WO2019123948A1 - Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel - Google Patents

Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel Download PDF

Info

Publication number
WO2019123948A1
WO2019123948A1 PCT/JP2018/042824 JP2018042824W WO2019123948A1 WO 2019123948 A1 WO2019123948 A1 WO 2019123948A1 JP 2018042824 W JP2018042824 W JP 2018042824W WO 2019123948 A1 WO2019123948 A1 WO 2019123948A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation
optical compensation
rth
compensation layer
Prior art date
Application number
PCT/JP2018/042824
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 高松
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207017461A priority Critical patent/KR20200100068A/en
Priority to CN201880081822.3A priority patent/CN111556976B/en
Priority to SG11202005242YA priority patent/SG11202005242YA/en
Publication of WO2019123948A1 publication Critical patent/WO2019123948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present invention relates to a retardation plate, a polarizing plate with an optical compensation layer, an image display device, and an image display device with a touch panel.
  • organic EL display devices equipped with an organic EL panel
  • the organic EL panel has a highly reflective metal layer, and easily causes problems such as reflection of external light and reflection of a background. Therefore, it is known to prevent these problems by providing a polarizing plate with an optical compensation layer (circularly polarizing plate) on the viewing side. It is also known to improve the viewing angle by providing a polarizing plate with an optical compensation layer on the viewing side of the liquid crystal display panel.
  • a retardation film and a polarizer are laminated such that the slow axis and the absorption axis form a predetermined angle (for example, 45 °) according to the application
  • a predetermined angle for example, 45 °
  • the conventional retardation film has a problem that when it is used for a polarizing plate with an optical compensation layer, undesired coloration may occur in the hue in the oblique direction.
  • the present invention has been made to solve the above-described conventional problems, and its main object is to provide a retardation plate capable of realizing an image display device in which the hue in the oblique direction is neutral, and such a retardation plate An optical compensation layer-attached polarizing plate, an image display device, and a touch panel device are provided.
  • the retardation plate of the present invention has an in-plane retardation Re of 100 nm ⁇ Re (550) ⁇ 160 nm, Re (450) / Re (550) ⁇ 1, and Re (650) / Re (550) ⁇ 1. And the Nz coefficient satisfies Nz (550) ⁇ 1, 0 ⁇
  • the first retardation layer has a laminated structure in which a first retardation layer and a second retardation layer are laminated, and the first retardation layer has an in-plane retardation Re of 450 ) / Re (550) ⁇ 1 and Re (650) / Re (550) ⁇ 1, the refractive index characteristic satisfies nx> nynynz, and the second retardation layer has a thickness direction retardation Rth satisfies Rth (450) / Rth (550) ⁇ 1 and Rth (650) / Rth (550) ⁇ 1, and the refractive index characteristic satisfies nz> nx ⁇ ny.
  • a polarizing plate with an optical compensation layer is provided.
  • the optical compensation layer-attached polarizing plate has an optical compensation layer constituted of the retardation plate and a polarizer, and the angle between the slow axis of the optical compensation layer and the absorption axis of the polarizer is 35 It is from 0 ° to 55 °.
  • the polarizing plate with an optical compensation layer has a conductive layer on the side opposite to the polarizer of the optical compensation layer.
  • an image display device is provided. This image display device has the above-mentioned polarizing plate with an optical compensation layer.
  • an image display device with a touch panel is provided. This image display apparatus with a touch panel has the above-mentioned polarizing plate with an optical compensation layer, and the above-mentioned conductive layer functions as a touch panel sensor.
  • the in-plane retardation Re of the retardation plate is 100 nm ⁇ Re (550) ⁇ 160 nm, Re (450) / Re (550) ⁇ 1, and Re (650) / Re (550) ⁇ 1 and Nz coefficient is Nz (550) ⁇ 1, 0 ⁇
  • FIG. 1 is a schematic cross-sectional view of a retardation plate according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate with an optical compensation layer according to one embodiment of the present invention.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction) And “nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction) And “nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured at 23 ° C. with light of wavelength ⁇ nm.
  • Re (550) is an in-plane retardation measured with light of wavelength 550 nm at 23 ° C.
  • Retardation in the thickness direction (Rth) is a retardation in the thickness direction measured with light of wavelength ⁇ nm at 23 ° C.
  • the retardation plate 10 of the present invention has an in-plane retardation Re of 100 nm ⁇ Re (550) ⁇ 160 nm, Re (450) / Re (550) ⁇ 1, and Re (650) / Re (550). 1), and the Nz coefficient satisfies Nz (550) ⁇ 1, 0 ⁇
  • the retardation plate exhibits inverse dispersion wavelength characteristics in which the retardation value increases in accordance with the wavelength of the measurement light, and the wavelength dependence of the Nz coefficient is small, and the refractive index for the measurement light in a wide wavelength range
  • the characteristics show the relationship of nx>nz> ny.
  • the retardation plate can realize an optical compensation layer-attached polarizing plate in which the hue in the oblique direction is neutral when used in the optical compensation layer-attached polarizing plate.
  • the retardation plate may be sheet-like or long.
  • FIG. 1 is a schematic cross-sectional view of a retardation plate 10 according to one embodiment of the present invention.
  • the retardation plate 10 has a laminated structure in which the first retardation layer 11 and the second retardation layer 12 are laminated.
  • the in-plane retardation Re satisfies Re (450) / Re (550) ⁇ 1 and Re (650) / Re (550) ⁇ 1
  • the second retardation layer 12 has a thickness direction retardation Rth of Rth (450) / Rth (550) ⁇ 1 and Rth (650) / Rth (550) ⁇ 1.
  • the refractive index characteristics satisfy nz> nx ⁇ ny.
  • the in-plane retardation Re (550) of the retardation plate is preferably 120 nm to 150 nm, more preferably 130 nm to 145 nm. If the in-plane retardation of the retardation plate is within the above range, the angle between the retardation plate and the polarizer and the absorption axis of the retardation plate is about 45 ° or
  • the polarizing plate with an optical compensation layer obtained by laminating so as to be about 135 ° can be used as a circularly polarizing plate that can realize excellent antireflection properties.
  • the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88, and still more preferably Is 0.80 to 0.86.
  • the value of Re (650) / Re (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. .
  • the retardation plate can achieve a better reflection hue.
  • the Nz coefficient of the retardation plate is Nz (550) ⁇ 1, 0 ⁇
  • Nz (550) is preferably 0.3 to 0.7, more preferably 0.4 to 0.6, still more preferably 0.45 to 0.55, and particularly preferably about 0. 5 If the Nz coefficient is in such a range, the refractive index characteristic exhibits a relationship of nx> nz> ny with respect to measurement light in a wide wavelength range, whereby the hue in the oblique direction is neutral and excellent.
  • An optical compensation layer-provided polarizing plate having wide viewing angle characteristics can be realized.
  • A-1. First Retardation Layer As described above, in the in-plane retardation Re of the first retardation layer, Re (450) / Re (550) ⁇ 1 and Re (650) / Re (550) ⁇ 1. The refractive index characteristics satisfy nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 170 nm, more preferably 110 nm to 160 nm, and still more preferably 120 nm to 150 nm.
  • the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88. And more preferably 0.80 to 0.86.
  • the value of Re (650) / Re (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. .
  • the first retardation layer is typically a retardation film formed of any appropriate resin capable of realizing the above-mentioned characteristics.
  • the retardation film may be obtained by stretching any suitable resin film capable of realizing the above-mentioned characteristics under any suitable stretching conditions.
  • stretching can employ
  • the photoelastic coefficient (absolute value) of the retardation film is preferably 14 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient of the retardation film is preferably 1 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 14 ⁇ 10 12 Pa ⁇ 1 , more preferably 2 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 12 ⁇ 10 ⁇ 12 Pa ⁇ It is 1 . If the absolute value of the photoelastic coefficient is in such a range, it is possible to suppress a change in retardation value even under a high temperature and high humidity environment, and to realize excellent reliability.
  • the flexibility of the image display device (particularly, the organic EL panel) can be maintained while securing a sufficient phase difference even with a small thickness, and furthermore, the phase difference change due to the stress at the time of bending (as a result, the organic EL panel Color change) can be further suppressed.
  • the retardation film preferably has a water absorption of 3% or less, more preferably 2.5% or less, and still more preferably 2% or less.
  • a water absorption can be calculated
  • the retardation film preferably has barrier properties against moisture and gas (for example, oxygen).
  • 40 ° C. of the stretched film, water vapor transmission rate of at 90% RH conditions (moisture permeability) is preferably 1.0 ⁇ 10 -1 g / m less than 2/24 hr or. From the viewpoint of the barrier property, the lower the lower limit of the moisture permeability, the better.
  • 60 ° C., gas barrier properties 90% RH conditions of the stretched film is preferably 1.0 ⁇ 10 -7 g / m 2 /24hr ⁇ 0.5g/m 2 / 24hr, more preferably 1.0 ⁇ a 10 -7 g / m 2 /24hr ⁇ 0.1g/m 2 / 24hr.
  • both the moisture permeability and the gas barrier property can be measured according to JIS K 7126-1.
  • the resin constituting the retardation film examples include polyarylate, polyimide, polyamide, polyester, polyvinyl alcohol, polyfumaric acid ester, norbornene resin, polycarbonate resin, cellulose resin, cyclic olefin resin and polyurethane. These resins may be used alone or in combination. Preferably, it is a polycarbonate resin.
  • a specific example of the above resin is described as a thermoplastic resin in, for example, JP-A-2015-212828. The publication is incorporated herein by reference in its entirety.
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or more and 180 ° C. or less, and more preferably 120 ° C. or more and 165 ° C. or less. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability at the time of film molding may be deteriorated, and the transparency of the film may be impaired.
  • the glass transition temperature is determined in accordance with JIS K 7121 (1987).
  • the stretching method examples include transverse uniaxial stretching, free end uniaxial stretching, fixed end biaxial stretching, fixed end uniaxial stretching, and sequential biaxial stretching.
  • it is fixed end uniaxial stretching.
  • fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while traveling the resin film in the longitudinal direction.
  • the stretching ratio is preferably 1.1 times to 3.5 times.
  • the stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., with respect to the glass transition temperature (Tg) of the resin film.
  • a stretching method there is a method in which a long resin film is diagonally stretched continuously in the direction of a predetermined angle with respect to the longitudinal direction.
  • a method of oblique stretching for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A 2000-9912, JP-A 2002-86554, The methods described in JP-A-2002-22944 and the like can be mentioned.
