WO2019120122A1 - -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件 - Google Patents

-40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件 Download PDF

Info

Publication number
WO2019120122A1
WO2019120122A1 PCT/CN2018/120676 CN2018120676W WO2019120122A1 WO 2019120122 A1 WO2019120122 A1 WO 2019120122A1 CN 2018120676 W CN2018120676 W CN 2018120676W WO 2019120122 A1 WO2019120122 A1 WO 2019120122A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
strength
ductile iron
low
ductile
Prior art date
Application number
PCT/CN2018/120676
Other languages
English (en)
French (fr)
Inventor
喻光远
陈琳
徐小辉
朱正锋
Original Assignee
中车戚墅堰机车车辆工艺研究所有限公司
常州朗锐铸造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车戚墅堰机车车辆工艺研究所有限公司, 常州朗锐铸造有限公司 filed Critical 中车戚墅堰机车车辆工艺研究所有限公司
Publication of WO2019120122A1 publication Critical patent/WO2019120122A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the invention relates to a ductile iron, in particular to a low-temperature high-strength and high-tough ductile iron of -40 ° C and a preparation method thereof, and a railway locomotive component mainly prepared by using the ball-milled cast iron.
  • the QT400-18AL material in GB/T1348-2009 has a low temperature of -40 °C impact AKV ⁇ 12J, the elongation is also higher than 18%, but its tensile strength index is far from QT500-7A, tensile strength Rm is only ⁇ 380MPa, yield strength Rp0.2 ⁇ 240Mpa, and high temperature graphitization annealing treatment is required during preparation.
  • Chinese patent document CN 105803300A discloses a low-temperature anti-zero 40 ° C low temperature impact CADI ductile iron and a preparation method thereof, the carbon mass fraction of the ductile iron is 3.5% to 3.7 %, silicon mass fraction is 2.70% to 2.90%, manganese mass fraction is less than 0.20%, chromium mass fraction is 0.6% to 0.7%, phosphorus mass fraction is less than 0.035%, and copper mass fraction is 0.8% to 1.0%.
  • the low temperature impact of CARD ductile iron at minus 40 °C has a no-notch impact value of 25J to 30J at a temperature of -40 °C.
  • the anti-zero 40° C low temperature impact CADI ductile iron prepared by the invention has a yield strength of 750-800 MPa, a tensile strength of 1050 to 1150 MPa, an elongation of 3% to 5%, and a hardness value of HRC 40-45.
  • the patented ball-milled cast iron has a non-notched impact value of 25 J to 30 J at a temperature of -40 ° C, its elongation is only 3% to 5%.
  • a Chinese patent document CN 104988382A (Application No. 201510459235.1) discloses a nodular cast iron gear box having ultra-low temperature and high impact toughness and a manufacturing method thereof, wherein the chemical composition and mass percentage are: C 3.50% to 3.80%, Si 1.7 to 1.9%, Mn 0.10% to 0.15%, P ⁇ 0.035%, S ⁇ 0.015%, Ni 1.0% to 1.3%, and the balance is Fe and unavoidable impurities.
  • the ductile iron casting has a low temperature impact toughness of -40 ° C, and the tensile strength of the cast-coated test piece is maintained at 500 to 510 MPa, and the elongation is 10% to 20%, and the impact value can reach 7 to 9 J.
  • the performance indicators are in full compliance with the latest regulations of TJ/JW 065-2015 "Interim Technical Conditions for AC Gearboxes for AC Transmission Locomotives" of China Railway Corporation.
  • the tensile strength of the ductile iron is 500-510 MPa, and 500-510 MPa is the lower limit of the use requirements of the ductile iron gear box.
  • the main object of the present invention is to provide a low-temperature high-strength and high-tough ductile iron of -40 ° C, a preparation method thereof and a railway locomotive component, so as to solve the problem that the spheroidal graphite cast iron in the prior art cannot meet the requirements of the key component materials for rail transit - 40 °C and -60 °C low temperature high strength and high toughness requirements.
  • the technical problem to be solved by the present invention is to provide a high-strength, high-toughness and ultra-low temperature impact performance index that can shorten the process flow, reduce the production cost, and meet the requirements of the key component materials for rail transit without performing high-temperature graphitization annealing heat treatment.
  • the present invention provides the following technical solutions.
