WO2019122758A1 - Method for manufacturing a ceramic matrix composite part - Google Patents

Method for manufacturing a ceramic matrix composite part Download PDF

Info

Publication number
WO2019122758A1
WO2019122758A1 PCT/FR2018/053471 FR2018053471W WO2019122758A1 WO 2019122758 A1 WO2019122758 A1 WO 2019122758A1 FR 2018053471 W FR2018053471 W FR 2018053471W WO 2019122758 A1 WO2019122758 A1 WO 2019122758A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
blank
binder
ceramic
matrix
Prior art date
Application number
PCT/FR2018/053471
Other languages
French (fr)
Inventor
Arnaud DELEHOUZE
Eric Bouillon
Yann Lepetitcorps
Original Assignee
Safran Ceramics
Centre National De La Recherche Scientifique
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics, Centre National De La Recherche Scientifique, Universite de Bordeaux filed Critical Safran Ceramics
Publication of WO2019122758A1 publication Critical patent/WO2019122758A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content

Definitions

  • the present invention relates to the general field of manufacturing processes of ceramic matrix composite material parts.
  • Ceramic matrix composite (CMC) materials known for their good mechanical properties that make them suitable for forming structural elements and for retaining these properties at high temperatures, are a viable alternative to traditional metal parts. Their reduced mass compared to their metallic equivalent make them the best choice to answer the problems of increase of the yield and reduction of the polluting emissions of the engines in the aeronautical field.
  • Parts made of CMC material may comprise a generally continuous fibrous reinforcement in the form of a woven fabric, which is densified by a ceramic matrix.
  • the fibrous reinforcement thus comprises continuous long fibers, the orientation of which can be adapted to the main directions of loading of the part during its use.
  • the preform for forming the fibrous reinforcement is woven from the continuous fibers to the dimensions of the piece (for example by two-dimensional or three-dimensional weaving), using a suitable loom.
  • the weaving step is a long and expensive process, and is not optimal for making small pieces.
  • the main purpose of the present invention is therefore to overcome such drawbacks by proposing a method for manufacturing a composite material part comprising a particulate reinforcement densified by a ceramic matrix, the method comprising the following steps:
  • the method according to the invention thus makes it possible to produce a piece of CMC material without woven fiber reinforcement, by a simple method of injection molding the mixture charged with the first particles and the second particles.
  • the process according to the invention thus makes it possible to dispense with the weaving step of the fibrous reinforcement, in particular to manufacture small parts which are not strongly thermo-mechanically stressed, which represents gains in terms of manufacturing and costs. It is also possible to obtain parts from the method according to the invention which have complex shapes, and the desired dimensions without requiring additional machining.
  • the first and second particles can be dispersed homogeneously and intimately in the binder.
  • the first particles are short fibers.
  • the first particles may have a generally cylindrical shape.
  • the short fibers may preferably have a length of between 50 ⁇ m and 5000 ⁇ m, or more preferably a length of between 100 ⁇ m and 300 ⁇ m.
  • the short fibers can be obtained from long fibers by mechanical cutting or grinding.
  • the mixture may be heated to thin the binder and facilitate the injection step in the mold to form the blank.
  • the mixture may also be subjected to a vacuum to remove any air bubbles present in the mixture prior to injection.
  • the elimination or pyrolysis step of the binder (also called "debinding") may be preferably carried out under an inert gas, for example under argon, to avoid oxidation of the blank which would reduce the mechanical strength of the blank between the different processing steps leading to the final part.
  • the first particles may be grains.
  • the first particles may have a spherical or ellipsoidal shape.
  • the average size (D50) of the first particles may be between 10 ⁇ m and 300 ⁇ m, more preferably between 40 ⁇ m and 100 ⁇ m.
  • the median elementary volume of the first particles may be greater than or equal to the median elementary volume of the second particles.
  • the elemental volume of a particle is the volume occupied by the particle.
  • the sintering heat treatment is performed under isostatic stress.
  • the sintering heat treatment may be hot isostatic pressing.
  • the binder may comprise at least one thermoplastic polymer.
  • the binder may comprise at least one compound chosen from the following: polyvinyl alcohol (PVA), polyethylene glycol (PEG), polypropylene (PP), polyoxymethylene (POM), polyethylene terephthalate (PET).
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • PP polypropylene
  • POM polyoxymethylene
  • PET polyethylene terephthalate
  • the binder may comprise at least one thermosetting polymer.
  • the binder may comprise at least one compound chosen from the following: epoxy resins, phenolic resins, pre-ceramic resins.
  • the mixture may comprise two thermally removable binders each having a different elimination temperature.
  • the binder removal step may comprise two sub-stages of thermal removal of each of the binders at two different temperatures.
  • the first elimination being without excessive expansion, generates a poral network ensuring removal of the second polymeric binder, expanding more than the first, without cracking or deformation of the workpiece.
  • the mixture may comprise a first dissolvable binder and a second thermally removable binder.
  • the binder removal step may comprise two elimination substeps: dissolving the first binder, and then removing the second binder thermally. This arrangement is advantageous because it allows a more effective removal of the second binder by opening a porosity in the blank after the dissolution elimination of the first binder.
  • the risk of cracking the blank during the binder removal step is reduced.
  • the first particles may be silicon carbide.
  • they can then include an oxygen content less than or equal to 1% atomic percentage.
  • such short fibers may be Hi-Nicalon Type S fibers marketed by the Japanese company NGS.
  • the short fibers may be of a material selected from the following: carbon, silicon carbide, an oxide, for example alumina (Al2O3).
  • the second ceramic particles may comprise a material selected from SiC, M0S12, Tish, C0S12, ZrSi 2, HFS, ZrB 2, HfB 2, T ⁇ B2, TaC, HfC, B 4 C, and a mixture thereof.
  • the second particles may be metallic.
  • the volume content of the first particles in the room may be between 10% and 70%, more preferably between 25% and 50%.
  • the volume content of second ceramic particles in the room may be between 30% and 90%, more preferably between 50% and 75%.
  • the volume content by binder in the injected mixture may be between 5% and 60%, more preferably between 30% and 50%.
  • the second ceramic particles may have a size (D50) of between 0.5 .mu.m and 200 .mu.m, more preferably between 0.7 .mu.m and 75 .mu.m.
  • the first particles may be coated with an interphase.
  • an interphase may for example be made of pyrolytic carbon (PyC), boron nitride (BN) or silicon carbide (SiC).
  • the interphase may comprise several layers each comprising a different material.
  • the interphase has a function of defragilating the final composite material which favors the deflection of possible cracks reaching the interphase after propagating in the matrix, preventing or delaying the fragile fracture of the composite. This interphase also makes it possible to protect the first particles of the matrix material during its densification.
  • This interphase can be deposited on the first particles before their introduction into the mixture.
  • the deposition of the interphase can be carried out on long fibers before they are cut or milled, for example by chemical vapor infiltration (CVI).
  • CVI chemical vapor infiltration
  • the deposition of the interphase can be carried out directly on the short fibers by a chemical vapor deposition (CVD) process or by an electrolytic deposition process or by molten salt. It is also possible to deposit, in place of the interphase or on the interphase, a ceramic coating compatible with the material of the matrix to be formed.
  • the method may comprise, before the step of forming the matrix, a step of isostatic compression of the debonded blank.
  • This isostatic compression step can be carried out hot or cold.
  • This isostatic compression step makes it possible to partly close the porosity generated by the binder removal or pyrolysis step in order to control this porosity and to improve the densification during the subsequent stage of forming the matrix.
