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材の試料を選別するステップを含む。更に、前記製造方法は、選別された絶縁材の試料に対応する絶縁材を製造するステップを含む。 The manufacturing method according to an aspect of the present disclosure includes the step of preparing a plurality of samples of insulating material. Further, the manufacturing method includes the step of sorting out the samples of the insulating material which are evaluated that the withstand voltage performance under a predetermined temperature satisfies the standard from the samples of the plurality of insulating materials by the evaluation method. Furthermore, the manufacturing method includes the step of manufacturing an insulating material corresponding to the sample of the selected insulating material.
 本開示の一態様の絶縁材は、前記評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材である。 The insulating material according to an aspect of the present disclosure is an insulating material evaluated to have a withstand voltage performance under a predetermined temperature satisfying the standard by the evaluation method.
 本開示の一態様のパッケージは、前記絶縁材で形成されたパッケージである。 The package according to an aspect of the present disclosure is a package formed of the insulating material.
図1は、一実施形態の評価システムの概略図である。FIG. 1 is a schematic view of an evaluation system of one embodiment. 図2は、同上の評価システムにおける保持部の斜視図である。FIG. 2 is a perspective view of a holder in the evaluation system of the same. 図3は、同上の評価システムにおけるチャンバの筐体の斜視図である。FIG. 3 is a perspective view of the housing of the chamber in the above evaluation system. 図4は、同上の評価システムにおける電流積分計の測定値の時間変化を示すグラフである。FIG. 4 is a graph showing the time change of the measurement value of the current integrator in the evaluation system of the same. 図5は、同上の評価システムにおける電源装置の出力電圧と電流積分計の測定値との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the output voltage of the power supply device and the measurement value of the current integrator in the evaluation system of the same. 図6は、高温逆バイアス試験の結果と同上の評価システムによる評価(25℃)の結果との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of the evaluation (25 ° C.) by the above evaluation system. 図7は、高温逆バイアス試験の結果と同上の評価システムによる評価(150℃)の結果との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of evaluation (150 ° C.) by the above evaluation system. 図8は、高温逆バイアス試験の結果と同上の評価システムによる評価(比誘電率の比)の結果との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the result of the high temperature reverse bias test and the result of the evaluation (ratio of dielectric constants) by the above evaluation system. 図9は、変形例の評価システムの概略図である。FIG. 9 is a schematic view of an evaluation system of a modification.
1.実施形態
1.1 概要
 図1は、一実施形態の評価システム10を示す。評価システム10は、保持部20と、チャンバ30と、電流積分計40と、を備える。保持部20は、絶縁材の試料100を間に挟む第1及び第2電極21,22を有する。チャンバ30は、保持部20を内部に収容する筐体31を有し、筐体31の内部の温度を所定の温度範囲内に維持するように構成される。電流積分計40は、保持部20の第1及び第2電極21,22間に直流電圧を印加する電源装置50と第1電極21との間に介在される。電流積分計40と第1電極21との間の配線(第1配線)61は、少なくとも一部が被覆されていない導体611を含む。
1. Embodiment 1.1 Overview FIG. 1 shows an evaluation system 10 of one embodiment. The evaluation system 10 includes a holding unit 20, a chamber 30, and a current integrator 40. The holding unit 20 has first and second electrodes 21 and 22 sandwiching the sample 100 of the insulating material. The chamber 30 has a housing 31 that houses the holding unit 20 therein, and is configured to maintain the temperature inside the housing 31 within a predetermined temperature range. The current integrator 40 is interposed between the first electrode 21 and the power supply 50 for applying a DC voltage between the first and second electrodes 21 and 22 of the holder 20. The wiring (first wiring) 61 between the current integrator 40 and the first electrode 21 includes a conductor 611 at least a part of which is not covered.
 電流積分計40は、電流積分計40から試料100に流れる電流を積算することで、電荷の量を測定値として出力する。そのため、第1配線61で電荷の蓄積が起きると、電流積分計40の計測値には、第1配線61に蓄積された電荷量が含まれ、実際に試料100に蓄積される電荷の量に対して誤差が生じ得る。上述したように、評価システム10では、電流積分計40と第1電極21との間の配線(第1配線)61は、少なくとも一部が被覆されていない導体611を含む。そのため、電流積分計40と第1電極21との間の配線(第1配線)61が被覆電線で構成されている場合に比べて、第1配線61での電荷の蓄積の影響(例えば、第1配線61と周囲の器物との間に生じる浮遊容量の影響)が低減される。これによって、試料100に蓄積される電荷の量の計測の精度が向上する。試料100に蓄積される電荷の量の計測の精度が向上すれば、絶縁材(試料100)の所定温度下での耐電圧性能の評価を高精度に行えるようになる。 The current integrator 40 integrates the current flowing from the current integrator 40 to the sample 100 to output the amount of charge as a measurement value. Therefore, when charge accumulation occurs in the first wiring 61, the measurement value of the current integrator 40 includes the charge amount accumulated in the first wiring 61, and the amount of charge actually accumulated in the sample 100 is included. Errors can occur with respect to this. As described above, in the evaluation system 10, the wiring (first wiring) 61 between the current integrator 40 and the first electrode 21 includes the conductor 611 at least a part of which is not coated. Therefore, compared to the case where the wiring (first wiring) 61 between the current integrator 40 and the first electrode 21 is formed of a covered electric wire, the influence of the charge accumulation in the first wiring 61 (for example, The influence of stray capacitance generated between one wire 61 and the surrounding objects is reduced. This improves the accuracy of measurement of the amount of charge accumulated in the sample 100. If the measurement accuracy of the amount of charge accumulated in the sample 100 is improved, evaluation of the withstand voltage performance at a predetermined temperature of the insulating material (sample 100) can be performed with high accuracy.
1.2 構成
 以下、評価システム10について更に詳細に説明する。評価システム10は、絶縁材の所定温度下での耐電圧性能を評価するためのシステムである。本実施形態では、絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する。この評価にあたっては、絶縁材の所定温度下の誘電率を利用する。そして、絶縁材の所定温度下の誘電率を求めるために、絶縁材の試料100を使用して、所定温度下で試料100に蓄積される電荷の量を計測する。
1.2 Configuration Hereinafter, the evaluation system 10 will be described in more detail. The evaluation system 10 is a system for evaluating the withstand voltage performance of the insulating material under a predetermined temperature. In the present embodiment, it is evaluated whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard. In this evaluation, the dielectric constant of the insulating material under a predetermined temperature is used. Then, in order to obtain the dielectric constant of the insulating material under a predetermined temperature, the amount of charge accumulated in the sample 100 at a predetermined temperature is measured using the sample 100 of the insulating material.
 評価システム10で使用される試料100は、評価対象の絶縁材に対応する。絶縁材は、形状が定まっていない絶縁材料、又は、形状が定まった絶縁部品である。絶縁材の例としては、基板(積層板)、プリプレグ、及び封止材(特に高電圧用の封止材)等の電子材料用の絶縁材が挙げられる。絶縁材は、例えば、パワーデバイス(パワー半導体装置)に使用される。パワーデバイスの例としては、エアーコンディショナ、自動車、太陽光発電装置、及びパワーコンディショナに用いられるインバータ用の半導体装置が挙げられる。このような半導体装置の一例としては、シリコンチップを封止したパッケージがある。この場合、パッケージは、絶縁材により形成される。例えば、絶縁材が絶縁材料である場合、試料100は、絶縁材料により形成された、厚みが一様な円盤(図2参照)である。試料100の厚み方向の第1面101及び第2面102はいずれも平面である。なお、絶縁材が絶縁部品である場合、試料100は絶縁部品そのものであってもよい。 The sample 100 used in the evaluation system 10 corresponds to the insulation material to be evaluated. The insulating material is an insulating material whose shape is not fixed or an insulating part whose shape is fixed. Examples of the insulating material include insulating materials for electronic materials such as a substrate (laminated plate), a prepreg, and a sealing material (particularly, a sealing material for high voltage). The insulating material is used, for example, in a power device (power semiconductor device). Examples of power devices include air conditioners, automobiles, solar power generation devices, and semiconductor devices for inverters used in power conditioners. An example of such a semiconductor device is a package in which a silicon chip is sealed. In this case, the package is formed of an insulating material. For example, when the insulating material is an insulating material, the sample 100 is a disk of uniform thickness (see FIG. 2) formed of the insulating material. The first surface 101 and the second surface 102 in the thickness direction of the sample 100 are both flat. When the insulating material is an insulating component, the sample 100 may be the insulating component itself.
 評価システム10は、図1に示すように、保持部20と、チャンバ30と、電流積分計40と、電源装置50と、第1~第4配線61~64と、評価装置70と、を備えている。 As shown in FIG. 1, the evaluation system 10 includes a holding unit 20, a chamber 30, a current integrator 40, a power supply device 50, first to fourth wires 61 to 64, and an evaluation device 70. ing.
 保持部20は、試料100を保持する。保持部20は、図2に示すように、第1電極21と、第2電極22と、ガード電極23と、を備えている。 The holding unit 20 holds the sample 100. The holding part 20 is provided with the 1st electrode 21, the 2nd electrode 22, and the guard electrode 23, as shown in FIG.
 第1電極21は、円盤状である。第1電極21の材料は金属(一例としては、ステンレス鋼)である。第1電極21は、試料100の第1面101に配置される。第1電極21において試料100と接触される面210は平面である。これは、第1電極21と試料100との間に隙間が生じずに密接に第1電極21を試料100の第1面101に接触させるためである。第2電極22は、円盤状である。第2電極22の材料は金属(一例としては、ステンレス鋼)である。第2電極22は、試料100の第2面102に配置される。第2電極22において試料100と接触される面220は平面である。これは、第2電極22と試料100との間に隙間が生じずに密接に第2電極22を試料100の第2面102に接触させるためである。図2に示すように、第1電極21の直径は、第2電極22の直径より小さい。第1電極21及び第2電極22は、第1電極21と第2電極22とが対向する方向に直交する面内において、第1電極21の全体が第2電極22の内側に位置するように配置される。 The first electrode 21 has a disk shape. The material of the first electrode 21 is a metal (for example, stainless steel). The first electrode 21 is disposed on the first surface 101 of the sample 100. The surface 210 of the first electrode 21 in contact with the sample 100 is a flat surface. This is to bring the first electrode 21 into close contact with the first surface 101 of the sample 100 without a gap being generated between the first electrode 21 and the sample 100. The second electrode 22 has a disk shape. The material of the second electrode 22 is metal (for example, stainless steel). The second electrode 22 is disposed on the second surface 102 of the sample 100. The surface 220 in contact with the sample 100 at the second electrode 22 is a flat surface. This is to bring the second electrode 22 into close contact with the second surface 102 of the sample 100 without a gap being generated between the second electrode 22 and the sample 100. As shown in FIG. 2, the diameter of the first electrode 21 is smaller than the diameter of the second electrode 22. In the plane orthogonal to the direction in which the first electrode 21 and the second electrode 22 face each other, the first electrode 21 and the second electrode 22 are positioned such that the entire first electrode 21 is located inside the second electrode 22. Be placed.