  • the thickness of the retardation film is preferably 10 ⁇ m to 150 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and still more preferably 10 ⁇ m to 70 ⁇ m. With such a thickness, the desired in-plane retardation and the Nz coefficient can be obtained.
  • the second retardation layer has a thickness direction retardation Rth of Rth (450) / Rth (550) ⁇ 1 and Rth (650) / Rth (550) ⁇ 1.
  • the refractive index characteristics satisfy nz> nx ⁇ ny.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably -30 nm to -200 nm, more preferably -35 nm to -180 nm, and still more preferably -40 nm to -160 nm.
  • the thickness direction retardation of the second retardation layer preferably has a value of Rth (450) / Rth (550) of 0.70 to 0.90, more preferably 0.72 to 0.88. And more preferably 0.74 to 0.86.
  • the value of Rth (650) / Rth (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. .
  • the second retardation layer can typically be constituted by an oriented and solidified layer of a liquid crystal compound capable of achieving the above-mentioned properties.
  • the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed.
  • the second retardation layer may preferably include a liquid crystal material fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) which can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • a specific example of the liquid crystal compound and the method for forming the retardation layer is described in, for example, Japanese Patent No. 5826759. The publication is incorporated herein by reference in its entirety.
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 50 ⁇ m, more preferably 0.5 ⁇ m to 40 ⁇ m, and still more preferably 0.5 ⁇ m to 30 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view of a polarizer with optical compensation layer according to one embodiment of the present invention.
  • the optical compensation layer-attached polarizing plate 100 of the present embodiment includes a polarizer 20 and an optical compensation layer 10A.
  • the optical compensation layer 10A is composed of the retardation plate described in the above section A.
  • the angle between the slow axis of the optical compensation layer and the absorption axis of the polarizer is 35 ° to 55 °.
  • a protective layer 30 may be provided on the side of the polarizer 20 opposite to the optical compensation layer 10A, as shown in the example shown.
  • the optical compensation layer-attached polarizing plate may include another protective layer (also referred to as an inner protective layer) between the polarizer 20 and the optical compensation layer 10A.
  • the inner protective layer is omitted.
  • the optical compensation layer 10A can also function as an inner protective layer. With such a configuration, further thinning of the polarizing plate with the optical compensation layer can be realized.
  • a conductive layer and a base material may be provided in this order on the side opposite to the polarizer 20 of the optical compensation layer 10A (that is, outside the optical compensation layer 10A) (both not shown). The substrate is closely laminated to the conductive layer.
  • adheresion lamination means that two layers are laminated directly and firmly without intervening adhesive layers (for example, an adhesive layer, an adhesive layer).
  • the conductive layer and the substrate can be typically introduced into the polarizing plate 100 with the optical compensation layer as a laminate of the substrate and the conductive layer.
  • the polarizing plate 100 with an optical compensation layer can be suitably used for an image display apparatus with an inner touch panel.
  • the resin film forming the polarizer may be a single layer resin film, or may be produced using a laminate of two or more layers.
  • the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) -based films, partially formalized PVA-based films, ethylene / vinyl acetate copolymer-based partially saponified films, etc.
  • PVA polyvinyl alcohol
  • those which have been subjected to a dyeing process and a drawing process with a dichroic substance such as iodine and a dichroic dye and a polyene-based oriented film such as a dewatered product of PVA or a dehydrochlorinated product of polyvinyl chloride.
  • a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used because of excellent optical properties.
  • the staining with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be carried out after the dyeing process or may be carried out while dyeing. Moreover, it may be dyed after being drawn.
  • the PVA-based film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, and the like. For example, by immersing and washing the PVA-based film in water prior to dyeing, it is possible not only to wash the stains and anti-blocking agent on the surface of the PVA-based film, but also to swell the PVA-based film to make uneven dyeing It can be prevented.
  • the polarizer obtained by using a laminate a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin
  • coated-formed to the base material is mentioned.
  • coated and formed by the said resin base material applies a PVA-type resin solution to a resin base material, for example, it is made to dry, and a resin base material Forming a PVA-based resin layer thereon to obtain a laminate of the resin base and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer as a polarizer; obtain.
  • stretching typically includes dipping the laminate in a boric acid aqueous solution and stretching.
  • stretching may optionally further comprise air-stretching the laminate at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution.
  • the resulting laminate of resin substrate / polarizer may be used as it is (that is, the resin substrate may be used as a protective layer of polarizer), and the resin substrate is peeled off from the laminate of resin substrate / polarizer.
  • any appropriate protective layer depending on the purpose may be laminated on the peeled surface.
  • the details of the method for producing such a polarizer are described, for example, in JP-A-2012-73580. The publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 25 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m. If the thickness of the polarizer is in such a range, curling at the time of heating can be favorably suppressed, and good appearance durability at the time of heating can be obtained.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is 43.0% to 46.0% as described above, preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and still more preferably 99.9% or more.
  • the protective layer 30 is formed of any suitable film that can be used as a protective layer of a polarizer.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyether sulfone-based, and polysulfone-based Transparent resins such as polystyrenes, polynorbornenes, polyolefins, (meth) acrylics and acetates can be mentioned.
  • TAC triacetyl cellulose
  • TAC triacetyl cellulose
  • polyester-based polyvinyl alcohol-based
  • polycarbonate-based polyamide-based
  • polyimide-based polyimide-based
  • polyether sulfone-based polysulfone-based
  • Transparent resins such as polystyrenes, polynorbornenes, polyolefins, (meth) acrylic
  • thermosetting resins such as (meth) acrylic resins, urethane resins, (meth) acrylic urethane resins, epoxy resins, and silicone resins, ultraviolet curable resins, and the like can also be mentioned.
  • glassy polymers such as siloxane polymers can also be mentioned.
  • a polymer film described in JP-A-2001-343529 (WO 01/37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain for example, a resin composition having an alternating copolymer of isobutene and N-methyl maleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film may be, for example, an extrusion of the resin composition.
  • the protective layer 30 may be subjected to surface treatment such as hard coating treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., as necessary. Furthermore, / or a process for improving the visibility of the protective layer 30 when viewed through polarized sunglasses, if necessary (typically, giving an (elliptical) circular polarization function, ultra-high retardation May be applied). By performing such processing, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with the optical compensation layer can be suitably applied to an image display that can be used outdoors.
  • the thickness of the protective layer 30 is typically 5 mm or less, preferably 1 mm or less, more preferably 1 ⁇ m to 500 ⁇ m, and still more preferably 5 ⁇ m to 150 ⁇ m.
  • the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.
  • the inner protective layer is preferably optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm, and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the inner protective layer may be composed of any suitable material as long as it is optically isotropic. The material may, for example, be suitably selected from the materials described above for the protective layer 30.
  • the thickness of the inner protective layer is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and still more preferably 15 ⁇ m to 95 ⁇ m.
  • the conductive layer may be patterned as required. By patterning, the conductive portion and the insulating portion can be formed. As a result, an electrode can be formed.
  • the electrodes may function as touch sensor electrodes that sense a touch on the touch panel.
  • the shape of the pattern is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). Specific examples thereof include the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109. Be
  • the conductive layer can be formed by depositing a metal oxide film on any suitable substrate by any suitable film forming method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.) It can be formed as a membrane. After the film formation, heat treatment (eg, 100 ° C. to 200 ° C.) may be performed as necessary. By heat treatment, an amorphous film can be crystallized.
  • suitable film forming method eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.
  • heat treatment eg, 100 ° C. to 200 ° C.
  • an amorphous film can be crystallized.
  • metal oxides include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide.
  • the indium oxide may be doped with divalent metal ions or tetravalent metal
  • the indium-based composite oxide is an indium-based composite oxide, more preferably indium-tin composite oxide (ITO).
  • ITO indium-tin composite oxide
  • the indium-based composite oxide is characterized by having high transmittance (eg, 80% or more) in the visible light range (380 nm to 780 nm) and low surface resistance per unit area.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the surface resistance value of the conductive layer is preferably 300 ohms / square or less, more preferably 150 ohms / square or less, and still more preferably 100 ohms / square or less.
  • the conductive layer may be transferred from the base to the optical compensation layer, and the conductive layer alone may be used as a constituent layer of the polarizing plate with the optical compensation layer, and the optical compensation as a laminate with the base (conductive layer with base) It may be laminated to a layer.
  • the conductive layer and the base material can be introduced into the polarizing plate with an optical compensation layer as a conductive layer with a substrate.
  • a material which comprises a base material arbitrary appropriate resin is mentioned.
  • it is a resin excellent in transparency.
  • Specific examples thereof include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, and acrylic resins.
  • the substrate is optically isotropic, so that the conductive layer can be used as a conductive layer with isotropic substrate in a polarizing plate with an optical compensation layer.
  • the material constituting the optically isotropic substrate include, for example, a material having as a main skeleton a resin having no conjugated system such as norbornene resin and olefin resin, lactone ring and glutar The material etc. which have cyclic structures, such as an imide ring, in the principal chain of acrylic resin, etc. are mentioned.