  • a low temperature high strength and high tenacity ductile iron of -40 ° C is provided, and the weight percentage of each component and its total weight relative to the ductile iron is: C 3.6% - 3.9%, Si 1.9% - 2.1%, Mn ⁇ 0.2%, P ⁇ 0.03%, S0.003% ⁇ 0.012%, Cu 0.35% ⁇ 0.5%, Ni 1.1% ⁇ 1.5%, Re ⁇ 0.03%, Mg 0.025% ⁇ 0.05%, balance is Iron and unavoidable impurities, or the weight percentage of each component and its total weight relative to ductile iron: C 3.6% to 3.9%, Si 1.9% to 2.3%, Mn ⁇ 0.2%, P ⁇ 0.03%, S 0.003 % ⁇ 0.012%, Cu 0.25% ⁇ 0.5%, Ni 1.1% ⁇ 1.8%, Re ⁇ 0.03%, Mg 0.025% ⁇ 0.05%, the balance is iron and unavoidable impurities.
  • a method for preparing the above-mentioned -40 ° C low temperature high strength and high tenacity ductile iron comprising the following steps:
  • Furnace preparation According to the chemical composition of ductile iron, weigh the required amount of pig iron, scrap steel, recarburizer, pure copper, pure nickel, ferrosilicon.
  • step 2 smelting: firstly add the scrap steel and recarburizer weighed in step 1 to the intermediate frequency furnace, then add the pig iron and pure nickel plate. After the whole charge is melted, the slag agent is sprayed to carry out the molten iron slag; when the melting temperature reaches 1530-1560 At °C, the high temperature is allowed to stand and the slag is removed. When the temperature of the molten iron is lowered to 1500 ⁇ 1530 °C, pure copper and ferrosilicon are added, and then spheroidized.
  • 3 spheroidization and inoculation treatment firstly add 1.0% to 1.5% of the total weight of the molten iron in step 2 to the spheroidal pit in the ladle, and then flatten it, and then add 0.3% to 0.5 of the total weight of the molten iron.
  • the % of the bottoming inoculant is covered with a silicon steel sheet of 0.4% to 1.0% of the total weight of the molten iron on the bottom of the inoculant.
  • the iron in the intermediate furnace of step 2 is tapped twice, and a part of the molten iron is directly washed into the ladle, and then covered with iron cover for spheroidization and bottoming, after the spheroidization reaction is completed.
  • the inoculant in the bag is added in an amount of 0.5% to 0.7% of the total weight of the molten iron, and then the remaining molten iron is discharged; after the molten iron is finished, the molten iron in the bag is placed. Stirring and slag are carried out, and pouring is performed when the temperature of the molten iron reaches 1380 ° C to 1420 ° C.
  • the molten iron which is spheroidized and inoculated in step 3 is poured into the mold, and 0.1% to 0.2% of the total weight of the molten iron is added to the molten iron flow during the pouring process to carry out the pouring with the flow.
  • the mold is naturally cooled to a temperature of ⁇ 300 ° C, and the sand is cleaned out of the box to obtain a low-temperature high-strength and high-tough ductile iron of -40 ° C.
  • a railway locomotive component which is prepared by using a low temperature, high strength and high ductile ductile iron of -40 ° C as described above; the railway locomotive component is an AC transmission locomotive ductile iron gearbox or has Other parts with the same mechanical performance requirements.
  • the weight percentage of C is 3.7% to 3.8% with respect to the total weight of the above ductile iron.
  • the weight percentage of Si is 1.98% to 2.08% with respect to the total weight of the above ductile iron.
  • the weight percentage of S is 0.003% to 0.010% with respect to the total weight of the above ductile iron.
  • the weight percentage of Cu is 0.40% to 0.46% or 0.30% to 0.35% with respect to the total weight of the above ductile iron.
  • the weight percentage of Ni is 1.3% to 1.5% with respect to the total weight of the above ductile iron.
  • the spheroidal graphite cast iron is as-cast, and the matrix metallographic structure is composed of pearlite + ferrite, wherein the ferrite content is ⁇ 20% or -60 ° C, and the low-temperature high-strength and high-tough ductile iron ferrite content is ⁇ 35%.
  • the proportion of graphite in the form of V-shaped graphite and VI-shaped graphite is ⁇ 95% in the total amount of graphite, and the proportion of the amount of VI-shaped graphite in the total amount of graphite ⁇ 80%, graphite size is 6-8.