 第1電極21及び第2電極22の間に電源装置50から直流電源を印加した場合には、沿面放電(図1において矢印で示す電流の流れ)が生じる場合がある。ガード電極23は、このような沿面放電を抑制するために用いられる。ガード電極23は、円筒状である。ガード電極23の内径は、第1電極21の直径より大きい。また、ガード電極23の材料は金属(一例としては、ステンレス鋼)である。ガード電極23は、ガード電極23の内側に第1電極21が位置するように、試料100の第1面101に配置される。 When a DC power supply is applied from the power supply device 50 between the first electrode 21 and the second electrode 22, creeping discharge (flow of current indicated by an arrow in FIG. 1) may occur. The guard electrode 23 is used to suppress such creeping discharge. The guard electrode 23 is cylindrical. The inner diameter of the guard electrode 23 is larger than the diameter of the first electrode 21. The material of the guard electrode 23 is a metal (for example, stainless steel). The guard electrode 23 is disposed on the first surface 101 of the sample 100 such that the first electrode 21 is positioned inside the guard electrode 23.
 チャンバ30は、保持部20を内部に収容する筐体31を有し、筐体31の内部の温度を所定の温度範囲に維持するように構成されている。より詳細には、チャンバ30は、図1に示すように、筐体31と、温度コントローラ32と、を備える。筐体31は、保持部20を試料100とともに内部に収容可能である。筐体31は、温度を維持するために断熱性を有している。温度コントローラ32は、筐体31の内部の温度を所定の温度範囲内の温度に設定するための装置である。ここで、所定の温度範囲の上限値は低くとも85℃以上であり、好ましくは100℃以上、より好ましくは150℃以上である。一方、所定の温度範囲の下限値は特に限定されない。つまり、チャンバ30は所定の温度以上での測定が可能であればよいから、下限値は特に限定されない。温度コントローラ32は、例えば、筐体31の内部の温度を調整するためのヒータ、及び、筐体31の内部の温度を計測する温度センサを有する。温度コントローラ32は、温度センサの計測値が所定温度と一致するように、ヒータへの通電量を調整する。温度コントローラ32は、特に限定されず、従来周知の構成を採用できる。 The chamber 30 has a housing 31 that houses the holding unit 20 therein, and is configured to maintain the temperature inside the housing 31 within a predetermined temperature range. More specifically, the chamber 30 includes a housing 31 and a temperature controller 32, as shown in FIG. The housing 31 can house the holding unit 20 together with the sample 100 therein. The housing 31 has thermal insulation to maintain the temperature. The temperature controller 32 is a device for setting the temperature inside the housing 31 to a temperature within a predetermined temperature range. Here, the upper limit value of the predetermined temperature range is at least 85 ° C. or more, preferably 100 ° C. or more, and more preferably 150 ° C. or more. On the other hand, the lower limit value of the predetermined temperature range is not particularly limited. That is, the lower limit value is not particularly limited because the chamber 30 may be capable of measurement at a predetermined temperature or higher. The temperature controller 32 has, for example, a heater for adjusting the temperature in the housing 31 and a temperature sensor for measuring the temperature in the housing 31. The temperature controller 32 adjusts the amount of current supplied to the heater so that the measurement value of the temperature sensor matches the predetermined temperature. The temperature controller 32 is not particularly limited, and a conventionally known configuration can be employed.
 また、チャンバ30は、図3に示すように、保持部20を支持するステージ33を有している。ステージ33は、筐体31の内部に配置されており、グラウンドに接続される。また、チャンバ30は、筐体31の内部と外部を繋ぐ挿通孔34を有する。挿通孔34は、保持部20の第1電極21に電流積分計40を介して電源装置50を接続するために用いられる。 Moreover, the chamber 30 has the stage 33 which supports the holding | maintenance part 20, as shown in FIG. The stage 33 is disposed inside the housing 31 and connected to the ground. The chamber 30 also has an insertion hole 34 connecting the inside and the outside of the housing 31. The insertion hole 34 is used to connect the power supply device 50 to the first electrode 21 of the holding unit 20 via the current integrator 40.
 電流積分計40は、試料100に蓄積された電荷の量を測定するための装置である。電流積分計40は、図1に示すように、第1端子41と、第2端子42と、計測用のコンデンサ43と、保護用の抵抗44と、測定器45と、を備える。コンデンサ43は、第1端子41と第2端子42との間に電気的に接続されている。抵抗44は、第1端子41とコンデンサ43との間に電気的に接続されている。測定器45は、コンデンサ43の両端間の電圧を計測する。コンデンサ43の静電容量が既知であれば、コンデンサ43の両端間の電圧からコンデンサ43に蓄積された電荷を求めることができる。 The current integrator 40 is a device for measuring the amount of charge accumulated in the sample 100. As shown in FIG. 1, the current integrator 40 includes a first terminal 41, a second terminal 42, a capacitor 43 for measurement, a protective resistor 44, and a measuring instrument 45. The capacitor 43 is electrically connected between the first terminal 41 and the second terminal 42. The resistor 44 is electrically connected between the first terminal 41 and the capacitor 43. The measuring device 45 measures the voltage across the capacitor 43. If the capacitance of the capacitor 43 is known, the charge accumulated in the capacitor 43 can be determined from the voltage across the capacitor 43.
 電源装置50は、保持部20の第1電極21と第2電極22との間に直流電圧を印加するために用いられる。電源装置50は、第1出力端子51と、第2出力端子52と、直流電源53と、を備えている。直流電源53の出力電圧は、所定範囲内で変更可能である。例えば、直流電源53は、絶縁材の耐電圧試験に適した比較的高い電圧(例えば、50kV)まで出力可能に構成されている。直流電源53は、第1出力端子51と第2出力端子52との間に電気的に接続されている。より詳細には、直流電源53の正極が第1出力端子51に接続され、直流電源53の負極が第2出力端子52に接続されている。したがって、電源装置50は、第1電極21が第2電極22よりも高電位となるように、第1電極21と第2電極22との間に直流電圧を印加する。 The power supply device 50 is used to apply a DC voltage between the first electrode 21 and the second electrode 22 of the holder 20. The power supply device 50 includes a first output terminal 51, a second output terminal 52, and a DC power supply 53. The output voltage of the DC power supply 53 can be changed within a predetermined range. For example, the DC power supply 53 is configured to be able to output a relatively high voltage (for example, 50 kV) suitable for the withstand voltage test of the insulating material. The DC power supply 53 is electrically connected between the first output terminal 51 and the second output terminal 52. More specifically, the positive electrode of the DC power supply 53 is connected to the first output terminal 51, and the negative electrode of the DC power supply 53 is connected to the second output terminal 52. Therefore, the power supply device 50 applies a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a higher potential than the second electrode 22.
 第1配線61は、電流積分計40の第1端子41と保持部20の第1電極21とを電気的に接続する配線である。第1配線61は、図1に示すように、第1導体611と、第2導体612とを含む。第1導体611は、金属製(例えば、ステンレス鋼)のロッドである。第1導体611には、絶縁被覆がされていない。第2導体612は、絶縁被覆がされていない電線(いわゆる裸電線)である。第2導体612は、例えば、銅の裸電線である。本実施形態では、取り扱い性を考慮して、第2導体612として、ループ状の裸電線を用いている。第1導体611の第1端は電流積分計40の第1端子41に接続され、第1導体611の第2端はチャンバ30の挿通孔34を通してチャンバ30内(筐体31の内部)に挿入される。第1導体611の第2端は、チャンバ30内において、第2導体612を介して第1電極21に接続されている。 The first wiring 61 is a wiring that electrically connects the first terminal 41 of the current integrator 40 and the first electrode 21 of the holding unit 20. The first wiring 61 includes a first conductor 611 and a second conductor 612 as shown in FIG. The first conductor 611 is a rod made of metal (for example, stainless steel). The first conductor 611 is not coated with insulation. The second conductor 612 is a wire (so-called bare wire) which is not coated with insulation. The second conductor 612 is, for example, a copper bare wire. In the present embodiment, a looped bare electric wire is used as the second conductor 612 in consideration of handling. The first end of the first conductor 611 is connected to the first terminal 41 of the current integrator 40, and the second end of the first conductor 611 is inserted into the chamber 30 (inside the housing 31) through the insertion hole 34 of the chamber 30. Be done. The second end of the first conductor 611 is connected to the first electrode 21 in the chamber 30 via the second conductor 612.
 第2配線62は、保持部20の第2電極22と電源装置50の第2出力端子52とを電気的に接続する配線である。第3配線63は、電源装置50の第1出力端子51と電流積分計40の第2端子42とを電気的に接続する配線である。第4配線64は、電流積分計40の第2端子42と保持部20のガード電極23とを電気的に接続する配線である。第2配線62、第3配線63、及び第4配線64は、いずれも、被覆電線であってよい。 The second wiring 62 is a wiring that electrically connects the second electrode 22 of the holding unit 20 and the second output terminal 52 of the power supply device 50. The third wire 63 is a wire for electrically connecting the first output terminal 51 of the power supply device 50 and the second terminal 42 of the current integrator 40. The fourth wiring 64 is a wiring that electrically connects the second terminal 42 of the current integrator 40 and the guard electrode 23 of the holding unit 20. Each of the second wiring 62, the third wiring 63, and the fourth wiring 64 may be a coated electric wire.
