WO2019123609A1 - Hermetic compressor and refrigeration cycle device - Google Patents

Hermetic compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019123609A1
WO2019123609A1 PCT/JP2017/045939 JP2017045939W WO2019123609A1 WO 2019123609 A1 WO2019123609 A1 WO 2019123609A1 JP 2017045939 W JP2017045939 W JP 2017045939W WO 2019123609 A1 WO2019123609 A1 WO 2019123609A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
hole
refrigerant
upper bearing
chamber
Prior art date
Application number
PCT/JP2017/045939
Other languages
French (fr)
Japanese (ja)
Inventor
暁和 和泉
友宏 井柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/045939 priority Critical patent/WO2019123609A1/en
Priority to JP2019559966A priority patent/JPWO2019123609A1/en
Priority to CN201780097761.5A priority patent/CN111480007A/en
Publication of WO2019123609A1 publication Critical patent/WO2019123609A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a hermetic compressor having an upper bearing disposed at the top of a cylinder chamber, and a refrigeration cycle apparatus provided with the hermetic compressor.
  • Patent Document 1 As a conventional hermetic type compressor, an electric motor part, a compression mechanism part, and a frame for supporting the compression mechanism part in the hermetic container are provided in the hermetic container, and the upper bearing of the compression mechanism part has through holes in the frame.
  • a compressor having a guide hole communicating with the compression chamber is proposed (see, for example, Patent Document 1).
  • the hermetic compressor of Patent Document 1 has a mechanism for connecting a suction refrigerant pipe for sucking and guiding the refrigerant gas into the compression chamber from the hermetic container main body to the guide hole of the main bearing via the through hole of the frame.
  • the present invention suppresses the deterioration of the accuracy of the compression mechanism portion due to thermal strain when welding and fixing the upper bearing to the closed container, and reduces the number of parts and simplifies the assembly process,
  • a refrigeration cycle apparatus provided with a hermetic compressor.
  • the hermetic compressor according to the present invention is a hermetic container in which a refrigerant suction pipe is connected to a cylindrical body, and a compression element housed in the hermetic container, the cylinder chamber constituting a suction chamber and a compression chamber. And a compression element having a cylindrical cylinder forming an inner wall in the inner wall, and an upper bearing that closes an opening at one end of the cylinder and is connected to the motorized element to rotatably support a crankshaft that penetrates the cylinder.
  • the upper bearing has a communication hole having one end connected to the refrigerant suction pipe and the other end connected to the cylinder chamber, and is formed on the outer peripheral side of the cylinder chamber in plan view and penetrates in a direction parallel to the crankshaft Forming at least one through hole, and having a disc portion in contact with one end of the cylinder, the disc portion circumferentially extending a weld to be welded and fixed to the body of the closed container There are multiple, at least one through hole is The center of the disk portion and the at least one weld, are those formed on a straight line connecting.
  • the upper bearing has a disk portion, and the disk portion is formed on the outer peripheral side of the cylinder chamber of the cylinder in plan view and penetrates in a direction parallel to the crankshaft. At least one through hole is formed. Therefore, in the hermetic type compressor, the effect of thermal strain can be retained outside the cylinder chamber at the time of welding to fix the upper bearing and the hermetic container, and the influence on the accuracy of the compression element can be reduced.
  • the disc portion has a plurality of welds in the circumferential direction which are welded and fixed to the inner peripheral wall of the sealed container, and at least one through hole is a straight line connecting the center of the disc portion and the at least one weld. It is located above.
  • the deformation due to the thermal strain at the time of welding can be further concentrated to the outside of the through hole, and the deformation of the communicating hole and the deformation of the cylinder chamber due to the thermal strain can be further suppressed.
  • the deterioration of the accuracy of the compression element due to the thermal strain when welding and fixing the upper bearing to the hermetic container is suppressed, and the upper bearing is directly welded to the hermetic container main body.
  • the assembly process can be simplified.
  • FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the cylinder in the compression element of FIG.
  • FIG. 3 is a schematic top view of an upper bearing in the compression element of FIG. 2;
  • FIG. 5 is a top schematic view of another upper bearing in the compression element of FIG. 2;
  • FIG. 1 is a schematic view showing a refrigeration cycle apparatus 10 provided with a hermetic compressor 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 10 includes a hermetic compressor 100, a condenser 110, an expansion device 120, and an evaporator 130.
  • the refrigeration cycle apparatus 10 forms a refrigerant circulation circuit by connecting a hermetic compressor 100, a condenser 110, an expansion device 120, and an evaporator 130 in series with a refrigerant pipe.
  • the hermetic compressor 100 is a rotary compressor, and compresses a low-pressure gas phase refrigerant introduced thereinto to change it into a high-temperature high-pressure gas phase refrigerant.
  • the condenser 110 dissipates heat from the high-temperature and high-pressure gas-phase refrigerant fed from the hermetic compressor 100 to change the gas-phase refrigerant into a high-pressure liquid-phase refrigerant.
  • the expansion device 120 reduces the pressure of the high-pressure liquid-phase refrigerant fed from the condenser 110 and changes it to a low-temperature low-pressure liquid-phase refrigerant.
  • the evaporator 130 vaporizes the liquid-phase refrigerant fed from the expansion device 120 and changes it to a low-pressure gas-phase refrigerant. At this time, the heat of vaporization is taken away by the phase-changing refrigerant, and the periphery of the evaporator 130 is cooled. The gas-phase refrigerant which has taken the heat of vaporization is again taken into the hermetic compressor 100. As described above, in the refrigeration cycle apparatus 10, the refrigerant, which is the working fluid, circulates while undergoing phase change between the gas phase refrigerant and the liquid phase refrigerant.
  • Heat is dissipated from the refrigerant in the process of phase change from gas phase refrigerant to liquid phase refrigerant, and is absorbed by the refrigerant in the process of phase change from liquid phase refrigerant to gas phase refrigerant. Heating and cooling are performed using these heat radiation and heat absorption.
  • FIG. 2 is a longitudinal cross-sectional view of the hermetic compressor 100 according to Embodiment 1 of the present invention.
  • the electric element 4 and the compression element 5 are housed inside the hermetic container 2.
  • the closed container 2 constitutes the external appearance of the closed type compressor 100 and has a substantially cylindrical body 21, a substantially hemispherical upper lid 22 closing an opening at the upper portion of the body 21, and an opening at the lower part of the body 21. And a substantially semi-spherical lower lid 23 for closing the In the closed container 2, the upper lid 22 is fitted in the upper opening of the body 21, the lower lid 23 is fitted in the lower opening of the body 21, and the body 21 and the upper lid 22 are fixed by welding. The body 21 and the lower lid 23 are fixed by welding.
  • the closed container 2 is kept sealed.
  • the closed container 2 is provided on the pedestal 3, and the lower lid 23 and the pedestal 3 are fixed. In the normal installation state of the hermetic compressor 100, the pedestal 3 is fixed to the installation location by bolts or the like.
  • a refrigerant suction pipe 7 a is connected to a cylindrical body 21.
  • a through hole 21 a is formed in the body portion 21 of the sealed container 2, and a refrigerant suction pipe 7 a is connected thereto.
  • the tip of the refrigerant suction pipe 7a is inserted into a communication hole 53a formed in the upper bearing 53 of the compression element 5 described later.
  • the refrigerant suction pipe 7 a is a connection pipe for feeding the gas refrigerant (low temperature low pressure) which has passed through the evaporator 130 into the compression element 5.
  • a through hole 22 a is formed in the upper lid portion 22 of the sealed container 2, and the refrigerant discharge pipe 7 b is connected thereto.
  • the refrigerant discharge pipe 7 b is a connection pipe for discharging the gas refrigerant (high temperature and high pressure) in the closed container 2 compressed by the compression element 5 to a refrigerant pipe constituting the refrigeration cycle apparatus 10.
  • the hermetic compressor 100 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 by the refrigerant suction pipe 7a, and connected to the condenser 110 constituting the refrigeration cycle apparatus 10 by the refrigerant discharge pipe 7b.
  • the motorized element 4 is disposed above the compression element 5 in the closed container 2.
  • the electric element 4 includes a stator 41 fixed to the inner circumferential surface of the body 21 and a rotor 42 rotatably fitted on the inner circumferential side of the stator 41.
  • the stator 41 is fixed to the body portion 21 of the sealed container 2 by, for example, various fixing methods such as shrink fitting or welding.
  • a crank shaft 51 extending downward is fixed.
  • the electric element 4 is connected to a terminal 6a attached to the central portion of the upper cover 22 by a lead wire 6b, and power is supplied to the electric element 4 through the terminal 6a.
  • the compression element 5 is accommodated in the closed container 2 and compresses the refrigerant flowing into the closed container 2.
  • the compression element 5 is a rotary compression mechanism having a cylindrical cylinder.
  • the compression element 5 is disposed below the motorized element 4 and fixed to the body 21. More specifically, in the compression element 5, the body 21 and the upper bearing 53 are fixed by spot welding.
  • the compression element 5 includes a crankshaft 51, a cylinder 52, an upper bearing 53, a lower bearing 54, a rolling piston 55, and a vane 56 (see FIG. 3).
  • the crankshaft 51 has an eccentric portion 51 a eccentrically in one direction on one side in the axial direction. Further, the other side of the crankshaft 51 in the axial direction is inserted into and fixed to the central portion of the rotor 42 of the electric element 4.
  • the crankshaft 51 is rotatably supported by an upper bearing 53 and a lower bearing 54 described later, and rotates together with the rotor 42.
  • the crankshaft 51 rotates around a rotation shaft 51 b located on the center line of the trunk portion 21.
  • FIG. 3 is a schematic sectional view taken along line AA of the cylinder 52 in the compression element 5 of FIG.
  • positioned in the cylinder 52 is abbreviate
  • the cylinder 52 has a peripheral wall portion 52 b formed in a cylindrical shape, and forms a cylinder chamber 52 a concentric with the crankshaft 51 in the inner peripheral portion.
  • the rolling piston 55 is disposed inside the peripheral wall 52b, and the inner wall 52b1 of the peripheral wall 52b faces the outer peripheral surface 55a of the rolling piston 55 formed in a cylindrical shape.
  • a vane groove 52c formed radially outward from the inner wall 52b1 is formed in the peripheral wall portion 52b of the cylinder 52.
  • a vane 56 is slidably disposed in the vane groove 52c.
  • a vane spring 57 is disposed at the end of the vane 56 opposite to the rolling piston 55 in the radial direction of the cylinder 52.
  • the tip of the vane 56 abuts on the outer peripheral surface 55 a of the rolling piston 55 by the biasing force of the vane spring 57.
  • the cylinder 52 forms suction holes 52 d and discharge holes 52 e disposed on both sides of the vane groove 52 c in the circumferential direction.
  • the suction hole 52 d communicates with the communication hole 53 a formed in the upper bearing 53.
  • the discharge hole 52e is formed radially outward from the inner wall 52b1 of the cylinder 52, and the sealed container 2 is provided via the discharge hole (not shown) provided in the upper bearing 53 and the discharge muffler 58 shown in FIG. It communicates with the inner space.