  • Figure 1 is a flow chart showing the different steps of a method according to one embodiment of the invention.
  • the steps of a method according to an embodiment of the invention will now be described in connection with the flowchart of FIG. 1.
  • the aim here is to obtain a piece of ceramic matrix composite material.
  • a part can be a piece for the aeronautics, for example a part intended to be used in an aeronautical turbomachine.
  • a piece may be for example a small blade.
  • the first ceramic or carbon particles may be obtained which will be used to form the particulate (for example fibrous) reinforcement of the part to be manufactured.
  • the first particles are short fibers, they can be obtained by grinding or mechanical cutting of long fibers, in a manner known per se.
  • the short fibers may have a median length of between 50 ⁇ m and 5000 ⁇ m, or between 100 ⁇ m and 300 ⁇ m. It is not mandatory that the size distribution of the first particles be monodisperse, it can indeed be polydisperse.
  • the first particles may optionally be coated with an interphase coating (step E2).
  • an interphase coating In the case of short fibers, they can be coated either directly or by coating long fibers prior to cutting or grinding.
  • the thickness of the interphase may for example be between 10 nm and 1000 nm, and for example between 10 nm and 500 nm.
  • the interphase can be monolayer or multilayer.
  • the interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BN (Si), with silicon in a mass proportion of between 5% and 40%).
  • the deposition of the interphase can be carried out directly on the short fibers by a CVD process or by an electrolytic deposition process or by molten salt.
  • the interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the rupture of the reinforcement by such cracks.
  • the interphase may also protect the reinforcement during the subsequent die formation step. It is also possible to deposit, in place of the interphase or on the interphase, a ceramic coating compatible with the material of the matrix to be formed, for example by CVI.
  • a mixture comprising a polymeric binder, the first ceramic or carbon particles and second ceramic particles intended to form the matrix of the part.
  • the binder may for example comprise a thermoplastic or thermosetting resin.
  • the mixture may comprise several binders. It may be advantageous to heat the mixture in order to thin the binder to facilitate the mixing and allow better homogenization. This mixing temperature then depends on the organic binders used in order firstly not to degrade them thermally and secondly not to polymerize them prematurely.
  • the mixture can also be prepared under vacuum so as to reduce the presence of air bubbles in the mixture.
  • the mixture thus prepared may for example be in the form of granules intended to be used later, or be directly injected in the next step.
  • a step E4 forming a blank of the workpiece to be made in a mold by injection into the mold of the mixture prepared in step E3.
  • the cavity of the mold used for the injection may have dimensions greater than those of the final part because the blank generally tends to contract during the sintering heat treatment (step E6).
  • the mold may comprise injection nozzles whose dimensions are adapted, in known manner, to the size of the first and second particles, and the binder (or binders) and the chosen injection pressure and temperature.
  • the mold can be temperature controlled to control the eventual solidification of the binder after the injection, if necessary. This regulation may also make it possible not to preferentially orient the first particles when they correspond to short fibers around the wall of the mold.
  • the injection may be carried out with a mixture previously heated to a temperature to fluidize the binder.
  • the injection can be carried out at a pressure of between 50 bars and 3000 bars.
  • a step E5 the binder present in the blank is removed or pyrolyzed in order to obtain a debonded blank.
  • the conditions of the step E5 of elimination or pyrolysis of the binder generally depend on the nature of the binder to be removed, in a manner known per se.
  • some binders are thermally removable, that is to say that the temperature allows them to decompose and / or evaporate, others are chemically removable, for example by dissolution in a suitable solvent.
  • Step E5 may include pyrolysis, so that pyrolysis residues may remain within the debonded blank.
  • Step E5 can be performed under atmosphere neutral, for example under argon, in order to maintain a carbon skeleton in the blank until the end of the removal step, which guarantees a better holding of the blank, but also reduces the risk of oxidation of the blank. draft. It may be advantageous to use several binders, for example two binders that can be eliminated in two separate elimination stages.
  • a first binder is first removed by dissolution, and then a second binder is removed thermally.
  • a first binder can be thermally removed at a first elimination temperature
  • a second binder can be thermally removed at a second removal temperature higher than the first removal temperature.
  • the elimination of the two binders successively reduces the risk of cracking of the blank during step E5 by opening, after removal of the first binder, a porosity in the blank by which the second binder can be extracted. of the sketch.
  • the dimensions of the blank do not generally vary following the debinding step E5.
  • the debonded blank thus comprises the first particles and the second particles, and has a non-zero porosity in place of the binder.
  • a sintering heat treatment of the debonded blank is carried out to form the ceramic matrix and obtain the final piece.
  • This step corresponds to a consolidation of the debinding blank during which the porosity of the blank will gradually be reduced and the blank contract to reach the dimensions of the final piece.
  • the sintering heat treatment may be carried out in an oven adapted to a sintering temperature of the ceramic material of the second ceramic particles (free sintering). It is also possible to perform hot isostatic compression sintering (sintering under isostatic stress). In the known hot isostatic pressing process, a uniform pressure is applied to the blank which is also subjected to a temperature that is particularly suitable for the ceramic material of the matrix to be formed.
  • the porosity inside the final part can generally be less than 1%.
  • the part thus obtained may then eventually undergo finishing machining.
  • the sintering heat treatment can be carried out at a temperature of between 1000 ° C. and 1600 ° C., depending on the matrix to be formed. When carried out under isostatic stress, the pressure applied during the sintering heat treatment may be between 1000 bar and 2000 bar.
  • a hot isostatic pressing step of the blank is carried out after the elimination or pyrolysis step E5 of the binder present in the blank and before the sintering heat treatment step E6 in order to close a part of the porosity. in the case where it would be too important before sintering.
  • This hot isostatic pressing step is preferably performed in an envelope, to ensure homogeneous compaction of the debonded blank.
  • the pressure applied is preferably between 1000 bar and 2000 bar.
  • the envelope may comprise graphite and boron nitride.
  • This step can make it possible to reduce the porosity of the debonded blank, generally between 30% and 40%, to a negligible porosity (for example less than 1%), so as to obtain a part with an improved density after thermal treatment of sintering.
  • the hot isostatic pressing step can be carried out at a temperature of between 1000 ° C and 1600 ° C, depending on the target matrix material. For a titanium disilicide matrix, the temperature may be, for example, between 1100 ° C and 1500 ° C.
  • the hot isostatic pressing step can be carried out at a temperature below the temperature of the sintering heat treatment.
  • This step may correspond to a pre-sintering treatment of the debonded blank under isostatic stress, distinct from the final sintering heat treatment step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

The invention relates to a method for manufacturing a composite part comprising a particulate reinforcement densified by a ceramic matrix, the method comprising the following steps: forming a blank (E4) of the part to be manufactured in a mould by injecting into the mould a mixture comprising a polymeric binder, first ceramic or carbon particles intended to form the particulate reinforcement of the part and second ceramic particles, different from the first particles, intended to form the matrix of the part, the first and second particles being dispersed in the binder, removing or pyrolyzing the binder (E5) present in the blank in order to obtain a debound blank, hot isostatic pressing of the debound blank, and forming the ceramic matrix (E6) by sintering heat treatment of the obtained blank in order to obtain the part.