 評価システム10の保持部20では、図1及び図2に示すように、第1電極21及び第2電極22が試料100を試料100の厚み方向で挟むようにして配置される。第1電極21及び第2電極22は導体であり、試料100は誘電体であるから、第1電極21、第2電極22、及び試料100はコンデンサを構成している。そして、電流積分計40は、電源装置50と保持部20の第1電極21との間に介在されている。これによって、電流積分計40のコンデンサ43は、第1電極21、第2電極22、及び試料100で構成されるコンデンサと直列に接続されている。したがって、コンデンサ43に蓄積される電荷の量は、第1電極21、第2電極22、及び試料100で構成されるコンデンサに蓄積される電荷の量とは等しい。したがって、電流積分計40の測定値から、所定温度下で試料100に蓄積される電荷の量を得ることができる。 In the holding unit 20 of the evaluation system 10, as shown in FIGS. 1 and 2, the first electrode 21 and the second electrode 22 are disposed so as to sandwich the sample 100 in the thickness direction of the sample 100. Since the first electrode 21 and the second electrode 22 are conductors, and the sample 100 is a dielectric, the first electrode 21, the second electrode 22, and the sample 100 constitute a capacitor. The current integrator 40 is interposed between the power supply device 50 and the first electrode 21 of the holding unit 20. Thus, the capacitor 43 of the current integrator 40 is connected in series to the capacitor formed of the first electrode 21, the second electrode 22, and the sample 100. Therefore, the amount of charge stored in the capacitor 43 is equal to the amount of charge stored in the capacitor formed of the first electrode 21, the second electrode 22, and the sample 100. Therefore, the amount of charge accumulated in the sample 100 at a predetermined temperature can be obtained from the measurement value of the current integrator 40.
 ここで、電流積分計40と保持部20の第1電極21とを接続する第1配線61は、いずれも絶縁被覆がされていない第1導体611及び第2導体612により構成されている。そのため、第1配線61で蓄積される電荷の量が実質的に0になることが期待できる。したがって、第1配線61は周知の被覆電線である場合に比べて、第1配線61での電荷の蓄積が電流積分計40の測定値に与える影響を低減できる。 Here, the first wiring 61 connecting the current integrator 40 and the first electrode 21 of the holding unit 20 is composed of the first conductor 611 and the second conductor 612 which are not all coated with insulation. Therefore, it can be expected that the amount of charge accumulated in the first wiring 61 will be substantially zero. Therefore, compared with the case where the 1st wiring 61 is a well-known covered wire, the influence which accumulation of the electric charge in the 1st wiring 61 gives to the measured value of current integrator 40 can be reduced.
 評価システム10において、保持部20と、チャンバ30と、電流積分計40と、電源装置50と、第1~第4配線61~64とは、所定温度下で試料100に蓄積される電荷の量を計測する計測システムを構成する。 In the evaluation system 10, the holding unit 20, the chamber 30, the current integrator 40, the power supply device 50, and the first to fourth wires 61 to 64 are the amounts of charges accumulated in the sample 100 at a predetermined temperature. Configure a measurement system to measure
 評価装置70は、例えば、1以上のコンピュータシステムにより実現され得る。1以上のコンピュータシステムは、1以上のプロセッサ(マイクロプロセッサ)、1以上のメモリ、1以上のヒューマンインタフェース、及び1以上の通信インタフェースを有する。本実施形態では、1以上のプロセッサが1以上のメモリに記憶された1以上のプログラムを実行することで、1以上のコンピュータシステムが評価装置70として機能する。1以上のプログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。 The evaluation device 70 can be realized by, for example, one or more computer systems. The one or more computer systems have one or more processors (microprocessors), one or more memories, one or more human interfaces, and one or more communication interfaces. In the present embodiment, one or more computer systems function as the evaluation device 70 by one or more processors executing one or more programs stored in one or more memories. The one or more programs may be pre-recorded in the memory, or may be provided by being recorded on a non-transitory recording medium such as a memory card through a telecommunication line such as the Internet.
 評価装置70は、温度コントローラ32により筐体31の内部の温度を所定温度に設定する機能、電源装置50の出力電圧を所定値に設定する機能、及び、電流積分計40から計測値のデータ(時系列データ)を取得する機能を有する。 The evaluation device 70 has a function of setting the temperature inside the housing 31 to a predetermined temperature by the temperature controller 32, a function of setting the output voltage of the power supply device 50 to a predetermined value, and data of measurement values from the current integrator It has a function of acquiring time series data).
 また、評価装置70は、計測システムの電流積分計40の計測値に基づいて、絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価するように構成される。特に、評価装置70は、電流積分計40の測定値から求めた試料100の所定温度下の比誘電率に基づいて、絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価するように構成される。つまり、評価装置70は、電流積分計40の測定値から試料100の所定温度下の比誘電率を求める。絶縁材の試料100の所定温度下の比誘電率をεrとすると、εrは、次式(1)で表される関係式に基づいて求めることができる。次式(1)では、電流積分計40の測定値をQ[F]、保持部20の試料100との接触面積をS[m2]としている。また、試料100の厚みをd[m]、第1電極21と第2電極22との間に印加される直流電圧の値をV[V]としている。更に、真空の誘電率をε0[F/m]としている。 Further, the evaluation device 70 is configured to evaluate whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the measurement value of the current integrator 40 of the measurement system. In particular, the evaluation device 70 evaluates whether the withstand voltage performance of the insulating material under the predetermined temperature satisfies the standard based on the relative dielectric constant of the sample 100 under the predetermined temperature obtained from the measurement value of the current integrator 40. Configured as. That is, the evaluation device 70 obtains the relative dielectric constant of the sample 100 under the predetermined temperature from the measurement value of the current integrator 40. Assuming that the relative permittivity at a predetermined temperature of the sample 100 of the insulating material is εr, εr can be obtained based on the relational expression represented by the following equation (1). In the following equation (1), the measured value of the current integrator 40 is Q [F], and the contact area of the holding unit 20 with the sample 100 is S [m 2]. Further, the thickness of the sample 100 is d [m], and the value of the DC voltage applied between the first electrode 21 and the second electrode 22 is V [V]. Furthermore, the dielectric constant of vacuum is set to ε0 [F / m].
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施形態では、第1電極21の直径が第2電極22より小さいため、接触面積Sは、第1電極21と試料100の第1面101との接触部分の面積で与えられる。図2に示すように、第1電極21の面210の全体が試料100の第1面101に接触するから、接触面積Sは、第1電極21の面210の面積に等しい。例えば、試料100の直径は、第1電極21の直径の2倍以上あるほうが、沿面放電の影響を低減し易いから、好ましい。 In the present embodiment, since the diameter of the first electrode 21 is smaller than that of the second electrode 22, the contact area S is given by the area of the contact portion between the first electrode 21 and the first surface 101 of the sample 100. As shown in FIG. 2, since the entire surface 210 of the first electrode 21 contacts the first surface 101 of the sample 100, the contact area S is equal to the area of the surface 210 of the first electrode 21. For example, it is preferable that the diameter of the sample 100 be twice or more the diameter of the first electrode 21 because the influence of the creeping discharge can be easily reduced.
 電流積分計40の測定値Qは、第1電極21と第2電極22との間に直流電圧を印加している時間に応じて変化し得る。図4は、測定値Qの時間変化の例を示す。図4のG11及びG12は異なる絶縁材の試料100のグラフである。図4におけるt0は、電源装置50の出力電圧の値が設定値に達した時点を示す。グラフG11,G12において、時点t0以降は、測定値Qが増加しているが、この増加の原因の一つは、絶縁材の体積固有抵抗に起因する漏洩電流である。第1電極21、第2電極22、及び試料100をコンデンサとして考えてよいのは、瞬時充電電流によって電荷が蓄積される時点t0までであるといえる。したがって、比誘電率εrを求めるにあたっては、測定値Qとして、電源装置50の出力電圧が設定値に達した時(時点t0)の電流積分計40の測定値Q0を用いることが好ましい。 The measurement value Q of the current integrator 40 may change according to the time during which a DC voltage is applied between the first electrode 21 and the second electrode 22. FIG. 4 shows an example of the time change of the measured value Q. G11 and G12 in FIG. 4 are graphs of samples 100 of different insulating materials. T0 in FIG. 4 indicates the point in time when the value of the output voltage of the power supply device 50 has reached the set value. In the graphs G11 and G12, the measured value Q increases after the time point t0, and one of the causes of the increase is the leakage current due to the volume resistivity of the insulating material. The first electrode 21, the second electrode 22, and the sample 100 may be considered as capacitors up to the time point t0 at which charge is accumulated by the instantaneous charging current. Therefore, in order to obtain the relative dielectric constant εr, it is preferable to use, as the measurement value Q, the measurement value Q0 of the current integrator 40 when the output voltage of the power supply device 50 reaches the set value (point t0).
 本実施形態では、電源装置50と第1電極21との間に電流積分計40のコンデンサ43及び抵抗44が存在している。そのため、第1電極21と第2電極22との間に印加される直流電圧の値Vは、電源装置50の出力電圧の値と必ずしも一致しない。そこで、所定温度下の比誘電率εrを求めるにあたっては、所定温度に対して少なくとも2以上の電源装置50の出力電圧の値について、電流積分計40の測定値Q0を得る。一例としては、電源装置50の出力電圧の値を1000V~5000Vの範囲で、1000Vずつ変化させて、出力電圧の値毎に測定値Q0を得る。電源装置50の出力電圧の値をV0とすれば、次式(2)で表される関係が成り立つ。なお、次式(2)において、kは定数である。 In the present embodiment, the capacitor 43 and the resistor 44 of the current integrator 40 are present between the power supply device 50 and the first electrode 21. Therefore, the value V of the direct current voltage applied between the first electrode 21 and the second electrode 22 does not necessarily match the value of the output voltage of the power supply device 50. Therefore, in order to obtain the relative dielectric constant rr under a predetermined temperature, the measurement value Q0 of the current integrator 40 is obtained for the value of the output voltage of the power supply device 50 of at least 2 with respect to the predetermined temperature. As an example, the value of the output voltage of the power supply device 50 is changed by 1000 V in the range of 1000 V to 5000 V to obtain the measurement value Q0 for each value of the output voltage. Assuming that the value of the output voltage of the power supply device 50 is V0, the relationship represented by the following equation (2) holds. In the following equation (2), k is a constant.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、電源装置50の出力電圧の値V0に対する電流積分計40の測定値Q0をプロットし、その傾き(εr×ε0×S/d)を求めることにより、εrを求めることができる。例えば、図5は、異なる絶縁材の試料100についての電源装置50の出力電圧の値V0に対する電流積分計40の測定値Q0のグラフG21,G22を示す。なお、傾き(εr×ε0×S/d)は、従来周知の近似手法(例えば、最小二乗法)により求めればよい。 Therefore, it is possible to determine εr by plotting the measured value Q0 of the current integrator 40 with respect to the value V0 of the output voltage of the power supply device 50 and determining the slope (εr × ε0 × S / d). For example, FIG. 5 shows graphs G21 and G22 of the measured value Q0 of the current integrator 40 with respect to the value V0 of the output voltage of the power supply device 50 for the samples 100 of different insulating materials. The slope (εr × ε0 × S / d) may be determined by a conventionally known approximation method (for example, the least squares method).