  • the rolling piston 55 is at a position eccentric to the central axis of the crankshaft 51 and is mounted on the eccentric part 51 a of the crankshaft 51 in the cylinder 52 so as to rotate with the crankshaft 51.
  • the rolling piston 55 eccentrically rotates in the cylinder 52 by the rotation of the crankshaft 51.
  • the vane 56 is slidably in contact with the outer peripheral surface 55 a of the rolling piston 55.
  • the cylinder chamber 52a is divided by the vane 56 into a suction chamber 52f communicating with the suction hole 52d and a compression chamber 52g communicating with the discharge hole 52e.
  • the cylinder 52 is formed in a cylindrical shape, and forms a cylinder chamber 52a constituting the suction chamber 52f and the compression chamber 52g in a space surrounded by the inner wall 52b1 of the cylinder 52.
  • FIG. 4 is a schematic top view of the upper bearing 53 in the compression element 5 of FIG.
  • an upper bearing 53 is disposed in contact with the upper end surface of the cylinder 52 and closes the upper end surface of the cylinder 52.
  • a lower bearing 54 is disposed in contact with the lower end face of the cylinder 52 and closes the lower end face of the cylinder 52. That is, the upper bearing 53 closes the opening at one end of the cylindrical cylinder 52, and the lower bearing 54 closes the opening at the other end of the cylindrical cylinder 52.
  • An upper bearing 53 and a lower bearing 54 disposed at both ends of the cylinder 52 are connected to the electric element 4 and rotatably support a crankshaft 51 passing through the cylinder 52.
  • the upper bearing 53 will be described in more detail with reference to FIGS. 2 and 4.
  • the upper bearing 53 includes a disk portion 53d formed in a disk shape and a bearing portion 53e formed in a cylindrical shape.
  • the disk portion 53d and the bearing portion 53e are integrally formed, and the upper bearing 53 is formed in a substantially reverse T-shape in a side view.
  • the disk portion 53d is circular in plan view, and closes the upper opening of the compression chamber 52g.
  • the surface facing the cylinder 52 abuts on the upper end surface of the peripheral wall portion 52 b which is one end of the cylinder 52.
  • a part of the outer peripheral surface 53 f is fixed to the closed container 2.
  • the outer peripheral surface 53f is a side wall that forms the outer peripheral edge of the disk portion 53d.
  • a bearing portion 53e through which the crankshaft 51 passes is formed at the center of the disc portion 53d.
  • the bearing portion 53e is formed in a substantially cylindrical shape, and the inner peripheral wall of the bearing portion 53e rotatably supports the crankshaft 51.
  • the disk portion 53d of the upper bearing 53 is formed with a communication hole 53a serving as a flow path for guiding the refrigerant gas from the refrigerant suction pipe 7a to the suction chamber 52f.
  • the communication hole 53a is formed radially inward from the outer peripheral surface 53f in the disk portion 53d.
  • One end of the communication hole 53a is open to the outer peripheral surface 53f, and is connected to the refrigerant suction pipe 7a.
  • the other end of the communication hole 53a opens in the lower end surface of the disk portion 53d on the cylinder 52 side, and communicates with the suction chamber 52f of the cylinder chamber 52a through the suction hole 52d formed in the cylinder 52.
  • a through hole 53 c is formed in the disk portion 53 d of the upper bearing 53. Only one through hole 53 c may be formed, or a plurality of through holes 53 c may be formed. Assuming that the outer diameter of the cylinder chamber 52a shown in FIG. 3 is R1, the through hole 53c is formed on the outer peripheral side of a circle having a diameter R2 such that R1 ⁇ R2 in the disk portion 53d. That is, the through hole 53c is formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view. The through hole 53 c penetrates in a direction parallel to the crankshaft 51. Furthermore, the through hole 53c is formed at a position closer to the center than the outer peripheral surface 53f.
  • the plurality of through holes 53c are arranged in the circumferential direction of the disk portion 53d. As shown in FIG. 4, the plurality of through holes 53c are formed at the same position in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f.
  • the formation positions of the through holes 53c are not limited to the structure formed at the same position in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f.
  • the formation positions of the through holes 53c may be formed at different positions in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f.
  • the opening shape of the through hole 53c is, as shown in FIG. 4, formed circular in plan view, or arced in plan view along the circumferential direction of the disc portion 53d.
  • the upper bearing 53 is fixed to the body portion 21 by spot welding to the welding portion 53b.
  • the weld portion 53 b is a point at which spot welding is performed.
  • the disk portion 53 d has a plurality of welding portions 53 b circumferentially fixed to the body portion 21 of the closed container 2 by welding. If the number of welds 53b is two or less, the rotation of the compression element 5 can not be suppressed, so three or more welds 53b are required. Further, when the number of welds 53b increases, the influence of thermal strain at the time of welding becomes large, which leads to the deterioration of the accuracy of the mechanism that constitutes compression element 5. Therefore, as shown in FIG. There are three parts 53b.
  • an angle a11, an angle a12, and an angle a13 shown in FIG. 4 represent the respective angles from the reference line C of the welded portion 53b.
  • the angle a11 49 °
  • the angle a12 ⁇ 85 °
  • the angle a13 164 °.
  • each welding portion 53b and the communication hole 53a Assuming that the phase difference between each welding portion 53b and the communication hole 53a is angle a11, angle a12 and angle a13, the smaller the values of angle a11, angle a12 and angle a13, the smaller the thermal distortion to the communication hole 53a by spot welding. The impact is greater.
  • the communicating hole 53a is deformed due to the influence of thermal strain due to welding, the suction pressure loss at the time of compression increases.
  • At least one through hole 53 c is formed in the disk portion 53 d of the upper bearing 53.
  • deformation due to thermal strain is concentrated to the outside of the through hole 53c, and thermal strain to the cylinder chamber 52a, the communication hole 53a, etc. You can reduce the impact.
  • the through hole 53c is disposed in the vicinity of the weld portion 53b means that at least one through hole 53c is disposed on a straight line connecting the center P of the disk portion 53d and the at least one weld portion 53b.
  • at least one through hole 53c formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view is disposed on a straight line connecting the center of the upper bearing 53 and the welding portion 53b. It is a thing.
  • the location where the through hole 53c is formed can reduce the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc., but the space between the through hole 53c and the outer peripheral surface 53f The thickness of the disc portion 53d is reduced. In this case, the holding power of the compression element 5 with respect to the closed container 2 may be reduced.
  • Forming the through holes 53c in the vicinity of all the welds 53b corresponding to each weld 53b is desirable from the viewpoint of reducing the influence of thermal strain on the cylinder chamber 52a and the communication holes 53a etc. It may not be desirable in terms of the holding power of the compression element 5 with respect to 2.
  • the number of the through holes 53c formed on all the straight lines connecting the center P of the disk portion 53d and the at least one weld portion 53b is smaller than the number of the weld portions 53b. Is even more desirable.
  • FIG. 5 is a schematic top view of another upper bearing 53A in the compression element 5 of FIG.
  • the upper bearing 53A and the upper bearing 53 are different in the number of through holes 53c formed in the disk portion 53d.
  • parts having the same configuration as the upper bearing 53 in FIGS. 1 to 4 are denoted with the same reference numerals, and the description thereof is omitted.
  • FIG. 5 when a radial line passing from the center P of the disk portion 53d to the center of the through hole 53c in plan view is a reference line C, the circumferential direction clockwise from the reference line C is a positive angle. The circumferential direction counterclockwise from the line C is a negative angle.
  • an angle a11, an angle a12, and an angle a13 shown in FIG. 5 represent respective angles from the reference line C of the welding portion 53b.
  • the angles a21, a23 and a25 are the start points of the through holes 53c seen from the reference line C in the circumferential direction
  • the angles a22, a24 and a26 are the penetration seen from the reference line C in the circumferential direction
  • the upper bearing 53A in FIG. 5 satisfies the relationship of angle a21 ⁇ angle a11 ⁇ angle a22.
  • the relationship of the angle a21 ⁇ the angle a11 ⁇ the angle a22 indicates that a line connecting the weld portion 53b and the center P is located between the circumferential widths of the through holes 53c.
  • the upper bearing 53A also satisfies the relationship of angle a25 ⁇ angle a13 ⁇ angle a26.
  • the relationship of the angle a25 ⁇ the angle a13 ⁇ the angle a26 indicates that a line connecting the weld portion 53b and the center P is located between the circumferential widths of the through holes 53c.
  • the upper bearing 53A in FIG. 5 has a relationship of angle a12 ⁇ angle a23 ⁇ angle a24.
  • the relationship of the angle a12 ⁇ the angle a23 ⁇ the angle a24 indicates that a line connecting the weld portion 53b and the center P is not located between the circumferential widths of the through holes 53c. That is, in the upper bearing 53A of FIG. 5, the through holes 53c are formed in the vicinity of the two welded portions 53b positioned at the angle a11 and the angle a13, and the upper bearing 53A penetrates in the vicinity of the one welded portion 53b positioned at the angle a12. The hole 53c is not formed.
  • At least one through hole 53c formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in plan view has the center P of the upper bearing 53 and the welding portion 53b. And are disposed on a straight line connecting
  • any one of the angles a21 ⁇ angle a11 ⁇ angle a22, angles a23 ⁇ angle a12 ⁇ angle a24, and angles a25 ⁇ angle a13 ⁇ angle a26 is satisfied. It should be satisfied.
  • At least one through hole 53c is formed in the vicinity of the welding portion 53b, and the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. can be reduced. it can.
  • hermetic compressor 100 When electric power is supplied to the electric element 4 through the terminal 6a, the crankshaft 51 fixed to the rotor 42 together with the rotor 42 rotates around the rotation shaft 51b. When the crankshaft 51 rotates, the rolling piston 55 in the cylinder 52 also rotates along with the crankshaft 51. The rolling piston 55 rotates eccentrically, and the vane 56 slidably in contact with the rolling piston 55 performs a piston motion by the rotation of the rolling piston 55.
  • the gas refrigerant is sucked from the refrigeration cycle into the cylinder chamber 52 a of the compression element 5 through the refrigerant suction pipe 7 a and the communication hole 53 a formed in the upper bearing 53.
  • the gas refrigerant in the cylinder chamber 52a is compressed as the volume in the compression chamber 52g decreases as the rolling piston 55 eccentrically rotates.
  • the compressed high-pressure gas refrigerant is released into the closed container 2 and the inside of the closed container 2 is in a high pressure state.
  • the high pressure gas refrigerant in the closed container 2 passes through gas holes (not shown) provided in the rotor 42, an air gap between the stator 41 and the rotor 42, etc., and the upper part in the closed container 2
  • the refrigerant discharge pipe 7 b is discharged into the refrigerant circuit of the refrigeration cycle apparatus 10.
  • a high pressure refrigerant is used as a working refrigerant.
  • a carbon dioxide refrigerant is used as the high pressure refrigerant.
  • the carbon dioxide refrigerant which is one of natural refrigerants, has an operating pressure about three times that of the R410A refrigerant operating at the highest pressure among HFCs (hydrofluorocarbons).