Description

Procédé de fabrication d'une pièce en matériau composite à matrice céramique  Process for manufacturing a piece made of ceramic matrix composite material
Arrière-plan de l'invention Background of the invention
La présente invention se rapporte au domaine général des procédés de fabrication de pièces en matériau composite à matrice céramique.  The present invention relates to the general field of manufacturing processes of ceramic matrix composite material parts.
Les matériaux composites à matrice céramique (CMC), connus pour leurs bonnes propriétés mécaniques qui les rendent aptes à constituer des éléments de structures et pour conserver ces propriétés à températures élevées, constituent une alternative viable aux traditionnelles pièces métalliques. Leur masse réduite par rapport à leur équivalent métallique en font des pièces de choix pour répondre aux problématiques d'augmentation du rendement et de réduction des émissions polluantes des moteurs dans le domaine aéronautique.  Ceramic matrix composite (CMC) materials, known for their good mechanical properties that make them suitable for forming structural elements and for retaining these properties at high temperatures, are a viable alternative to traditional metal parts. Their reduced mass compared to their metallic equivalent make them the best choice to answer the problems of increase of the yield and reduction of the polluting emissions of the engines in the aeronautical field.
Les pièces en matériau CMC peuvent comprendre un renfort fibreux généralement continu sous la forme d'un textile tissé, qui est densifié par une matrice céramique. Le renfort fibreux comprend ainsi des fibres longues continues, dont l'orientation peut être adaptée aux directions principales de sollicitation de la pièce lors de son utilisation. La préforme destinée à former le renfort fibreux est tissée à partir des fibres continues aux dimensions de la pièce (par exemple par tissage bidimensionnel ou tridimensionnel), à l'aide d'un métier à tisser adapté. L'étape de tissage est un processus long et coûteux, et qui n'est pas optimal pour réaliser des pièces de petite taille.  Parts made of CMC material may comprise a generally continuous fibrous reinforcement in the form of a woven fabric, which is densified by a ceramic matrix. The fibrous reinforcement thus comprises continuous long fibers, the orientation of which can be adapted to the main directions of loading of the part during its use. The preform for forming the fibrous reinforcement is woven from the continuous fibers to the dimensions of the piece (for example by two-dimensional or three-dimensional weaving), using a suitable loom. The weaving step is a long and expensive process, and is not optimal for making small pieces.
Il existe donc un besoin pour un procédé de fabrication d'une pièce en matériau composite à matrice céramique qui soit plus aisé à mettre en œuvre et moins coûteux pour fabriquer des pièces de petite taille.  There is therefore a need for a method of manufacturing a piece of ceramic matrix composite material which is easier to implement and less expensive to manufacture small parts.
Qbiet et résumé de l'invention Qbiet and summary of the invention
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un procédé de fabrication d'une pièce en matériau composite comprenant un renfort particulaire densifié par une matrice céramique, le procédé comprenant les étapes suivantes :  The main purpose of the present invention is therefore to overcome such drawbacks by proposing a method for manufacturing a composite material part comprising a particulate reinforcement densified by a ceramic matrix, the method comprising the following steps:
- formation d'une ébauche de la pièce à fabriquer dans un moule par injection dans le moule d'un mélange comprenant un liant polymérique, des premières particules en céramique ou en carbone destinées à former le renfort de la pièce et des deuxièmes particules céramiques, différentes des premières, destinées à former la matrice de la pièce, les premières et les deuxièmes particules étant dispersées dans le liant, forming a blank of the part to be produced in a mold by injection into the mold of a mixture comprising a polymeric binder, first particles made of ceramic or carbon intended to form the reinforcement of the part and the second ceramic particles, different from first, to form the matrix of the part, the first and the second particles being dispersed in the binder,
- élimination ou pyrolyse du liant présent dans l'ébauche afin d'obtenir une ébauche déliantée, et  elimination or pyrolysis of the binder present in the blank in order to obtain a bonded blank, and
- formation de la matrice céramique par traitement thermique de frittage de l'ébauche déliantée afin d'obtenir la pièce.  - Formation of the ceramic matrix by sintering heat treatment of the debonded blank to obtain the part.
Le procédé selon l'invention permet ainsi de réaliser une pièce en matériau CMC sans renfort fibreux tissé, par une méthode simple de moulage par injection du mélange chargé des premières particules et des deuxièmes particules. Le procédé selon l'invention permet ainsi de s'affranchir de l'étape de tissage du renfort fibreux, notamment pour fabriquer des pièces de petite taille qui ne sont pas fortement sollicitées thermo-mécaniquement, ce qui représente des gains en termes de temps de fabrication et de coûts. Il est également possible d'obtenir des pièces à partir du procédé selon l'invention qui présentent des formes complexes, et les dimensions voulues sans nécessiter d'usinage supplémentaire.  The method according to the invention thus makes it possible to produce a piece of CMC material without woven fiber reinforcement, by a simple method of injection molding the mixture charged with the first particles and the second particles. The process according to the invention thus makes it possible to dispense with the weaving step of the fibrous reinforcement, in particular to manufacture small parts which are not strongly thermo-mechanically stressed, which represents gains in terms of manufacturing and costs. It is also possible to obtain parts from the method according to the invention which have complex shapes, and the desired dimensions without requiring additional machining.
Les premières et deuxièmes particules peuvent être dispersées de manière homogène et intime dans le liant.  The first and second particles can be dispersed homogeneously and intimately in the binder.
Dans un exemple de réalisation, les premières particules sont des fibres courtes. En d'autres termes, les premières particules peuvent présenter une forme généralement cylindrique.  In an exemplary embodiment, the first particles are short fibers. In other words, the first particles may have a generally cylindrical shape.
Dans un exemple de réalisation, les fibres courtes peuvent présenter préférentiellement une longueur comprise entre 50 pm et 5000 pm, ou plus préférentiellement une longueur comprise entre 100 pm et 300 pm.  In an exemplary embodiment, the short fibers may preferably have a length of between 50 μm and 5000 μm, or more preferably a length of between 100 μm and 300 μm.
Dans un exemple de réalisation, les fibres courtes peuvent être obtenues à partir de fibres longues par découpe mécanique ou broyage. Dans un exemple de réalisation, le mélange peut être chauffé pour fluidifier le liant et faciliter l'étape d'injection dans le moule en vue de former l'ébauche. Le mélange peut également être soumis à du vide pour retirer les éventuelles bulles d'air présentes dans le mélange préalablement à l'injection. L'étape d'élimination ou de pyrolyse du liant (aussi appelée « déliantage ») peut être préférentiellement réalisée sous gaz inerte, par exemple sous argon, pour éviter une oxydation de l'ébauche qui réduirait la tenue mécanique de l'ébauche entre les différentes étapes de traitement aboutissant à la pièce finale. Dans un exemple de réalisation, les premières particules peuvent être des grains. En d'autres termes, les premières particules peuvent présenter une forme sphérique ou ellipsoïdale. Dans ce cas, la taille moyenne (D50) des premières particules peut être comprise entre 10 pm et 300 pm, plus préférentiellement entre 40 pm et 100 pm. In an exemplary embodiment, the short fibers can be obtained from long fibers by mechanical cutting or grinding. In an exemplary embodiment, the mixture may be heated to thin the binder and facilitate the injection step in the mold to form the blank. The mixture may also be subjected to a vacuum to remove any air bubbles present in the mixture prior to injection. The elimination or pyrolysis step of the binder (also called "debinding") may be preferably carried out under an inert gas, for example under argon, to avoid oxidation of the blank which would reduce the mechanical strength of the blank between the different processing steps leading to the final part. In an exemplary embodiment, the first particles may be grains. In other words, the first particles may have a spherical or ellipsoidal shape. In this case, the average size (D50) of the first particles may be between 10 μm and 300 μm, more preferably between 40 μm and 100 μm.