 評価装置70は、試料100の所定温度下の比誘電率εrに基づいて絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価するように構成される。ここで、基準、及び基準を満たす比誘電率εrの条件は、絶縁材の用途等に応じて適宜決定される。基準の例としては、パワーデバイスにおける絶縁材の使用に関する基準が挙げられる。本実施形態では、評価装置70は、試料100の所定温度下の比誘電率εrが予め設定された規定値未満であれば、絶縁材の所定温度下の耐電圧性能が基準を満たすと評価する。言い換えれば、評価装置70は、試料100の所定温度下の比誘電率εrが予め設定された規定値未満であれば、絶縁材の所定温度下の耐電圧性能が良好であると評価する。規定値は、耐電圧性能の基準に対応する数値であって、一例としては、7である。図5のグラフG20は、比誘電率εrが7の場合に対応する。そのため、図5のグラフG21に対応する比誘電率εrを有する絶縁材は、所定温度下の耐電圧性能が基準を満たすと評価される。一方で、図5のグラフG22に対応する比誘電率εrを有する絶縁材は、所定温度下の耐電圧性能が基準を満たさないと評価される。規定値は、7に限定されず、絶縁材の用途(例えば、絶縁材が使用されるパワーデバイスの種類)に応じて適切に設定され得る。 The evaluation device 70 is configured to evaluate whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the relative dielectric constant εr of the sample 100 under the predetermined temperature. Here, the condition of the relative dielectric constant εr satisfying the reference and the reference is appropriately determined according to the application of the insulating material and the like. Examples of criteria include those relating to the use of insulation in power devices. In the present embodiment, the evaluation device 70 evaluates that the withstand voltage performance of the insulating material under the predetermined temperature satisfies the standard if the relative dielectric constant ε r of the sample 100 under the predetermined temperature is less than the predetermined value set in advance. . In other words, the evaluation device 70 evaluates that the withstand voltage performance of the insulating material under the predetermined temperature is good if the relative dielectric constant ε r of the sample 100 under the predetermined temperature is less than the preset specified value. The prescribed value is a numerical value corresponding to the standard of withstand voltage performance, and is 7 as an example. The graph G20 in FIG. 5 corresponds to the case where the relative dielectric constant εr is 7. Therefore, the insulating material having the relative dielectric constant εr corresponding to the graph G21 of FIG. 5 is evaluated as the withstand voltage performance under a predetermined temperature satisfies the standard. On the other hand, in the insulating material having the relative dielectric constant 所 定 r corresponding to the graph G22 of FIG. 5, it is evaluated that the withstand voltage performance under a predetermined temperature does not satisfy the standard. The specified value is not limited to 7, and may be appropriately set according to the application of the insulating material (for example, the type of power device in which the insulating material is used).
1.3 評価方法
 以上述べた本実施形態の評価システム10は、電流積分計40の測定値に基づいて、絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する評価方法を実行する。上述したように、電流積分計40と保持部20の第1電極21とを接続する第1配線61は、いずれも絶縁被覆がされていない第1導体611及び第2導体612により構成されている。したがって、第1配線61は周知の被覆電線である場合に比べて、第1配線61での電荷の蓄積が電流積分計40の測定値に与える影響を低減できる。その結果、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。
1.3 Evaluation Method The evaluation system 10 of the present embodiment described above evaluates whether the withstand voltage performance of the insulating material under a predetermined temperature satisfies the standard based on the measurement value of the current integrator 40. Run. As described above, the first wiring 61 connecting the current integrator 40 and the first electrode 21 of the holding unit 20 is composed of the first conductor 611 and the second conductor 612 which are not coated with insulation. . Therefore, compared with the case where the 1st wiring 61 is a well-known covered wire, the influence which accumulation of the electric charge in the 1st wiring 61 gives to the measured value of current integrator 40 can be reduced. As a result, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 特に、評価方法では、電流積分計40の測定値から求めた試料100の所定温度下の比誘電率に基づいて、絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する。ここで、比誘電率εrは、Q=(εr×ε0×S/d)×Vの関係式に基づいて求めている。ここで、Qは、電流積分計40の測定値であり、Sは、保持部20の試料100との接触面積であり、dは、試料100の厚みである。また、Vは、第1電極21と第2電極22との間に印加される直流電圧の値であり、ε0は、真空の誘電率である。 In particular, in the evaluation method, based on the relative dielectric constant of the sample 100 at a predetermined temperature obtained from the measurement value of the current integrator 40, it is evaluated whether the withstand voltage performance of the insulating material at the predetermined temperature satisfies the standard. Here, the relative dielectric constant εr is obtained based on the relational expression of Q = (εr × ε0 × S / d) × V. Here, Q is a measurement value of the current integrator 40, S is a contact area of the holding unit 20 with the sample 100, and d is a thickness of the sample 100. Further, V is a value of a DC voltage applied between the first electrode 21 and the second electrode 22, and ε0 is a dielectric constant of vacuum.
 より詳細には、比誘電率εrを、電源装置50の出力電圧の値V0に対する電流積分計40の測定値Q0のグラフを、Q0=(εr×ε0×S/d)×V0+kの式で近似した際の傾きから導出する。ここで、V0は、電源装置50の出力電圧の値であり、Q0は、電源装置50の出力電圧の値V0が設定値に達した時(時点t0)の電流積分計40の測定値である。これにより、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 More specifically, the graph of the measured value Q0 of the current integrator 40 with respect to the value V0 of the output voltage of the power supply device 50 is approximated by the equation of Q0 = (εr × ε0 × S / d) × V0 + k It derives from the inclination at the time of Here, V0 is a value of the output voltage of the power supply device 50, and Q0 is a measured value of the current integrator 40 when the value V0 of the output voltage of the power supply device 50 reaches a set value (time t0) . As a result, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 ところで、パワーデバイスの信頼性試験の一つに、高温逆バイアス試験(HighTemperature Reverse Bias:HTRB)がある。高温逆バイアス試験は、150℃の高温環境下で比較的高い直流電圧をパワーデバイスに印加し、パワーデバイスの耐電圧劣化を評価する試験である。本実施形態の評価方法では、絶縁材の試料100に所定温度下で蓄積される電荷の量により、絶縁材の所定温度下での比誘電率εrを評価している。評価システム10では、所定温度としては、150℃のような高温を選択可能である。また、評価システム10では、高温逆バイアス試験と同様に、直流電圧の印加を行うから、高温逆バイアス試験に比較的類似した条件での絶縁材の評価が可能である。したがって、評価システム10による絶縁材の評価は、絶縁材が高温逆バイアス試験に対応できるかどうかの指標として利用できる。高温逆バイアス試験では通常1000時間といった長時間を費やす必要があるが、本実施形態の評価方法によれば、高温逆バイアス試験よりも短い時間で、絶縁材の評価が可能である。 One of the reliability tests of power devices is the high temperature reverse bias test (HTRB). The high temperature reverse bias test is a test that applies a relatively high DC voltage to a power device in a high temperature environment of 150 ° C. to evaluate the withstand voltage deterioration of the power device. In the evaluation method of the present embodiment, the relative dielectric constant r r at a predetermined temperature of the insulating material is evaluated by the amount of charge accumulated in the sample 100 of the insulating material at a predetermined temperature. In the evaluation system 10, a high temperature such as 150 ° C. can be selected as the predetermined temperature. Further, in the evaluation system 10, as in the high temperature reverse bias test, a DC voltage is applied, so that it is possible to evaluate the insulating material under conditions relatively similar to the high temperature reverse bias test. Therefore, the evaluation of the insulation by the evaluation system 10 can be used as an indicator of whether the insulation can cope with the high temperature reverse bias test. In the high temperature reverse bias test, it is usually necessary to spend a long time such as 1000 hours, but according to the evaluation method of the present embodiment, it is possible to evaluate the insulating material in a shorter time than the high temperature reverse bias test.