  • the plate pressure of the body portion 21 constituting the closed container 2 also needs to be about 3 times the thickness of the closed container of the closed type compressor using R410A refrigerant in order to correspond to the high operating pressure. .
  • the output is high and the temperature is high compared to spot welding to a sealed compressor using R410A refrigerant, and the heating time is also increased. Will be longer. Therefore, in the hermetic compressor 100 using the high pressure refrigerant, the influence of the thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. becomes larger at the time of spot welding, as compared with the hermetic compressor using the R410A refrigerant. Therefore, the hermetic compressor 100 using the high-pressure refrigerant has a large need to reduce the thermal distortion as compared to the hermetic compressor using a refrigerant such as R410A.
  • the upper bearing 53 has the disk portion 53d.
  • the disc portion 53d is formed with at least one through hole 53c which is formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view and penetrates in a direction parallel to the crankshaft 51. Therefore, the hermetic compressor 100 can retain the influence of thermal strain to the outside of the cylinder chamber 52a at the time of welding to fix the upper bearing 53 and the hermetic container 2, thereby reducing the influence of the compression element 5 on the accuracy. be able to.
  • the disc portion 53d has a plurality of weld portions 53b circumferentially fixed by welding to the inner peripheral wall of the sealed container 2, and at least one through hole 53c is welded with at least one center P of the disc portion 53d. It is disposed on a straight line connecting the part 53b. Therefore, it is possible to further concentrate the deformation due to the thermal strain at the time of welding between the upper bearing 53 and the sealed container 2 to the outside of the through hole 53c, and further the deformation of the communicating hole 53a due to the thermal strain and the deformation of the cylinder chamber 52a. It can be suppressed.
  • the hermetic compressor 100 suppresses the deterioration of the accuracy of the compression element 5 due to thermal strain when welding and fixing the upper bearing 53 to the hermetic container 2, and directly welds the upper bearing 53 to the hermetic container 2,
  • the number of parts can be reduced and the assembly process can be simplified.
  • deformation due to thermal strain at the time of welding between the upper bearing 53 and the sealed container 2 can be further concentrated to the outside of the through hole 53c to suppress deformation of the communication hole 53a due to thermal strain, thereby increasing suction pressure loss during compression. It can be suppressed.
  • the compression element 5 can be disposed at the lower portion by the thickness of the cylinder 52, and the height of the closed container 2 can be reduced and the refrigeration oil can be reduced. Can.
  • the number of the through holes 53c formed in all straight lines connecting the center P of the disk portion 53d and the at least one welded portion 53b in the disk portion 53d of the hermetic compressor 100 is the same as that of the welded portion 53b. Less than the number. Therefore, in the hermetic compressor 100, balance between maintaining the holding force of the compression element 5 with respect to the hermetic container 2 and reducing the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. by arc spot welding. Can.
  • the hermetic compressor 100 uses a carbon dioxide refrigerant. Therefore, in the hermetic compressor 100, the plate thickness of the body portion 21 constituting the hermetic container 2 is thicker than the plate pressure of the hermetic compression hermetic container using a refrigerant such as R410A. Therefore, the hermetic compressor 100 using the high-pressure refrigerant has a large need to reduce the thermal distortion as compared to the hermetic compressor using a refrigerant such as R410A.
  • the hermetic compressor 100 can further concentrate deformation due to thermal strain at the time of welding between the upper bearing 53 and the hermetic container 2 to the outside of the through hole 53c, and communication due to thermal strain Deformation of the hole 53a and the cylinder chamber 52a can be suppressed.
  • the embodiment of the present invention is not limited to the above-described Embodiment 1, and various modifications can be made.
  • the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
  • various inventions can be formed by appropriate combinations of a plurality of components disclosed in the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This hermetic compressor is provided with: a hermetic container in which a refrigerant suction pipe is connected to a cylindrical body section; and a compression element contained in the hermetic container, the compression element having a circular cylinder which has formed inside the inner wall thereof a cylinder chamber comprising a suction chamber and also comprising a compression chamber, the compression element also having an upper bearing which closes an opening at one end of the cylinder and which rotatably supports a crankshaft connected to an electric drive element and extending through the cylinder. The upper bearing has a disk section in contact with the one end of the cylinder, the disk section having formed therein: a communication hole having one end connecting to the refrigerant suction pipe, and the other end communicating with the cylinder chamber; and at least one through-hole which is formed closer to the outer peripheral side than the cylinder chamber of the cylinder in a plan view and which extends in a direction parallel to the crankshaft. The disk section has a plurality of circumferentially arranged welding sections which are affixed by welding to the body section of the hermetic container. The at least one through-hole is formed on the straight line connecting the center of the disk section and at least one of the welding sections.

Description

密閉型圧縮機、及び、冷凍サイクル装置Hermetic compressor and refrigeration cycle device
 本発明は、シリンダ室の上部に配置された上軸受を有する密閉型圧縮機、及び、当該密閉型圧縮機を備えた冷凍サイクル装置に関する。 The present invention relates to a hermetic compressor having an upper bearing disposed at the top of a cylinder chamber, and a refrigeration cycle apparatus provided with the hermetic compressor.
 従来の密閉型圧縮機として、密閉容器内に、電動機部と、圧縮機構部と、圧縮機構部を密閉容器内に支持するフレームとを備え、圧縮機構部の上軸受に、フレームの通孔と圧縮室とを連通する案内用孔が形成された圧縮機が提案されている(例えば、特許文献1参照)。特許文献1の密閉型圧縮機は、圧縮室に冷媒ガスを吸込み案内する吸込み冷媒管を密閉容器本体からフレームの通孔を介して主軸受の案内用孔に接続する機構を有している。 As a conventional hermetic type compressor, an electric motor part, a compression mechanism part, and a frame for supporting the compression mechanism part in the hermetic container are provided in the hermetic container, and the upper bearing of the compression mechanism part has through holes in the frame. A compressor having a guide hole communicating with the compression chamber is proposed (see, for example, Patent Document 1). The hermetic compressor of Patent Document 1 has a mechanism for connecting a suction refrigerant pipe for sucking and guiding the refrigerant gas into the compression chamber from the hermetic container main body to the guide hole of the main bearing via the through hole of the frame.
特開2008-151075号公報JP, 2008-151075, A
 従来の圧縮機は、潤滑油の封入量を削減、及び、密閉容器の材料費の削減のために密閉容器の背低化を図っている。その上で従来の圧縮機は、上軸受を密閉容器本体に溶接する際に、シリンダ又は主軸受に発生する熱歪による圧縮機構部の精度の悪化を避けるため、溶接対象として別部品のフレームを用意し、このフレームが密閉容器本体に溶接固定されている。その結果、従来の圧縮機は、部品点数が増加すると共に、組立工程が複雑化する場合がある。 Conventional compressors attempt to reduce the height of the closed container in order to reduce the amount of lubricating oil enclosed and to reduce the material cost of the closed container. Furthermore, when welding the upper bearing to the closed container main body, the conventional compressor avoids the deterioration of the accuracy of the compression mechanism due to the thermal strain generated in the cylinder or the main bearing, so the frame of the separate part is welded The frame is welded and fixed to the closed vessel body. As a result, the conventional compressor may increase the number of parts and complicate the assembly process.
 本発明は、上軸受を密閉容器に溶接固定する際の熱歪による圧縮機構部の精度の悪化を抑えると共に、部品点数の削減と組立工程の簡略化とを図る密閉型圧縮機、及び、当該密閉型圧縮機を備えた冷凍サイクル装置を提供するものである。 The present invention suppresses the deterioration of the accuracy of the compression mechanism portion due to thermal strain when welding and fixing the upper bearing to the closed container, and reduces the number of parts and simplifies the assembly process, A refrigeration cycle apparatus provided with a hermetic compressor.
 本発明に係る密閉型圧縮機は、円筒状の胴部に冷媒吸入管が接続される密閉容器と、密閉容器に収容される圧縮要素であって、吸入室と圧縮室とを構成するシリンダ室を内壁内に形成する円筒状のシリンダと、シリンダの一端の開口を閉塞し、電動要素に接続されてシリンダを貫通するクランク軸を回転自在に支持する上軸受と、を有する圧縮要素と、を備え、上軸受は、一端が冷媒吸入管と接続し他端がシリンダ室と連通する連通孔と、平面視でシリンダのシリンダ室より外周側に形成されていると共にクランク軸と平行な方向に貫通している少なくとも1つの貫通孔と、を形成し、シリンダの一端と当接している円盤部を有し、円盤部は、密閉容器の胴部に対して溶接固定される溶接部を周方向に複数有し、少なくとも1つの貫通孔が、円盤部の中心と少なくとも1つの溶接部と、を結ぶ直線上に形成されているものである。 The hermetic compressor according to the present invention is a hermetic container in which a refrigerant suction pipe is connected to a cylindrical body, and a compression element housed in the hermetic container, the cylinder chamber constituting a suction chamber and a compression chamber. And a compression element having a cylindrical cylinder forming an inner wall in the inner wall, and an upper bearing that closes an opening at one end of the cylinder and is connected to the motorized element to rotatably support a crankshaft that penetrates the cylinder. The upper bearing has a communication hole having one end connected to the refrigerant suction pipe and the other end connected to the cylinder chamber, and is formed on the outer peripheral side of the cylinder chamber in plan view and penetrates in a direction parallel to the crankshaft Forming at least one through hole, and having a disc portion in contact with one end of the cylinder, the disc portion circumferentially extending a weld to be welded and fixed to the body of the closed container There are multiple, at least one through hole is The center of the disk portion and the at least one weld, are those formed on a straight line connecting.
 本発明に係る密閉型圧縮機は、上軸受が円盤部を有しており、円盤部には平面視でシリンダのシリンダ室より外周側に形成されていると共にクランク軸と平行な方向に貫通している少なくとも1つの貫通孔が形成されている。そのため、密閉型圧縮機は、上軸受と密閉容器とを固定する溶接時に、熱歪の影響をシリンダ室の外側に留めることができ、圧縮要素の精度への影響を軽減することができる。また、円盤部は、密閉容器の内周壁に対して溶接固定される溶接部を周方向に複数有し、少なくとも1つの貫通孔が、円盤部の中心と少なくとも1つの溶接部と、を結ぶ直線上に配置されているものである。そのため、溶接の際の熱歪による変形を貫通孔の外部に更に集中させることができ、熱歪みによる連通孔の変形とシリンダ室の変形とを更に抑えることができる。その結果、密閉型圧縮機は、上軸受を密閉容器に溶接固定する際の熱歪による圧縮要素の精度の悪化を抑え、上軸受を密閉容器本体に直接溶接することで、部品点数の削減と組立工程の簡略化とを図ることができる。 In the hermetic compressor according to the present invention, the upper bearing has a disk portion, and the disk portion is formed on the outer peripheral side of the cylinder chamber of the cylinder in plan view and penetrates in a direction parallel to the crankshaft. At least one through hole is formed. Therefore, in the hermetic type compressor, the effect of thermal strain can be retained outside the cylinder chamber at the time of welding to fix the upper bearing and the hermetic container, and the influence on the accuracy of the compression element can be reduced. In addition, the disc portion has a plurality of welds in the circumferential direction which are welded and fixed to the inner peripheral wall of the sealed container, and at least one through hole is a straight line connecting the center of the disc portion and the at least one weld. It is located above. Therefore, the deformation due to the thermal strain at the time of welding can be further concentrated to the outside of the through hole, and the deformation of the communicating hole and the deformation of the cylinder chamber due to the thermal strain can be further suppressed. As a result, in the hermetic type compressor, the deterioration of the accuracy of the compression element due to the thermal strain when welding and fixing the upper bearing to the hermetic container is suppressed, and the upper bearing is directly welded to the hermetic container main body. Thus, the assembly process can be simplified.