  • a material having as a main skeleton a resin having no conjugated system such as norbornene resin and olefin resin, lactone ring and glutar
  • the material etc. which have cyclic structures, such as an imide ring, in the principal chain of acrylic resin, etc. are mentioned.
  • the thickness of the substrate is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 60 ⁇ m.
  • the pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive.
  • the adhesive layer is typically formed of a polyvinyl alcohol adhesive.
  • an adhesive layer may be provided on the optical compensation layer 10A side of the optical compensation layer-attached polarizing plate 100.
  • the pressure-sensitive adhesive layer By providing the pressure-sensitive adhesive layer in advance, it can be easily attached to another optical member (for example, an organic EL cell).
  • another optical member for example, an organic EL cell.
  • the peeling film is bonded together to the surface of this adhesive layer until it is used for use.
  • the image display device of the present invention comprises a display cell, and the polarizing plate with an optical compensation layer described in the above item B on the viewing side of the display cell.
  • the polarizing plate with an optical compensation layer is laminated such that the optical compensation layer is on the display cell side (the polarizer is on the viewing side).
  • the conductive layer functions as a touch panel sensor, whereby the touch sensor is interposed between the display cell (for example, liquid crystal cell, organic EL cell) and the polarizer.
  • a so-called inner touch panel-attached image display device can be configured.
  • Example 1 Preparation of Polycarbonate Resin The polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and a reflux condenser controlled at 100 ° C. 29.60 parts by mass (0.046 mol) of bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (compound 3), 29.21 parts by mass (0.200 mol) of ISB, 42.28 parts of SPG Parts (0.139 mol), 63.77 parts by mass (0.298 mol) of DPC, and 1.19 ⁇ 10 -2 parts by mass (6.78 ⁇ 10 -5 mol) of calcium acetate monohydrate were charged.
  • a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and a reflux condenser controlled at 100 ° C. 29.60 parts by mass (0.046 mol) of bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (com
  • Preparation of Retardation Plate (1) Preparation of Retardation Film Used as First Retardation Layer
  • the obtained polycarbonate resin was used as a single-screw extruder (manufactured by Isuzu Kako Co., Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.)
  • a film was made.
  • the obtained polycarbonate film is cut out into a length of 150 mm and a width of 120 mm, and fixed end uniaxial stretching is performed at a temperature of 134 ° C. and a magnification of 2.8 times using Lab Stretcher KARO IV (manufactured by Bruckner) to obtain a retardation film (Thickness: 47 ⁇ m) was obtained.
  • the obtained retardation film has a refractive index characteristic of nx>ny> nz, Re (450) is 119 nm, Re (550) is 139 nm, Re (650) is 147 nm, and Nz (450) is 1. 08, Nz (550) was 1.13 and Nz (650) was 1.15.
  • Re (450) / Re (550) of the obtained retardation film was 0.86
  • Re (650) / Re (550) was 1.06.
  • (2) Preparation of Liquid Crystalline Solidification Layer Used as Second Retardation Layer A liquid crystal coating liquid was prepared according to Example 2 of Japanese Patent No. 5401032 to form a liquid crystal solidification layer (thickness: 0.9 ⁇ m) on a substrate .
  • Rth (450) / Rth (550) of the liquid crystal solidified layer was 0.79
  • Rth (650) / Rth (550) was 1.07.
  • (3) Preparation of Retardation Plate The liquid crystal solidified layer is attached to the retardation film through an acrylic adhesive, and then the base film is removed, and the liquid crystal solidified layer is transferred to the retardation film. A retardation plate (thickness: 48 ⁇ m) was obtained. In the obtained retardation plate, Re (450) is 120 nm, Re (550) is 141 nm, Re (650) is 150 nm, Nz (450) is 0.76, Nz (550) is 0.79, Nz ( 650) was 0.81. 3.
  • a transparent conductive layer (20 nm in thickness) made of indium-tin complex oxide is formed by sputtering on the surface of the above retardation plate on the liquid crystal solidified layer side, and lamination of retardation film / liquid crystal solidified layer / conductive layer The body was made.
  • Polarizer A long roll of polyvinyl alcohol (PVA) resin film (Kuraray, product name "PE3000”) with a thickness of 30 ⁇ m was uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretcher. At the same time, the film was subjected to swelling, dyeing, crosslinking, washing treatment at the same time as drawing, and finally dried treatment to prepare a 12 ⁇ m thick polarizer. Specifically, the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C. Next, the dyeing process is carried out in an aqueous solution at 30 ° C.
  • PVA polyvinyl alcohol
  • the weight ratio of iodine to potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the resulting polarizer is 45.0%.
  • the crosslinking treatment employed two-step crosslinking treatment, and the first-step crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
  • the boric acid content of the aqueous solution of the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the second step of crosslinking treatment was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
  • the boric acid content of the aqueous solution in the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the washing process was processed by 20 degreeC potassium iodide aqueous solution.
  • the potassium iodide content of the aqueous solution for washing was 2.6% by weight.
  • drying was performed at 70 ° C. for 5 minutes to obtain a polarizer. 5.
  • Preparation of Polarizing Plate with Optical Compensation Layer A triacetyl cellulose film (thickness 40 ⁇ m, manufactured by Konica Minolta, trade name “KC4UYW”) was attached to one side of the above-mentioned polarizer via a polyvinyl alcohol-based adhesive.
  • the retardation film side of the retardation plate was attached to the other side of the polarizer via a polyvinyl alcohol-based adhesive.
  • the retardation films were laminated such that the slow axis of the retardation film was 45 ° counterclockwise with respect to the absorption axis of the polarizer.
  • a polarizing plate with an optical compensation layer having a laminated structure of protective layer / polarizer / retardation film / liquid crystal solidified layer / conductive layer was obtained.
  • An aluminum vapor deposition film (made by Toray Film Processing Co., Ltd., trade name "DMS vapor deposition X-42", thickness 50 ⁇ m) was bonded to a glass plate with an adhesive to serve as a substitute for the organic EL display device.
  • a pressure-sensitive adhesive layer was formed with an acrylic pressure-sensitive adhesive on the conductive layer side of the obtained polarizing plate with an optical compensation layer, cut out to a size of 50 mm ⁇ 50 mm, and mounted on an organic EL display device substitute.
  • Example 2 A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.1 ⁇ m was used in the process of producing the retardation plate.
  • Re (550) is 0 nm
  • Rth (550) is ⁇ 55 nm
  • Rth (450) / Rth (550) is 0.80
  • Rth (650) / Rth (550) is 1.03. there were.
  • Re (450) is 120 nm
  • Re (550) is 141 nm
  • Re (650) is 150 nm
  • Nz (450) is 0.71
  • Nz (550) is 0.74
  • Nz ( 650) was 0.76.
  • a polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
  • Example 3 A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.3 ⁇ m was used in the production process of the retardation plate.
  • Re (550) is 0 nm
  • Rth (550) is ⁇ 65 nm
  • Rth (450) / Rth (550) is 0.80
  • Rth (650) / Rth (550) is 1.03. there were.
  • the Re (450) of the obtained retardation plate is 120 nm, the Re (550) is 141 nm, the Re (650) is 150 nm, the Nz (450) is 0.66, the Nz (550) is 0.67, Nz ( 650) was 0.70.
  • a polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
  • Example 4 A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.7 ⁇ m was used in the process of producing the retardation plate.
  • Re (550) is 0 nm
  • Rth (550) is ⁇ 80 nm
  • Rth (450) / Rth (550) is 0.80
  • Rth (650) / Rth (550) is 1.03. there were.
  • the Re (450) of the obtained retardation plate is 121 nm
  • the Re (550) is 142 m
  • the Re (650) is 150 nm
  • the Nz (450) is 0.59
  • the Nz (550) is 0.60
  • Nz ( 650) was 0.62.
  • a polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
  • Example 5 A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.9 ⁇ m was used in the process of producing the retardation plate.
  • Re (550) is 0 nm
  • Rth (550) is ⁇ 90 nm
  • Rth (450) / Rth (550) is 0.80
  • Rth (650) / Rth (550) is 1.03. there were.
  • the Re (450) of the obtained retardation plate is 120 nm, the Re (550) is 141 m, the Re (650) is 149 nm, the Nz (450) is 0.47, the Nz (550) is 0.48, Nz ( 650) was 0.50.
  • a polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
  • Comparative Example 1 20 parts by weight of a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000) 80 parts by weight of a polymerizable liquid crystal (manufactured by BASF: trade name: Paliocolor LC 242) exhibiting a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Cibas Specialty Chemicals: trade name: Irgacure 907) dissolved in 200 parts by weight of cyclopentanone Thus, a liquid crystal coating liquid was prepared.
  • a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000) 80 parts by weight of a polymerizable liquid crystal (manufactured by BA
  • the coating solution is applied to a substrate film (a norbornene resin film: manufactured by Nippon Zeon Co., Ltd., trade name “Zonex”) by a bar coater, and then the liquid crystal is dried by heating at 80 ° C. for 4 minutes. It was oriented.
  • the liquid crystal layer was irradiated with ultraviolet light to cure the liquid crystal layer, thereby forming a liquid crystal solidified layer (thickness: 1 ⁇ m) to be a second retardation layer on the substrate.
  • the A retardation plate was obtained in the same manner as in Example 1 except that the above liquid crystal solidified layer was used.
  • the Re (450) of the obtained retardation plate is 119 nm
  • the Re (550) is 139 nm
  • the Re (650) is 147 nm
  • the Nz (450) is 0.31
  • the Nz (550) is 0.52
  • Nz ( 650) was 0.60.
  • a polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
  • Comparative Example 2 A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the retardation film produced in the same manner as in Example 1 was used as a retardation plate.
  • the organic EL display device alternative was used as a sample, and the reflectance and reflected hue in the oblique direction were measured using DMS 505 manufactured by Konica Minolta.
  • the reflectance in the oblique direction was evaluated as the average value of the luminous reflectance Y at four points of polar angle of 60 ° and azimuth angles of 0 °, 45 °, 90 ° and 135 °.
  • the reflected hue in the oblique direction is measured at an angle of 60 ° with respect to the fast axis on the a * b * chromaticity diagram
  • the reflected hue in the oblique direction is measured with an angle of 60 ° with respect to the slow axis.
  • the distance ⁇ a * b * between the two points of the reflection hue of was evaluated.
  • the organic EL display device alternative of the example had better oblique reflection intensity and reflection hue than the organic EL display device alternative of the comparative example.
  • the polarizing plate with an optical compensation layer having the retardation plate of the present invention is suitably used for an image display device such as an organic EL panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a phase difference plate whereby an image display device having a neutral hue in an oblique direction can be realized. In this phase difference plate, the in-plane retardation Re satisfies the expressions 100 nm ≤ Re(550) ≤ 160 nm, Re(450)/Re(550) ≤ 1, and Re(650)/Re(550) ≥ 1, and the Nz coefficient satisfies the expressions Nz(550) < 1, 0 ≤ |Nz(450) – Nz(550)| ≤ 0.1, and 0 ≤ |Nz(650) – Nz(550)| ≤ 0.1.

