WO2019121435A1 - Système de lecture optique et procédé de calibrage du système de lecture optique - Google Patents

Système de lecture optique et procédé de calibrage du système de lecture optique Download PDF

Info

Publication number
WO2019121435A1
WO2019121435A1 PCT/EP2018/085097 EP2018085097W WO2019121435A1 WO 2019121435 A1 WO2019121435 A1 WO 2019121435A1 EP 2018085097 W EP2018085097 W EP 2018085097W WO 2019121435 A1 WO2019121435 A1 WO 2019121435A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
scanning system
optical scanning
unit
turntable
Prior art date
Application number
PCT/EP2018/085097
Other languages
German (de)
English (en)
Inventor
Alexander Greiner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019121435A1 publication Critical patent/WO2019121435A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the invention relates to an optical scanning system, a method for calibrating the optical scanning system and a vehicle with an optical scanning system.
  • lidar sensors in the vehicle area must deliver very accurate measured values.
  • mechanical laser scanners which have a large horizontal detection angle between 150 ° and 360 °.
  • rotating mirror laser scanners whose maximum
  • Detection range is limited to 150 °.
  • the deflection mirror is driven by a motor.
  • devices are used with all electro-optical components on a turntable or rotor.
  • Another variant is systems that have a detector based on the single photon avalanche diode technology, the so-called SPAD technology.
  • one vertical laser line is emitted per scanning scan and imaged onto a detector by means of a receiving optical system. Depending on the lighting, the corresponding pixels are read out in the detector and this signal becomes a
  • Input information generated In order to obtain accurate measurement results in the SPAD detector, maximum signal quality and the exact position of the laser line are important. For this purpose, an adjustment of the receiving unit to the transmitting unit takes place in the manufacturing plant.
  • the disadvantage here is that the position of the line on the temperature and the life of the Lidarsensors can change. As a result, unilluminated pixels are used in the determination of the reception information, resulting in losses in the sensor range.
  • the object of the invention is to overcome these disadvantages.
  • An optical scanning system includes a housing having a front portion and a rear portion.
  • the front portion has an optical-beam transmission / reception window, and the rear portion is opaque to optical radiation.
  • the optical scanning system comprises a turntable which is rotatably mounted about a first axis. The first axis is arranged perpendicular to the turntable.
  • On the turntable an optical transmitting unit and an optical receiving unit is arranged.
  • the optical transmission unit is set up to emit laser lines.
  • a reflector unit is arranged in the rear region of the housing, which deflects or deflects optical beams from the optical transmitter unit to the optical receiver unit, so that a detector unit of the optical receiver unit is calibrated during a dark phase of the optical scanning system.
  • an in-field calibration with respect to the imaging of the laser line on the detector unit of the receiving unit is made possible.
  • the detector unit is recalibrated.
  • the term dark phase of the optical scanning system is understood to mean a period in which the laser lines are not emitted into an environment outside the housing.
  • the advantage here is that a calibration of the alignment of the transmission path to the reception path of the optical scanning system during operation of the optical scanning system.
  • optical transmitting unit and the optical
  • the optical transmitting unit is arranged on the optical receiving unit. In other words, the optical transmitting unit is arranged above the optical receiving unit.
  • a motor which rotates the turntable about the first axis.
  • This is in particular a stepper motor.
  • Scan process or scan circulation can be successively moved.
  • the reflector unit prisms In a further embodiment, the reflector unit prisms,
  • the reflector unit comprises a partially reflecting material which reduces an intensity of the laser lines after striking the partially reflecting material.
  • the optical receiving unit In a further embodiment, the optical receiving unit
  • Attenuator which is turned on during the dark phase of the optical scanning system.
  • the attenuator comprises a gray filter.
  • the inventive method for calibrating an optical scanning system during a dark phase of the optical scanning system comprises a housing having a front portion and a rear portion, wherein the front portion of a transmission /