本発明の実施の形態1に係る密閉型圧縮機を備えた冷凍サイクル装置を示す概略模式図である。It is a schematic diagram which shows the refrigerating-cycle apparatus provided with the closed type compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る密閉型圧縮機の縦断面図である。1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention. 図2の圧縮要素におけるシリンダのA-A線断面模式図である。FIG. 3 is a schematic cross-sectional view of the cylinder in the compression element of FIG. 図2の圧縮要素における上軸受の上面模式図である。FIG. 3 is a schematic top view of an upper bearing in the compression element of FIG. 2; 図2の圧縮要素における他の上軸受の上面模式図である。FIG. 5 is a top schematic view of another upper bearing in the compression element of FIG. 2;
 以下、本発明の実施の形態に係る密閉型圧縮機100、及び、冷凍サイクル装置10について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, the hermetic compressor 100 and the refrigeration cycle apparatus 10 according to the embodiment of the present invention will be described with reference to the drawings and the like. In the following drawings including FIG. 1, the relative dimensional relationships, shapes, and the like of the respective constituent members may differ from the actual ones. Moreover, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds to this, and this shall be common in the whole text of a specification. In addition, terms that indicate direction (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are appropriately used to facilitate understanding, but their notations are as follows: For the convenience of the description, it is only described as such, and does not limit the arrangement and orientation of the device or parts.
実施の形態1.
[冷凍サイクル装置10]
 図1は、本発明の実施の形態1に係る密閉型圧縮機100を備えた冷凍サイクル装置10を示す概略模式図である。冷凍サイクル装置10は、密閉型圧縮機100と、凝縮器110と、膨張装置120と、蒸発器130とを備えている。冷凍サイクル装置10は、図1に示すように、密閉型圧縮機100、凝縮器110、膨張装置120、蒸発器130を直列に冷媒配管で接続して冷媒循環回路を構成する。
Embodiment 1
[Refrigeration cycle apparatus 10]
FIG. 1 is a schematic view showing a refrigeration cycle apparatus 10 provided with a hermetic compressor 100 according to Embodiment 1 of the present invention. The refrigeration cycle apparatus 10 includes a hermetic compressor 100, a condenser 110, an expansion device 120, and an evaporator 130. As shown in FIG. 1, the refrigeration cycle apparatus 10 forms a refrigerant circulation circuit by connecting a hermetic compressor 100, a condenser 110, an expansion device 120, and an evaporator 130 in series with a refrigerant pipe.
 密閉型圧縮機100は、ロータリ式の圧縮機であって、内部に取り込まれる低圧の気相冷媒を圧縮して高温高圧の気相冷媒に変化させる。凝縮器110は、密閉型圧縮機100から送り込まれる高温高圧の気相冷媒から熱を放熱させ、気相冷媒を高圧の液相冷媒に変化させる。膨張装置120は、凝縮器110から送り込まれる高圧の液相冷媒の圧力を下げ、低温低圧の液相冷媒に変化させる。蒸発器130は、膨張装置120から送り込まれる液相冷媒を気化させ、低圧の気相冷媒に変化させる。このとき、相変化する冷媒に気化熱が奪われて蒸発器130の周囲が冷却される。気化熱を奪った気相冷媒は、再び密閉型圧縮機100内に取り込まれる。このように、冷凍サイクル装置10では、作動流体である冷媒が気相冷媒と液相冷媒とに相変化しながら循環している。気相冷媒から液相冷媒へ相変化する過程で冷媒から放熱され、液相冷媒から気相冷媒へ相変化する過程で冷媒に吸熱される。これら放熱や吸熱を利用して暖房や冷房が行われる。 The hermetic compressor 100 is a rotary compressor, and compresses a low-pressure gas phase refrigerant introduced thereinto to change it into a high-temperature high-pressure gas phase refrigerant. The condenser 110 dissipates heat from the high-temperature and high-pressure gas-phase refrigerant fed from the hermetic compressor 100 to change the gas-phase refrigerant into a high-pressure liquid-phase refrigerant. The expansion device 120 reduces the pressure of the high-pressure liquid-phase refrigerant fed from the condenser 110 and changes it to a low-temperature low-pressure liquid-phase refrigerant. The evaporator 130 vaporizes the liquid-phase refrigerant fed from the expansion device 120 and changes it to a low-pressure gas-phase refrigerant. At this time, the heat of vaporization is taken away by the phase-changing refrigerant, and the periphery of the evaporator 130 is cooled. The gas-phase refrigerant which has taken the heat of vaporization is again taken into the hermetic compressor 100. As described above, in the refrigeration cycle apparatus 10, the refrigerant, which is the working fluid, circulates while undergoing phase change between the gas phase refrigerant and the liquid phase refrigerant. Heat is dissipated from the refrigerant in the process of phase change from gas phase refrigerant to liquid phase refrigerant, and is absorbed by the refrigerant in the process of phase change from liquid phase refrigerant to gas phase refrigerant. Heating and cooling are performed using these heat radiation and heat absorption.
[密閉型圧縮機100]
 図2は、本発明の実施の形態1に係る密閉型圧縮機100の縦断面図である。密閉型圧縮機100は、密閉容器2の内部に電動要素4及び圧縮要素5が収納されている。
[Sealed compressor 100]
FIG. 2 is a longitudinal cross-sectional view of the hermetic compressor 100 according to Embodiment 1 of the present invention. In the hermetic compressor 100, the electric element 4 and the compression element 5 are housed inside the hermetic container 2.
(密閉容器2)
 密閉容器2は、密閉型圧縮機100の外観を構成し、略円筒形状の胴部21と、胴部21の上部の開口を塞ぐ略半球形状の上蓋部22と、胴部21の下部の開口を塞ぐ略半球形状の下蓋部23とで構成されている。密閉容器2は、胴部21の上方の開口部に上蓋部22が嵌入され、胴部21の下方の開口部に下蓋部23が嵌入され、胴部21と上蓋部22とが溶接で固定され、胴部21と下蓋部23とが溶接で固定されている。密閉容器2は、密閉状態に保たれている。密閉容器2は、台座3の上に設けられており、下蓋部23と台座3とが固定されている。密閉型圧縮機100は、通常の設置状態ではボルト等により台座3が設置場所に固定される。
(Sealed container 2)
The closed container 2 constitutes the external appearance of the closed type compressor 100 and has a substantially cylindrical body 21, a substantially hemispherical upper lid 22 closing an opening at the upper portion of the body 21, and an opening at the lower part of the body 21. And a substantially semi-spherical lower lid 23 for closing the In the closed container 2, the upper lid 22 is fitted in the upper opening of the body 21, the lower lid 23 is fitted in the lower opening of the body 21, and the body 21 and the upper lid 22 are fixed by welding. The body 21 and the lower lid 23 are fixed by welding. The closed container 2 is kept sealed. The closed container 2 is provided on the pedestal 3, and the lower lid 23 and the pedestal 3 are fixed. In the normal installation state of the hermetic compressor 100, the pedestal 3 is fixed to the installation location by bolts or the like.
 密閉容器2は、円筒状の胴部21に冷媒吸入管7aが接続されている。密閉容器2の胴部21には貫通孔21aが形成されており、ここに冷媒吸入管7aが接続される。冷媒吸入管7aの先端は、後述する圧縮要素5の上軸受53に形成された連通孔53aに挿入される。冷媒吸入管7aは、蒸発器130を通過したガス冷媒(低温低圧)を圧縮要素5内に送り込むための接続管である。密閉容器2の上蓋部22には貫通孔22aが形成されており、ここに冷媒吐出管7bが接続される。冷媒吐出管7bは、圧縮要素5によって圧縮された密閉容器2内のガス冷媒(高温高圧)を、冷凍サイクル装置10を構成する冷媒配管に吐出させるための接続管である。密閉型圧縮機100は、冷媒吸入管7aにより冷凍サイクル装置10を構成する蒸発器130と接続され、冷媒吐出管7bにより冷凍サイクル装置10を構成する凝縮器110と接続されて使用される。 In the closed container 2, a refrigerant suction pipe 7 a is connected to a cylindrical body 21. A through hole 21 a is formed in the body portion 21 of the sealed container 2, and a refrigerant suction pipe 7 a is connected thereto. The tip of the refrigerant suction pipe 7a is inserted into a communication hole 53a formed in the upper bearing 53 of the compression element 5 described later. The refrigerant suction pipe 7 a is a connection pipe for feeding the gas refrigerant (low temperature low pressure) which has passed through the evaporator 130 into the compression element 5. A through hole 22 a is formed in the upper lid portion 22 of the sealed container 2, and the refrigerant discharge pipe 7 b is connected thereto. The refrigerant discharge pipe 7 b is a connection pipe for discharging the gas refrigerant (high temperature and high pressure) in the closed container 2 compressed by the compression element 5 to a refrigerant pipe constituting the refrigeration cycle apparatus 10. The hermetic compressor 100 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 by the refrigerant suction pipe 7a, and connected to the condenser 110 constituting the refrigeration cycle apparatus 10 by the refrigerant discharge pipe 7b.
 (電動要素4)
 電動要素4は、密閉容器2内において圧縮要素5の上方に配置されている。電動要素4は、胴部21の内周面に固定された固定子41と、固定子41の内周側に回転自在に嵌合された回転子42とを備えている。固定子41は、例えば、焼き嵌め、溶接など各種固定法により密閉容器2の胴部21に固定されている。回転子42の中心部には、下方に延びるクランク軸51が固定されている。電動要素4は、上蓋部22の中央部に取り付けられた端子6aとリード線6bで接続されており、電力が端子6aを介して電動要素4に供給される。
(Motorized element 4)
The motorized element 4 is disposed above the compression element 5 in the closed container 2. The electric element 4 includes a stator 41 fixed to the inner circumferential surface of the body 21 and a rotor 42 rotatably fitted on the inner circumferential side of the stator 41. The stator 41 is fixed to the body portion 21 of the sealed container 2 by, for example, various fixing methods such as shrink fitting or welding. At the center of the rotor 42, a crank shaft 51 extending downward is fixed. The electric element 4 is connected to a terminal 6a attached to the central portion of the upper cover 22 by a lead wire 6b, and power is supplied to the electric element 4 through the terminal 6a.