Dans un exemple de réalisation, le volume élémentaire médian des premières particules peut être supérieur ou égal au volume élémentaire médian des deuxièmes particules. Le volume élémentaire d'une particule est le volume occupé par la particule.  In an exemplary embodiment, the median elementary volume of the first particles may be greater than or equal to the median elementary volume of the second particles. The elemental volume of a particle is the volume occupied by the particle.
Dans un exemple de réalisation, le traitement thermique de frittage est réalisé sous contrainte isostatique. Par exemple, le traitement thermique de frittage peut être une compression isostatique à chaud.  In an exemplary embodiment, the sintering heat treatment is performed under isostatic stress. For example, the sintering heat treatment may be hot isostatic pressing.
Dans un exemple de réalisation, le liant peut comprendre au moins un polymère thermoplastique. Par exemple, le liant peut comprendre au moins un composé choisi parmi les suivants : alcool polyvinylique (PVA), polyéthylène glycol (PEG), polypropylène (PP), polyoxyméthylène (POM), polytéréphtalate d'éthylène (PET).  In an exemplary embodiment, the binder may comprise at least one thermoplastic polymer. For example, the binder may comprise at least one compound chosen from the following: polyvinyl alcohol (PVA), polyethylene glycol (PEG), polypropylene (PP), polyoxymethylene (POM), polyethylene terephthalate (PET).
Dans un exemple de réalisation, le liant peut comprendre au moins un polymère thermodurcissable. Par exemple, le liant peut comprendre au moins un composé choisi parmi les suivants : résines époxydes, résines phénoliques, résines pré-céramiques.  In an exemplary embodiment, the binder may comprise at least one thermosetting polymer. For example, the binder may comprise at least one compound chosen from the following: epoxy resins, phenolic resins, pre-ceramic resins.
Dans un exemple de réalisation, le mélange peut comprendre deux liants éliminables thermiquement présentant chacun une température d'élimination différente. Ainsi, l'étape d'élimination des liants peut comprendre deux sous-étapes d'élimination thermique de chacun des liants à deux températures différentes. La première élimination, se faisant sans dilatation excessive, permet de générer un réseau poral assurant une élimination du second liant polymérique, dilatant plus que le premier, sans fissuration ni déformation de la pièce.  In an exemplary embodiment, the mixture may comprise two thermally removable binders each having a different elimination temperature. Thus, the binder removal step may comprise two sub-stages of thermal removal of each of the binders at two different temperatures. The first elimination, being without excessive expansion, generates a poral network ensuring removal of the second polymeric binder, expanding more than the first, without cracking or deformation of the workpiece.
Dans un exemple de réalisation, le mélange peut comprendre un premier liant éliminable par dissolution et un deuxième liant éliminable thermiquement. Ainsi, l'étape d'élimination des liants peut comprendre deux sous-étapes d'élimination : l'élimination par dissolution du premier liant, puis l'élimination thermique du deuxième liant. Cette disposition est avantageuse car elle permet une élimination plus efficace du deuxième liant en ouvrant une porosité dans l'ébauche après l'élimination par dissolution du premier liant. In an exemplary embodiment, the mixture may comprise a first dissolvable binder and a second thermally removable binder. Thus, the binder removal step may comprise two elimination substeps: dissolving the first binder, and then removing the second binder thermally. This arrangement is advantageous because it allows a more effective removal of the second binder by opening a porosity in the blank after the dissolution elimination of the first binder.
De manière générale, lorsque l'ébauche contient deux liants éliminables au cours de deux sous-étapes d'élimination du liant distinctes, on réduit les risques de fissuration de l'ébauche pendant l'étape d'élimination des liants.  In general, when the blank contains two binders that can be removed in two separate binder removal substeps, the risk of cracking the blank during the binder removal step is reduced.
Dans un exemple de réalisation, les premières particules peuvent être en carbure de silicium. Lorsqu'il s'agit de fibres courtes, elles peuvent alors comprendre une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. Par exemple de telles fibres courtes peuvent être des fibres du type Hi-Nicalon type S commercialisées par la société japonaise NGS. En variante, les fibres courtes peuvent être en un matériau choisi parmi les suivants : carbone, carbure de silicium, un oxyde, par exemple de l'alumine (AI2O3).  In an exemplary embodiment, the first particles may be silicon carbide. When it is short fibers, they can then include an oxygen content less than or equal to 1% atomic percentage. For example, such short fibers may be Hi-Nicalon Type S fibers marketed by the Japanese company NGS. Alternatively, the short fibers may be of a material selected from the following: carbon, silicon carbide, an oxide, for example alumina (Al2O3).
Dans un exemple de réalisation, les deuxièmes particules céramiques peuvent comprendre un matériau choisi parmi les suivants : SiC, M0S12, TiSh, C0S12, ZrSÎ2, HfS , ZrB2, HfB2, TΊB2, TaC, HfC, B4C, et leur mélange. En variante, les deuxièmes particules peuvent être métalliques. In an exemplary embodiment, the second ceramic particles may comprise a material selected from SiC, M0S12, Tish, C0S12, ZrSi 2, HFS, ZrB 2, HfB 2, TΊB2, TaC, HfC, B 4 C, and a mixture thereof. Alternatively, the second particles may be metallic.
Dans un exemple de réalisation, la teneur volumique de premières particules dans le la pièce peut être compris entre 10% et 70%, plus préférentiellement compris entre 25% et 50%.  In an exemplary embodiment, the volume content of the first particles in the room may be between 10% and 70%, more preferably between 25% and 50%.
Dans un exemple de réalisation, la teneur volumique de deuxièmes particules céramiques dans la pièce peut être compris entre 30% et 90%, plus préférentiellement compris entre 50% et 75%.  In an exemplary embodiment, the volume content of second ceramic particles in the room may be between 30% and 90%, more preferably between 50% and 75%.
Dans un exemple de réalisation, la teneur volumique en liant dans le mélange injecté peut être compris entre 5% et 60%, plus préférentiellement compris entre 30% et 50%.  In an exemplary embodiment, the volume content by binder in the injected mixture may be between 5% and 60%, more preferably between 30% and 50%.
Dans un exemple de réalisation, les deuxièmes particules céramiques peuvent présenter une taille (D50) comprise entre 0.5 pm et 200 pm, plus préférentiellement comprise entre 0.7 pm et 75 pm.  In an exemplary embodiment, the second ceramic particles may have a size (D50) of between 0.5 .mu.m and 200 .mu.m, more preferably between 0.7 .mu.m and 75 .mu.m.
Dans un exemple de réalisation, les premières particules peuvent être revêtues d'une interphase. Une telle interphase peut par exemple être en carbone pyrolytique (PyC), en nitrure de bore (BN) ou en carbure de silicium (SiC). L'interphase peut comprendre plusieurs couches comprenant chacune un matériau différent. L'interphase a une fonction de défragilisation du matériau composite final qui favorise la déviation de fissures éventuelles parvenant à l'interphase après s'être propagées dans la matrice, empêchant ou retardant la rupture fragile du composite. Cette interphase permet également de protéger les premières particules du matériau de la matrice lors de sa densification. In an exemplary embodiment, the first particles may be coated with an interphase. Such an interphase may for example be made of pyrolytic carbon (PyC), boron nitride (BN) or silicon carbide (SiC). The interphase may comprise several layers each comprising a different material. The interphase has a function of defragilating the final composite material which favors the deflection of possible cracks reaching the interphase after propagating in the matrix, preventing or delaying the fragile fracture of the composite. This interphase also makes it possible to protect the first particles of the matrix material during its densification.