Description

位相差板、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
 本発明は、位相差板、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置に関する。 The present invention relates to a retardation plate, a polarizing plate with an optical compensation layer, an image display device, and an image display device with a touch panel.
 近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載した画像表示装置(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、光学補償層付偏光板(円偏光板)を視認側に設けることにより、これらの問題を防ぐことが知られている。また、液晶表示パネルの視認側に光学補償層付偏光板を設けることで、視野角を改善することが知られている。一般的な光学補償層付偏光板として、位相差フィルムと偏光子とを、その遅相軸と吸収軸とが用途に応じた所定の角度(例えば、45°)をなすように積層したものが知られている。しかし、従来の位相差フィルムは、光学補償層付偏光板に用いた場合に、斜め方向の色相に所望でない色付きが生じ得るという問題がある。 In recent years, with the spread of thin displays, image display devices (organic EL display devices) equipped with an organic EL panel have been proposed. The organic EL panel has a highly reflective metal layer, and easily causes problems such as reflection of external light and reflection of a background. Therefore, it is known to prevent these problems by providing a polarizing plate with an optical compensation layer (circularly polarizing plate) on the viewing side. It is also known to improve the viewing angle by providing a polarizing plate with an optical compensation layer on the viewing side of the liquid crystal display panel. As a general polarizing plate with an optical compensation layer, one in which a retardation film and a polarizer are laminated such that the slow axis and the absorption axis form a predetermined angle (for example, 45 °) according to the application Are known. However, the conventional retardation film has a problem that when it is used for a polarizing plate with an optical compensation layer, undesired coloration may occur in the hue in the oblique direction.
特開2016-42185公報JP, 2016-42185, A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、斜め方向の色相がニュートラルである画像表示装置を実現し得る位相差板、並びに、そのような位相差板を有する光学補償層付偏光板、画像表示装置、およびタッチパネル装置を提供することにある。 The present invention has been made to solve the above-described conventional problems, and its main object is to provide a retardation plate capable of realizing an image display device in which the hue in the oblique direction is neutral, and such a retardation plate An optical compensation layer-attached polarizing plate, an image display device, and a touch panel device are provided.
 本発明の位相差板は、面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。
 1つの実施形態においては、第1の位相差層と第2の位相差層とが積層された積層構造を有し、上記第1の位相差層は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、上記第2の位相差層は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。
 本発明の別の局面によれば、光学補償層付偏光板が提供される。この光学補償層付偏光板は、上記位相差板により構成される光学補償層と、偏光子とを有し、上記光学補償層の遅相軸と前記偏光子の吸収軸とのなす角度が35°~55°である。
 1つの実施形態においては、上記光学補償層付偏光板は、光学補償層の上記偏光子とは反対側に導電層を有する。
 本発明のさらに別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学補償層付偏光板を有する。
 本発明のさらに別の局面によれば、タッチパネル付き画像表示装置が提供される。このタッチパネル付き画像表示装置は、上記光学補償層付偏光板を有し、上記導電層がタッチパネルセンサーとして機能する。
The retardation plate of the present invention has an in-plane retardation Re of 100 nm ≦ Re (550) ≦ 160 nm, Re (450) / Re (550) ≦ 1, and Re (650) / Re (550) ≧ 1. And the Nz coefficient satisfies Nz (550) <1, 0 ≦ | Nz (450) −Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) −Nz (550) | ≦ 0.1 Meet.
In one embodiment, the first retardation layer has a laminated structure in which a first retardation layer and a second retardation layer are laminated, and the first retardation layer has an in-plane retardation Re of 450 ) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, the refractive index characteristic satisfies nx> nynynz, and the second retardation layer has a thickness direction retardation Rth satisfies Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1, and the refractive index characteristic satisfies nz> nx ≧ ny.
According to another aspect of the present invention, a polarizing plate with an optical compensation layer is provided. The optical compensation layer-attached polarizing plate has an optical compensation layer constituted of the retardation plate and a polarizer, and the angle between the slow axis of the optical compensation layer and the absorption axis of the polarizer is 35 It is from 0 ° to 55 °.
In one embodiment, the polarizing plate with an optical compensation layer has a conductive layer on the side opposite to the polarizer of the optical compensation layer.
According to still another aspect of the present invention, an image display device is provided. This image display device has the above-mentioned polarizing plate with an optical compensation layer.
According to still another aspect of the present invention, an image display device with a touch panel is provided. This image display apparatus with a touch panel has the above-mentioned polarizing plate with an optical compensation layer, and the above-mentioned conductive layer functions as a touch panel sensor.
 本発明によれば、位相差板の面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たすことにより、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。 According to the present invention, the in-plane retardation Re of the retardation plate is 100 nm ≦ Re (550) ≦ 160 nm, Re (450) / Re (550) ≦ 1, and Re (650) / Re (550) ≧ 1 and Nz coefficient is Nz (550) <1, 0 ≦ | Nz (450) −Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) −Nz (550) | ≦ 0 By satisfying .1, it is possible to realize an optical compensation layer-attached polarizing plate in which the hue in the oblique direction is neutral when used in the optical compensation layer-attached polarizing plate.
本発明の1つの実施形態による位相差板の概略断面図である。FIG. 1 is a schematic cross-sectional view of a retardation plate according to an embodiment of the present invention. 本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。FIG. 1 is a schematic cross-sectional view of a polarizing plate with an optical compensation layer according to one embodiment of the present invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, although the embodiment of the present invention is described, the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction) And “nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is an in-plane retardation measured at 23 ° C. with light of wavelength λ nm. For example, “Re (550)” is an in-plane retardation measured with light of wavelength 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
“Rth (λ)” is a retardation in the thickness direction measured with light of wavelength λ nm at 23 ° C. For example, “Rth (550)” is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the equation: Rth = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz = Rth / Re.
A.位相差板
 本発明の位相差板10は、面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。すなわち、上記位相差板は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示し、かつ、Nz係数の波長依存性が小さく、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示す。これにより、上記位相差板は、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。位相差板は、枚葉状であってもよいし、長尺状であってもよい。
A. Retardation Plate The retardation plate 10 of the present invention has an in-plane retardation Re of 100 nm ≦ Re (550) ≦ 160 nm, Re (450) / Re (550) ≦ 1, and Re (650) / Re (550). 1), and the Nz coefficient satisfies Nz (550) <1, 0 ≦ | Nz (450) −Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) −Nz (550) | It satisfies ≦ 0.1. That is, the retardation plate exhibits inverse dispersion wavelength characteristics in which the retardation value increases in accordance with the wavelength of the measurement light, and the wavelength dependence of the Nz coefficient is small, and the refractive index for the measurement light in a wide wavelength range The characteristics show the relationship of nx>nz> ny. Thus, the retardation plate can realize an optical compensation layer-attached polarizing plate in which the hue in the oblique direction is neutral when used in the optical compensation layer-attached polarizing plate. The retardation plate may be sheet-like or long.
 図1は、本発明の1つの実施形態による位相差板10の概略断面図である。代表的には、位相差板10は、第1の位相差層11と第2の位相差層12とが積層された積層構造を有する。この場合、第1の位相差層11は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、第2の位相差層12は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。 FIG. 1 is a schematic cross-sectional view of a retardation plate 10 according to one embodiment of the present invention. Typically, the retardation plate 10 has a laminated structure in which the first retardation layer 11 and the second retardation layer 12 are laminated. In this case, in the first retardation layer 11, the in-plane retardation Re satisfies Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, and the refractive index characteristic Satisfies nx> ny ≧ nz, and the second retardation layer 12 has a thickness direction retardation Rth of Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1. The refractive index characteristics satisfy nz> nx ≧ ny.
 位相差板の面内位相差Re(550)は、好ましくは120nm~150nmであり、より好ましくは130nm~145nmである。位相差板の面内位相差が上記の範囲内であれば、位相差板と偏光子とを、位相差板の遅相軸方向と偏光子の吸収軸方向とのなす角度が約45°または約135°となるように積層して得られる光学補償層付偏光板は、優れた反射防止特性を実現し得る円偏光板として用いられ得る。 The in-plane retardation Re (550) of the retardation plate is preferably 120 nm to 150 nm, more preferably 130 nm to 145 nm. If the in-plane retardation of the retardation plate is within the above range, the angle between the retardation plate and the polarizer and the absorption axis of the retardation plate is about 45 ° or The polarizing plate with an optical compensation layer obtained by laminating so as to be about 135 ° can be used as a circularly polarizing plate that can realize excellent antireflection properties.
 位相差板の面内位相差に関して、Re(450)/Re(550)の値は、好ましくは0.80~0.90であり、より好ましくは0.80~0.88であり、さらに好ましくは0.80~0.86である。Re(650)/Re(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。これにより、位相差板は、より優れた反射色相を達成することができる。 With respect to the in-plane retardation of the retardation plate, the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88, and still more preferably Is 0.80 to 0.86. The value of Re (650) / Re (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. . Thereby, the retardation plate can achieve a better reflection hue.
 位相差板のNz係数は、上記のとおり、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。Nz(550)は、好ましくは0.3~0.7であり、より好ましくは0.4~0.6であり、さらに好ましくは0.45~0.55であり、特に好ましくは約0.5である。Nz係数がこのような範囲であれば、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示し、これにより、斜め方向の色相がニュートラルであり、かつ、優れた広視野角特性を有する光学補償層付偏光板を実現し得る。 As described above, the Nz coefficient of the retardation plate is Nz (550) <1, 0 ≦ | Nz (450) −Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) −Nz (550). )) 0.10.1 is satisfied. Nz (550) is preferably 0.3 to 0.7, more preferably 0.4 to 0.6, still more preferably 0.45 to 0.55, and particularly preferably about 0. 5 If the Nz coefficient is in such a range, the refractive index characteristic exhibits a relationship of nx> nz> ny with respect to measurement light in a wide wavelength range, whereby the hue in the oblique direction is neutral and excellent. An optical compensation layer-provided polarizing plate having wide viewing angle characteristics can be realized.
A-1.第1の位相差層
 第1の位相差層は、上記のとおり、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たす。第1の位相差層の面内位相差Re(550)は、好ましくは100nm~170nmであり、より好ましくは110nm~160nmであり、さらに好ましくは120nm~150nmである。
A-1. First Retardation Layer As described above, in the in-plane retardation Re of the first retardation layer, Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1. The refractive index characteristics satisfy nx> ny ≧ nz. The in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 170 nm, more preferably 110 nm to 160 nm, and still more preferably 120 nm to 150 nm.
 第1の位相差層の面内位相差に関して、Re(450)/Re(550)の値は、好ましくは0.80~0.90であり、より好ましくは0.80~0.88であり、さらに好ましくは0.80~0.86である。Re(650)/Re(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。 Regarding the in-plane retardation of the first retardation layer, the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88. And more preferably 0.80 to 0.86. The value of Re (650) / Re (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. .
 第1の位相差層は、代表的には、上記の特性を実現し得る任意の適切な樹脂で形成された位相差フィルムである。上記位相差フィルムは、上記特性を実現し得る任意の適切な樹脂フィルムを任意の適切な延伸条件で延伸することにより得られ得る。上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する延伸フィルムを得ることができる。 The first retardation layer is typically a retardation film formed of any appropriate resin capable of realizing the above-mentioned characteristics. The retardation film may be obtained by stretching any suitable resin film capable of realizing the above-mentioned characteristics under any suitable stretching conditions. The said extending | stretching can employ | adopt arbitrary appropriate extending | stretching methods, extending | stretching conditions (for example, extending | stretching temperature, a draw ratio, extending | stretching direction). By appropriately selecting the stretching method and the stretching conditions, it is possible to obtain a stretched film having the desired optical properties (for example, refractive index characteristics, in-plane retardation, Nz coefficient).
 位相差フィルムの光弾性係数(の絶対値)は、好ましくは14×10-12Pa-1以下である。位相差フィルムの光弾性係数は、好ましくは1×10-12Pa-1~14×10-12Pa-1であり、より好ましくは2×10-12Pa-1~12×10-12Pa-1である。光弾性係数の絶対値がこのような範囲であれば、高温高湿環境下においても位相差値の変化を抑制することができ、優れた信頼性を実現することができる。また、小さい厚みでも十分な位相差を確保しつつ画像表示装置(特に、有機ELパネル)の屈曲性を維持することができ、さらに、屈曲時の応力による位相差変化(結果として、有機ELパネルの色変化)をより抑制することができる。 The photoelastic coefficient (absolute value) of the retardation film is preferably 14 × 10 −12 Pa −1 or less. The photoelastic coefficient of the retardation film is preferably 1 × 10 −12 Pa −1 to 14 × 10 12 Pa −1 , more preferably 2 × 10 −12 Pa −1 to 12 × 10 −12 Pa It is 1 . If the absolute value of the photoelastic coefficient is in such a range, it is possible to suppress a change in retardation value even under a high temperature and high humidity environment, and to realize excellent reliability. In addition, the flexibility of the image display device (particularly, the organic EL panel) can be maintained while securing a sufficient phase difference even with a small thickness, and furthermore, the phase difference change due to the stress at the time of bending (as a result, the organic EL panel Color change) can be further suppressed.