 (圧縮要素5)
 圧縮要素5は、密閉容器2に収容され、密閉容器2内に流入する冷媒を圧縮するものである。圧縮要素5は、円筒シリンダを有するロータリ式の圧縮機構である。圧縮要素5は、電動要素4の下方に配置され、胴部21に固定されている。更に詳細には、圧縮要素5は、胴部21と上軸受53とがスポット溶接で固定されている。圧縮要素5は、クランク軸51と、シリンダ52と、上軸受53と、下軸受54と、ローリングピストン55と、ベーン56(図3参照)とを備えている。
(Compression element 5)
The compression element 5 is accommodated in the closed container 2 and compresses the refrigerant flowing into the closed container 2. The compression element 5 is a rotary compression mechanism having a cylindrical cylinder. The compression element 5 is disposed below the motorized element 4 and fixed to the body 21. More specifically, in the compression element 5, the body 21 and the upper bearing 53 are fixed by spot welding. The compression element 5 includes a crankshaft 51, a cylinder 52, an upper bearing 53, a lower bearing 54, a rolling piston 55, and a vane 56 (see FIG. 3).
 クランク軸51は、図2に示すように、軸方向の一方の側に、一方向に偏芯した偏芯部51aを有している。また、クランク軸51は、軸方向の他方の側が電動要素4の回転子42の中心部に挿入され固定されている。クランク軸51は、後述する上軸受53及び下軸受54により回転自在に支持され、回転子42と共に回転する。クランク軸51は、胴部21の中心線上にある回転軸51bを中心にして回転する。 As shown in FIG. 2, the crankshaft 51 has an eccentric portion 51 a eccentrically in one direction on one side in the axial direction. Further, the other side of the crankshaft 51 in the axial direction is inserted into and fixed to the central portion of the rotor 42 of the electric element 4. The crankshaft 51 is rotatably supported by an upper bearing 53 and a lower bearing 54 described later, and rotates together with the rotor 42. The crankshaft 51 rotates around a rotation shaft 51 b located on the center line of the trunk portion 21.
 図3は、図2の圧縮要素5におけるシリンダ52のA-A線断面模式図である。なお、図3では、シリンダ52内に配置されている、偏芯部51aの図示を省略している。シリンダ52は、円筒状に形成された周壁部52bを有し、クランク軸51と同心のシリンダ室52aを内周部に形成する。周壁部52bの内側には、ローリングピストン55が配置され、周壁部52bの内壁52b1は、円筒状に形成されたローリングピストン55の外周面55aと対向する。シリンダ52の周壁部52bには、内壁52b1から径方向外側に向かって形成されたベーン溝52cが形成されている。ベーン溝52cには、ベーン56が摺動自在に配置されている。シリンダ52の径方向において、ローリングピストン55と反対側のベーン56の端部には、ベーンスプリング57が配置されている。ベーン56の先端は、ベーンスプリング57の付勢力により、ローリングピストン55の外周面55aと当接する。シリンダ52は、ベーン溝52cを周方向に挟んで両側に配置された吸入孔52d及び吐出孔52eを形成している。吸入孔52dは、上軸受53に形成された連通孔53aと連通する。吐出孔52eは、シリンダ52の内壁52b1から径方向外側に向かって形成されており、上軸受53に設けられた吐出穴(図示せず)及び図2に示す吐出マフラ58を介して密閉容器2内の空間と連通している。 FIG. 3 is a schematic sectional view taken along line AA of the cylinder 52 in the compression element 5 of FIG. In addition, in FIG. 3, illustration of the eccentricity part 51a arrange | positioned in the cylinder 52 is abbreviate | omitted. The cylinder 52 has a peripheral wall portion 52 b formed in a cylindrical shape, and forms a cylinder chamber 52 a concentric with the crankshaft 51 in the inner peripheral portion. The rolling piston 55 is disposed inside the peripheral wall 52b, and the inner wall 52b1 of the peripheral wall 52b faces the outer peripheral surface 55a of the rolling piston 55 formed in a cylindrical shape. In the peripheral wall portion 52b of the cylinder 52, a vane groove 52c formed radially outward from the inner wall 52b1 is formed. A vane 56 is slidably disposed in the vane groove 52c. A vane spring 57 is disposed at the end of the vane 56 opposite to the rolling piston 55 in the radial direction of the cylinder 52. The tip of the vane 56 abuts on the outer peripheral surface 55 a of the rolling piston 55 by the biasing force of the vane spring 57. The cylinder 52 forms suction holes 52 d and discharge holes 52 e disposed on both sides of the vane groove 52 c in the circumferential direction. The suction hole 52 d communicates with the communication hole 53 a formed in the upper bearing 53. The discharge hole 52e is formed radially outward from the inner wall 52b1 of the cylinder 52, and the sealed container 2 is provided via the discharge hole (not shown) provided in the upper bearing 53 and the discharge muffler 58 shown in FIG. It communicates with the inner space.
 ローリングピストン55は、クランク軸51の中心軸に対し偏心した位置にあり、クランク軸51と共に回転するように、シリンダ52内でクランク軸51の偏芯部51aに装着されている。ローリングピストン55は、クランク軸51の回転によって、シリンダ52内を偏芯回転する。ローリングピストン55の外周面55aには、ベーン56が摺動自在に接している。シリンダ室52aは、ベーン56によって、吸入孔52dに通じる吸入室52fと、吐出孔52eに通じる圧縮室52gとに区画される。シリンダ52は、円筒状に形成されており、吸入室52fと圧縮室52gとを構成するシリンダ室52aを、シリンダ52の内壁52b1で囲まれた空間内に形成する。 The rolling piston 55 is at a position eccentric to the central axis of the crankshaft 51 and is mounted on the eccentric part 51 a of the crankshaft 51 in the cylinder 52 so as to rotate with the crankshaft 51. The rolling piston 55 eccentrically rotates in the cylinder 52 by the rotation of the crankshaft 51. The vane 56 is slidably in contact with the outer peripheral surface 55 a of the rolling piston 55. The cylinder chamber 52a is divided by the vane 56 into a suction chamber 52f communicating with the suction hole 52d and a compression chamber 52g communicating with the discharge hole 52e. The cylinder 52 is formed in a cylindrical shape, and forms a cylinder chamber 52a constituting the suction chamber 52f and the compression chamber 52g in a space surrounded by the inner wall 52b1 of the cylinder 52.
 図4は、図2の圧縮要素5における上軸受53の上面模式図である。シリンダ52の上部には、上軸受53が、シリンダ52の上端面に接して配置され、シリンダ52の上端面を閉塞する。シリンダ52の下部には、下軸受54が、シリンダ52の下端面に接して配置され、シリンダ52の下端面を閉塞する。すなわち、上軸受53は、円筒形状のシリンダ52の一端の開口を閉塞し、下軸受54は、円筒形状のシリンダ52の他端の開口を閉塞する。シリンダ52の両端に配置された上軸受53と、下軸受54とは、電動要素4に接続されてシリンダ52を貫通するクランク軸51を回転自在に支持する。 FIG. 4 is a schematic top view of the upper bearing 53 in the compression element 5 of FIG. At the upper part of the cylinder 52, an upper bearing 53 is disposed in contact with the upper end surface of the cylinder 52 and closes the upper end surface of the cylinder 52. At the lower part of the cylinder 52, a lower bearing 54 is disposed in contact with the lower end face of the cylinder 52 and closes the lower end face of the cylinder 52. That is, the upper bearing 53 closes the opening at one end of the cylindrical cylinder 52, and the lower bearing 54 closes the opening at the other end of the cylindrical cylinder 52. An upper bearing 53 and a lower bearing 54 disposed at both ends of the cylinder 52 are connected to the electric element 4 and rotatably support a crankshaft 51 passing through the cylinder 52.
 図2及び図4を用いて上軸受53について更に詳細に説明する。上軸受53は、円板状に形成された円盤部53dと、円筒状に形成された軸受部53eとを備える。円盤部53dと、軸受部53eとは、一体に形成されており、上軸受53は、側面視で略逆T字状に形成されている。 The upper bearing 53 will be described in more detail with reference to FIGS. 2 and 4. The upper bearing 53 includes a disk portion 53d formed in a disk shape and a bearing portion 53e formed in a cylindrical shape. The disk portion 53d and the bearing portion 53e are integrally formed, and the upper bearing 53 is formed in a substantially reverse T-shape in a side view.
 円盤部53dは、平面視で円形状であり、圧縮室52gの上部開口を閉塞する。円盤部53dは、シリンダ52と対向する面が、シリンダ52の一端となる周壁部52bの上端面と当接する。円盤部53dは、外周面53fの一部が、密閉容器2に固定される。なお、外周面53fは、円盤部53dの外周縁を形成する側壁である。円盤部53dの中心には、クランク軸51が貫通する軸受部53eが形成されている。軸受部53eは、略円筒形状に形成されており、軸受部53eの内周壁は、クランク軸51を回転自在に支持する。 The disk portion 53d is circular in plan view, and closes the upper opening of the compression chamber 52g. In the disc portion 53 d, the surface facing the cylinder 52 abuts on the upper end surface of the peripheral wall portion 52 b which is one end of the cylinder 52. In the disc portion 53 d, a part of the outer peripheral surface 53 f is fixed to the closed container 2. The outer peripheral surface 53f is a side wall that forms the outer peripheral edge of the disk portion 53d. A bearing portion 53e through which the crankshaft 51 passes is formed at the center of the disc portion 53d. The bearing portion 53e is formed in a substantially cylindrical shape, and the inner peripheral wall of the bearing portion 53e rotatably supports the crankshaft 51.
 上軸受53の円盤部53dには、冷媒吸入管7aから吸入室52fに冷媒ガスを案内するための流路となる連通孔53aが形成されている。連通孔53aは、円盤部53dにおいて、外周面53fから径方向内側に向かって形成されている。連通孔53aの一端は、外周面53fに開口しており、冷媒吸入管7aと接続する。連通孔53aの他端は、円盤部53dにおいて、シリンダ52側の下端面に開口しており、シリンダ52に形成された吸入孔52dを介してシリンダ室52aの吸入室52fと連通する。 The disk portion 53d of the upper bearing 53 is formed with a communication hole 53a serving as a flow path for guiding the refrigerant gas from the refrigerant suction pipe 7a to the suction chamber 52f. The communication hole 53a is formed radially inward from the outer peripheral surface 53f in the disk portion 53d. One end of the communication hole 53a is open to the outer peripheral surface 53f, and is connected to the refrigerant suction pipe 7a. The other end of the communication hole 53a opens in the lower end surface of the disk portion 53d on the cylinder 52 side, and communicates with the suction chamber 52f of the cylinder chamber 52a through the suction hole 52d formed in the cylinder 52.