  • the spheroidizing agent in the above step 3 is a low rare earth magnesium silicon agent containing Si 40% to 50%, Mg 5% to 8%, Re 1% to 3%, Ca 1% to 3%, and Al 0.5. % ⁇ 1% and the balance of iron;
  • the bottom inoculant and the inoculant in the bag are silicon strontium calcium inoculants, which contain Si 70%-75%, Ba 2% ⁇ 4%, Ca 0.7% ⁇ 1.5% and The balance of iron.
  • the flow inoculant in the above step 4 is a silicon germanium calcium inoculant containing 65% to 75% of Si, 1.5% to 3% of Ba, 1% to 2% of Ca, and 0.6% to 1% of Al and
  • the amount of iron has a particle size of 0.2 to 0.7 mm.
  • the invention has positive effects:
  • the invention optimizes the alloy composition of the low-temperature ductile iron, and ensures the high-carbon, low-silicon and low-manganese by reasonably controlling the molten iron carbon equivalent to make the molten iron have good flow filling performance and reduce the low-temperature brittleness transition.
  • Temperature control certain sulfur and rare earth content, not only ensure the purity of molten iron, but also make it have good gestation ability, at the same time refine the grain and increase the number of graphite balls; control the appropriate magnesium content and carry out the graphite ball with the flow It is both round and round; by adding a certain amount of nickel and copper alloy, the high strength and high toughness of ductile iron are guaranteed.
  • the S content of the nodular cast iron of the present invention can be as high as 0.012%.
  • composition of the ductile iron material of the invention achieves the organic fusion of high strength, high toughness and low temperature impact toughness on the ductile cast iron, can meet the requirements of higher use, and has technical forward-looking.
  • the nodular cast iron of the present invention satisfies the demand for key component materials for rail transit.
  • the preparation method of the ductile cast iron of the invention does not require high-temperature graphitization annealing heat treatment, thereby greatly shortening the process flow, avoiding the energy and labor input of the heat treatment process and the surface cleaning after high temperature, and effectively saving the production cost.
  • Figure 1 is a graph showing the morphology of graphite in a 100-fold metallographic structure without corrosion after the ductile iron of Example 2 (95% P + 5% F);
  • Example 2 is a diagram showing a matrix structure (95% P+5% F) in a 100-fold metallographic structure after corrosion of the ductile iron of Example 2 under as-cast condition;
  • Figure 3 is a graph showing the morphology of graphite in the 100-fold metallographic structure of the spheroidal graphite cast iron under the as-cast condition of Example 9 (90% P + 10% F);
  • FIG. 4 is a diagram showing a matrix structure (90% P+10%F) in a 100-fold metallographic structure after corrosion of the ductile iron of Example 9 under as-cast condition;
  • Figure 5 is a graph showing the morphology of graphite in an unetched 100-fold metallographic structure under the as-cast condition of ductile iron of Example 11 (85% P + 15% F);
  • FIG. 6 is a diagram showing a matrix structure (85% P+15% F) in a 100-fold metallographic structure after corrosion of the ductile iron of Example 11 under as-cast condition;
  • Figure 7 is a graph showing the morphology of graphite in an unetched 100-fold metallographic structure under the as-cast condition of ductile iron of Example 12 (80% P + 20% F);
  • Figure 8 is a diagram showing the matrix structure (80% P + 20% F) in a 100-fold metallographic structure after corrosion of the ductile iron of Example 12 under as-cast condition.
  • the present invention provides a low temperature high strength and high tenacity ductile iron of -40 ° C, a preparation method thereof and a railway locomotive component.
  • a low temperature high strength and high tenacity ductile iron of -40 ° C characterized in that each component and its weight percentage relative to the total weight of the ductile iron are: C 3.6% to 3.9%, Si 1.9% to 2.1 %, Mn ⁇ 0.2%, P ⁇ 0.03%, S 0.003% - 0.012%, Cu 0.35% - 0.5%, Ni 1.1% - 1.5%, Re ⁇ 0.03%, Mg 0.025% - 0.05%, balance is iron and Inevitable impurities.
  • the spheroidal graphite cast iron according to the first aspect wherein the weight percentage of C is 3.7% to 3.8% with respect to the total weight of the ductile iron.
  • the spheroidal graphite cast iron according to any one of claims 1 to 6, wherein the spheroidal graphite cast iron is in an as-cast state, and the matrix metallographic structure is composed of pearlite + ferrite, wherein the ferrite content is ⁇ 20%.