 位相差フィルムは、その吸水率が好ましくは3%以下であり、より好ましくは2.5%以下、さらに好ましくは2%以下である。このような吸水率を満足することにより、表示特性の経時変化を抑制することができる。なお、吸水率は、JIS K 7209に準拠して求めることができる。 The retardation film preferably has a water absorption of 3% or less, more preferably 2.5% or less, and still more preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress the temporal change in display characteristics. In addition, a water absorption can be calculated | required based on JISK7209.
 位相差フィルムは、好ましくは、水分およびガス(例えば酸素)に対するバリア性を有する。延伸フィルムの40℃、90%RH条件下での水蒸気透過率(透湿度)は、好ましくは1.0×10-1g/m/24hr未満である。バリア性の観点からは、透湿度の下限は低いほど好ましい。延伸フィルムの60℃、90%RH条件下でのガスバリア性は、好ましくは1.0×10-7g/m/24hr~0.5g/m/24hrであり、より好ましくは1.0×10-7g/m/24hr~0.1g/m/24hrである。透湿度およびガスバリア性がこのような範囲であれば、光学補償層付偏光板を有機ELパネルに貼り合わせた場合に、当該有機ELパネルを空気中の水分および酸素から良好に保護し得る。なお、透湿度およびガスバリア性はいずれも、JIS K 7126-1に準じて測定され得る。 The retardation film preferably has barrier properties against moisture and gas (for example, oxygen). 40 ° C. of the stretched film, water vapor transmission rate of at 90% RH conditions (moisture permeability) is preferably 1.0 × 10 -1 g / m less than 2/24 hr or. From the viewpoint of the barrier property, the lower the lower limit of the moisture permeability, the better. 60 ° C., gas barrier properties 90% RH conditions of the stretched film is preferably 1.0 × 10 -7 g / m 2 /24hr~0.5g/m 2 / 24hr, more preferably 1.0 × a 10 -7 g / m 2 /24hr~0.1g/m 2 / 24hr. When the moisture permeability and the gas barrier property are in such ranges, when the polarizing plate with an optical compensation layer is bonded to an organic EL panel, the organic EL panel can be well protected from moisture and oxygen in the air. Incidentally, both the moisture permeability and the gas barrier property can be measured according to JIS K 7126-1.
 位相差フィルムを構成する樹脂としては、例えば、ポリアリレート、ポリイミド、ポリアミド、ポリエステル、ポリビニルアルコール、ポリフマル酸エステル、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂、環状オレフィン系樹脂およびポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて用いてもよい。好ましくは、ポリカーボネート樹脂である。上記樹脂の具体例は、例えば特開2015-212828号公報に熱可塑性樹脂として記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Examples of the resin constituting the retardation film include polyarylate, polyimide, polyamide, polyester, polyvinyl alcohol, polyfumaric acid ester, norbornene resin, polycarbonate resin, cellulose resin, cyclic olefin resin and polyurethane. These resins may be used alone or in combination. Preferably, it is a polycarbonate resin. A specific example of the above resin is described as a thermoplastic resin in, for example, JP-A-2015-212828. The publication is incorporated herein by reference in its entirety.
 上記ポリカーボネート樹脂のガラス転移温度は、110℃以上180℃以下であることが好ましく、より好ましくは120℃以上165℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or more and 180 ° C. or less, and more preferably 120 ° C. or more and 165 ° C. or less. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability at the time of film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is determined in accordance with JIS K 7121 (1987).
 延伸方法としては、例えば、横一軸延伸、自由端一軸延伸、固定端二軸延伸、固定端一軸延伸、逐次二軸延伸が挙げられる。好ましくは、固定端一軸延伸である。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。延伸温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。他の延伸方法としては、長尺状の樹脂フィルムを長手方向に対して所定の角度の方向に連続的に斜め延伸する方法が挙げられる。斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報等に記載の方法が挙げられる。 Examples of the stretching method include transverse uniaxial stretching, free end uniaxial stretching, fixed end biaxial stretching, fixed end uniaxial stretching, and sequential biaxial stretching. Preferably, it is fixed end uniaxial stretching. As a specific example of fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while traveling the resin film in the longitudinal direction. The stretching ratio is preferably 1.1 times to 3.5 times. The stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., with respect to the glass transition temperature (Tg) of the resin film. As another stretching method, there is a method in which a long resin film is diagonally stretched continuously in the direction of a predetermined angle with respect to the longitudinal direction. As a method of oblique stretching, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A 2000-9912, JP-A 2002-86554, The methods described in JP-A-2002-22944 and the like can be mentioned.
 位相差フィルム(第1の位相差層)の厚みは、好ましくは10μm~150μmであり、より好ましくは10μm~100μmであり、さらに好ましくは10μm~70μmである。このような厚みであれば、上記所望の面内位相差およびNz係数が得られ得る。 The thickness of the retardation film (first retardation layer) is preferably 10 μm to 150 μm, more preferably 10 μm to 100 μm, and still more preferably 10 μm to 70 μm. With such a thickness, the desired in-plane retardation and the Nz coefficient can be obtained.
A-2.第2の位相差層
 第2の位相差層は、上記のとおり、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-30nm~-200nmであり、より好ましくは-35nm~-180nmであり、さらに好ましくは-40nm~-160nmである。
A-2. Second Retardation Layer As described above, the second retardation layer has a thickness direction retardation Rth of Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1. The refractive index characteristics satisfy nz> nx ≧ ny. The thickness direction retardation Rth (550) of the second retardation layer is preferably -30 nm to -200 nm, more preferably -35 nm to -180 nm, and still more preferably -40 nm to -160 nm.
 第2の位相差層の厚み方向位相差に関して、Rth(450)/Rth(550)の値は、好ましくは0.70~0.90であり、より好ましくは0.72~0.88であり、さらに好ましくは0.74~0.86である。Rth(650)/Rth(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。 The thickness direction retardation of the second retardation layer preferably has a value of Rth (450) / Rth (550) of 0.70 to 0.90, more preferably 0.72 to 0.88. And more preferably 0.74 to 0.86. The value of Rth (650) / Rth (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and still more preferably 1.03 to 1.10. .
 第2の位相差層は、代表的には、上記の特性を実現し得る液晶化合物の配向固化層により構成され得る。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。1つの実施形態においては、第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含み得る。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、例えば、特許第5826759号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。また、他の具体例としては、特許第5401032号公報、特開2015-200861号公報、特開2015-169875号公報に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。第2の位相差層の厚みは、好ましくは0.5μm~50μmであり、より好ましくは0.5μm~40μmであり、さらに好ましくは0.5μm~30μmである。 The second retardation layer can typically be constituted by an oriented and solidified layer of a liquid crystal compound capable of achieving the above-mentioned properties. In the present specification, the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed. In one embodiment, the second retardation layer may preferably include a liquid crystal material fixed in homeotropic alignment. The liquid crystal material (liquid crystal compound) which can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. A specific example of the liquid crystal compound and the method for forming the retardation layer is described in, for example, Japanese Patent No. 5826759. The publication is incorporated herein by reference in its entirety. In addition, other specific examples are described in Japanese Patent No. 5401 032, Japanese Patent Application Laid-Open No. 2015-200861, and Japanese Patent Application Laid-Open No. 2015-169875. It is incorporated as a reference. The thickness of the second retardation layer is preferably 0.5 μm to 50 μm, more preferably 0.5 μm to 40 μm, and still more preferably 0.5 μm to 30 μm.
B.光学補償層付偏光板
 図2は、本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。本実施形態の光学補償層付偏光板100は、偏光子20と光学補償層10Aとを備える。光学補償層10Aは、上記A項に記載の位相差板からなる。1つの実施形態においては、光学補償層の遅相軸と偏光子の吸収軸とのなす角度が35°~55°である。実用的には、図示例のように、偏光子20の光学補償層10Aと反対側に保護層30が設けられ得る。また、光学補償層付偏光板は、偏光子20と光学補償層10Aとの間に別の保護層(内側保護層とも称する)を備えてもよい。図示例においては、内側保護層は省略されている。この場合、光学補償層10Aが内側保護層としても機能し得る。このような構成であれば、光学補償層付偏光板のさらなる薄型化が実現され得る。さらに、必要に応じて、光学補償層10Aの偏光子20と反対側(すなわち、光学補償層10Aの外側)に導電層および基材をこの順に設けてもよい(いずれも図示せず)。基材は、導電層に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層および基材は、代表的には、基材と導電層との積層体として光学補償層付偏光板100に導入され得る。導電層および基材をさらに設けることにより、光学補償層付偏光板100は、インナータッチパネル付き画像表示装置に好適に用いられ得る。
B. Polarizer with Optical Compensation Layer FIG. 2 is a schematic cross-sectional view of a polarizer with optical compensation layer according to one embodiment of the present invention. The optical compensation layer-attached polarizing plate 100 of the present embodiment includes a polarizer 20 and an optical compensation layer 10A. The optical compensation layer 10A is composed of the retardation plate described in the above section A. In one embodiment, the angle between the slow axis of the optical compensation layer and the absorption axis of the polarizer is 35 ° to 55 °. In practice, a protective layer 30 may be provided on the side of the polarizer 20 opposite to the optical compensation layer 10A, as shown in the example shown. In addition, the optical compensation layer-attached polarizing plate may include another protective layer (also referred to as an inner protective layer) between the polarizer 20 and the optical compensation layer 10A. In the illustrated example, the inner protective layer is omitted. In this case, the optical compensation layer 10A can also function as an inner protective layer. With such a configuration, further thinning of the polarizing plate with the optical compensation layer can be realized. Furthermore, if necessary, a conductive layer and a base material may be provided in this order on the side opposite to the polarizer 20 of the optical compensation layer 10A (that is, outside the optical compensation layer 10A) (both not shown). The substrate is closely laminated to the conductive layer. In the present specification, “adhesion lamination” means that two layers are laminated directly and firmly without intervening adhesive layers (for example, an adhesive layer, an adhesive layer). The conductive layer and the substrate can be typically introduced into the polarizing plate 100 with the optical compensation layer as a laminate of the substrate and the conductive layer. By further providing the conductive layer and the base, the polarizing plate 100 with an optical compensation layer can be suitably used for an image display apparatus with an inner touch panel.
B-1.偏光子
 偏光子20としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体を用いて作製されてもよい。
B-1. Any appropriate polarizer may be employed as the polarizer 20. For example, the resin film forming the polarizer may be a single layer resin film, or may be produced using a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) -based films, partially formalized PVA-based films, ethylene / vinyl acetate copolymer-based partially saponified films, etc. In addition, those which have been subjected to a dyeing process and a drawing process with a dichroic substance such as iodine and a dichroic dye, and a polyene-based oriented film such as a dewatered product of PVA or a dehydrochlorinated product of polyvinyl chloride. Preferably, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The staining with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be carried out after the dyeing process or may be carried out while dyeing. Moreover, it may be dyed after being drawn. If necessary, the PVA-based film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, and the like. For example, by immersing and washing the PVA-based film in water prior to dyeing, it is possible not only to wash the stains and anti-blocking agent on the surface of the PVA-based film, but also to swell the PVA-based film to make uneven dyeing It can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of the polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin The polarizer obtained by using the laminated body with the PVA-type resin layer apply | coated-formed to the base material is mentioned. The polarizer obtained using the laminated body of the resin base material and the PVA-type resin layer apply | coated and formed by the said resin base material applies a PVA-type resin solution to a resin base material, for example, it is made to dry, and a resin base material Forming a PVA-based resin layer thereon to obtain a laminate of the resin base and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer as a polarizer; obtain. In the present embodiment, stretching typically includes dipping the laminate in a boric acid aqueous solution and stretching. Furthermore, stretching may optionally further comprise air-stretching the laminate at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution. The resulting laminate of resin substrate / polarizer may be used as it is (that is, the resin substrate may be used as a protective layer of polarizer), and the resin substrate is peeled off from the laminate of resin substrate / polarizer. Alternatively, any appropriate protective layer depending on the purpose may be laminated on the peeled surface. The details of the method for producing such a polarizer are described, for example, in JP-A-2012-73580. The publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is preferably 25 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, and particularly preferably 3 μm to 8 μm. If the thickness of the polarizer is in such a range, curling at the time of heating can be favorably suppressed, and good appearance durability at the time of heating can be obtained.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is 43.0% to 46.0% as described above, preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and still more preferably 99.9% or more.
B-2.保護層