Cette interphase peut être déposée sur les premières particules avant leur introduction dans le mélange. Dans le cas des fibres courtes, le dépôt de l'interphase peut être réalisé sur des fibres longues avant leur découpe ou broyage, par exemple par infiltration chimique en phase gazeuse (CVI). Le dépôt de l'interphase peut être réalisé directement sur les fibres courtes par un procédé de dépôt chimique en phase vapeur (CVD) ou par un procédé de dépôt électrolytique ou encore par sel fondus. On peut également déposer, à la place de l'interphase ou sur l'interphase, un revêtement céramique compatible avec le matériau de la matrice à former.  This interphase can be deposited on the first particles before their introduction into the mixture. In the case of short fibers, the deposition of the interphase can be carried out on long fibers before they are cut or milled, for example by chemical vapor infiltration (CVI). The deposition of the interphase can be carried out directly on the short fibers by a chemical vapor deposition (CVD) process or by an electrolytic deposition process or by molten salt. It is also possible to deposit, in place of the interphase or on the interphase, a ceramic coating compatible with the material of the matrix to be formed.
Dans un exemple de réalisation, le procédé peut comprendre, avant l'étape de formation de la matrice, une étape de compression isostatique de l'ébauche déliantée. Cette étape de compression isostatique peut être réalisée à chaud ou à froid. Cette étape de compression isostatique permet de refermer en partie la porosité générée par l'étape d'élimination ou pyrolyse du liant afin de contrôler cette porosité et améliorer la densification au cours de l'étape ultérieure de formation de la matrice  In an exemplary embodiment, the method may comprise, before the step of forming the matrix, a step of isostatic compression of the debonded blank. This isostatic compression step can be carried out hot or cold. This isostatic compression step makes it possible to partly close the porosity generated by the binder removal or pyrolysis step in order to control this porosity and to improve the densification during the subsequent stage of forming the matrix.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence au dessin annexé qui en illustre un exemple de réalisation dépourvu de tout caractère limitatif. La figure 1 est un ordinogramme montrant les différentes étapes d'un procédé selon un mode de réalisation de l'invention.  Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawing which illustrates an embodiment having no limiting character. Figure 1 is a flow chart showing the different steps of a method according to one embodiment of the invention.
Description détaillée de l'invention Detailed description of the invention
Les étapes d'un procédé selon un mode de réalisation de l'invention vont à présent être décrites en lien avec l'ordinogramme de la figure 1. On cherche ici à obtenir une pièce en matériau composite à matrice céramique. Une telle pièce peut être une pièce pour l'aéronautique, par exemple une pièce destinée à être utilisée dans une turbomachine aéronautique. Une telle pièce peut être par exemple une aube de petite taille. Dans une étape El on peut obtenir les premières particules en céramique ou carbone qui seront destinées à former le renfort particulaire (par exemple fibreux) de la pièce à fabriquer. Lorsque les premières particules sont des fibres courtes, elles peuvent être obtenues par broyage ou découpe mécanique de fibres longues, de façon connue en soi. Les fibres courtes peuvent présenter une longueur médiane comprise entre 50 pm et 5000 pm, ou encore comprise entre 100 pm et 300 pm. Il n'est pas obligatoire que la distribution de taille des premières particules soit monodisperse, elle peut en effet être polydisperse. The steps of a method according to an embodiment of the invention will now be described in connection with the flowchart of FIG. 1. The aim here is to obtain a piece of ceramic matrix composite material. Such a part can be a piece for the aeronautics, for example a part intended to be used in an aeronautical turbomachine. Such a piece may be for example a small blade. In a step E1, the first ceramic or carbon particles may be obtained which will be used to form the particulate (for example fibrous) reinforcement of the part to be manufactured. When the first particles are short fibers, they can be obtained by grinding or mechanical cutting of long fibers, in a manner known per se. The short fibers may have a median length of between 50 μm and 5000 μm, or between 100 μm and 300 μm. It is not mandatory that the size distribution of the first particles be monodisperse, it can indeed be polydisperse.
On peut éventuellement revêtir les premières particules d'un revêtement d'interphase (étape E2). Dans le cas de fibres courtes, on peut les revêtir soit directement, soit en revêtant des fibres longues préalablement à leur découpe ou broyage. L'épaisseur de l'interphase peut par exemple être comprise entre 10 nm et 1000 nm, et par exemple entre 10 nm et 500 nm. L'interphase peut être monocouche ou multicouches. L'interphase peut comporter au moins une couche de carbone pyrolytique (PyC), de nitrure de bore (BN), de nitrure de bore dopé au silicium (BN(Si), avec du silicium en une proportion massique comprise entre 5% et 40%, le complément étant du nitrure de bore) ou de carbone dopé au bore (BC, avec du bore en une proportion atomique comprise entre 5% et 20%, le complément étant du carbone). Le dépôt de l'interphase peut être réalisé directement sur les fibres courtes par un procédé de CVD ou par un procédé de dépôt électrolytique ou encore par sel fondus. L'interphase a ici une fonction de défragilisation du matériau composite qui favorise la déviation de fissures éventuelles parvenant à l'interphase après s'être propagées dans la matrice, empêchant ou retardant la rupture du renfort par de telles fissures. L'interphase peut aussi protéger le renfort au cours de l'étape ultérieure de formation de la matrice. On peut également déposer, à la place de l'interphase ou sur l'interphase, un revêtement céramique compatible avec le matériau de la matrice à former, par exemple par CVI.  The first particles may optionally be coated with an interphase coating (step E2). In the case of short fibers, they can be coated either directly or by coating long fibers prior to cutting or grinding. The thickness of the interphase may for example be between 10 nm and 1000 nm, and for example between 10 nm and 500 nm. The interphase can be monolayer or multilayer. The interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BN (Si), with silicon in a mass proportion of between 5% and 40%). %, the balance being boron nitride) or boron doped carbon (BC, with boron in an atomic proportion of between 5% and 20%, the balance being carbon). The deposition of the interphase can be carried out directly on the short fibers by a CVD process or by an electrolytic deposition process or by molten salt. The interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the rupture of the reinforcement by such cracks. The interphase may also protect the reinforcement during the subsequent die formation step. It is also possible to deposit, in place of the interphase or on the interphase, a ceramic coating compatible with the material of the matrix to be formed, for example by CVI.
Dans une étape E3, on peut ensuite préparer un mélange comprenant un liant polymérique, les premières particules en céramique ou carbone et des deuxièmes particules céramiques destinées à former la matrice de la pièce. Le liant peut par exemple comprendre une résine thermoplastique ou thermodurcissable. Le mélange peut comprendre plusieurs liants. Il peut être avantageux de chauffer le mélange afin de fluidifier le liant pour faciliter le mélange et permettre une meilleure homogénéisation. Cette température de mélange dépend alors des liants organiques employés afin d'une part, de ne pas les dégrader thermiquement et d'autre part, de ne pas les polymériser prématurément. On peut également préparer le mélange sous vide de façon à réduire la présence de bulles d'air dans le mélange. Le mélange ainsi préparé peut être par exemple mis sous la forme de granules destinées à être utilisés ultérieurement, ou être directement injecté au cours de l'étape suivante. In a step E3, it is then possible to prepare a mixture comprising a polymeric binder, the first ceramic or carbon particles and second ceramic particles intended to form the matrix of the part. The binder may for example comprise a thermoplastic or thermosetting resin. The mixture may comprise several binders. It may be advantageous to heat the mixture in order to thin the binder to facilitate the mixing and allow better homogenization. This mixing temperature then depends on the organic binders used in order firstly not to degrade them thermally and secondly not to polymerize them prematurely. The mixture can also be prepared under vacuum so as to reduce the presence of air bubbles in the mixture. The mixture thus prepared may for example be in the form of granules intended to be used later, or be directly injected in the next step.