  • the spheroidal graphite cast iron according to any one of claims 1 to 8, wherein the ductile cast iron has a tensile strength Rm ⁇ 600 MPa, an elongation A ⁇ 7.5%, and a low temperature impact work AKV ⁇ 4 J at -40 °C.
  • Furnace preparation According to the chemical composition of ductile iron, weigh the required amount of pig iron, scrap steel, recarburizer, pure copper, pure nickel, ferrosilicon.
  • step 2 smelting: firstly add the scrap steel and recarburizer weighed in step 1 to the intermediate frequency furnace, then add the pig iron and pure nickel plate. After the whole charge is melted, the slag agent is sprayed to carry out the molten iron slag; when the melting temperature reaches 1530-1560 At °C, the high temperature is allowed to stand and the slag is removed. When the temperature of the molten iron is lowered to 1500 ⁇ 1530 °C, pure copper and ferrosilicon are added, and then spheroidized.
  • 3 spheroidization and inoculation treatment firstly add 1.0% to 1.5% of the total weight of the molten iron in step 2 to the spheroidal pit in the ladle, and then flatten it, and then add 0.3% to 0.5 of the total weight of the molten iron.
  • the % of the bottoming inoculant is covered with a silicon steel sheet of 0.4% to 1.0% of the total weight of the molten iron on the bottom of the inoculant.
  • the iron in the intermediate furnace of step 2 is tapped twice, and a part of the molten iron is directly washed into the ladle, and then covered with iron cover for spheroidization and bottoming, after the spheroidization reaction is completed.
  • the inoculant in the bag is added in an amount of 0.5% to 0.7% of the total weight of the molten iron, and then the remaining molten iron is discharged; after the molten iron is finished, the molten iron in the bag is placed. Stirring and slag are carried out, and pouring is performed when the temperature of the molten iron reaches 1380 ° C to 1420 ° C.
  • the molten iron which is spheroidized and inoculated in step 3 is poured into the mold, and 0.1% to 0.2% of the total weight of the molten iron is added to the molten iron flow during the pouring process to carry out the pouring with the flow.
  • the mold is naturally cooled to a temperature of ⁇ 300 ° C, and the sand is cleaned out of the box to obtain a low-temperature high-strength and high-tough ductile iron of -40 ° C.
  • the spheroidizing agent in the step 3 is a low rare earth magnesium silicon agent, wherein 40% to 50% of Si, 5% to 8% of Mg, and 1% to 3% of Re. Ca 1% to 3%, Al 0.5% to 1%; the bottom inoculant and the inoculant in the bag are silicon barium calcium inoculants, which contain 70% to 75% of Si, Ba2% to 4%, Ca0.7 % ⁇ 1.5%.
  • the flow inoculant in step 4 is a silicon germanium calcium inoculant, wherein the content of Si is 65% to 75%, Ba is 1.5% to 3%, and Ca is 1% to 2%. %, Al 0.6% to 1%, and particle size of 0.2 to 0.7 mm.
  • the invention provides a railway locomotive component prepared by using the -40 ° C low-temperature high-strength and high-tough ductile iron according to any one of claims 1 to 9; the railway locomotive component is an AC transmission locomotive ductile iron gear box Or other parts with equivalent mechanical performance requirements.
  • a low temperature high strength and high tenacity ductile iron of -40 ° C is provided, and the weight percentage of each component and its total weight relative to the ductile iron is: C 3.6% to 3.9%, Si 1.9% ⁇ 2.1%, Mn ⁇ 0.2%, P ⁇ 0.03%, S 0.003%-0.012%, Cu 0.35%-0.5%, Ni 1.1%-1.5%, Re ⁇ 0.03%, Mg 0.025%-0.05%, the balance is Iron and unavoidable impurities, or the weight percentage of each component and its total weight relative to ductile iron: C 3.6% to 3.9%, Si 1.9% to 2.3%, Mn ⁇ 0.2%, P ⁇ 0.03%, S 0.003 % ⁇ 0.012%, Cu 0.25% ⁇ 0.5%, Ni 1.1% ⁇ 1.8%, Re ⁇ 0.03%, Mg 0.025% ⁇ 0.05%, the balance is iron and unavoidable impurities.