 保護層30は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective Layer The protective layer 30 is formed of any suitable film that can be used as a protective layer of a polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyether sulfone-based, and polysulfone-based Transparent resins such as polystyrenes, polynorbornenes, polyolefins, (meth) acrylics and acetates can be mentioned. In addition, thermosetting resins such as (meth) acrylic resins, urethane resins, (meth) acrylic urethane resins, epoxy resins, and silicone resins, ultraviolet curable resins, and the like can also be mentioned. Besides, for example, glassy polymers such as siloxane polymers can also be mentioned. Further, a polymer film described in JP-A-2001-343529 (WO 01/37007) can also be used. As a material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain For example, a resin composition having an alternating copolymer of isobutene and N-methyl maleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film may be, for example, an extrusion of the resin composition.
 保護層30には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層30には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学補償層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The protective layer 30 may be subjected to surface treatment such as hard coating treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., as necessary. Furthermore, / or a process for improving the visibility of the protective layer 30 when viewed through polarized sunglasses, if necessary (typically, giving an (elliptical) circular polarization function, ultra-high retardation May be applied). By performing such processing, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with the optical compensation layer can be suitably applied to an image display that can be used outdoors.
 保護層30の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm~500μm、さらに好ましくは5μm~150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 30 is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm to 500 μm, and still more preferably 5 μm to 150 μm. When the surface treatment is performed, the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.
 偏光子20と光学補償層10Aとの間に内側保護層が設けられる場合、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。内側保護層は、光学的に等方性である限り、任意の適切な材料で構成され得る。当該材料は、例えば、保護層30に関して上記した材料から適切に選択され得る。 When an inner protective layer is provided between the polarizer 20 and the optical compensation layer 10A, the inner protective layer is preferably optically isotropic. In the present specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm, and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say. The inner protective layer may be composed of any suitable material as long as it is optically isotropic. The material may, for example, be suitably selected from the materials described above for the protective layer 30.
 内側保護層の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは15μm~95μmである。 The thickness of the inner protective layer is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and still more preferably 15 μm to 95 μm.
B-3.導電層または基材付導電層
 導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサー電極として機能し得る。パターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましい。具体例としては、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。
B-3. Conductive Layer or Conductive Layer with Substrate The conductive layer may be patterned as required. By patterning, the conductive portion and the insulating portion can be formed. As a result, an electrode can be formed. The electrodes may function as touch sensor electrodes that sense a touch on the touch panel. The shape of the pattern is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). Specific examples thereof include the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109. Be
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃~200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム-スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm~780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。 The conductive layer can be formed by depositing a metal oxide film on any suitable substrate by any suitable film forming method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.) It can be formed as a membrane. After the film formation, heat treatment (eg, 100 ° C. to 200 ° C.) may be performed as necessary. By heat treatment, an amorphous film can be crystallized. Examples of metal oxides include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide. The indium oxide may be doped with divalent metal ions or tetravalent metal ions. Preferably, it is an indium-based composite oxide, more preferably indium-tin composite oxide (ITO). The indium-based composite oxide is characterized by having high transmittance (eg, 80% or more) in the visible light range (380 nm to 780 nm) and low surface resistance per unit area.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。 The surface resistance value of the conductive layer is preferably 300 ohms / square or less, more preferably 150 ohms / square or less, and still more preferably 100 ohms / square or less.
 導電層は、上記基材から光学補償層に転写されて導電層単独で光学補償層付偏光板の構成層とされてもよく、基材との積層体(基材付導電層)として光学補償層に積層されてもよい。代表的には、上記のとおり、導電層および基材は、基材付導電層として光学補償層付偏光板に導入され得る。 The conductive layer may be transferred from the base to the optical compensation layer, and the conductive layer alone may be used as a constituent layer of the polarizing plate with the optical compensation layer, and the optical compensation as a laminate with the base (conductive layer with base) It may be laminated to a layer. Typically, as described above, the conductive layer and the base material can be introduced into the polarizing plate with an optical compensation layer as a conductive layer with a substrate.
 基材を構成する材料としては、任意の適切な樹脂が挙げられる。好ましくは、透明性に優れた樹脂である。具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。 As a material which comprises a base material, arbitrary appropriate resin is mentioned. Preferably, it is a resin excellent in transparency. Specific examples thereof include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, and acrylic resins.
 好ましくは、上記基材は光学的に等方性であり、したがって、導電層は等方性基材付導電層として光学補償層付偏光板に用いられ得る。光学的に等方性の基材(等方性基材)を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。 Preferably, the substrate is optically isotropic, so that the conductive layer can be used as a conductive layer with isotropic substrate in a polarizing plate with an optical compensation layer. Examples of the material constituting the optically isotropic substrate (isotropic substrate) include, for example, a material having as a main skeleton a resin having no conjugated system such as norbornene resin and olefin resin, lactone ring and glutar The material etc. which have cyclic structures, such as an imide ring, in the principal chain of acrylic resin, etc. are mentioned. When such a material is used, when forming an isotropic substrate, it is possible to suppress the development of retardation caused by the orientation of molecular chains.
 基材の厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~60μmである。 The thickness of the substrate is preferably 10 μm to 200 μm, more preferably 20 μm to 60 μm.
B-4.その他
 本発明の光学補償層付偏光板を構成する各層の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
B-4. Others Any appropriate pressure-sensitive adhesive layer or adhesive layer is used for laminating each layer constituting the polarizing plate with an optical compensation layer of the present invention. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a polyvinyl alcohol adhesive.
 図示しないが、光学補償層付偏光板100の光学補償層10A側には、粘着剤層が設けられていてもよい。粘着剤層が予め設けられていることにより、他の光学部材(例えば、有機ELセル)へ容易に貼り合わせることができる。なお、この粘着剤層の表面には、使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。 Although not shown, an adhesive layer may be provided on the optical compensation layer 10A side of the optical compensation layer-attached polarizing plate 100. By providing the pressure-sensitive adhesive layer in advance, it can be easily attached to another optical member (for example, an organic EL cell). In addition, it is preferable that the peeling film is bonded together to the surface of this adhesive layer until it is used for use.
C.画像表示装置
 本発明の画像表示装置は、表示セルと、該表示セルの視認側に上記B項に記載の光学補償層付偏光板と、を備える。光学補償層付偏光板は、光学補償層が表示セル側となるように(偏光子が視認側となるように)積層されている。導電層を有する光学補償層付偏光板を備える画像表示装置は、導電層がタッチパネルセンサーとして機能することにより、表示セル(例えば、液晶セル、有機ELセル)と偏光子との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル付き画像表示装置を構成し得る。
C. Image Display Device The image display device of the present invention comprises a display cell, and the polarizing plate with an optical compensation layer described in the above item B on the viewing side of the display cell. The polarizing plate with an optical compensation layer is laminated such that the optical compensation layer is on the display cell side (the polarizer is on the viewing side). In an image display device provided with a polarizing plate with an optical compensation layer having a conductive layer, the conductive layer functions as a touch panel sensor, whereby the touch sensor is interposed between the display cell (for example, liquid crystal cell, organic EL cell) and the polarizer. A so-called inner touch panel-attached image display device can be configured.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 ダイヤルゲージ(PEACOCK社製、製品名「DG-205 type pds-2」)を用いて測定した。
(2)位相差
 各位相差板から50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、650nm、測定温度は23℃であった。
 また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nz、およびNz係数を算出した。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. The measuring method of each characteristic is as follows. In the examples and comparative examples, "parts" and "%" are by weight unless otherwise specified.
(1) Thickness The thickness was measured using a dial gauge (manufactured by PEACOCK, product name “DG-205 type pds-2”).
(2) Retardation The sample of 50 mm x 50 mm was cut out from each retardation plate, it was set as a measurement sample, and it measured using Axoscan made from Axometrics. The measurement wavelength was 450 nm, 550 nm, 650 nm, and the measurement temperature was 23 ° C.
Further, the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., and refractive indices nx, ny, nz, and Nz coefficients were calculated from the obtained retardation values.
[実施例1]
1.ポリカーボネート樹脂の作製
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)29.60質量部(0.046mol)、ISB 29.21質量部(0.200mol)、SPG 42.28質量部(0.139mol)、DPC 63.77質量部(0.298mol)、酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。
 得られたポリカーボネート樹脂のガラス転移温度は130℃であった。
2.位相差板の作製
(1)第1の位相差層として用いる位相差フィルムの作製
 得られたポリカーボネート樹脂を単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅300mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、長さ3m、幅300mm、厚み120μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネートフィルムを、長さ150mm、幅120mmに切り出し、ラボストレッチャーKARO IV(Bruckner社製)を用いて、温度134℃、倍率2.8倍で固定端一軸延伸を行い、位相差フィルム(厚み:47μm)を得た。
 得られた位相差フィルムは、nx>ny>nzの屈折率特性を示し、Re(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は1.08、Nz(550)は1.13、Nz(650)は1.15であった。
 また、得られた位相差フィルムのRe(450)/Re(550)は0.86、Re(650)/Re(550)は1.06であった。
(2)第2の位相差層として用いる液晶固化層の作製
 特許5401032号公報の実施例2に従って液晶塗工液を調製し、基材上に液晶固化層(厚み:0.9μm)を形成した。
 得られた液晶固化層のRe(550)は0nm、Rth(550)は-45nmであり、nz>nx=nyの屈折率特性を示した。また液晶固化層のRth(450)/Rth(550)は0.79、Rth(650)/Rth(550)は1.07であった。
(3)位相差板の作製
 上記位相差フィルムに、アクリル系粘着剤を介して上記液晶固化層を貼り合わせた後、上記基材フィルムを除去して、位相差フィルムに液晶固化層が転写されてなる位相差板(厚み:48μm)を得た。
 得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.76、Nz(550)は0.79、Nz(650)は0.81であった。
3.導電層の作製
 上記位相差板の液晶固化層側の表面に、インジウム-スズ複合酸化物からなる透明導電層(厚み20nm)をスパッタリングにより形成し、位相差フィルム/液晶固化層/導電層の積層体を作製した。具体的な手順は以下のとおりである:ArおよびO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて、フィルム温度を130℃とし、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)を用いた。得られた透明導電層を150℃温風オーブンにて加熱して結晶転化処理を行った。
4.偏光子の作製
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
5.光学補償層付偏光板の作製
 上記偏光子の片側に、ポリビニルアルコール系接着剤を介してトリアセチルセルロースフィルム(厚み40μm、コニカミノルタ社製、商品名「KC4UYW」)を貼り合わせた。偏光子のもう片側に、ポリビニルアルコール系接着剤を介して上記位相差板の位相差フィルム側を貼り合わせた。ここで、位相差フィルムの遅相軸が偏光子の吸収軸に対して反時計回りに45°となるように貼り合わせた。
 このようにして、保護層/偏光子/位相差フィルム/液晶固化層/導電層の積層構造を有する光学補償層付偏光板を得た。
6.画像表示装置代替品の作製
 有機EL表示装置の代替品を以下のようにして作製した。ガラス板に、アルミ蒸着フィルム(東レフィルム加工社製、商品名「DMS蒸着X-42」、厚み50μm)を粘着剤で貼り合せ、有機EL表示装置の代替品とした。得られた光学補償層付偏光板の導電層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出し、有機EL表示装置代替品に実装した。
Example 1
1. Preparation of Polycarbonate Resin The polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and a reflux condenser controlled at 100 ° C. 29.60 parts by mass (0.046 mol) of bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (compound 3), 29.21 parts by mass (0.200 mol) of ISB, 42.28 parts of SPG Parts (0.139 mol), 63.77 parts by mass (0.298 mol) of DPC, and 1.19 × 10 -2 parts by mass (6.78 × 10 -5 mol) of calcium acetate monohydrate were charged. After the inside of the reactor was purged with nitrogen under reduced pressure, heating was performed with a heat medium, and when the internal temperature reached 100 ° C., stirring was started. The internal temperature was allowed to reach 220 ° C. 40 minutes after the start of heating and controlled to maintain this temperature, and at the same time depressurization was started, and it reached 13.3 kPa in 90 minutes after reaching 220 ° C. The phenol vapor by-produced together with the polymerization reaction was led to a 100 ° C. reflux condenser, the monomer components contained in a small amount in the phenol vapor were returned to the reactor, and the non-condensed phenol vapor was led to a 45 ° C. condenser and recovered. Nitrogen was introduced into the first reactor and the pressure was once reduced to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Subsequently, the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate was extruded into water, and the strands were cut to obtain pellets.
The glass transition temperature of the obtained polycarbonate resin was 130 ° C.