Dans une étape E4, on forme une ébauche de la pièce à fabriquer dans un moule par injection dans le moule du mélange préparé à l'étape E3. La cavité du moule utilisé pour l'injection peut présenter des dimensions supérieures à celles de la pièce finale car l'ébauche a généralement tendance à se contracter pendant le traitement thermique de frittage (étape E6). Le moule peut comprendre des buses d'injection dont les dimensions sont adaptées, de façon connue, à la taille des premières et deuxièmes particules, ainsi qu'au liant (ou liants) et aux pression et température d'injection choisies. Le moule peut être régulé en température afin de contrôler l'éventuelle solidification du liant après l'injection, le cas échéant. Cette régulation peut également permettre de ne pas orienter préférentiellement les premières particules lorsqu'elles correspondent à des fibres courtes aux abords de la paroi du moule. L'injection peut être réalisée avec un mélange préalablement porté à une température permettant de fluidifier le liant. L'injection peut être réalisée à une pression comprise entre 50 bars et 3000 bars. Une fois le mélange injecté dans le moule et l'ébauche moulée, l'ébauche peut être démoulée. L'ébauche ainsi obtenue est dans un état « vert » ou plastique. L'ébauche peut présenter généralement des dimensions supérieures à celles de la pièce finale, comme expliqué plus haut.  In a step E4, forming a blank of the workpiece to be made in a mold by injection into the mold of the mixture prepared in step E3. The cavity of the mold used for the injection may have dimensions greater than those of the final part because the blank generally tends to contract during the sintering heat treatment (step E6). The mold may comprise injection nozzles whose dimensions are adapted, in known manner, to the size of the first and second particles, and the binder (or binders) and the chosen injection pressure and temperature. The mold can be temperature controlled to control the eventual solidification of the binder after the injection, if necessary. This regulation may also make it possible not to preferentially orient the first particles when they correspond to short fibers around the wall of the mold. The injection may be carried out with a mixture previously heated to a temperature to fluidize the binder. The injection can be carried out at a pressure of between 50 bars and 3000 bars. Once the mixture is injected into the mold and the blank is molded, the blank can be demolded. The blank thus obtained is in a "green" or plastic state. The blank may generally have dimensions greater than those of the final piece, as explained above.
Dans une étape E5, on élimine ou on pyrolyse le liant présent dans l'ébauche afin d'obtenir une ébauche déliantée. Les conditions de l'étape E5 d'élimination ou de pyrolyse du liant dépendent généralement de la nature du liant à éliminer, de façon connue en soi. En particulier, certains liants sont éliminables thermiquement, c'est-à-dire que la température permet de les décomposer et/ou les évaporer, d'autres sont éliminables chimiquement, par exemple par dissolution dans un solvant approprié. L'étape E5 peut comprendre une pyrolyse, il peut alors rester des résidus de pyrolyse au sein de l'ébauche déliantée. L'étape E5 peut être réalisée sous atmosphère neutre, par exemple sous argon, afin de conserver jusqu'à la fin de l'étape d'élimination un squelette carbone dans l'ébauche garantissant une meilleure tenue de l'ébauche, mais aussi de réduire les risques d'oxydation de l'ébauche. Il peut être avantageux d'utiliser plusieurs liants, par exemple deux liants éliminables en deux étapes d'élimination distinctes. Selon un exemple, on élimine d'abord un premier liant par dissolution, puis on élimine un deuxième liant thermiquement. Selon un autre exemple, un premier liant peut être éliminé thermiquement à une première température d'élimination, et un deuxième liant peut être éliminé thermiquement à une deuxième température d'élimination supérieure à la première température d'élimination. L'élimination des deux liants de façon successive réduit les risques de fissuration de l'ébauche au cours de l'étape E5 en ouvrant, après l'élimination du premier liant, une porosité dans l'ébauche par laquelle le deuxième liant pourra être extrait de l'ébauche. Les dimensions de l'ébauche ne varient généralement pas suite à l'étape E5 de déliantage. L'ébauche déliantée comprend ainsi les premières particules et les deuxièmes particules, et présente une porosité non nulle à la place du liant. In a step E5, the binder present in the blank is removed or pyrolyzed in order to obtain a debonded blank. The conditions of the step E5 of elimination or pyrolysis of the binder generally depend on the nature of the binder to be removed, in a manner known per se. In particular, some binders are thermally removable, that is to say that the temperature allows them to decompose and / or evaporate, others are chemically removable, for example by dissolution in a suitable solvent. Step E5 may include pyrolysis, so that pyrolysis residues may remain within the debonded blank. Step E5 can be performed under atmosphere neutral, for example under argon, in order to maintain a carbon skeleton in the blank until the end of the removal step, which guarantees a better holding of the blank, but also reduces the risk of oxidation of the blank. draft. It may be advantageous to use several binders, for example two binders that can be eliminated in two separate elimination stages. In one example, a first binder is first removed by dissolution, and then a second binder is removed thermally. In another example, a first binder can be thermally removed at a first elimination temperature, and a second binder can be thermally removed at a second removal temperature higher than the first removal temperature. The elimination of the two binders successively reduces the risk of cracking of the blank during step E5 by opening, after removal of the first binder, a porosity in the blank by which the second binder can be extracted. of the sketch. The dimensions of the blank do not generally vary following the debinding step E5. The debonded blank thus comprises the first particles and the second particles, and has a non-zero porosity in place of the binder.
Dans une étape E6, on réalise un traitement thermique de frittage de l'ébauche déliantée pour former la matrice céramique et obtenir la pièce finale. Cette étape correspond à une consolidation de l'ébauche déliantée durant laquelle la porosité de l'ébauche va progressivement se réduire et l'ébauche se contracter pour atteindre les dimensions de la, pièce finale. Le traitement thermique de frittage peut être réalisé dans un four adapté à une température de frittage du matériau céramique des deuxièmes particules céramiques (frittage libre). On peut également réaliser le frittage par compression isostatique à chaud (frittage sous contrainte isostatique). Dans le procédé connu de compression isostatique à chaud, on applique une pression uniforme sur l'ébauche soumise également à une température adaptée notamment au matériau céramique de la matrice à former. Suite à cette étape, la porosité à l'intérieur de la pièce finale peut généralement être inférieure à 1 %. La pièce ainsi obtenue peut ensuite subir éventuellement des usinages de finition. Le traitement thermique frittage peut être réalisé à une température comprise entre 1000°C et 1600°C, selon la matrice à former. Lorsqu'il est réalisé sous contrainte isostatique, la pression appliquée lors du traitement thermique de frittage peut être comprise entre 1000 bars et 2000 bars. On réalise une étape de compression isostatique à chaud de l'ébauche après l'étape E5 d'élimination ou de pyrolyse du liant présent dans l'ébauche et avant l'étape E6 de traitement thermique de frittage afin de refermer une partie de la porosité dans le cas où celle-ci serait trop importante avant le frittage. Cette étape de compression isostatique à chaud est de préférence réalisée sous enveloppe, pour assurer une compaction homogène de l'ébauche déliantée. La pression appliquée est de préférence comprise entre 1000 bars et 2000 bars. L'enveloppe peut comprendre du graphite et du nitrure de bore. Cette étape peut permettre de réduire la porosité de l'ébauche déliantée, comprise généralement entre 30% et 40%, à une porosité négligeable (par exemple inférieure à 1%), de façon à obtenir une pièce avec une densité améliorée après traitement thermique de frittage. L'étape de compression isostatique à chaud peut être réalisée à une température comprise entre 1000°C et 1600°C, selon le matériau de matrice visé. Pour une matrice de disiliciure de titane, la température peut être comprise par exemple entre 1100°C et 1500°C. De façon générale, l'étape de compression isostatique à chaud peut être réalisée à une température inférieure à la température du traitement thermique de frittage. Cette étape