  • the above embodiment optimizes the alloy composition of the low temperature ductile iron, and by reasonably controlling the high carbon, low silicon and low manganese, the molten iron carbon equivalent is ensured to make the molten iron have good flow filling performance and reduce the low temperature brittle transition temperature; Controlling certain sulfur and rare earth contents not only ensures the purity of molten iron, but also makes it have good gestation ability, at the same time refining crystal grains and increasing the number of graphite balls; controlling the appropriate magnesium content makes the graphite balls both round and more; Adding a certain amount of nickel and copper alloy ensures the high strength and toughness of ductile iron.
  • the organic fusion of high strength, high toughness and low temperature impact toughness on ductile cast iron can be achieved, which can meet the requirements of higher use and has technical forward-looking.
  • the nodular cast iron of the invention satisfies the requirement of low temperature, high strength and high toughness of -40 ° C for key component materials for rail transit, and can even meet the requirements of low temperature, high strength and high toughness of -60 ° C.
  • composition of the spheroidal graphite cast iron described above does not require high-temperature graphitization annealing heat treatment, thereby greatly shortening the process flow, avoiding the energy and labor input of the heat treatment process and the surface cleaning after high temperature, and effectively saving the production cost.
  • the main role of carbon is to act as a gap solid solution element to increase the strength of cast iron. Excessive carbon will reduce plasticity, toughness, especially plasticity. In order to effectively control the strength and toughness of ductile iron, it is preferred to compare the total weight of ductile iron. The weight percentage of C is 3.7% to 3.8%.
  • the role of silicon is mainly used as a reducing agent and a deoxidizing agent, but too high silicon will solidify and strengthen the austenite and ferrite, resulting in a decrease in toughness. In order to better match with carbon, it is preferable to improve the toughness with respect to the above.
  • the total weight of ductile iron, the weight percentage of Si is 1.98% to 2.08%.
  • Sulfur is a harmful element that affects the purity of cast iron. Excessive sulfur reduces impact toughness, especially low temperature toughness. However, if the control is too low, the production cost is increased, and the above factors are controlled. Further preferably, the weight percentage of S is 0.003% to 0.010% with respect to the total weight of the spheroidal graphite cast iron.
  • the weight percentage of Cu is 0.40% to 0.46 with respect to the total weight of the spheroidal graphite cast iron. % or 0.30% to 0.35%.
  • the weight percentage of Ni is 1.3% to 1.5% with respect to the total weight of the above ductile iron.
  • the spheroidal graphite cast iron is as-cast, and the metallographic structure of the matrix is composed of pearlite + ferrite, wherein the ferrite content is ⁇ 20% or -60 ° C, low-temperature high-strength and high-tough ductile iron ferrite The content is ⁇ 35%.
  • the amount of graphite in the metallographic structure of the spheroidal graphite cast iron is V-shaped graphite and VI-shaped graphite in the total amount of graphite ⁇ 95%, and the amount of VI-shaped graphite The proportion in the total amount of graphite is ⁇ 80%, and the size of graphite is 6-8. Improve the strength and toughness of nodular cast iron by controlling the graphite form Li Ai.
  • a method for preparing a low temperature high strength and high tenacity ductile iron of any of the above-mentioned -40 ° C comprising the following steps: 1 furnace charge preparation: according to the chemical composition of the above ductile iron Take the required amount of pig iron, scrap steel, recarburizer, pure copper, pure nickel, ferrosilicon; 2 smelting: first add scrap and recarburizer into the intermediate frequency furnace, then add pig iron, pure nickel, after all the furnace materials are melted Adding slag remover to the molten iron slag; when the smelting temperature reaches 1530 ⁇ 1560°C, it is allowed to stand and remove slag.
  • 3 spheroidizing and Inoculation treatment adding spheroidizing agent, bottoming inoculant and silicon steel sheet to the ladle; adding iron in the intermediate frequency furnace twice to iron, first discharging part of the molten iron into the ladle for spheroidization and bottoming, then The inoculant in the bag is added into the ladle, and then the remaining molten iron is discharged; after the molten iron is finished, the molten iron in the ladle is stirred and slag is slag; 4 pouring and heat preservation treatment: when the temperature of the molten iron after the slag reaches 1380 °C ⁇ 1420°C Casting, and pouring with the inoculation agent during the pouring process, after the pouring, the mold is cooled to a temperature of ⁇ 300 ° C, and the sand is cleaned out
  • the present invention optimizes the alloy composition of the low temperature ductile iron, and ensures the high carbon, low silicon and low manganese of the molten iron, thereby ensuring the molten iron carbon equivalent to make the molten iron have better flow filling performance and lowering the low temperature brittle transition temperature; Certain sulfur and rare earth content not only ensure the purity of molten iron, but also make it have good gestation ability, at the same time refine the grain and increase the number of graphite balls; control the appropriate magnesium content and carry out the flow to make the graphite ball both round More; by adding a certain amount of nickel, copper alloy, to ensure the high strength and toughness of ductile iron.