2. Preparation of Retardation Plate (1) Preparation of Retardation Film Used as First Retardation Layer The obtained polycarbonate resin was used as a single-screw extruder (manufactured by Isuzu Kako Co., Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.) A polycarbonate resin having a length of 3 m, a width of 300 mm and a thickness of 120 μm using a film forming apparatus equipped with a T die (width 300 mm, preset temperature: 220 ° C.), chill roll (set temperature: 120 to 130 ° C.) and a winding machine. A film was made. The obtained polycarbonate film is cut out into a length of 150 mm and a width of 120 mm, and fixed end uniaxial stretching is performed at a temperature of 134 ° C. and a magnification of 2.8 times using Lab Stretcher KARO IV (manufactured by Bruckner) to obtain a retardation film (Thickness: 47 μm) was obtained.
The obtained retardation film has a refractive index characteristic of nx>ny> nz, Re (450) is 119 nm, Re (550) is 139 nm, Re (650) is 147 nm, and Nz (450) is 1. 08, Nz (550) was 1.13 and Nz (650) was 1.15.
In addition, Re (450) / Re (550) of the obtained retardation film was 0.86, and Re (650) / Re (550) was 1.06.
(2) Preparation of Liquid Crystalline Solidification Layer Used as Second Retardation Layer A liquid crystal coating liquid was prepared according to Example 2 of Japanese Patent No. 5401032 to form a liquid crystal solidification layer (thickness: 0.9 μm) on a substrate .
The Re (550) and Rth (550) of the obtained liquid crystal solidified layer were 0 nm and -45 nm, respectively, and exhibited a refractive index characteristic of nz> nx = ny. Further, Rth (450) / Rth (550) of the liquid crystal solidified layer was 0.79, and Rth (650) / Rth (550) was 1.07.
(3) Preparation of Retardation Plate The liquid crystal solidified layer is attached to the retardation film through an acrylic adhesive, and then the base film is removed, and the liquid crystal solidified layer is transferred to the retardation film. A retardation plate (thickness: 48 μm) was obtained.
In the obtained retardation plate, Re (450) is 120 nm, Re (550) is 141 nm, Re (650) is 150 nm, Nz (450) is 0.76, Nz (550) is 0.79, Nz ( 650) was 0.81.
3. Preparation of Conductive Layer A transparent conductive layer (20 nm in thickness) made of indium-tin complex oxide is formed by sputtering on the surface of the above retardation plate on the liquid crystal solidified layer side, and lamination of retardation film / liquid crystal solidified layer / conductive layer The body was made. The specific procedure is as follows: 10 wt% oxidation under a vacuum atmosphere (0.40 Pa) containing Ar and O 2 (flow ratio Ar: O 2 = 99.9: 0.1) RF superimposed DC magnetron sputtering method (discharge voltage 150 V, RF frequency 13.56 MHz, DC) using a sintered body of tin and 90 wt% indium oxide as a target, the film temperature is 130 ° C., and the horizontal magnetic field is 100 mT. The ratio of RF power to power (RF power / DC power) was 0.8). The crystal conversion treatment was performed by heating the obtained transparent conductive layer in a 150 ° C. hot air oven.
4. Production of Polarizer A long roll of polyvinyl alcohol (PVA) resin film (Kuraray, product name "PE3000") with a thickness of 30 μm was uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretcher. At the same time, the film was subjected to swelling, dyeing, crosslinking, washing treatment at the same time as drawing, and finally dried treatment to prepare a 12 μm thick polarizer.
Specifically, the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C. Next, the dyeing process is carried out in an aqueous solution at 30 ° C. in which the weight ratio of iodine to potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the resulting polarizer is 45.0%. While stretching to 1.4 times. Furthermore, the crosslinking treatment employed two-step crosslinking treatment, and the first-step crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The second step of crosslinking treatment was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution in the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Moreover, the washing process was processed by 20 degreeC potassium iodide aqueous solution. The potassium iodide content of the aqueous solution for washing was 2.6% by weight. Finally, drying was performed at 70 ° C. for 5 minutes to obtain a polarizer.
5. Preparation of Polarizing Plate with Optical Compensation Layer A triacetyl cellulose film (thickness 40 μm, manufactured by Konica Minolta, trade name “KC4UYW”) was attached to one side of the above-mentioned polarizer via a polyvinyl alcohol-based adhesive. The retardation film side of the retardation plate was attached to the other side of the polarizer via a polyvinyl alcohol-based adhesive. Here, the retardation films were laminated such that the slow axis of the retardation film was 45 ° counterclockwise with respect to the absorption axis of the polarizer.
Thus, a polarizing plate with an optical compensation layer having a laminated structure of protective layer / polarizer / retardation film / liquid crystal solidified layer / conductive layer was obtained.
6. Preparation of Image Display Device Alternative A substitute of the organic EL display was prepared as follows. An aluminum vapor deposition film (made by Toray Film Processing Co., Ltd., trade name "DMS vapor deposition X-42", thickness 50 μm) was bonded to a glass plate with an adhesive to serve as a substitute for the organic EL display device. A pressure-sensitive adhesive layer was formed with an acrylic pressure-sensitive adhesive on the conductive layer side of the obtained polarizing plate with an optical compensation layer, cut out to a size of 50 mm × 50 mm, and mounted on an organic EL display device substitute.
[実施例2]
 位相差板の作製工程において、液晶固化層の厚みを1.1μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
 上記液晶固化層のRe(550)は0nm、Rth(550)は-55nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
 得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.71、Nz(550)は0.74、Nz(650)は0.76であった。
 上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
Example 2
A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.1 μm was used in the process of producing the retardation plate.
In the liquid crystal solidified layer, Re (550) is 0 nm, Rth (550) is −55 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
In the obtained retardation plate, Re (450) is 120 nm, Re (550) is 141 nm, Re (650) is 150 nm, Nz (450) is 0.71, Nz (550) is 0.74, Nz ( 650) was 0.76.
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
[実施例3]
 位相差板の作製工程において、液晶固化層の厚みを1.3μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
 上記液晶固化層のRe(550)は0nm、Rth(550)は-65nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
 得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.66、Nz(550)は0.67、Nz(650)は0.70であった。
 上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 3]
A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.3 μm was used in the production process of the retardation plate.
In the liquid crystal solidified layer, Re (550) is 0 nm, Rth (550) is −65 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The Re (450) of the obtained retardation plate is 120 nm, the Re (550) is 141 nm, the Re (650) is 150 nm, the Nz (450) is 0.66, the Nz (550) is 0.67, Nz ( 650) was 0.70.
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
[実施例4]
 位相差板の作製工程において、液晶固化層の厚みを1.7μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
 上記液晶固化層のRe(550)は0nm、Rth(550)は-80nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
 得られた位相差板のRe(450)は121nm、Re(550)は142m、Re(650)は150nmであり、Nz(450)は0.59、Nz(550)は0.60、Nz(650)は0.62であった。
 上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
Example 4
A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.7 μm was used in the process of producing the retardation plate.
In the liquid crystal solidified layer, Re (550) is 0 nm, Rth (550) is −80 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The Re (450) of the obtained retardation plate is 121 nm, the Re (550) is 142 m, the Re (650) is 150 nm, the Nz (450) is 0.59, the Nz (550) is 0.60, Nz ( 650) was 0.62.
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
[実施例5]
 位相差板の作製工程において、液晶固化層の厚みを1.9μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
 上記液晶固化層のRe(550)は0nm、Rth(550)は-90nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
 得られた位相差板のRe(450)は120nm、Re(550)は141m、Re(650)は149nmであり、Nz(450)は0.47、Nz(550)は0.48、Nz(650)は0.50であった。
 上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 5]
A retardation plate was obtained in the same manner as in Example 1 except that a liquid crystal solidified layer formed by setting the thickness of the liquid crystal solidified layer to 1.9 μm was used in the process of producing the retardation plate.
In the liquid crystal solidified layer, Re (550) is 0 nm, Rth (550) is −90 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The Re (450) of the obtained retardation plate is 120 nm, the Re (550) is 141 m, the Re (650) is 149 nm, the Nz (450) is 0.47, the Nz (550) is 0.48, Nz ( 650) was 0.50.
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
[比較例1]
 下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の位相差層となる液晶固化層(厚み:1μm)を形成した。この層のRe(550)は0nm、Rth(550)は-100nmであり(nx:1.5326、ny:1.5326、nz:1.6550)、nz>nx=nyの屈折率特性を示した。
Figure JPOXMLDOC01-appb-C000001
 上記液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
 得られた位相差板のRe(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は0.31、Nz(550)は0.52、Nz(650)は0.60であった。
 上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
Comparative Example 1
20 parts by weight of a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000) 80 parts by weight of a polymerizable liquid crystal (manufactured by BASF: trade name: Paliocolor LC 242) exhibiting a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Cibas Specialty Chemicals: trade name: Irgacure 907) dissolved in 200 parts by weight of cyclopentanone Thus, a liquid crystal coating liquid was prepared. Then, the coating solution is applied to a substrate film (a norbornene resin film: manufactured by Nippon Zeon Co., Ltd., trade name “Zonex”) by a bar coater, and then the liquid crystal is dried by heating at 80 ° C. for 4 minutes. It was oriented. The liquid crystal layer was irradiated with ultraviolet light to cure the liquid crystal layer, thereby forming a liquid crystal solidified layer (thickness: 1 μm) to be a second retardation layer on the substrate. This layer has a Re (550) of 0 nm and an Rth (550) of -100 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), exhibiting a refractive index characteristic of nz> nx = ny The
Figure JPOXMLDOC01-appb-C000001
A retardation plate was obtained in the same manner as in Example 1 except that the above liquid crystal solidified layer was used.
The Re (450) of the obtained retardation plate is 119 nm, the Re (550) is 139 nm, the Re (650) is 147 nm, the Nz (450) is 0.31, the Nz (550) is 0.52, Nz ( 650) was 0.60.
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the above retardation plate was used.
[比較例2]
 実施例1と同様にして作製した位相差フィルムを位相差板として用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
Comparative Example 2
A polarizing plate with an optical compensation layer and an organic EL display substitute were obtained in the same manner as in Example 1 except that the retardation film produced in the same manner as in Example 1 was used as a retardation plate.
<評価>
 実施例および比較例の有機EL表示装置代替品について、下記の評価を行った。評価結果を表1に示す。
(1)反射率及び反射色相
 有機EL表示装置代替品を試料とし、コニカミノルタ(株)製分光測色計CM-2600dを用いて正面反射率と正面反射色相とを測定した。正面反射率はSCI方式で測定。正面反射色相は、a色度図上における無彩色からの距離Δaを評価した。
(2)斜め方向の反射率及び反射色相
 有機EL表示装置代替品を試料とし、コニカミノルタ(株)製DMS 505を用いて斜め方向の反射率と反射色相を測定した。斜め方向の反射率は極角60°、方位角0°、45°、90°および135°の4点の視感反射率Yの平均値を評価した。斜め方向の反射色相は、a色度図上における、進相軸を基準に60°傾けて測定したときの斜め方向の反射色相と遅相軸を基準に60°傾けて測定したときの反射色相の2点間距離Δaを評価した。
<Evaluation>
The following evaluation was performed about the organic electroluminescent display apparatus substitute of an Example and a comparative example. The evaluation results are shown in Table 1.
(1) Reflectance and Reflected Hue The organic EL display device substitute was used as a sample, and the front reflectance and the front reflection hue were measured using a spectrophotometer CM-2600d manufactured by Konica Minolta. Front reflectivity is measured by SCI method. For the front reflection hue, the distance Δa * b * from the achromatic color on the a * b * chromaticity diagram was evaluated.
(2) Reflectance and Reflected Hue in Oblique Direction The organic EL display device alternative was used as a sample, and the reflectance and reflected hue in the oblique direction were measured using DMS 505 manufactured by Konica Minolta. The reflectance in the oblique direction was evaluated as the average value of the luminous reflectance Y at four points of polar angle of 60 ° and azimuth angles of 0 °, 45 °, 90 ° and 135 °. When the reflected hue in the oblique direction is measured at an angle of 60 ° with respect to the fast axis on the a * b * chromaticity diagram, the reflected hue in the oblique direction is measured with an angle of 60 ° with respect to the slow axis. The distance Δa * b * between the two points of the reflection hue of was evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の有機EL表示装置代替品は、比較例の有機EL表示装置代替品よりも、斜め反射強度および反射色相が低く、良好であった。 The organic EL display device alternative of the example had better oblique reflection intensity and reflection hue than the organic EL display device alternative of the comparative example.
 本発明の位相差板を有する光学補償層付偏光板は、有機ELパネルなどの画像表示装置に好適に用いられる。 The polarizing plate with an optical compensation layer having the retardation plate of the present invention is suitably used for an image display device such as an organic EL panel.
 10   位相差板
 11   第1の位相差層
 12   第2の位相差層
 20   偏光子
 30   保護層
100   光学補償層付偏光板
10 retardation film 11 first retardation layer 12 second retardation layer 20 polarizer 30 protective layer 100 polarizing plate with optical compensation layer