 上軸受53の円盤部53dには、貫通孔53cが形成されている。貫通孔53cは、1つだけ形成されていてもよく、あるいは、複数形成されていてもよい。貫通孔53cは、図3に示すシリンダ室52aの外径をR1とすると、円盤部53dにおいて、R1<R2となる直径R2を持つ円より外周側に形成されている。すなわち、貫通孔53cは、平面視でシリンダ52のシリンダ室52aより外周側に形成されている。また、貫通孔53cは、クランク軸51と平行な方向に貫通している。さらに、貫通孔53cは、外周面53fよりも中心側の位置に形成されている。貫通孔53cが複数形成されている場合、複数の貫通孔53cは、円盤部53dの周方向に配置されている。複数の貫通孔53cは、図4に示すように、それぞれ円盤部53dの中心Pから外周面53fへの径方向において、同一位置に形成されている。なお、貫通孔53cの形成位置は、それぞれ円盤部53dの中心Pから外周面53fへの径方向において、同一位置に形成されている構造に限定されるものではない。貫通孔53cの形成位置は、円盤部53dの中心Pから外周面53fへの径方向においてそれぞれ異なる位置に形成されてもよい。貫通孔53cの開口形状は、図4に示すように、平面視で円形状に形成されており、あるいは、円盤部53dの周方向に沿って平面視で円弧形状に形成されている。 A through hole 53 c is formed in the disk portion 53 d of the upper bearing 53. Only one through hole 53 c may be formed, or a plurality of through holes 53 c may be formed. Assuming that the outer diameter of the cylinder chamber 52a shown in FIG. 3 is R1, the through hole 53c is formed on the outer peripheral side of a circle having a diameter R2 such that R1 <R2 in the disk portion 53d. That is, the through hole 53c is formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view. The through hole 53 c penetrates in a direction parallel to the crankshaft 51. Furthermore, the through hole 53c is formed at a position closer to the center than the outer peripheral surface 53f. When a plurality of through holes 53c are formed, the plurality of through holes 53c are arranged in the circumferential direction of the disk portion 53d. As shown in FIG. 4, the plurality of through holes 53c are formed at the same position in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f. The formation positions of the through holes 53c are not limited to the structure formed at the same position in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f. The formation positions of the through holes 53c may be formed at different positions in the radial direction from the center P of the disk portion 53d to the outer peripheral surface 53f. The opening shape of the through hole 53c is, as shown in FIG. 4, formed circular in plan view, or arced in plan view along the circumferential direction of the disc portion 53d.
 上軸受53は、溶接部53bにスポット溶接を行うことで胴部21に固定される。溶接部53bは、スポット溶接を行うポイントである。円盤部53dは、図4に示すように、密閉容器2の胴部21に対して溶接固定される溶接部53bを周方向に複数有する。溶接部53bの数が2箇所以下では、圧縮要素5の回転を抑制できないため、溶接部53bの数は3箇所以上必要となる。また、溶接部53bの数が増加すると、溶接時の熱歪の影響が大きくなり、圧縮要素5を構成する機構の精度悪化につながるため、図4に示すように、密閉型圧縮機100は溶接部53bを3箇所としている。 The upper bearing 53 is fixed to the body portion 21 by spot welding to the welding portion 53b. The weld portion 53 b is a point at which spot welding is performed. As shown in FIG. 4, the disk portion 53 d has a plurality of welding portions 53 b circumferentially fixed to the body portion 21 of the closed container 2 by welding. If the number of welds 53b is two or less, the rotation of the compression element 5 can not be suppressed, so three or more welds 53b are required. Further, when the number of welds 53b increases, the influence of thermal strain at the time of welding becomes large, which leads to the deterioration of the accuracy of the mechanism that constitutes compression element 5. Therefore, as shown in FIG. There are three parts 53b.
 図4において、平面視で、円盤部53dの中心Pから貫通孔53cの中心を通る径方向の線を基準線Cとした場合に、基準線Cから時計回りの周方向を正の角度とし、基準線Cから反時計回りの周方向を負の角度とする。このとき図4に示す、角度a11、角度a12、角度a13は、溶接部53bの基準線Cからのそれぞれの角度を表す。実施の形態1に係る密閉型圧縮機100では角度a11=49°、角度a12=-85°、角度a13=164°としている。各溶接部53bと、連通孔53aとの位相差をそれぞれ角度a11、角度a12、角度a13とすると、角度a11、角度a12、角度a13の値が小さくなるほどスポット溶接による連通孔53aへの熱歪の影響が大きくなる。溶接による熱歪の影響により、連通孔53aが変形すると圧縮時の吸入圧損が増加する。溶接部53bの位相を上軸受53の周方向に均等に配置することで圧縮要素5の回転を抑制すると共に、連通孔53aへの熱歪の影響を低減することができる。 In FIG. 4, when a radial line passing from the center P of the disk portion 53d to the center of the through hole 53c in plan view is a reference line C, the circumferential direction clockwise from the reference line C is a positive angle, The circumferential direction counterclockwise from the reference line C is a negative angle. At this time, an angle a11, an angle a12, and an angle a13 shown in FIG. 4 represent the respective angles from the reference line C of the welded portion 53b. In the hermetic type compressor 100 according to the first embodiment, the angle a11 = 49 °, the angle a12 = −85 °, and the angle a13 = 164 °. Assuming that the phase difference between each welding portion 53b and the communication hole 53a is angle a11, angle a12 and angle a13, the smaller the values of angle a11, angle a12 and angle a13, the smaller the thermal distortion to the communication hole 53a by spot welding. The impact is greater. When the communicating hole 53a is deformed due to the influence of thermal strain due to welding, the suction pressure loss at the time of compression increases. By disposing the phase of the welding portion 53b evenly in the circumferential direction of the upper bearing 53, the rotation of the compression element 5 can be suppressed, and the influence of thermal strain on the communication hole 53a can be reduced.
 上軸受53の円盤部53dには、少なくとも1つの貫通孔53cが形成されている。上軸受53の円盤部53dに、少なくとも1つの貫通孔53cが形成されていることで、熱歪による変形を貫通孔53cの外部に集中させ、シリンダ室52a及び連通孔53a等への熱歪の影響を軽減できる。なお、シリンダ室52a及び連通孔53a等への熱歪の影響を軽減する点からは、溶接部53bの近傍に貫通孔53cを配置することが更に望ましい。熱歪による変形を貫通孔53cの外部に更に集中させ、シリンダ室52a及び連通孔53a等への熱歪の影響を更に軽減できるからである。ここで、溶接部53bの近傍に貫通孔53cを配置されているとは、少なくとも1つの貫通孔53cが、円盤部53dの中心Pと少なくとも1つの溶接部53bと、を結ぶ直線上に配置されている状態をいう。密閉型圧縮機100は、平面視でシリンダ52のシリンダ室52aより外周側において形成された少なくとも1つの貫通孔53cが、上軸受53の中心と溶接部53bとを結ぶ直線上に配置されているものである。 At least one through hole 53 c is formed in the disk portion 53 d of the upper bearing 53. By forming at least one through hole 53c in the disk portion 53d of the upper bearing 53, deformation due to thermal strain is concentrated to the outside of the through hole 53c, and thermal strain to the cylinder chamber 52a, the communication hole 53a, etc. You can reduce the impact. In order to reduce the influence of thermal strain on the cylinder chamber 52a and the communication hole 53a, it is more preferable to dispose the through hole 53c in the vicinity of the weld portion 53b. This is because the deformation due to the thermal strain can be further concentrated to the outside of the through hole 53c, and the influence of the thermal strain on the cylinder chamber 52a and the communication hole 53a can be further reduced. Here, that the through hole 53c is disposed in the vicinity of the weld portion 53b means that at least one through hole 53c is disposed on a straight line connecting the center P of the disk portion 53d and the at least one weld portion 53b. State. In the hermetic compressor 100, at least one through hole 53c formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view is disposed on a straight line connecting the center of the upper bearing 53 and the welding portion 53b. It is a thing.
 上軸受53の円盤部53dにおいて、貫通孔53cが形成されている場所は、シリンダ室52a及び連通孔53a等への熱歪の影響を軽減できるが、貫通孔53cと外周面53fとの間の円盤部53dの肉厚が薄くなる。この場合、密閉容器2に対する圧縮要素5の保持力が低下する場合がある。各溶接部53bに対応して全ての溶接部53bの近傍に貫通孔53cを形成することは、シリンダ室52a及び連通孔53a等への熱歪の影響を軽減できる点からは望ましいが、密閉容器2に対する圧縮要素5の保持力の面からは望ましくない場合がある。そのため、密閉型圧縮機100は、円盤部53dの中心Pと少なくとも1つの溶接部53bと、を結ぶ全ての直線上に形成されている貫通孔53cの数は、溶接部53bの数よりも少ないことが更に望ましい。 In the disk portion 53d of the upper bearing 53, the location where the through hole 53c is formed can reduce the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc., but the space between the through hole 53c and the outer peripheral surface 53f The thickness of the disc portion 53d is reduced. In this case, the holding power of the compression element 5 with respect to the closed container 2 may be reduced. Forming the through holes 53c in the vicinity of all the welds 53b corresponding to each weld 53b is desirable from the viewpoint of reducing the influence of thermal strain on the cylinder chamber 52a and the communication holes 53a etc. It may not be desirable in terms of the holding power of the compression element 5 with respect to 2. Therefore, in the hermetic compressor 100, the number of the through holes 53c formed on all the straight lines connecting the center P of the disk portion 53d and the at least one weld portion 53b is smaller than the number of the weld portions 53b. Is even more desirable.
 図5は、図2の圧縮要素5における他の上軸受53Aの上面模式図である。上軸受53Aと上軸受53とは、円盤部53dに形成された貫通孔53cの数が異なるものである。上軸受53Aの説明において、図1~図4の上軸受53と同一の構成を有する部位には同一の符号を付してその説明を省略する。図5において、平面視で円盤部53dの中心Pから貫通孔53cの中心を通る径方向の線を基準線Cとした場合に、基準線Cから時計回りの周方向を正の角度とし、基準線Cから反時計回りの周方向を負の角度とする。このとき図5に示す、角度a11、角度a12、角度a13は、溶接部53bの基準線Cからのそれぞれの角度を表す。また、角度a21、角度a23、角度a25は、基準線Cから周方向に見た貫通孔53cの開始点であり、角度a22、角度a24、角度a26は、基準線Cから周方向に見た貫通孔53cの終了点である。図5の上軸受53Aは、角度a21<角度a11<角度a22の関係を満たしている。角度a21<角度a11<角度a22の関係とは、貫通孔53cの周方向の幅の間に溶接部53bと中心Pとを結ぶ線が位置していることを示している。また、上軸受53Aは、角度a25<角度a13<角度a26の関係も満たしている。角度a25<角度a13<角度a26の関係とは、貫通孔53cの周方向の幅の間に溶接部53bと中心Pとを結ぶ線が位置していることを示している。図5の上軸受53Aは、角度a12<角度a23<角度a24の関係となっている。角度a12<角度a23<角度a24の関係とは、貫通孔53cの周方向の幅の間に溶接部53bと中心Pとを結ぶ線が位置していないことを示している。すなわち、図5の上軸受53Aは、角度a11及び角度a13に位置する2つの溶接部53bの近傍に貫通孔53cが形成されており、角度a12に位置する1つの溶接部53bの近傍には貫通孔53cが形成されていない。 FIG. 5 is a schematic top view of another upper bearing 53A in the compression element 5 of FIG. The upper bearing 53A and the upper bearing 53 are different in the number of through holes 53c formed in the disk portion 53d. In the description of the upper bearing 53A, parts having the same configuration as the upper bearing 53 in FIGS. 1 to 4 are denoted with the same reference numerals, and the description thereof is omitted. In FIG. 5, when a radial line passing from the center P of the disk portion 53d to the center of the through hole 53c in plan view is a reference line C, the circumferential direction clockwise from the reference line C is a positive angle. The circumferential direction counterclockwise from the line C is a negative angle. At this time, an angle a11, an angle a12, and an angle a13 shown in FIG. 5 represent respective angles from the reference line C of the welding portion 53b. The angles a21, a23 and a25 are the start points of the through holes 53c seen from the reference line C in the circumferential direction, and the angles a22, a24 and a26 are the penetration seen from the reference line C in the circumferential direction The end point of the hole 53c. The upper bearing 53A in FIG. 5 satisfies the relationship of angle a21 <angle a11 <angle a22. The relationship of the angle a21 <the angle a11 <the angle a22 indicates that a line connecting the weld portion 53b and the center P is located between the circumferential widths of the through holes 53c. The upper bearing 53A also satisfies the relationship of angle a25 <angle a13 <angle a26. The relationship of the angle a25 <the angle a13 <the angle a26 indicates that a line connecting the weld portion 53b and the center P is located between the circumferential widths of the through holes 53c. The upper bearing 53A in FIG. 5 has a relationship of angle a12 <angle a23 <angle a24. The relationship of the angle a12 <the angle a23 <the angle a24 indicates that a line connecting the weld portion 53b and the center P is not located between the circumferential widths of the through holes 53c. That is, in the upper bearing 53A of FIG. 5, the through holes 53c are formed in the vicinity of the two welded portions 53b positioned at the angle a11 and the angle a13, and the upper bearing 53A penetrates in the vicinity of the one welded portion 53b positioned at the angle a12. The hole 53c is not formed.