 表1は、絶縁材のサンプルA~Hについて、高温逆バイアス試験と、本実施形態の評価方法による評価とを行った結果を示す。高温逆バイアス試験においては、サンプルA~Hを用いて作製した、いわゆる「TO-3P」の構造を持つデバイスについて、HTRB耐性域(HTRB耐性領域)を「1」、「2」、「3」で評価した。ここで、「1」は、デバイスが24時間の試験に不合格であったことを示す。「2」は、デバイスが72時間の試験に不合格であったことを示す。「3」は、デバイスが1000時間の試験に合格したことを示す。高温逆バイアス試験の条件としては、JEITA ED-4701/100Aに規定される「半導体デバイスの環境及び耐久性試験方法(寿命試験I)」を用いた。一方、評価方法による評価においては、サンプルA~Hを用いて作製した、試料100と同様の試料を用いて、所定温度下(ここでは150℃)の比誘電率εr(150)と、所定温度より低い規定温度下(ここでは25℃)の比誘電率εr(25)とを評価した。更に、試料100の、所定温度下の比誘電率に対する規定温度下の比誘電率の比r(=εr(150)/εr(25)を評価した。また、評価システム10による試験の時間は10分とした。 Table 1 shows the results of the high temperature reverse bias test and the evaluation by the evaluation method of the present embodiment for the samples A to H of the insulating material. In the high temperature reverse bias test, the HTRB resistant area (HTRB resistant area) is “1”, “2”, “3” for a device having a so-called “TO-3P” structure manufactured using samples A to H. It evaluated by. Here, “1” indicates that the device failed the 24 hour test. "2" indicates that the device failed the 72 hour test. "3" indicates that the device passed the 1000 hour test. As a condition of the high temperature reverse bias test, “Semiconductor Device Environmental and Durability Test Method (Life Test I)” defined in JEITA ED-4701 / 100A was used. On the other hand, in the evaluation by the evaluation method, using a sample similar to the sample 100 manufactured using the samples A to H, the relative dielectric constant ε r (150) under a predetermined temperature (here, 150 ° C.) and the predetermined temperature The relative dielectric constant r r (25) under a lower specified temperature (here, 25 ° C.) was evaluated. Furthermore, the ratio r (= ε r (150) / ε r (25) of the relative permittivity under the specified temperature to the relative permittivity under the predetermined temperature of the sample 100 was evaluated. Minutes.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図6は、高温逆バイアス試験の結果(HTRB耐性域)と評価システムによる評価(εr(25))の結果との関係を示すグラフである。図7は、高温逆バイアス試験の結果(HTRB耐性域)と評価システムによる評価(εr(150))の結果との関係を示すグラフである。図8は、高温逆バイアス試験の結果(HTRB耐性域)と評価システムによる評価(r=εr(150)/εr(25))の結果との関係を示すグラフである。図6~図8において、サンプルA,B,C,D,E,F,G,Hをそれぞれ「■」、「●」、「〇」、「▲」、「×」、「□」、「△」、「◆」で表している。図6及び図7から明らかなように、25℃の比誘電率εr(25)では、サンプルA~Eにおいて大きな差はないが、150℃の比誘電率εr(150)では、比誘電率が小さいサンプルほど、HTRB耐性域での評価が高くなっている。更に、図8から明らかなように、比rが1に近いサンプルほど、HTRB耐性域での評価が高くなっている。つまり、比rが所定値未満である場合には、HTRB耐性域での評価が高いと考えられる。なお、表1から、所定値は、2が好ましく、1.2でより好ましいと考えられる。したがって、評価システム10により、高温逆バイアス試験に比較的類似した条件での絶縁材の評価を行うことで、この評価を、絶縁材が高温逆バイアス試験に対応できるかどうかの指標として利用できることが確認された。 FIG. 6 is a graph showing the relationship between the result of the high temperature reverse bias test (HTRB resistant region) and the result of evaluation by the evaluation system (εr (25)). FIG. 7 is a graph showing the relationship between the result of the high temperature reverse bias test (HTRB resistant region) and the result of evaluation by the evaluation system (εr (150)). FIG. 8 is a graph showing the relationship between the result of the high temperature reverse bias test (HTRB resistance region) and the result of evaluation by the evaluation system (r = εr (150) / εr (25)). In FIGS. 6 to 8, samples A, B, C, D, E, F, G and H are respectively indicated by “■”, “●”, “〇”, “▲”, “×”, “×”, “□”, “ △ "and" ◆ "are shown. As apparent from FIGS. 6 and 7, at 25 ° C., there is no large difference between samples A to E at a relative permittivity εr (25), but at 150 ° C. a relative permittivity εr (150) The smaller the sample, the higher the rating in the HTRB resistant area. Furthermore, as is clear from FIG. 8, the evaluation in the HTRB resistant region is higher as the ratio r is closer to 1. That is, when the ratio r is less than the predetermined value, it is considered that the evaluation in the HTRB resistant region is high. From Table 1, it is considered that 2 is preferable and 1.2 is more preferable as the predetermined value. Therefore, by evaluating the insulating material under conditions relatively similar to the high temperature reverse bias test by the evaluation system 10, this evaluation can be used as an indicator of whether the insulating material can cope with the high temperature reverse bias test. confirmed.
1.4 選別方法
 次に、本実施形態の評価システム10による評価方法を利用した選別方法について説明する。選別方法は、複数の絶縁材から、評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材を選別する方法である。つまり、上述した評価方法によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行えることから、この評価方法を利用して絶縁材の選別を行うことで、当該評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材を得ることができる。つまり、所定温度下での耐電圧性能が優れた絶縁材を得ることができる。
1.4 Sorting Method Next, a sorting method using the evaluation method by the evaluation system 10 of the present embodiment will be described. The sorting method is a method of sorting, from a plurality of insulating materials, insulating materials which are evaluated to have withstand voltage performance at a predetermined temperature satisfying the standard by the evaluation method. That is, according to the evaluation method described above, since the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy, the evaluation method is performed by using the evaluation method to select the insulating material. The insulation material evaluated that the withstand voltage performance under predetermined temperature fulfills a standard can be obtained. That is, an insulating material having excellent withstand voltage performance at a predetermined temperature can be obtained.
1.5 製造方法
 次に、本実施形態の評価システム10による評価方法を利用した製造方法について説明する。この製造方法は、絶縁材の製造方法であって、第1ステップと、第2ステップと、第3ステップとを含む。
1.5 Manufacturing Method Next, a manufacturing method using the evaluation method by the evaluation system 10 of the present embodiment will be described. This manufacturing method is a method of manufacturing an insulating material, and includes a first step, a second step, and a third step.
 第1ステップは、複数の絶縁材の試料100を用意するステップである。第1ステップでは、製造を計画している複数の絶縁材の試料100を用意する。 The first step is a step of preparing a plurality of insulating material samples 100. In the first step, samples 100 of a plurality of insulating materials to be manufactured are prepared.
 第2ステップは、第1ステップで用意した複数の絶縁材の試料100から、本実施形態の評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材の試料100を選別するステップである。つまり、複数の絶縁材の試料100のそれぞれについて、上記評価方法により、所定温度下の耐電圧性能が基準を満たすかどうかを評価する。これによって、製造を計画している複数の絶縁材から、所定温度下の耐電圧性能が基準を満たす絶縁材を選択できる。 In the second step, the samples 100 of the insulating material evaluated as satisfying the criteria by the withstand voltage performance under a predetermined temperature by the evaluation method of the present embodiment are sorted out from the plurality of samples 100 of the insulating material prepared in the first step. It is a step. That is, with respect to each of the plurality of samples 100 of the insulating material, it is evaluated whether the withstand voltage performance under a predetermined temperature satisfies the standard by the above evaluation method. By this, it is possible to select an insulating material whose withstand voltage performance at a predetermined temperature satisfies the standard from among a plurality of insulating materials planned to be manufactured.
 第3ステップは、第2ステップで選別された絶縁材の試料100に対応する絶縁材を製造するステップである。つまり、製造を計画している複数の絶縁材のうち、所定温度下の耐電圧性能が基準を満たす絶縁材だけを製造する。これにより、所定温度下での耐電圧性能が優れた絶縁材を得ることができる。 The third step is a step of manufacturing the insulating material corresponding to the sample 100 of the insulating material sorted in the second step. That is, among a plurality of insulating materials planned to be manufactured, only the insulating material whose withstand voltage performance under a predetermined temperature satisfies the standard is manufactured. Thereby, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
2.変形例
 以上説明した上記実施形態は、本開示の様々な実施形態の一つに過ぎない。また、上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
2. Modified Example The above-described embodiment described above is only one of various embodiments of the present disclosure. Further, various changes can be made to the above-described embodiment according to the design and the like as long as the object of the present disclosure can be achieved. Below, the modification of the said embodiment is enumerated.
 例えば、評価装置70は、時間経過に伴う電荷の増加比率で、絶縁材の評価をしてもよい。増加比率は、Q1/Q0で与えられる。Q1は、電源装置50の出力電圧が設定値に達した時点t0から所定時間経過した時点での電流積分計40の測定値である。所定時間は、例えば、600秒である。増加比率Q1/Q0が1に近いほど、電荷が蓄積され難い絶縁材であると評価してよい。例えば、絶縁材の試料100の増加比率Q1/Q0が1以上の所定値以下であれば、絶縁材の所定温度下の耐電圧性能が基準を満たすと評価してよい。 For example, the evaluation device 70 may evaluate the insulating material at the rate of increase in charge over time. The rate of increase is given by Q1 / Q0. Q1 is a measurement value of the current integrator 40 when a predetermined time has elapsed from time t0 when the output voltage of the power supply device 50 reaches the set value. The predetermined time is, for example, 600 seconds. As the increase ratio Q1 / Q0 is closer to 1, it may be evaluated that the insulating material is less likely to store charge. For example, when the increase ratio Q1 / Q0 of the sample 100 of the insulating material is equal to or less than a predetermined value of 1 or more, it may be evaluated that the withstand voltage performance under the predetermined temperature of the insulating material satisfies the standard.
 また、比誘電率εrと増加比率Q1/Q0との2つのパラメータにより、絶縁材を評価してよい。つまり、絶縁材は、比誘電率εrが規定値未満であり、かつ、増加比率Q1/Q0が所定値以下であることがより好ましい。 Further, the insulating material may be evaluated by two parameters of the relative permittivity rr and the increase ratio Q1 / Q0. That is, as for the insulating material, it is more preferable that the relative dielectric constant εr is less than the specified value, and the increase ratio Q1 / Q0 is equal to or less than the predetermined value.
 例えば、第1配線61は、裸電線であっても良い。つまり、第1配線61は、必ずしも第1導体611を含んでいなくてもよい。また、第1配線61は、一部が露出した被覆電線であってもよい。要するに、第1配線61は、少なくとも一部が被覆されていない導体を含んでいてよい。つまり、第1配線61が一部被覆された導体を含んでいてもよい。ただし、この場合には、第1配線61は、電源装置50により第1電極21と第2電極22との間に直流電圧が印加された際に第1配線61に蓄積される電荷の量が試料100に蓄積される電荷の量の10分の1以下となるように構成されることが好ましい。ここで、試料100に蓄積される電荷の量は、実際に試料100に蓄積される電荷の量というよりは、上述の時点t0において試料100に蓄積される電荷の想定される量である。 For example, the first wire 61 may be a bare wire. That is, the first wiring 61 may not necessarily include the first conductor 611. Moreover, the 1st wiring 61 may be a covered electric wire which one part exposed. In short, the first wiring 61 may include a conductor that is not at least partially covered. That is, the first wiring 61 may include a partially covered conductor. However, in this case, when the DC voltage is applied between the first electrode 21 and the second electrode 22 by the power supply device 50, the first wiring 61 has the amount of charge accumulated in the first wiring 61 It is preferable to be configured to be 1/10 or less of the amount of charge accumulated in the sample 100. Here, the amount of charge accumulated in the sample 100 is not the amount of charge actually accumulated in the sample 100 but the assumed amount of charge accumulated in the sample 100 at the above-mentioned time point t0.
 また、配線に関して、「被覆されていない導体」とは、必ずしも導体のすべてが絶縁被覆により覆われていない場合だけを意味するのではない。例えば、導体の全体が絶縁被覆で被覆されていても絶縁被覆に蓄積される電荷の量が少なく導体が絶縁被覆で被覆されていないと考えられる場合には、「被覆されていない導体」といってよい。一例として、絶縁被覆が導体の表面に接触しておらず、十分に離れている場合が挙げられる。具体的には、絶縁被覆として絶縁材製の配管を用い、配管の内部に導体をその表面が配管と接触しないように配置した場合が考えられる。このような場合、導体の表面は絶縁被覆に覆われているという解釈が可能であるが、実質的に絶縁被覆による影響がなければ、「被覆されていない導体」といってよい。 Also, in the context of wiring, the term "uncoated conductor" does not necessarily mean that all of the conductors are not covered by the insulating coating. For example, if it is considered that the amount of charge stored in the insulation coating is small and the conductor is not covered with the insulation coating even though the entire conductor is covered with the insulation coating, then the term "uncoated conductor" You may One example is when the insulating coating is not in contact with the surface of the conductor and sufficiently separated. Specifically, it is conceivable that a pipe made of an insulating material is used as the insulation coating, and the conductor is disposed inside the pipe so that the surface does not contact the pipe. In such a case, although it can be interpreted that the surface of the conductor is covered with the insulating coating, it may be referred to as an "uncoated conductor" if it is not substantially affected by the insulating coating.