  • the preparation method of the above spheroidal graphite cast iron does not require high-temperature graphitization annealing heat treatment, thereby greatly shortening the process flow, avoiding the energy and labor input of the heat treatment process and the surface cleaning after high temperature, and effectively saving the production cost.
  • Inoculation is one of the important means to improve the quality of nodular cast iron.
  • the inoculation process is prone to gestation and decline.
  • the graphite structure of spheroidal graphite cast iron can be further improved significantly, and the content of pearlite in the matrix increases slightly. Strength and hardness are improved.
  • the method greatly ensures the quality of the molten iron and improves the material performance by means of the bottom chemical covering agent + the inoculation agent + the inoculation agent three times.
  • the weight of the spheroidizing agent is 1.0% to 1.5% of the total weight of the molten iron, and preferably the weight of the bottoming inoculant is 0.3% to 0.5% of the total weight of the molten iron, preferably silicon steel sheet.
  • the weight is 0.4% to 1.0% of the total weight of the molten iron, and it is preferred that the inoculant is added in an amount of 0.5% to 0.7% by weight based on the total weight of the molten iron.
  • the step 3 includes: first adding the spheroidizing agent to the spheroidal pit in the ladle, pressing it, and then adding the bottom inoculant to the bottom, and adding the silicon steel to the bottoming inoculant.
  • the sheet is covered; then the iron in the intermediate frequency furnace is tapped twice, and some of the molten iron is directly washed into the ladle, and then covered with iron cover for spheroidization and bottoming, and spheroidized in the ladle After the reaction is completed, the cover is removed, the inoculant in the bag is added into the ladle, and then the remaining molten iron is discharged; after the molten iron is finished, the molten iron in the ladle is stirred and slag is slag.
  • the spheroidization start time is ensured by the above operation to prevent the spheroidization start time from being too early, resulting in spheroidization deterioration.
  • the pouring and inoculation process of the above step 4 comprises: pouring 0.1% to 0.2% of the total weight of the molten iron above the molten iron flow during the pouring process to carry out pouring and gestation.
  • the graphite form is controlled to obtain more rounded graphite balls.
  • the spheroidizing agent and the inoculant used in the spheroidizing process may be spheroidizing agents and inoculants conventionally used in the prior art.
  • the spheroidizing agent is a low rare earth magnesium silicon agent, preferably, in terms of weight percent, low rare earth magnesium.
  • the silicon agent contains Si 40% to 50%, Mg 5% to 8%, Re 1% to 3%, Ca 1% to 3%, Al 0.5% to 1% and the balance of iron; preferably bottom inoculant and package
  • the inner inoculant is a silicon germanium calcium inoculant, and further preferably, the silicon germanium calcium inoculant comprises Si 70% to 75%, Ba 2% to 4%, Ca 0.7% to 1.5% and the balance in terms of weight percentage. iron.
  • the above-mentioned flow inoculant is a silicon germanium calcium inoculant.
  • the silicon germanium calcium inoculant comprises Si 65% to 75%, Ba 1.5% to 3%, and Ca 1% to 2%, by weight percentage. Al 0.6% to 1% and the balance of iron, preferably the silicon germanium calcium inoculant has a particle size of 0.2 to 0.7 mm.
  • the impurities in the above table are inevitable impurities.
  • the method for producing the ductile cast iron of the present invention will be described by taking the spheroidal graphite cast iron of Example 1 as an example.
  • the preparation method of the ductile cast iron of Embodiment 1 comprises the following steps:
  • Furnace preparation According to the chemical composition of the spheroidal graphite cast iron of the first embodiment, weigh the required amount of pig iron, scrap steel, recarburizer, pure copper, pure nickel, ferrosilicon, and the amount of the recycled material is 0% to 50%.