 上述のとおり、実施の形態1に係る密閉型圧縮機100は、平面視でシリンダ52のシリンダ室52aより外周側において形成された少なくとも1つの貫通孔53cが上軸受53の中心Pと溶接部53bとを結ぶ直線上に配置されているものである。上軸受53Aに3つの貫通孔53cが形成されている場合には、角度a21<角度a11<角度a22、角度a23<角度a12<角度a24、角度a25<角度a13<角度a26のいずれか1つを満たせばよい。上記角度関係のいずれか1つを満たすことで、溶接部53bの近傍に少なくとも1つの貫通孔53cが形成されており、シリンダ室52a及び連通孔53a等への熱歪の影響を軽減することができる。 As described above, in the hermetic compressor 100 according to the first embodiment, at least one through hole 53c formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in plan view has the center P of the upper bearing 53 and the welding portion 53b. And are disposed on a straight line connecting When three through holes 53c are formed in the upper bearing 53A, any one of the angles a21 <angle a11 <angle a22, angles a23 <angle a12 <angle a24, and angles a25 <angle a13 <angle a26 is satisfied. It should be satisfied. By satisfying any one of the above-mentioned angular relationships, at least one through hole 53c is formed in the vicinity of the welding portion 53b, and the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. can be reduced. it can.
[密閉型圧縮機100の動作]
 次に、密閉型圧縮機100の動作について説明する。密閉型圧縮機100は、端子6aを通じて電動要素4に電力が供給されると、回転子42と共に回転子42に固定されたクランク軸51が回転軸51bを中心にして回転する。クランク軸51が回転すると、クランク軸51と共に、シリンダ52内のローリングピストン55も回転する。ローリングピストン55は、偏芯的に回転し、ローリングピストン55に摺動自在に接したベーン56がローリングピストン55の回転によりピストン運動する。このとき、ガス冷媒が、冷凍サイクルから冷媒吸入管7aと、上軸受53に形成された連通孔53aとを介して圧縮要素5のシリンダ室52a内に吸い込まれる。シリンダ室52a内のガス冷媒は、ローリングピストン55の偏芯的な回転に伴って圧縮室52g内の容積が小さくなるにつれ圧縮されていく。圧縮された高圧力のガス冷媒は密閉容器2内に放出され、密閉容器2内は高圧力状態になる。密閉容器2内の高圧力のガス冷媒は、回転子42に設けられたガス穴(図示せず)、固定子41と回転子42の間のエアギャップ等をそれぞれ通って密閉容器2内の上部に達し冷媒吐出管7bから冷凍サイクル装置10の冷媒回路内へと吐出される。
[Operation of Hermetic Compressor 100]
Next, the operation of the hermetic compressor 100 will be described. In the hermetic compressor 100, when electric power is supplied to the electric element 4 through the terminal 6a, the crankshaft 51 fixed to the rotor 42 together with the rotor 42 rotates around the rotation shaft 51b. When the crankshaft 51 rotates, the rolling piston 55 in the cylinder 52 also rotates along with the crankshaft 51. The rolling piston 55 rotates eccentrically, and the vane 56 slidably in contact with the rolling piston 55 performs a piston motion by the rotation of the rolling piston 55. At this time, the gas refrigerant is sucked from the refrigeration cycle into the cylinder chamber 52 a of the compression element 5 through the refrigerant suction pipe 7 a and the communication hole 53 a formed in the upper bearing 53. The gas refrigerant in the cylinder chamber 52a is compressed as the volume in the compression chamber 52g decreases as the rolling piston 55 eccentrically rotates. The compressed high-pressure gas refrigerant is released into the closed container 2 and the inside of the closed container 2 is in a high pressure state. The high pressure gas refrigerant in the closed container 2 passes through gas holes (not shown) provided in the rotor 42, an air gap between the stator 41 and the rotor 42, etc., and the upper part in the closed container 2 The refrigerant discharge pipe 7 b is discharged into the refrigerant circuit of the refrigeration cycle apparatus 10.
 密閉型圧縮機100には、作動冷媒として高圧冷媒が用いられる。高圧冷媒としては、例えば、二酸化炭素冷媒が用いられる。自然冷媒の一つである二酸化炭素冷媒は、HFC(ハイドロフルオロカーボン)の中で最も高圧で作動するR410A冷媒の約3倍の作動圧力となる。高圧の作動圧に対応するために密閉容器2を構成する胴部21の板圧もR410A冷媒を使用する密閉型圧縮機の密閉容器の板厚と比較して約3倍の厚みが必要となる。そのため、上軸受53を胴部21に固定するためにスポット溶接を行う際には、R410A冷媒を使用する密閉型圧縮機へのスポット溶接と比較して、出力が大きく高温となり、また、加熱時間が長くなる。そのため、高圧冷媒を使用する密閉型圧縮機100は、R410A冷媒を使用する密閉型圧縮機と比較して、スポット溶接時にシリンダ室52a、連通孔53a等への熱歪の影響が大きくなる。そのため、高圧冷媒を使用する密閉型圧縮機100は、R410A等の冷媒を使用する密閉型圧縮機と比較して、熱歪を軽減する必要性が大きい。 In the hermetic compressor 100, a high pressure refrigerant is used as a working refrigerant. For example, a carbon dioxide refrigerant is used as the high pressure refrigerant. The carbon dioxide refrigerant, which is one of natural refrigerants, has an operating pressure about three times that of the R410A refrigerant operating at the highest pressure among HFCs (hydrofluorocarbons). The plate pressure of the body portion 21 constituting the closed container 2 also needs to be about 3 times the thickness of the closed container of the closed type compressor using R410A refrigerant in order to correspond to the high operating pressure. . Therefore, when spot welding is performed to fix the upper bearing 53 to the body 21, the output is high and the temperature is high compared to spot welding to a sealed compressor using R410A refrigerant, and the heating time is also increased. Will be longer. Therefore, in the hermetic compressor 100 using the high pressure refrigerant, the influence of the thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. becomes larger at the time of spot welding, as compared with the hermetic compressor using the R410A refrigerant. Therefore, the hermetic compressor 100 using the high-pressure refrigerant has a large need to reduce the thermal distortion as compared to the hermetic compressor using a refrigerant such as R410A.
 以上のように密閉型圧縮機100は、上軸受53が円盤部53dを有している。そして、この円盤部53dには平面視でシリンダ52のシリンダ室52aより外周側に形成されていると共にクランク軸51と平行な方向に貫通している少なくとも1つの貫通孔53cが形成されている。そのため、密閉型圧縮機100は、上軸受53と密閉容器2とを固定する溶接時に、熱歪の影響をシリンダ室52aの外側に留めることができ、圧縮要素5の精度への影響を軽減することができる。また、円盤部53dは、密閉容器2の内周壁に対して溶接固定される溶接部53bを周方向に複数有し、少なくとも1つの貫通孔53cが、円盤部53dの中心Pと少なくとも1つの溶接部53bと、を結ぶ直線上に配置されているものである。そのため、上軸受53と密閉容器2との溶接の際の熱歪による変形を貫通孔53cの外部に更に集中させることができ、熱歪みによる連通孔53aの変形とシリンダ室52aの変形とを更に抑えることができる。その結果、密閉型圧縮機100は、上軸受53を密閉容器2に溶接固定する際の熱歪による圧縮要素5の精度の悪化を抑え、上軸受53を密閉容器2に直接溶接することで、部品点数の削減と組立工程の簡略化とを図ることができる。また、上軸受53と密閉容器2との溶接の際の熱歪による変形を貫通孔53cの外部に更に集中させて熱歪みによる連通孔53aの変形を抑制でき、圧縮時の吸入圧損の増加を抑えることができる。さらに、上軸受53に連通孔53aを形成することで、圧縮要素5をシリンダ52の厚さ分だけ下部に配置させることができ、密閉容器2の背低化を図ると共に冷凍機油を削減することができる。 As described above, in the hermetic compressor 100, the upper bearing 53 has the disk portion 53d. The disc portion 53d is formed with at least one through hole 53c which is formed on the outer peripheral side of the cylinder chamber 52a of the cylinder 52 in a plan view and penetrates in a direction parallel to the crankshaft 51. Therefore, the hermetic compressor 100 can retain the influence of thermal strain to the outside of the cylinder chamber 52a at the time of welding to fix the upper bearing 53 and the hermetic container 2, thereby reducing the influence of the compression element 5 on the accuracy. be able to. Further, the disc portion 53d has a plurality of weld portions 53b circumferentially fixed by welding to the inner peripheral wall of the sealed container 2, and at least one through hole 53c is welded with at least one center P of the disc portion 53d. It is disposed on a straight line connecting the part 53b. Therefore, it is possible to further concentrate the deformation due to the thermal strain at the time of welding between the upper bearing 53 and the sealed container 2 to the outside of the through hole 53c, and further the deformation of the communicating hole 53a due to the thermal strain and the deformation of the cylinder chamber 52a. It can be suppressed. As a result, the hermetic compressor 100 suppresses the deterioration of the accuracy of the compression element 5 due to thermal strain when welding and fixing the upper bearing 53 to the hermetic container 2, and directly welds the upper bearing 53 to the hermetic container 2, The number of parts can be reduced and the assembly process can be simplified. Further, deformation due to thermal strain at the time of welding between the upper bearing 53 and the sealed container 2 can be further concentrated to the outside of the through hole 53c to suppress deformation of the communication hole 53a due to thermal strain, thereby increasing suction pressure loss during compression. It can be suppressed. Furthermore, by forming the communication hole 53a in the upper bearing 53, the compression element 5 can be disposed at the lower portion by the thickness of the cylinder 52, and the height of the closed container 2 can be reduced and the refrigeration oil can be reduced. Can.