 逆に、絶縁被覆が導体の表面に接触している場合(つまり、導体が被覆されている場合)であっても、絶縁被覆の材料となる誘電体の特性によっては、実質的には絶縁被覆による影響がない場合がある。例えば、図9に示すように、電流積分計40と第1電極21との間の配線61は、少なくとも一部が絶縁被覆613で被覆された導体611を含んでいてもよい。絶縁被覆613の材料は、ポリテトラフルオロエチレンを含む。一例としては、絶縁被覆613は、ポリテトラフルオロエチレンのみから形成されている。つまり、絶縁被覆613の材料によっては、導体611の全体が絶縁被覆613で覆われていてもよい。この場合には、たとえ導体611の全体が絶縁被覆613で被覆されているとしても、「被覆されていない導体」と同等であると考えられる。ここで、実質的には絶縁被覆613による影響がないかどうかの判断には、絶縁被覆613の有無によって評価システム10による評価の結果が全く異なってしまうかどうかを一つの指針として用いることができる。 On the contrary, even when the insulating coating is in contact with the surface of the conductor (that is, when the conductor is coated), depending on the characteristics of the dielectric used as the material of the insulating coating, the insulating coating may be substantially insulating. There may be no impact from For example, as shown in FIG. 9, the wire 61 between the current integrator 40 and the first electrode 21 may include a conductor 611 covered at least in part by the insulating coating 613. The material of the insulation coating 613 includes polytetrafluoroethylene. In one example, the insulating coating 613 is formed only of polytetrafluoroethylene. That is, depending on the material of the insulating coating 613, the entire conductor 611 may be covered with the insulating coating 613. In this case, even if the whole of the conductor 611 is covered with the insulating coating 613, it is considered to be equivalent to the "uncoated conductor". Here, in order to determine whether the insulation coating 613 is not substantially affected, it can be used as a guideline whether the result of the evaluation by the evaluation system 10 is completely different depending on the presence or absence of the insulation coating 613 .
 上記実施形態では、電源装置50は、第1電極21が第2電極22よりも高電位となるように、第1電極21と第2電極22との間に直流電圧を印加する。しかしながら、電源装置50は、第1電極21が第2電極22よりも低電位となるように、第1電極21と第2電極22との間に直流電圧を印加してもよい。 In the above embodiment, the power supply device 50 applies a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a higher potential than the second electrode 22. However, the power supply device 50 may apply a DC voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 has a lower potential than the second electrode 22.
 また、保持部20において、第1電極21及び第2電極22の形状(例えば外形形状)は限定されない。ただし、第1電極21の面210及び第2電極22の面220は、試料100に密接するような形状であることが好ましい。また、上記実施形態では、第1電極21の面210の面積を接触面積Sとして用いているが、第2電極22が第1電極21より小さい場合には、第2電極22の面220の面積が接触面積Sとして用いられる。また、保持部20において、ガード電極23は必須ではない。 Further, in the holding unit 20, the shapes (for example, the outer shape) of the first electrode 21 and the second electrode 22 are not limited. However, it is preferable that the surface 210 of the first electrode 21 and the surface 220 of the second electrode 22 be shaped to be in close contact with the sample 100. Moreover, in the said embodiment, although the area of the surface 210 of the 1st electrode 21 is used as the contact area S, when the 2nd electrode 22 is smaller than the 1st electrode 21, the area of the surface 220 of the 2nd electrode 22 Is used as the contact area S. In addition, in the holding unit 20, the guard electrode 23 is not essential.
 また、チャンバ30の構成は、実施形態の構成に限定されない。例えば、チャンバ30は、必ずしも挿通孔34を有している必要はなく、電流積分計40との接続用のコネクタを有していてもよい。ただし、第1配線61を全体が被覆されていない導体で構成しようとした場合には、挿通孔34を設けることが望ましい。また、絶縁材の評価内容によっては、所定温度として、175℃や、200℃、250℃等が要求される場合があるから、チャンバ30の温度範囲の上限値は、高ければ高いほど好ましい。 Further, the configuration of the chamber 30 is not limited to the configuration of the embodiment. For example, the chamber 30 does not necessarily have to have the insertion hole 34, and may have a connector for connection with the current integrator 40. However, when it is intended to form the first wiring 61 with a conductor that is not entirely covered, it is desirable to provide the insertion hole 34. Further, depending on the contents of evaluation of the insulating material, 175 ° C., 200 ° C., 250 ° C., etc. may be required as the predetermined temperature, so the upper limit of the temperature range of the chamber 30 is preferably as high as possible.
 また、電流積分計40の構成は、実施形態の構成に限定されない。電流積分計40には、従来周知の電流積分計を利用可能である。 Further, the configuration of the current integrator 40 is not limited to the configuration of the embodiment. As the current integrator 40, a known current integrator can be used.
 また、電源装置50の構成は、実施形態の構成に限定されない。電源装置50には、従来周知の直流電源装置を利用可能である。 Further, the configuration of the power supply device 50 is not limited to the configuration of the embodiment. As the power supply device 50, a conventionally known DC power supply device can be used.
 なお、評価システム10は、少なくとも、保持部20と、チャンバ30と、電流積分計40とを有し、電流積分計40と第1電極21との間の配線61が少なくとも一部が被覆されていない導体611であればよい。つまり、評価装置70は必須ではなく、実施形態の評価方法は、人がコンピュータ等を利用して行ってもよい。 The evaluation system 10 has at least a holding unit 20, a chamber 30, and a current integrator 40, and at least a part of a wire 61 between the current integrator 40 and the first electrode 21 is covered. It is sufficient if there is no conductor 611. That is, the evaluation device 70 is not essential, and the evaluation method of the embodiment may be performed by a person using a computer or the like.
3.態様
 以上述べた実施形態及び変形例から明らかなように、第1の態様の評価システム(10)は、保持部(20)と、チャンバ(30)と、電流積分計(40)と、を備える。前記保持部(20)は、絶縁材の試料(100)を間に挟む第1電極(21)及び第2電極(22)を有する。前記チャンバ(30)は、前記保持部(20)を収容する筐体(31)を有し、前記筐体(31)の内部の温度を所定の温度範囲内に維持するように構成されている。前記電流積分計(40)は、前記保持部(20)の前記第1電極(21)と前記第2電極(22)との間に直流電圧を印加する電源装置(50)と前記第1電極(21)との間に介在される。前記電流積分計(40)と前記第1電極(21)との間の配線(61)は、少なくとも一部が被覆されていない導体(611)を含む。第1の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。
3. Aspect As apparent from the embodiment and the modification described above, the evaluation system (10) of the first aspect includes the holding unit (20), the chamber (30), and the current integrator (40). . The holding portion (20) has a first electrode (21) and a second electrode (22) sandwiching a sample (100) of an insulating material. The chamber (30) has a housing (31) for housing the holding portion (20), and is configured to maintain the temperature inside the housing (31) within a predetermined temperature range. . The current integrator (40) comprises a power supply (50) for applying a DC voltage between the first electrode (21) and the second electrode (22) of the holder (20), and the first electrode It is interposed between (21) and The wire (61) between the current integrator (40) and the first electrode (21) includes a conductor (611) that is at least partially uncoated. According to the first aspect, the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with high accuracy.
 第2の態様の評価システム(10)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記配線(61)は、前記第1電極(21)と前記第2電極(22)との間に前記直流電圧が印加された際に、前記導体(611)に蓄積される電荷の量が前記試料(100)に蓄積される電荷の量の10分の1以下となるように構成される。第2の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation system (10) of the second aspect can be realized in combination with the first aspect. In the second aspect, the wiring (61) is accumulated in the conductor (611) when the DC voltage is applied between the first electrode (21) and the second electrode (22). To be less than one-tenth of the amount of charge stored in the sample (100). According to the second aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第3の態様の評価システム(10)は、第1又は第2の態様との組み合わせにより実現され得る。第3の態様では、前記導体(611)は、前記導体(611)の全体が被覆されていない。第3の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation system (10) of the third aspect can be realized by a combination with the first or second aspect. In a third aspect, the conductor (611) is not coated on the whole of the conductor (611). According to the third aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第4の態様の評価システム(10)は、第1~第3の態様のいずれか一つとの組み合わせにより実現され得る。第4の態様では、前記電流積分計(40)は、前記筐体(31)の外部に配置される。前記チャンバ(30)は、前記筐体(31)の内部と外部を繋ぐ挿通孔(34)を有する。前記導体(611)は、前記挿通孔(34)の内面と接触しないように前記挿通孔(34)を通る。第4の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation system (10) of the fourth aspect can be realized by combination with any one of the first to third aspects. In the fourth aspect, the current integrator (40) is disposed outside the housing (31). The chamber (30) has an insertion hole (34) connecting the inside and the outside of the housing (31). The conductor (611) passes through the insertion hole (34) so as not to contact the inner surface of the insertion hole (34). According to the fourth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第5の態様の評価システム(10)は、第1~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、前記導体(611)は、金属製のロッドである。第5の態様によれば、導体(611)が電線である場合に比べれば、導体(611)と周囲の物体との予期しない接触を抑制できる。 The evaluation system (10) of the fifth aspect may be realized by combination with any one of the first to fourth aspects. In a fifth aspect, the conductor (611) is a metal rod. According to the fifth aspect, compared with the case where the conductor (611) is a wire, unexpected contact between the conductor (611) and the surrounding object can be suppressed.