  • Receiving window for laser lines and the rear area is opaque to laser lines
  • the optical scanning system has a turntable which is rotatably mounted about a first axis, wherein the first axis is arranged perpendicular to the turntable and on the turntable, an optical transmitting unit and an optical receiving unit arranged, comprises the transmission of laser lines by means of the optical transmitting unit, wherein the optical transmitting unit emits the laser lines during the dark phase in the rear portion of the housing, and the deflection of the laser lines by means of a reflector unit, the is arranged in the rear region of the housing.
  • the method further comprises receiving the laser lines deflected by the reflector unit by means of the optical receiving unit, determining a position of the
  • the vehicle according to the invention has an optical scanning system according to the invention, wherein the optical scanning system is arranged in the region of a bumper of the vehicle.
  • FIG. 1a shows an optical scanning system during a transmission / reception phase
  • FIG. 1b shows the optical scanning system during a dark phase
  • Figure 2a shows another optical scanning system during the
  • FIG. 2b shows the further optical scanning system during the dark phase
  • FIG. 3 shows a method for calibrating the optical scanning system.
  • FIG. 1 a shows an optical scanning system 100 during a transmission /
  • the optical scanning system 100 comprises a housing 101, a turntable 102, which within the housing 101 is arranged, a transmitting unit 103, a receiving unit 104 and a reflector unit 105th
  • the housing 101 has a front portion and a rear portion.
  • the housing 101 comprises a hollow half cylinder and a hollow cuboid, wherein the hollow half cylinder and the hollow cuboid are directly connected to each other.
  • a height of the hollow cuboid corresponds to a height of the hollow half-cylinder.
  • the diameter of the hollow half-cylinder corresponds to an edge length of an edge of the hollow cuboid, which is directly connected to the hollow half-cylinder.
  • the hollow half-cylinder is arranged in the front region of the housing 101.
  • a transmission / reception window of the optical scanning system 100 includes at least the hollow half-cylinder. In other words, the transmission / reception window may also include areas of the hollow cuboid.
  • the transmit / receive window is for optical beams, e.g. As laser beams or laser lines, permeable or transparent.
  • the turntable 102 is disposed within the housing 101.
  • the turntable 102 is rotatably supported about a first axis 107.
  • the first axis 107 is arranged perpendicular to a surface of the turntable 102 and acts as a rotation axis of the turntable 102.
  • the first axis 107 can pass through the center of the turntable 102.
  • the turntable 102 is configured to operate during operation of the optical scanning system 100, i. H. at a
  • the turntable 102 is driven by a motor, for example.
  • the optical transmitting unit 103 is arranged parallel to the optical receiving unit 104 on the turntable 102 at a predetermined distance.
  • a transmitting side of the transmitting unit 103 configured to emit optical beams points in a same direction as a receiving side of the receiving unit configured to receive optical beams.
  • the optical axes of the optical transmitting unit 103 and the optical receiving unit 104 are parallel to each other at a predetermined interval.
  • the optical transmission unit 103 includes a light source that emits optical beams.
  • the light source is for example a laser.
  • Transmitter unit 103 is configured to emit laser lines.
  • the laser lines can be emitted in the vertical direction, i. H. are transmitted perpendicular to a surface of the turntable 102 or in the horizontal direction, d. H. parallel to the surface of the turntable 102.
  • the optical receiving unit 104 includes a not-shown detector unit having a SPAD technology.
  • the detector unit comprises a two-dimensional array of SPAD diodes.
  • Receive unit 104 an attenuator, which is turned on during the dark phase of the optical scanning system 100.
  • the attenuator may be configured, for example, as a gray filter.
  • the reflector unit 105 functions as a deflection or deflection unit of laser lines which are emitted by the optical transmission unit 103 during a dark phase of the optical scanning system 100. These deflected laser lines are passed directly into or to the optical receiving unit 104.
  • Reflector unit 105 may be configured, for example, as a prism, double mirror or corner cubes.