  • the pig iron is Q10 pig iron, wherein Mn ⁇ 0.06%, P ⁇ 0.02%, S ⁇ 0.15%, and Ti ⁇ 0.02%.
  • the scrap steel is a tube-cut scrap, wherein C ⁇ 0.2%, Si ⁇ 0.2%, Mn ⁇ 0.6%, P ⁇ 0.15%, S ⁇ 0.1%.
  • the recarburizer is a high-temperature calcined graphitized crystal type recarburizer.
  • step 2 smelting: firstly add the scrap steel and recarburizer weighed in step 1 to the intermediate frequency furnace, then add the pig iron and pure nickel plate. After the whole charge is melted, the slag agent is sprayed to carry out the molten iron slag; when the melting temperature reaches 1530-1560 At °C, the high temperature is allowed to stand and the slag is removed. When the temperature of the molten iron is lowered to 1500 ⁇ 1530 °C, pure copper and ferrosilicon are added, and then spheroidized.
  • 3 spheroidization and inoculation treatment firstly add 1.0% to 1.5% of the total weight of the molten iron in step 2 to the spheroidal pit in the ladle, and then flatten it, and then add 0.3% to 0.5 of the total weight of the molten iron.
  • the % of the bottoming inoculant is covered with a silicon steel sheet of 0.4% to 1.0% of the total weight of the molten iron on the bottom of the inoculant.
  • the spheroidizing agent is a low rare earth magnesium silicon agent containing Si 40% to 50%, Mg 5% to 8%, Re 1% to 3%, Ca 1% to 3%, and Al 0.5% to 1%.
  • the rest is iron.
  • the bottom inoculant is a silicon germanium calcium inoculant containing Si 70% to 75%, Ba 2% to 4%, Ca 0.7% to 1.5%, and the balance being iron, and the particle size is 2 to 7 mm.
  • the iron in the intermediate furnace of step 2 is tapped twice, and the 4/5 molten iron is directly washed into the ladle, and then covered with iron cover for spheroidization and bottoming, and the spheroidization reaction is carried out.
  • the inoculant in the bag is added in an amount of 0.5% to 0.7% of the total weight of the molten iron, and then the remaining 1/5 of the molten iron is discharged; after the molten iron is finished
  • the iron in the bag is stirred and slag is poured, and the pouring is performed when the temperature of the molten iron reaches 1380 ° C to 1420 ° C.
  • the inoculant used in the bag is a silicon germanium calcium inoculant containing Si 70% to 75%, Ba 2% to 4%, Ca 0.7% to 1.5%, the balance being iron, and the particle size being 2 to 7 mm.
  • the molten iron which is spheroidized and inoculated in step 3 is poured into the mold, and 0.1% to 0.2% of the total weight of the molten iron is added to the molten iron flow during the pouring process to carry out the pouring with the flow.
  • the mold is naturally cooled to a temperature of ⁇ 300 ° C, and the sand is cleaned in an open box to obtain the low temperature high strength and high tenacity ductile iron of Example 1 at -40 ° C.
  • the accompanying inoculant used is a silicon germanium calcium inoculant containing Si 65% to 75%, Ba 1.5% to 3%, Ca 1% to 2%, Al 0.6% to 1%, and the balance being iron, and the particle size is 0.2. ⁇ 0.7mm.
  • the preparation method of the spheroidal graphite cast iron of Example 2 to Example 18 is the same as that of Embodiment 1, except that in the preparation of the charge of Step 1, the required amount of pig iron and scrap steel are weighed according to the chemical composition of the spheroidal graphite cast iron corresponding to each embodiment. , recarburizer, pure copper, pure nickel, ferrosilicon.
  • the tensile strength Rm (MPa), the specified plastic elongation strength Rp0.2 (MPa), and the elongation after break A (%) are tested according to the standard of GB/T1348-2009 "Spheroidal Iron Castings".
  • Brinell hardness HBW is tested according to GB/T 231.1-2009 "Metal Brinell hardness test Part 1: Test method" standard.
  • the graphite morphology diagram (95% P + 5% F) in the 100-fold metallographic structure of the non-corroded spheroidal graphite cast iron of Example 2 is shown in Fig. 1.
  • the matrix structure diagram (95% P + 5% F) of the 100-fold metallographic structure after corrosion of the ductile iron of Example 2 under as-cast condition is shown in Fig. 2.