 第6の態様の評価システム(10)は、保持部(20)と、チャンバ(30)と、電流積分計(40)と、を備える。前記保持部(20)は、絶縁材の試料(100)を間に挟む第1電極(21)及び第2電極(22)を有する。前記チャンバ(30)は、前記保持部(20)を収容する筐体(31)を有し、前記筐体(31)の内部の温度を所定の温度範囲内に維持するように構成されている。前記電流積分計(40)は、前記保持部(20)の前記第1電極(21)と前記第2電極(22)との間に直流電圧を印加する電源装置(50)と前記第1電極(21)との間に介在される。前記電流積分計(40)と前記第1電極(21)との間の配線(61)は、少なくとも一部が絶縁被覆(613)で被覆された導体(611)を含む。前記絶縁被覆(613)の材料は、ポリテトラフルオロエチレンを含む。第6の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation system (10) of the sixth aspect includes a holder (20), a chamber (30), and a current integrator (40). The holding portion (20) has a first electrode (21) and a second electrode (22) sandwiching a sample (100) of an insulating material. The chamber (30) has a housing (31) for housing the holding portion (20), and is configured to maintain the temperature inside the housing (31) within a predetermined temperature range. . The current integrator (40) comprises a power supply (50) for applying a DC voltage between the first electrode (21) and the second electrode (22) of the holder (20), and the first electrode It is interposed between (21) and The wire (61) between the current integrator (40) and the first electrode (21) includes a conductor (611) at least a part of which is covered with an insulating coating (613). The material of the insulation coating (613) comprises polytetrafluoroethylene. According to the sixth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第7の態様の評価システム(10)は、第1~第6の態様のいずれか一つとの組み合わせにより実現され得る。第7の態様では、前記所定の温度範囲の上限値は85℃以上である。第7の態様によれば、絶縁材の高温下での耐電圧性能の評価を高精度に行える。 The evaluation system (10) of the seventh aspect may be realized in combination with any one of the first to sixth aspects. In a seventh aspect, the upper limit value of the predetermined temperature range is 85 ° C. or more. According to the seventh aspect, the withstand voltage performance of the insulating material under high temperature can be evaluated with high accuracy.
 第8の態様の評価方法は、第1~第7の態様のいずれか一つの評価システム(10)の前記電流積分計(40)の測定値に基づいて、前記絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する。第8の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 In the evaluation method of the eighth aspect, based on the measurement value of the current integrator (40) of the evaluation system (10) according to any one of the first to seventh aspects, the insulation material is resistant to a predetermined temperature. Evaluate whether the voltage performance meets the criteria. According to the eighth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第9の態様の評価方法は、第8の態様との組み合わせにより実現され得る。第9の態様では、前記電流積分計(40)の測定値から求めた前記試料(100)の所定温度下の比誘電率に基づいて、前記絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する。第9の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation method of the ninth aspect can be realized by a combination with the eighth aspect. In the ninth aspect, based on the relative dielectric constant of the sample (100) under a predetermined temperature obtained from the measurement value of the current integrator (40), the withstand voltage performance of the insulating material under the predetermined temperature is used as a standard. Evaluate whether to meet. According to the ninth aspect, the withstand voltage performance of the insulating material at a predetermined temperature can be evaluated with high accuracy.
 第10の態様の評価方法は、第9の態様との組み合わせにより実現され得る。第10の態様では、前記電流積分計(40)の測定値をQ、前記保持部(20)の前記試料(100)との接触面積をS、前記試料(100)の厚みをdとする。前記直流電圧の値をV、真空の誘電率をε0、前記試料(100)の所定温度下の比誘電率をεrとする。εrを、Q=(εr×ε0×S/d)×Vの関係式に基づいて求める。第10の態様によれば、絶縁材の所定温度下での耐電圧性能の評価を高精度に行える。 The evaluation method of the tenth aspect can be realized by a combination with the ninth aspect. In the tenth aspect, the measurement value of the current integrator (40) is Q, the contact area of the holding unit (20) with the sample (100) is S, and the thickness of the sample (100) is d. The value of the DC voltage is V, the permittivity of vacuum is ε0, and the relative permittivity of the sample (100) at a predetermined temperature is εr. ε r is obtained based on the relational expression of Q = (ε r × ε 0 × S / d) × V. According to the tenth aspect, the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with high accuracy.
 第11の態様の評価方法は、第9又は第10の態様との組み合わせにより実現され得る。第11の態様では、前記試料(100)の、所定温度下の比誘電率に対する前記所定温度より低い規定温度下の比誘電率の比が、所定値未満である場合に、前記絶縁材の所定温度下の耐電圧性能が基準を満たすと評価する。第11の態様によれば、絶縁材の所定温度下での耐電圧性能の評価をより高精度に行える。なお、第11の態様において、所定温度は100℃以上であり、前記規定温度は100℃未満であってよい。更に、前記所定温度と前記規定温度との差は100℃以上あってよい。更に、前記規定温度は25℃であってよい。なお、第11の態様において、前記所定値は、2であってよい。更に、第11の態様において、前記所定値は、1.2であってよい。 The evaluation method of the eleventh aspect can be realized by a combination with the ninth or tenth aspect. In an eleventh aspect, when the ratio of the relative dielectric constant at a specified temperature lower than the predetermined temperature to the relative dielectric constant at a predetermined temperature of the sample (100) is less than a predetermined value, the predetermined value of the insulating material It is evaluated that the withstand voltage performance under temperature satisfies the standard. According to the eleventh aspect, the withstand voltage performance of the insulating material under a predetermined temperature can be evaluated with higher accuracy. In the eleventh aspect, the predetermined temperature may be 100 ° C. or higher, and the specified temperature may be less than 100 ° C. Furthermore, the difference between the predetermined temperature and the specified temperature may be 100 ° C. or more. Furthermore, the specified temperature may be 25 ° C. In the eleventh aspect, the predetermined value may be two. Furthermore, in the eleventh aspect, the predetermined value may be 1.2.
 第12の態様の選別方法は、複数の絶縁材から、第8~第11の態様のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材を選別する。第12の態様によれば、所定温度下での耐電圧性能が優れた絶縁材を得ることができる。 The sorting method according to the twelfth aspect sorts out, from among a plurality of insulating materials, an insulating material which is evaluated to have a withstand voltage performance under a predetermined temperature satisfying the standard according to any one of the evaluation methods according to the eighth to eleventh aspects. . According to the twelfth aspect, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
 第13の態様の絶縁材の製造方法は、複数の絶縁材の試料(100)を用意するステップを含む。また、前記製造方法は、前記複数の絶縁材の試料(100)から第8~第11の態様のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材の試料(100)を選別するステップを含む。また、前記製造方法は、選別された絶縁材の試料(100)に対応する絶縁材を製造するステップを含む。第13の態様によれば、所定温度下での耐電圧性能が優れた絶縁材を得ることができる。 The method of manufacturing an insulating material according to the thirteenth aspect includes the step of preparing a plurality of samples of insulating material (100). Moreover, the said manufacturing method is an insulating material evaluated that the withstand voltage performance under predetermined temperature satisfy | fills the reference | standard by the evaluation method in any one of the sample (100) of the said several insulating material to the 8th-11th aspect. Sorting the sample (100) of The manufacturing method also includes the step of manufacturing an insulating material corresponding to the sample (100) of the selected insulating material. According to the thirteenth aspect, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
 第14の態様の絶縁材は、第8~第11の態様のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材である。第14の態様によれば、所定温度下での耐電圧性能が優れた絶縁材を得ることができる。 The insulating material of the fourteenth aspect is an insulating material evaluated to have withstand voltage performance under a predetermined temperature satisfying the standard according to any one of the evaluation methods of the eighth to eleventh aspects. According to the fourteenth aspect, an insulating material excellent in withstand voltage performance at a predetermined temperature can be obtained.
 第15の態様のパッケージは、第14の態様の絶縁材により形成されたパッケージである。第15の態様によれば、所定温度下での耐電圧性能が優れたパッケージを得ることができる。 The package of the fifteenth aspect is a package formed of the insulating material of the fourteenth aspect. According to the fifteenth aspect, a package excellent in withstand voltage performance at a predetermined temperature can be obtained.
 10 評価システム
 20 保持部
 21 第1電極
 22 第2電極
 30 チャンバ
 34 挿通孔
 40 電流積分計
 50 電源装置
 61 第1配線(配線)
 611 第1導体(導体)
 100 試料
DESCRIPTION OF SYMBOLS 10 evaluation system 20 holding part 21 1st electrode 22 2nd electrode 30 chamber 34 penetration hole 40 current integrator 50 power supply device 61 1st wiring (wiring)
611 1st conductor (conductor)
100 samples

Claims (15)

  1.  絶縁材の試料を間に挟む第1電極及び第2電極を有する保持部と、
     前記保持部を内部に収容する筐体を有し、前記筐体の内部の温度を所定の温度範囲内に維持するチャンバと、
     前記保持部の前記第1電極と前記第2電極との間に直流電圧を印加する電源装置と前記第1電極との間に介在される電流積分計と、
     を備え、
     前記電流積分計と前記第1電極との間の配線は、少なくとも一部が被覆されていない導体を含む、
     評価システム。
    A holder having a first electrode and a second electrode sandwiching a sample of the insulating material therebetween;
    A chamber that accommodates the holding portion inside, and a chamber that maintains the temperature inside the housing within a predetermined temperature range;
    A current integrator interposed between a power supply device for applying a DC voltage between the first electrode and the second electrode of the holder and the first electrode;
    Equipped with
    Wiring between the current integrator and the first electrode includes a conductor that is at least partially uncoated,
    Evaluation system.
  2.  前記配線は、前記第1電極と前記第2電極との間に前記直流電圧が印加された際に、前記導体に蓄積される電荷の量が前記試料に蓄積される電荷の量の10分の1以下となるように構成される、
     請求項1の評価システム。
    When the DC voltage is applied between the first electrode and the second electrode, the amount of charge stored in the conductor is 10 minutes of the amount of charge stored in the sample when the wiring is applied. Configured to be less than or equal to 1
    The evaluation system of claim 1.
  3.  前記導体は、前記導体の全体が被覆されていない、
     請求項1又は2の評価システム。
    The conductor is not coated on the whole of the conductor,
    The evaluation system of Claim 1 or 2.
  4.  前記電流積分計は、前記筐体の外部に配置され、
     前記チャンバは、前記筐体の内部と外部を繋ぐ挿通孔を有し、
     前記導体は、前記挿通孔の内面と接触しないように前記挿通孔を通る、
     請求項1~3のいずれか一つの評価システム。
    The current integrator is disposed outside the housing,
    The chamber has an insertion hole connecting the inside and the outside of the housing,
    The conductor passes through the insertion hole so as not to contact the inner surface of the insertion hole.
    The evaluation system according to any one of claims 1 to 3.