  • the reflector unit 105 may comprise a semi-reflective material that reduces the intensity of the laser lines after impacting the partially reflective material.
  • the optical scanning system 100 is, for example, a biaxial rotating 3D laser scanner.
  • Such biaxial rotating 3D laser scanners are also known as macroscanners.
  • FIG. 1b shows the optical scanning system 100 during the dark phase of the optical scanning system 100.
  • the beam path is that of the
  • Transmitting unit 103 emitted laser lines 108 and deflected by the reflector unit 105 laser lines 109 during the dark phase shown.
  • FIG. 2a shows another optical scanning system 200 during the transmission / Reception phase of the optical scanning system 200.
  • the optical scanning system 200 essentially comprises the arrangement of the figures la and lb. Identical rear positions of the reference numerals of Figure 2a correspond to the components of Figures la and lb with the same rear positions of the reference numerals.
  • the difference from FIGS. 1 a and 1 b is that in FIG. 2 a the optical transmitting unit 203 is arranged on the optical receiving unit 204, ie the optical transmitting unit 203 and the optical receiving unit 204 are arranged one above the other.
  • a motor 206 is shown in FIG. 2a, which drives the turntable 202 on which the optical transmission unit 203 and the optical reception unit 204 are arranged.
  • the motor 206 shown here can also be used in the device of FIGS. 1 a and 1 b.
  • Figure 2b shows the optical scanning system 200 during the dark phase of the optical scanning system 200.
  • the reference numerals of Figure 2b which are identical to the reference numerals of Figure 2a, denote the same components as in Figure 2a.
  • the beam path of the laser lines 208 emitted by the transmission unit 203 and laser lines 209 deflected by the reflector unit 205 are shown during the dark phase.
  • the optical scanning system 100 and 200 is, for example, a lidar system. It is used, for example, in vehicles or robots.
  • FIG. 3 shows the method 300 for calibrating the optical scanning system.
  • the method 300 starts with the step 310, in which of the optical
  • Transmitting laser lines are emitted, which are emitted during the dark phase in the rear of the housing.
  • the optical scanning system radiates to the rear or rear portion of the housing, which is opaque to optical radiation.
  • the laser lines are deflected by means of the reflector unit, which is arranged in the rear region of the housing. That means that
  • Reflector unit deflects the laser lines such that laser lines directly, ie, without interacting with objects from the environment outside the housing, are received or detected by the optical receiving unit 104.
  • the laser lines deflected or deflected by the reflector unit are received by the receiving unit.
  • a position of the laser lines is determined and in a following step 350, a detector unit of the optical receiving unit is calibrated in dependence on the position of the laser lines.
  • the laser power can be determined as a function of the deflected laser line.
  • eye safety versus deflected laser line may be determined, individual laser diodes may be monitored as a function of the deflected laser line, or the functional safety of the optical scanning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Système de lecture optique (100) comportant un boîtier (101) qui comprend une zone avant et une zone arrière, la zone arrière présentant une fenêtre d'émission/de réception pour des rayons laser et la zone arrière étant impénétrable pour des rayons laser, et un disque rotatif (102), le disque rotatif (102) tournant autour d'un premier axe (107), le premier axe (107) étant disposé à la perpendiculaire du disque rotatif (102), une unité d'émission optique (103) et une unité de réception optique (104) étant disposées sur le disque rotatif (102), l'unité d'émission optique (103) étant destinée à émettre un rayon laser, caractérisé en ce qu'une unité réfléchissante (105) est disposée dans la zone arrière du boîtier (101) pour dévier le rayon laser en direction de l'unité de réception optique (104) dans le but de calibrer une unité de détection de l'unité de réception optique (104) pendant une phase d'obscurité du système de lecture optique (100).
PCT/EP2018/085097 2017-12-21 2018-12-17 Système de lecture optique et procédé de calibrage du système de lecture optique WO2019121435A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017223618.3A DE102017223618A1 (de) 2017-12-21 2017-12-21 Optisches Scansystem und Verfahren zur Kalibrierung des optischen Scansystems
DE102017223618.3 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019121435A1 true WO2019121435A1 (fr) 2019-06-27