Claims (6)

  1.  面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、
     Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす、
    位相差板:
     ここで、Re(450)、Re(550)、およびRe(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定した面内位相差を表し、Nz(450)、Nz(550)、およびNz(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定したNz係数を表す。
    The in-plane retardation Re satisfies 100 nm ≦ Re (550) ≦ 160 nm, Re (450) / Re (550) ≦ 1, and Re (650) / Re (550) ≧ 1.
    The Nz coefficient satisfies Nz (550) <1, 0 ≦ | Nz (450) −Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) −Nz (550) | ≦ 0.1 ,
    Retardation plate:
    Here, Re (450), Re (550), and Re (650) represent in-plane retardations measured at wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively, and Nz (450), Nz (550) and Nz (650) represent Nz coefficients measured with light of wavelengths 450 nm, 550 nm and 650 nm at 23 ° C., respectively.
  2.  第1の位相差層と第2の位相差層とが積層された積層構造を有し、
     前記第1の位相差層は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、
     前記第2の位相差層は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす、請求項1に記載の位相差板:
     ここで、Rth(450)、Rth(550)、およびRth(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定した厚み方向位相差を表す。
    It has a laminated structure in which a first retardation layer and a second retardation layer are laminated,
    The first retardation layer has an in-plane retardation Re satisfying Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, and the refractive index characteristic is nx> satisfy ny nz nz,
    The second retardation layer has a thickness direction retardation Rth satisfying Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1 and has a refractive index characteristic nz> The retardation plate according to claim 1, which satisfies nx ≧ ny:
    Here, Rth (450), Rth (550), and Rth (650) represent thickness direction retardations measured at wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively.
  3.  請求項1または2に記載の位相差板により構成される光学補償層と、偏光子とを有し、
     前記光学補償層の遅相軸と前記偏光子の吸収軸とのなす角度が35°~55°である、光学補償層付偏光板。
    An optical compensation layer comprising the retardation plate according to claim 1 or 2, and a polarizer.
    An optical compensation layer-attached polarizing plate, wherein the angle between the slow axis of the optical compensation layer and the absorption axis of the polarizer is 35 ° to 55 °.
  4.  前記光学補償層の前記偏光子とは反対側に導電層を有する、請求項3に記載の光学補償層付偏光板。 The polarizing plate with an optical compensation layer of Claim 3 which has a conductive layer on the opposite side to the said polarizer of the said optical compensation layer.
  5.  請求項3に記載の光学補償層付偏光板を有する、画像表示装置。 The image display apparatus which has a polarizing plate with an optical compensation layer of Claim 3.
  6.  請求項4に記載の光学補償層付偏光板を有し、
     前記導電層がタッチパネルセンサーとして機能する、タッチパネル付き画像表示装置。
     
    It has a polarizing plate with an optical compensation layer of Claim 4,
    The image display apparatus with a touch panel in which the said conductive layer functions as a touch panel sensor.
PCT/JP2018/042824 2017-12-19 2018-11-20 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel WO2019123948A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207017461A KR20200100068A (en) 2017-12-19 2018-11-20 Retardation plate, polarizing plate with optical compensation layer, image display device, and touch panel image display device
CN201880081822.3A CN111556976B (en) 2017-12-19 2018-11-20 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
SG11202005242YA SG11202005242YA (en) 2017-12-19 2018-11-20 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-242483 2017-12-19
JP2017242483A JP7072970B2 (en) 2017-12-19 2017-12-19 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Publications (1)

Publication Number Publication Date
WO2019123948A1 true WO2019123948A1 (en) 2019-06-27

Family

ID=66993371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042824 WO2019123948A1 (en) 2017-12-19 2018-11-20 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel

Country Status (6)

Country Link
JP (2) JP7072970B2 (en)
KR (1) KR20200100068A (en)
CN (1) CN111556976B (en)
SG (1) SG11202005242YA (en)
TW (1) TWI770332B (en)
WO (1) WO2019123948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070467A1 (en) * 2019-10-10 2021-04-15 日東電工株式会社 Phase difference layer-attached polarization plate and organic electro luminescence display device using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162037B2 (en) * 2019-10-31 2022-10-27 住友化学株式会社 image display device
CN112748490A (en) * 2019-10-31 2021-05-04 住友化学株式会社 Image display device
CN113193154B (en) * 2021-04-30 2023-04-07 合肥维信诺科技有限公司 Flexible display panel, preparation method thereof and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054266A (en) * 2003-06-19 2004-02-19 Teijin Ltd Liquid crystal display device
JP2014228864A (en) * 2013-05-27 2014-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. Inverse wavelength dispersion retardation film and display device including the same
WO2015166991A1 (en) * 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device
JP2016114874A (en) * 2014-12-17 2016-06-23 コニカミノルタ株式会社 Optical film, circular polarization plate and organic electroluminescence display
WO2018030244A1 (en) * 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device
WO2018123725A1 (en) * 2016-12-26 2018-07-05 富士フイルム株式会社 Circularly polarizing plate, and organic electroluminescent display device
JP2018136483A (en) * 2017-02-23 2018-08-30 住友化学株式会社 Optical film and method for producing the same
WO2018164126A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI637197B (en) 2013-08-09 2018-10-01 住友化學股份有限公司 Optical film
JP6301885B2 (en) * 2015-08-31 2018-03-28 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054266A (en) * 2003-06-19 2004-02-19 Teijin Ltd Liquid crystal display device
JP2014228864A (en) * 2013-05-27 2014-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. Inverse wavelength dispersion retardation film and display device including the same
WO2015166991A1 (en) * 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device
JP2016114874A (en) * 2014-12-17 2016-06-23 コニカミノルタ株式会社 Optical film, circular polarization plate and organic electroluminescence display
WO2018030244A1 (en) * 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device
WO2018123725A1 (en) * 2016-12-26 2018-07-05 富士フイルム株式会社 Circularly polarizing plate, and organic electroluminescent display device
JP2018136483A (en) * 2017-02-23 2018-08-30 住友化学株式会社 Optical film and method for producing the same
WO2018164126A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070467A1 (en) * 2019-10-10 2021-04-15 日東電工株式会社 Phase difference layer-attached polarization plate and organic electro luminescence display device using same

Also Published As

Publication number Publication date
TW201940904A (en) 2019-10-16
TWI770332B (en) 2022-07-11
SG11202005242YA (en) 2020-07-29
CN111556976B (en) 2022-04-26
KR20200100068A (en) 2020-08-25
CN111556976A (en) 2020-08-18
JP7072970B2 (en) 2022-05-23
JP2019109378A (en) 2019-07-04
JP2022027908A (en) 2022-02-14

Similar Documents

Publication Publication Date Title
JP6512999B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
WO2019123948A1 (en) Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel
KR20180088405A (en) Longitudinal optical stack and image display
JP6712157B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6512998B2 (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
TWI702422B (en) Polarizing plate with optical compensation layer and organic EL panel using it
WO2017154447A1 (en) Polarizing plate with optical compensation layer, and organic el panel using said polarizing plate
JP6797537B2 (en) Polarizing plate with optical compensation layer and organic EL panel using it
WO2019123947A1 (en) Phase difference film, polarizer with optical compensation layer, image display device, and image display device with touch panel
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2019070860A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
CN108780174B (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2020201507A (en) Polarizing plate with optical compensation layer and organic el panel using the same
JP2023118722A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
KR102669108B1 (en) Polarizer with optical compensation layer and organic EL panel using the same
JP2022023892A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2019091069A (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
JP2018109778A (en) Polarizing plate with optical compensation layers, and organic el panel having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889988

Country of ref document: EP

Kind code of ref document: A1