  5.  前記導体は、金属製のロッドである、
     請求項1~4のいずれか一つの評価システム。
    The conductor is a metal rod,
    The evaluation system according to any one of claims 1 to 4.
  6.  絶縁材の試料を間に挟む第1電極及び第2電極を有する保持部と、
     前記保持部を内部に収容する筐体を有し、前記筐体の内部の温度を所定の温度範囲内に維持するチャンバと、
     前記保持部の前記第1電極と前記第2電極との間に直流電圧を印加する電源装置と前記第1電極との間に介在される電流積分計と、
     を備え、
     前記電流積分計と前記第1電極との間の配線は、少なくとも一部が絶縁被覆で被覆された導体を含み、
     前記絶縁被覆の材料は、ポリテトラフルオロエチレンを含む、
     評価システム。
    A holder having a first electrode and a second electrode sandwiching a sample of the insulating material therebetween;
    A chamber that accommodates the holding portion inside, and a chamber that maintains the temperature inside the housing within a predetermined temperature range;
    A current integrator interposed between a power supply device for applying a DC voltage between the first electrode and the second electrode of the holder and the first electrode;
    Equipped with
    The wiring between the current integrator and the first electrode includes a conductor at least partially covered with an insulating coating,
    The material of the insulation coating includes polytetrafluoroethylene.
    Evaluation system.
  7.  前記所定の温度範囲の上限値は85℃以上である、
     請求項1~6のいずれか一つの評価システム。
    The upper limit value of the predetermined temperature range is 85 ° C. or higher.
    The evaluation system according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一つの評価システムの前記電流積分計の測定値に基づいて、前記絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する、
     評価方法。
    8. Based on the measurement value of the current integrator of the evaluation system according to any one of claims 1 to 7, it is evaluated whether the withstand voltage performance under a predetermined temperature of the insulating material satisfies a standard.
    Evaluation method.
  9.  前記電流積分計の測定値から求めた前記試料の所定温度下の比誘電率に基づいて、前記絶縁材の所定温度下の耐電圧性能が基準を満たすかどうかを評価する、
     請求項8の評価方法。
    Based on the relative dielectric constant of the sample at a predetermined temperature determined from the measurement value of the current integrator, it is evaluated whether the withstand voltage performance of the insulating material at the predetermined temperature satisfies a standard.
    The evaluation method of Claim 8.
  10.  前記電流積分計の測定値をQ、前記保持部の前記試料との接触面積をS、前記試料の厚みをd、前記直流電圧の値をV、真空の誘電率をε0、前記試料の所定温度下の比誘電率をεrとすると、
     εrを、Q=(εr×ε0×S/d)×Vの関係式に基づいて求める、
     請求項9の評価方法。
    The measured value of the current integrator is Q, the contact area of the holder with the sample is S, the thickness of the sample is d, the value of the DC voltage is V, the dielectric constant of vacuum is ε0, the predetermined temperature of the sample Assuming that the lower dielectric constant is εr,
    Determine ε r based on a relational expression of Q = (ε r × ε 0 × S / d) × V,
    The evaluation method of Claim 9.
  11.  前記試料の、所定温度下の比誘電率に対する前記所定温度より低い規定温度下の比誘電率の比が、所定値未満である場合に、前記絶縁材の所定温度下の耐電圧性能が基準を満たすと評価する、
     請求項9又は10の評価方法。
    When the ratio of the relative dielectric constant under a specified temperature lower than the predetermined temperature to the relative dielectric constant under a predetermined temperature of the sample is less than a predetermined value, the withstand voltage performance of the insulating material under the predetermined temperature is a standard Evaluate to meet,
    The evaluation method of Claim 9 or 10.
  12.  複数の絶縁材から、請求項8~11のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材を選別する、
     選別方法。
    The insulation material evaluated to have the withstand voltage performance under a predetermined temperature satisfying the standard by the evaluation method according to any one of claims 8 to 11 is selected from a plurality of insulation materials.
    How to sort
  13.  複数の絶縁材の試料を用意するステップと、
     前記複数の絶縁材の試料から、請求項8~11のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材の試料を選別するステップと、
     選別された絶縁材の試料に対応する絶縁材を製造するステップと、
     を含む、
     製造方法。
    Preparing a plurality of insulation samples;
    Selecting, from the plurality of samples of the insulating material, a sample of the insulating material which is evaluated as satisfying the criteria by the withstand voltage performance under a predetermined temperature by the evaluation method according to any one of claims 8 to 11;
    Producing an insulating material corresponding to the selected sample of insulating material;
    including,
    Production method.
  14.  請求項8~11のいずれか一つの評価方法で所定温度下の耐電圧性能が基準を満たすと評価された絶縁材。 The insulating material evaluated that the withstand voltage performance under predetermined temperature satisfy | fills the reference | standard by the evaluation method in any one of Claims 8-11.
  15.  請求項14の絶縁材により形成されたパッケージ。 A package formed by the insulating material according to claim 14.
PCT/JP2018/046526 2017-12-19 2018-12-18 Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package WO2019124357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019561104A JPWO2019124357A1 (en) 2017-12-19 2018-12-18 Evaluation system, evaluation method, sorting method, manufacturing method, insulating material, and packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242933 2017-12-19
JP2017-242933 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124357A1 true WO2019124357A1 (en) 2019-06-27

Family

ID=66992808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046526 WO2019124357A1 (en) 2017-12-19 2018-12-18 Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package

Country Status (2)

Country Link
JP (1) JPWO2019124357A1 (en)
WO (1) WO2019124357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062807A (en) * 2021-11-08 2022-02-18 广东电网有限责任公司广州供电局 Aging detection method for solid insulating material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232145A (en) * 1995-12-19 1997-09-05 Hitachi Electron Service Co Ltd Surge preventing transformer for signal cable and signal cable connection structure using the same
JPH1172533A (en) * 1997-08-29 1999-03-16 Nissin Electric Co Ltd Power source apparatus for withstand voltage test
JP2003021660A (en) * 2001-07-05 2003-01-24 Kikusui Electr0Nics Corp Withstand voltage testing device and test method
US7064565B1 (en) * 2002-10-31 2006-06-20 Kla-Tencor Technologies Corp. Methods and systems for determining an electrical property of an insulating film
JP2015149274A (en) * 2014-01-08 2015-08-20 ダイキン工業株式会社 Heat-resistant electric wire
WO2017150691A1 (en) * 2016-03-03 2017-09-08 住友電気工業株式会社 Method for evaluating insulation properties of insulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047141B2 (en) * 1992-05-07 2000-05-29 セイコーインスツルメンツ株式会社 Parallel plate dielectric constant measuring device
JP3761470B2 (en) * 2001-04-04 2006-03-29 北斗電子工業株式会社 Non-contact voltage measurement method and apparatus, and detection probe
JP2006156051A (en) * 2004-11-26 2006-06-15 Yazaki Corp High tension wire harness
JP7073716B2 (en) * 2015-07-21 2022-05-24 住友ベークライト株式会社 Thermally conductive resin compositions, thermally conductive sheets and semiconductor devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232145A (en) * 1995-12-19 1997-09-05 Hitachi Electron Service Co Ltd Surge preventing transformer for signal cable and signal cable connection structure using the same
JPH1172533A (en) * 1997-08-29 1999-03-16 Nissin Electric Co Ltd Power source apparatus for withstand voltage test
JP2003021660A (en) * 2001-07-05 2003-01-24 Kikusui Electr0Nics Corp Withstand voltage testing device and test method
US7064565B1 (en) * 2002-10-31 2006-06-20 Kla-Tencor Technologies Corp. Methods and systems for determining an electrical property of an insulating film
JP2015149274A (en) * 2014-01-08 2015-08-20 ダイキン工業株式会社 Heat-resistant electric wire
WO2017150691A1 (en) * 2016-03-03 2017-09-08 住友電気工業株式会社 Method for evaluating insulation properties of insulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKADA, TATSUO ET AL.: "Deduction of Electric Charge Distribution in Polymer Film", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, vol. 92, no. 12, 20 December 1972 (1972-12-20), pages 537 - 544, XP055620473 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062807A (en) * 2021-11-08 2022-02-18 广东电网有限责任公司广州供电局 Aging detection method for solid insulating material
CN114062807B (en) * 2021-11-08 2024-02-23 广东电网有限责任公司广州供电局 Aging detection method for solid insulating material

Also Published As

Publication number Publication date
JPWO2019124357A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Mikulecky et al. Influence of temperature, moisture content and ageing on oil impregnated paper bushings insulation
Simoni A new approach to the voltage-endurance test on electrical insulation
KR101328994B1 (en) Volume Electrical Resistivity Equipment for Cable in NPPs
Smith et al. A dielectric frequency response model to evaluate the moisture content within an oil impregnated paper condenser bushing
WO2019124357A1 (en) Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package
JP4045776B2 (en) Life diagnosis method for power distribution facilities
CN106199246B (en) A kind of rapid detection method of composite insulator degree of aging
Linde et al. Comparison of Dielectric Loss Measuring Methods on Epoxy Samples under Harmonic Distorted Voltages
CN115616293B (en) Volume resistivity measuring device for semiconductive buffer layer
JPH06207965A (en) Dc-low-noise measuring system and testing method
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
Jadav et al. Dielectric response of transformer insulation-comparison of time domain and frequency domain measurements
Risos Interdigitated Sensors: The Next Generation “Sensing Permittivity and Conductivity of Oils-Unaffected by Temperature”
Sur A modified dielectric dissipation factor measurement technique for transformer insulating oil
Šefl et al. On the frequency dependence of the PDIV in twisted pair magnet wire analogy in dry air
Saha et al. Some precautions for the field users of PDC measurement for transformer insulation condition assessment
Zanobini et al. Automatic-test equipment for the characterization of aluminum electrolytic capacitors
Brncal et al. Diagnostics of Insulating Condition of Traction Transformer by Frequency Method
JP2003121404A (en) Deterioration diagnostic method of solid insulating material
Syakur Measurement system for surface leakage current at epoxy resin insulating materials
Toigo et al. Insulating materials characterization for the development of MV/HV DC equipment
JP2011053023A (en) Method for evaluating reliability of insulating thin film of electronic device
Kumara et al. Comparison of Different Methods for Characterization of DC Conductivity of Insulating Polymers
US11887753B1 (en) Systems and methods for assessing cable insulation
Madhar et al. Measurement of key dielectric properties for surface PD model under HVDC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891386

Country of ref document: EP

Kind code of ref document: A1