peut correspondre à un traitement de pré-frittage de l'ébauche déliantée sous contrainte isostatique, distinct de l'étape finale de traitement thermique de frittage. In a step E6, a sintering heat treatment of the debonded blank is carried out to form the ceramic matrix and obtain the final piece. This step corresponds to a consolidation of the debinding blank during which the porosity of the blank will gradually be reduced and the blank contract to reach the dimensions of the final piece. The sintering heat treatment may be carried out in an oven adapted to a sintering temperature of the ceramic material of the second ceramic particles (free sintering). It is also possible to perform hot isostatic compression sintering (sintering under isostatic stress). In the known hot isostatic pressing process, a uniform pressure is applied to the blank which is also subjected to a temperature that is particularly suitable for the ceramic material of the matrix to be formed. Following this step, the porosity inside the final part can generally be less than 1%. The part thus obtained may then eventually undergo finishing machining. The sintering heat treatment can be carried out at a temperature of between 1000 ° C. and 1600 ° C., depending on the matrix to be formed. When carried out under isostatic stress, the pressure applied during the sintering heat treatment may be between 1000 bar and 2000 bar. A hot isostatic pressing step of the blank is carried out after the elimination or pyrolysis step E5 of the binder present in the blank and before the sintering heat treatment step E6 in order to close a part of the porosity. in the case where it would be too important before sintering. This hot isostatic pressing step is preferably performed in an envelope, to ensure homogeneous compaction of the debonded blank. The pressure applied is preferably between 1000 bar and 2000 bar. The envelope may comprise graphite and boron nitride. This step can make it possible to reduce the porosity of the debonded blank, generally between 30% and 40%, to a negligible porosity (for example less than 1%), so as to obtain a part with an improved density after thermal treatment of sintering. The hot isostatic pressing step can be carried out at a temperature of between 1000 ° C and 1600 ° C, depending on the target matrix material. For a titanium disilicide matrix, the temperature may be, for example, between 1100 ° C and 1500 ° C. In general, the hot isostatic pressing step can be carried out at a temperature below the temperature of the sintering heat treatment. This step may correspond to a pre-sintering treatment of the debonded blank under isostatic stress, distinct from the final sintering heat treatment step.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce en matériau composite comprenant un renfort particulaire densifié par une matrice céramique, le procédé comprenant les étapes suivantes : A method of manufacturing a composite material part comprising a particulate reinforcement densified by a ceramic matrix, the method comprising the following steps:
- formation d'une ébauche (E4) de la pièce à fabriquer dans un moule par injection dans le moule d'un mélange comprenant un liant polymérique, des premières particules en céramique ou en carbone destinées à former le renfort particulaire de la pièce et des deuxièmes particules céramiques, différentes des premières particules, destinées à former la matrice de la pièce, les premières et les deuxièmes particules étant dispersées dans le liant,  - forming a blank (E4) of the part to be produced in a mold by injection into the mold of a mixture comprising a polymeric binder, first particles of ceramic or carbon intended to form the particulate reinforcement of the part and the second ceramic particles, different from the first particles, intended to form the matrix of the part, the first and the second particles being dispersed in the binder,
- élimination ou pyrolyse du liant (E5) présent dans l'ébauche afin d'obtenir une ébauche déliantée, et  elimination or pyrolysis of the binder (E5) present in the blank in order to obtain a bonded blank, and
- formation de la matrice céramique (E6) par traitement thermique de frittage de l'ébauche déliantée afin d'obtenir la pièce,  - Formation of the ceramic matrix (E6) by sintering heat treatment of the debonded blank in order to obtain the part,
caractérisé en ce qu'il comprend en outre, avant l'étape de formation de la matrice, une étape de compression isostatique à chaud de l'ébauche déliantée.  characterized in that it further comprises, before the step of forming the matrix, a hot isostatic pressing step of the debonded blank.
2. Procédé selon la revendication 1, dans lequel les premières particules sont des fibres courtes. The method of claim 1, wherein the first particles are short fibers.
3. Procédé selon la revendication 2, dans lequel les fibres courtes présentent une longueur comprise entre 50 pm et 5000 pm. 3. The method of claim 2, wherein the short fibers have a length of between 50 μm and 5000 μm.
4. Procédé selon la revendication 3, dans lequel les fibres courtes présentent une longueur comprise entre 100 pm et 300 pm. 4. The method of claim 3, wherein the short fibers have a length of between 100 μm and 300 μm.
5. Procédé selon la revendication 1, dans lequel les premières particules sont des grains. The method of claim 1, wherein the first particles are grains.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le volume élémentaire médian des premières particules est supérieur ou égal au volume élémentaire médian des deuxièmes particules. 6. Process according to any one of claims 1 to 5, wherein the median elementary volume of the first particles is greater than or equal to the median elementary volume of the second particles.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le traitement thermique de frittage (E6) est réalisé sous contrainte isostatique. 7. Process according to any one of claims 1 to 6, wherein the sintering heat treatment (E6) is carried out under isostatic stress.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le liant comprend un polymère thermoplastique. The method of any one of claims 1 to 7, wherein the binder comprises a thermoplastic polymer.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le mélange comprend deux liants éliminables thermiquement présentant chacun une température d'élimination différente. 9. A process according to any one of claims 1 to 8, wherein the mixture comprises two thermally removable binders each having a different removal temperature.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le mélange comprend un premier liant éliminable par dissolution et un deuxième liant éliminable thermiquement. The method of any one of claims 1 to 9, wherein the blend comprises a first dissolvable binder and a second thermally removable binder.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel les premières particules sont en carbure de silicium. 11. The method of any one of claims 1 to 10, wherein the first particles are silicon carbide.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel les deuxièmes particules céramiques comprennent un matériau choisi parmi les suivants : SiC, MoSi2, TiSi2, CoSi2, ZrSi2, HfSi2, ZrB2, HfB2, TiB2, et leurs mélanges. The method according to any one of claims 1 to 11, wherein the second ceramic particles comprise a material selected from the following: SiC, MoSi 2 , TiSi 2 , CoSi 2 , ZrSi 2 , HfSi 2 , ZrB 2 , HfB 2 , TiB 2 , and mixtures thereof.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel la teneur volumique en premières particules dans la pièce est comprise entre 10 % et 70 %. The process of any one of claims 1 to 12, wherein the volume content of first particles in the part is between 10% and 70%.
14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel la teneur volumique en deuxièmes particules dans la pièce est comprise entre 30 % et 90 %. The method of any one of claims 1 to 13, wherein the volume content of second particles in the part is between 30% and 90%.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel les premières particules sont revêtues d'une interphase. The method of any one of claims 1 to 14, wherein the first particles are coated with an interphase.
16. Procédé selon l'une quelconque des revendications 1 à 15 dans lequel la pièce est une pièce destinée à être utilisée dans une turbomachine aéronautique. 16. A method according to any one of claims 1 to 15 wherein the part is a part for use in an aircraft turbine engine.
PCT/FR2018/053471 2017-12-22 2018-12-20 Method for manufacturing a ceramic matrix composite part WO2019122758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762994A FR3075788B1 (en) 2017-12-22 2017-12-22 METHOD OF MANUFACTURING A PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX
FR1762994 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019122758A1 true WO2019122758A1 (en) 2019-06-27