Family

ID=64900879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/085097 WO2019121435A1 (fr) 2017-12-21 2018-12-17 Système de lecture optique et procédé de calibrage du système de lecture optique

Country Status (2)

Country Link
DE (1) DE102017223618A1 (fr)
WO (1) WO2019121435A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615884A (en) * 2021-12-30 2023-08-23 Motional Ad Llc Light source characterization system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020101272A1 (de) 2020-01-21 2021-07-22 Sick Ag Optoelektronischer Sensor
CN111473747B (zh) * 2020-04-15 2022-07-26 Oppo广东移动通信有限公司 标定装置、标定***、电子设备及标定方法
DE102021119239A1 (de) 2021-07-26 2023-01-26 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer optischen Detektionsvorrichtung, optische Detektionsvorrichtung zur Überwachung wenigstens eines Überwachungsbereichs und Fahrzeug mit wenigstens einer Detektionsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340756A1 (de) * 1992-12-08 1994-06-09 Sick Optik Elektronik Erwin Laserabstandsermittlungsvorrichtung
DE19647152A1 (de) * 1996-11-14 1998-05-28 Sick Ag Laserabstandsermittlungsvorrichtung
EP2112527A2 (fr) * 2008-04-22 2009-10-28 Riegl Lasermeasurement Systems GmbH Cible de référence destinée au calibrage de scanners laser
DE102014107353A1 (de) * 2014-05-26 2015-11-26 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102015121839A1 (de) * 2015-12-15 2017-06-22 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340756A1 (de) * 1992-12-08 1994-06-09 Sick Optik Elektronik Erwin Laserabstandsermittlungsvorrichtung
DE19647152A1 (de) * 1996-11-14 1998-05-28 Sick Ag Laserabstandsermittlungsvorrichtung
EP2112527A2 (fr) * 2008-04-22 2009-10-28 Riegl Lasermeasurement Systems GmbH Cible de référence destinée au calibrage de scanners laser
DE102014107353A1 (de) * 2014-05-26 2015-11-26 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102015121839A1 (de) * 2015-12-15 2017-06-22 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615884A (en) * 2021-12-30 2023-08-23 Motional Ad Llc Light source characterization system

Also Published As

Publication number Publication date
DE102017223618A1 (de) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019121435A1 (fr) Système de lecture optique et procédé de calibrage du système de lecture optique
DE102005049471B4 (de) Entfernungssensor mit Einzelflächenabtastung
EP2718669B1 (fr) Scanner laser et procédé de commande d'un scanner laser
DE102009055988B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP2005112B1 (fr) Dispositif et procédé d'acquisition tridimensionnelle d'une zone d'espace
EP2124069B1 (fr) Système LIDAR omnidirectionnel
EP4303620A2 (fr) Dispositif de balayage laser
EP3479062B1 (fr) Procédé de comparaison d'un faisceau de réception se produisant sur un récepteur laser a l'aide d'un faisceau laser rotatif
EP3032275B1 (fr) Capteur optoelectronique et procede destine a la saisie d'objets
DE102018109544A1 (de) Optoelektronischer Sensor und Verfahren zur Abstandsbestimmung
DE102013012789A1 (de) Abtastende optoelektronische Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung
EP2637057B1 (fr) Source lumineuse pour un capteur et capteur optoélectronique mesurant l'éloignement
DE10146692B4 (de) Entfernungsbildsensor
EP2708914A1 (fr) Capteur optoélectronique et procédé de détection d'une carte de profondeur
DE102009047303A1 (de) Einrichtung für die Kalibrierung eines Sensors
EP3404442B1 (fr) Dispositif de simulation pour un système de mesure par laser rotatif
DE102019105478A1 (de) LIDAR-Sensoren und Verfahren für dieselben
AT507872B1 (de) Einrichtung zur abtastung eines objektraumes
EP3699640B1 (fr) Capteur optoélectronique et procédé de détection d'un objet
AT507684B1 (de) Einrichtung zur abtastung eines objektraumes
DE102017202634A1 (de) Lidar-Sensor zur Erfassung eines Objektes
DE102015112295A1 (de) Sendeeinrichtung für eine optische Detektionsvorrichtung eines Kraftfahrzeugs, optische Detektionsvorrichtung, Kraftfahrzeug sowie Verfahren
EP3329300A1 (fr) Dispositif de capteur optique pour un véhicule automobile pour le balayage bidimensionnel d'une zone environnante du véhicule automobile, véhicule automobile ainsi que procédé
DE102019120856A1 (de) Lidar-sensor, fahrzeug mit dem lidar-sensor und verfahren zum betreiben eines lidar-sensors
DE202020100244U1 (de) Optoelektronischer Sensor zur Erfassung von Objekten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18826567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18826567

Country of ref document: EP

Kind code of ref document: A1