 また、密閉型圧縮機100は、円盤部53dにおいて、円盤部53dの中心Pと少なくとも1つの溶接部53bとを結ぶ全ての直線上に形成されている貫通孔53cの数は、溶接部53bの数よりも少ない。そのため、密閉型圧縮機100は、アークスポット溶接によるシリンダ室52a、連通孔53a等への熱歪の影響を軽減と、密閉容器2に対する圧縮要素5の保持力を維持することのバランスを図ることができる。 Further, the number of the through holes 53c formed in all straight lines connecting the center P of the disk portion 53d and the at least one welded portion 53b in the disk portion 53d of the hermetic compressor 100 is the same as that of the welded portion 53b. Less than the number. Therefore, in the hermetic compressor 100, balance between maintaining the holding force of the compression element 5 with respect to the hermetic container 2 and reducing the influence of thermal strain on the cylinder chamber 52a, the communication hole 53a, etc. by arc spot welding. Can.
 また、密閉型圧縮機100は、二酸化炭素冷媒を用いるものである。そのため、密閉型圧縮機100は、密閉容器2を構成する胴部21の板厚がR410A等の冷媒を使用する密閉型圧縮の密閉容器の板圧よりも厚い。そのため、高圧冷媒を使用する密閉型圧縮機100は、R410A等の冷媒を使用する密閉型圧縮機と比較して、熱歪を軽減する必要性が大きい。密閉型圧縮機100は、二酸化炭素冷媒を用いても、上軸受53と密閉容器2との溶接の際の熱歪による変形を貫通孔53cの外部に更に集中させることができ、熱歪みによる連通孔53a及びシリンダ室52aの変形を抑制することができる。 Further, the hermetic compressor 100 uses a carbon dioxide refrigerant. Therefore, in the hermetic compressor 100, the plate thickness of the body portion 21 constituting the hermetic container 2 is thicker than the plate pressure of the hermetic compression hermetic container using a refrigerant such as R410A. Therefore, the hermetic compressor 100 using the high-pressure refrigerant has a large need to reduce the thermal distortion as compared to the hermetic compressor using a refrigerant such as R410A. Even when using the carbon dioxide refrigerant, the hermetic compressor 100 can further concentrate deformation due to thermal strain at the time of welding between the upper bearing 53 and the hermetic container 2 to the outside of the through hole 53c, and communication due to thermal strain Deformation of the hole 53a and the cylinder chamber 52a can be suppressed.
 なお、本発明の実施の形態は、上記実施の形態1に限定されず、種々の変更を加えることができる。本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。 The embodiment of the present invention is not limited to the above-described Embodiment 1, and various modifications can be made. The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. Then, various inventions can be formed by appropriate combinations of a plurality of components disclosed in the above-described embodiment.
 2 密閉容器、3 台座、4 電動要素、5 圧縮要素、6a 端子、6b リード線、7a 冷媒吸入管、7b 冷媒吐出管、10 冷凍サイクル装置、21 胴部、21a 貫通孔、22 上蓋部、22a 貫通孔、23 下蓋部、41 固定子、42 回転子、51 クランク軸、51a 偏芯部、51b 回転軸、52 シリンダ、52a シリンダ室、52b 周壁部、52b1 内壁、52c ベーン溝、52d 吸入孔、52e 吐出孔、52f 吸入室、52g 圧縮室、53 上軸受、53A 上軸受、53a 連通孔、53b 溶接部、53c 貫通孔、53d 円盤部、53e 軸受部、53f 外周面、54 下軸受、55 ローリングピストン、55a 外周面、56 ベーン、57 ベーンスプリング、58 吐出マフラ、100 密閉型圧縮機、110 凝縮器、120 膨張装置、130 蒸発器。 Reference Signs List 2 sealed container, 3 pedestal, 4 electric element, 5 compression element, 6a terminal, 6b lead wire, 7a refrigerant suction pipe, 7b refrigerant discharge pipe, 10 refrigeration cycle apparatus, 21 body portion, 21a through hole, 22 upper cover portion, 22a Through hole, 23 lower lid, 41 stator, 42 rotor, 51 crankshaft, 51a eccentricity, 51b rotary shaft, 52 cylinders, 52a cylinder chamber, 52b peripheral wall, 52b1 inner wall, 52c vane groove, 52d suction hole , 52e discharge hole, 52f suction chamber, 52g compression chamber, 53 upper bearing, 53A upper bearing, 53a communication hole, 53b weld portion, 53c through hole, 53d disk portion, 53e bearing portion, 53f outer peripheral surface, 54 lower bearing, 55 Rolling piston, 55a outer peripheral surface, 56 vanes, 57 vane springs, 58 Discharge muffler, 100 hermetic compressor, 110 a condenser, 120 expansion device, 130 an evaporator.

Claims (4)

  1.  円筒状の胴部に冷媒吸入管が接続される密閉容器と、
     前記密閉容器に収容される圧縮要素であって、吸入室と圧縮室とを構成するシリンダ室を内壁内に形成する円筒状のシリンダと、前記シリンダの一端の開口を閉塞し、電動要素に接続されて前記シリンダを貫通するクランク軸を回転自在に支持する上軸受と、を有する前記圧縮要素と、
    を備え、
     前記上軸受は、
     一端が前記冷媒吸入管と接続し他端が前記シリンダ室と連通する連通孔と、平面視で前記シリンダの前記シリンダ室より外周側に形成されていると共に前記クランク軸と平行な方向に貫通している少なくとも1つの貫通孔と、を形成し、前記シリンダの前記一端と当接している円盤部を有し、
     前記円盤部は、前記密閉容器の胴部に対して溶接固定される溶接部を周方向に複数有し、
     前記少なくとも1つの貫通孔が、前記円盤部の中心と少なくとも1つの前記溶接部と、を結ぶ直線上に形成されている密閉型圧縮機。
    A closed container in which a refrigerant suction pipe is connected to a cylindrical body;
    A compression element housed in the closed container, which is a cylindrical cylinder forming a cylinder chamber constituting an intake chamber and a compression chamber in an inner wall, and closing an opening at one end of the cylinder to connect to an electric element And an upper bearing rotatably supporting a crankshaft through the cylinder.
    Equipped with
    The upper bearing is
    A communication hole having one end connected to the refrigerant suction pipe and the other end communicating with the cylinder chamber, is formed on the outer peripheral side of the cylinder chamber from the cylinder chamber in plan view and penetrates in a direction parallel to the crankshaft Forming at least one through hole, and having a disc portion in contact with the one end of the cylinder;
    The disc portion has a plurality of welds circumferentially fixed by welding to the body of the sealed container,
    The hermetic compressor, wherein the at least one through hole is formed on a straight line connecting a center of the disk portion and the at least one weld.
  2.  前記円盤部において、全ての前記直線上に形成されている前記貫通孔の数は、前記溶接部の数よりも少ない請求項1に記載の密閉型圧縮機。 2. The hermetic compressor according to claim 1, wherein the number of the through holes formed on all the straight lines in the disk portion is smaller than the number of the welds.
  3.  作動冷媒として二酸化炭素冷媒を使用する請求項1又は2に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein a carbon dioxide refrigerant is used as a working refrigerant.
  4.  請求項1~3のいずれか1項に記載された密閉型圧縮機と、前記密閉型圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張装置と、前記膨張装置及び前記密閉型圧縮機の間に接続された蒸発器と、を備えた冷凍サイクル装置。 A sealed compressor according to any one of claims 1 to 3, a condenser connected to the sealed compressor, an expansion device connected to the condenser, the expansion device and the seal And an evaporator connected between the mold compressors.
PCT/JP2017/045939 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device WO2019123609A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/045939 WO2019123609A1 (en) 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device
JP2019559966A JPWO2019123609A1 (en) 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device
CN201780097761.5A CN111480007A (en) 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045939 WO2019123609A1 (en) 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019123609A1 true WO2019123609A1 (en) 2019-06-27

Family

ID=66994548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045939 WO2019123609A1 (en) 2017-12-21 2017-12-21 Hermetic compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2019123609A1 (en)
CN (1) CN111480007A (en)
WO (1) WO2019123609A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318170A (en) * 1997-05-20 1998-12-02 Toshiba Corp Compressor
JPH11324958A (en) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd Sealed rotary compressor
JP2006336463A (en) * 2003-09-24 2006-12-14 Matsushita Electric Ind Co Ltd Compressor
JP2014152749A (en) * 2013-02-13 2014-08-25 Panasonic Corp Rotary compressor
JP2015197046A (en) * 2014-03-31 2015-11-09 ダイキン工業株式会社 Welding method for compressor, and compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132673A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
CN105587663B (en) * 2015-12-29 2018-07-03 西安交通大学 A kind of refrigerator vertical 2 stage rotary compressor and its method of work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318170A (en) * 1997-05-20 1998-12-02 Toshiba Corp Compressor
JPH11324958A (en) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd Sealed rotary compressor
JP2006336463A (en) * 2003-09-24 2006-12-14 Matsushita Electric Ind Co Ltd Compressor
JP2014152749A (en) * 2013-02-13 2014-08-25 Panasonic Corp Rotary compressor
JP2015197046A (en) * 2014-03-31 2015-11-09 ダイキン工業株式会社 Welding method for compressor, and compressor

Also Published As

Publication number Publication date
CN111480007A (en) 2020-07-31
JPWO2019123609A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6587636B2 (en) Electric scroll compressor
KR102537146B1 (en) Scroll compressor
US8936449B2 (en) Hermetic compressor and manufacturing method thereof
US8915725B2 (en) Compressor in which a shaft center of a suction pipe is disposed to not correspond to a shaft center of a refrigerant suction passage of a stationary shaft and an upper end of the stationary shaft protrudes higher than a bottom of an accumulator chamber
US20120148434A1 (en) Scroll Fluid Machine
JP6057535B2 (en) Refrigerant compressor
WO2019123609A1 (en) Hermetic compressor and refrigeration cycle device
US20100172756A1 (en) Rotary compressor
US11231035B2 (en) Scroll compressor
JP2004116471A (en) Scroll type fluid machine
JP4752812B2 (en) Pressure vessel
WO2023013370A1 (en) Scroll compressor and refrigeration cycle device
EP3940233B1 (en) Scroll compressor and refrigeration device provided with same
KR20160070135A (en) Scroll fluid machine
KR102040626B1 (en) A compressor and a manufacturing method of the same.
JP6405119B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2004150370A (en) Sealed electric compressor
JP2007092738A (en) Compressor
JP5430208B2 (en) Sealed fluid machinery
JP2011231687A (en) Scroll compressor
JP6441119B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2019085928A (en) Compressor
JP2012180840A (en) Scroll fluid machine
JP4151475B2 (en) Vapor compression refrigerator
JP2002257068A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019559966

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935723

Country of ref document: EP

Kind code of ref document: A1