Family

ID=62528495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053471 WO2019122758A1 (en) 2017-12-22 2018-12-20 Method for manufacturing a ceramic matrix composite part

Country Status (2)

Country Link
FR (1) FR3075788B1 (en)
WO (1) WO2019122758A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113696A1 (en) 2020-09-03 2022-03-04 Safran Aircraft Engines Turbomachine part with connecting edge made of composite material with a ceramic matrix and short fibers and method of manufacturing the same
FR3115533A1 (en) * 2020-10-27 2022-04-29 Safran Ceramics Process for manufacturing a composite material part
FR3115784A1 (en) * 2020-11-03 2022-05-06 Safran Ceramics Formation of boron nitride on fibers by the molten salt method
FR3116530A1 (en) * 2020-11-26 2022-05-27 Safran Ceramics Process for manufacturing a part made of composite material with a ceramic matrix
FR3124182A1 (en) 2021-06-21 2022-12-23 Safran Aircraft Engines Turbine ring sector in CMC material with particle reinforcement
FR3131299A1 (en) * 2021-12-28 2023-06-30 Safran Ceramics Composition for the direct manufacture of a ceramic matrix composite material with continuous reinforcement
FR3131298A1 (en) * 2021-12-28 2023-06-30 Safran Ceramics Composition for the direct manufacture of a composite material with a ceramic matrix

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043118A (en) * 1989-12-18 1991-08-27 Hoechst Celanese Corp. Whisker-reinforced ceramic matrix composite by injection molding
EP0492285A1 (en) * 1990-12-12 1992-07-01 ISTITUTO GUIDO DONEGANI S.p.A. Sintered composite material based on silicon nitride
US20020140139A1 (en) * 2000-12-04 2002-10-03 Sutaria Manish P. Consolidation and densification methods for fibrous monolith processing
US20020165304A1 (en) * 2000-12-04 2002-11-07 Mulligan Anthony C. Methods and appratus for preparation of three-dimensional bodies
US20160347674A1 (en) * 2015-05-25 2016-12-01 Apple Inc. Fiber-reinforced ceramic matrix composite for electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043118A (en) * 1989-12-18 1991-08-27 Hoechst Celanese Corp. Whisker-reinforced ceramic matrix composite by injection molding
EP0492285A1 (en) * 1990-12-12 1992-07-01 ISTITUTO GUIDO DONEGANI S.p.A. Sintered composite material based on silicon nitride
US20020140139A1 (en) * 2000-12-04 2002-10-03 Sutaria Manish P. Consolidation and densification methods for fibrous monolith processing
US20020165304A1 (en) * 2000-12-04 2002-11-07 Mulligan Anthony C. Methods and appratus for preparation of three-dimensional bodies
US20160347674A1 (en) * 2015-05-25 2016-12-01 Apple Inc. Fiber-reinforced ceramic matrix composite for electronic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Syroko promotes new binder for Powder Injection Moulding", 29 January 2010 (2010-01-29), XP055507065, Retrieved from the Internet <URL:http://www.pim-international.com/syroko-promotes-new-binder-for-powder-injection-moulding/> [retrieved on 20180914] *
KATARÍNA BODISOVÁ ET AL: "ALUMINA CERAMICS PREPARED BY PRESSURE FILTRATION OF ALUMINA POWDER DISPERSED IN BOEHMITE SOL", CERAMICS-SILIKATY, 1 January 2006 (2006-01-01), CZ, pages 239 - 244, XP055508335, ISSN: 0862-5468 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113696A1 (en) 2020-09-03 2022-03-04 Safran Aircraft Engines Turbomachine part with connecting edge made of composite material with a ceramic matrix and short fibers and method of manufacturing the same
WO2022049339A1 (en) 2020-09-03 2022-03-10 Safran Aircraft Engines Turbomachine part with connecting edge made of composite material with ceramic matrix and short fibres and method for the manufacture of same
FR3115533A1 (en) * 2020-10-27 2022-04-29 Safran Ceramics Process for manufacturing a composite material part
WO2022090655A1 (en) * 2020-10-27 2022-05-05 Safran Ceramics Method for manufacturing a part made from a ceramic matrix composite material
FR3115784A1 (en) * 2020-11-03 2022-05-06 Safran Ceramics Formation of boron nitride on fibers by the molten salt method
FR3116530A1 (en) * 2020-11-26 2022-05-27 Safran Ceramics Process for manufacturing a part made of composite material with a ceramic matrix
WO2022112681A1 (en) * 2020-11-26 2022-06-02 Safran Ceramics Method for producing a ceramic matrix composite part
FR3124182A1 (en) 2021-06-21 2022-12-23 Safran Aircraft Engines Turbine ring sector in CMC material with particle reinforcement
FR3131299A1 (en) * 2021-12-28 2023-06-30 Safran Ceramics Composition for the direct manufacture of a ceramic matrix composite material with continuous reinforcement
FR3131298A1 (en) * 2021-12-28 2023-06-30 Safran Ceramics Composition for the direct manufacture of a composite material with a ceramic matrix
WO2023126605A1 (en) * 2021-12-28 2023-07-06 Safran Ceramics Composition for directly producing a ceramic matrix composite material

Also Published As

Publication number Publication date
FR3075788A1 (en) 2019-06-28
FR3075788B1 (en) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2019122758A1 (en) Method for manufacturing a ceramic matrix composite part
EP3728162B1 (en) Process for the manufacture of a ceramic matrix composite part
EP2785665B1 (en) Cmc material part manufacture method
EP2340238B1 (en) Method of manufacturing pieces of thermostructural composite material
EP3164373A1 (en) Part coated with a surface coating and associated methods
FR3062336A1 (en) PROCESS FOR MANUFACTURING A PIECE OF COMPOSITE MATERIAL
FR3023212B1 (en) METHOD FOR MANUFACTURING A COATED PART BY A SURFACE COATING COMPRISING AN ALLOY
EP3394002B1 (en) Manufacturing process of a ceramic via a chemical reaction between a disilicide and a reactive gaseous phase
EP3592716B1 (en) Method for producing a consolidated fibrous preform
JP2015212215A (en) Process of producing ceramic matrix composites, and ceramic matrix composites formed thereby
EP4115000B1 (en) Method for coating a ceramic matrix composite part with an environmental barrier
EP3997050A1 (en) Porous ceramic structure for part made of cmc material and method for obtaining same
EP3781537B1 (en) Method for manufacturing a part made of a composite material
EP4377278A1 (en) Method for manufacturing a thick part made of cmc composite material
FR3032906A1 (en) PROCESS FOR PRODUCING A FIBROUS PREFORM
EP4264016A1 (en) Blade made of composite material with at least partially ceramic matrix
Kotani et al. Polymer Impregnation and Pyrolysis Process Combined with Powder Space Holder Technique (PSH-PIP)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839838

Country of ref document: EP

Kind code of ref document: A1