  • the matrix structure diagram (90% P + 10% F) of the 100-fold metallographic structure after corrosion of the ductile iron of Example 9 under as-cast condition is shown in Fig. 4.
  • the matrix structure diagram (85% P+15% F) of the 100-fold metallographic structure after corrosion of the ductile iron of Example 11 under as-cast condition is shown in Fig. 6.
  • the matrix structure diagram (80% P + 20% F) of the 100-fold metallographic structure after corrosion of the ductile iron of Example 12 under as-cast conditions is shown in Fig. 8.
  • the materials of the embodiments of the present invention are as-cast, and the matrix metallographic structure of the material is composed of pearlite + ferrite, wherein the ferrite content is ⁇ 20%.
  • the graphite form in the matrix metallographic structure of the material is: the proportion of the number of V-shaped graphite and VI-shaped graphite in the total amount of graphite is ⁇ 95%, and the proportion of the amount of VI-shaped graphite in the total amount of graphite ⁇ 80%, graphite size is 6-8.
  • the composition of the ductile cast iron of the invention achieves the organic fusion of the mechanical properties and the low temperature impact toughness on the high strength ductile cast iron, and satisfies the requirements for higher use.
  • the invention obtains ultra-low temperature ductile iron with higher performance than QT500-7, and the ultra-low temperature ductile iron of the invention has high strength (tensile strength Rm ⁇ 600MPa), high toughness (elongation A ⁇ 7.5%), and good ultra-low temperature performance (- The average value of AKV of 40°C impact energy is ⁇ 4J), and the performance indicators are in full compliance with the latest regulations of TJ/JW 065-2015 “Interim Technical Conditions for Ductile Iron Gearbox of AC Transmission Locomotive”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

一种-40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件,球墨铸铁的化学成分及其重量百分比为:C 3.6%~3.9%,Si 1.9%~2.1%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.35%~0.5%,Ni 1.1%~1.5%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质。

Description

-40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件 技术领域
本发明涉及一种球墨铸铁,具体涉及一种-40℃低温高强高韧球墨铸铁及其制备方法,以及主要应用该球磨铸铁制备的铁路机车零部件。
背景技术
近年来我国轨道交通业快速发展,电力机车运行的地域愈加辽阔,纬度跨度很大;行至的高寒地区冬季的温度低至-40℃。基于机车运行速度及安全上的考虑,对电力机车用球墨铸铁齿轮箱等铸件的低温冲击韧性的要求也越来越高。中国铁路总公司的TJ/JW 065-2015《交流传动机车球墨铸铁齿轮箱暂行技术条件》就规定,球墨铸铁齿轮箱不仅要求具备国标GB/T1348-2009规定的QT500-7A的机械性能,而且还要求兼具较高的伸长率和低温冲击韧性,即:伸长率A≥8%,-40℃冲击功AKV均值≥4J、单值≥3J。传统的QT500-7A球墨铸铁材料不能满足这个要求。国标GB/T1348-2009中QT400-18AL材料虽然低温-40℃冲击功AKV均值≥12J,伸长率也较高达18%以上,但其抗拉强度指标距离QT500-7A相差甚远,抗拉强度Rm仅≥380MPa,屈服强度Rp0.2≥240Mpa,且制备时还需要进行高温石墨化退火处理。
关于-40℃低温高韧球磨铸铁,中国专利文献CN 105803300A(申请号201610165143.7)公开了一种抗零下40℃低温冲击CADI球墨铸铁及其制备方法,该球墨铸铁中碳质量分数为3.5%~3.7%,硅质量分数为2.70%~2.90%,锰质量分数小于0.20%,铬质量分数为0.6%~0.7%,磷质量分数小于0.035%,铜质量分数为0.8%~1.0%,所述的抗零下40℃低温冲击CADI球墨铸铁在温度为-40℃下无缺口冲击值为25J~30J。据该专利加载,该发明制备的抗零下40℃低温冲击CADI球墨铸铁的屈服强度为750~800MPa,抗拉强度为1050~1150MPa,延伸率为3%~5%,硬度值HRC40~45。虽然该专利的球磨铸铁在温度为-40℃下无缺口冲击值为25J~30J,但其延伸率仅为3%~5%。
中国专利文献CN 104988382A(申请号201510459235.1)公开了一种具有超低温高冲击韧性的球墨铸铁齿轮箱及其制造方法,其化学成份及质量百分比为:C 3.50%~3.80%,Si 1.7~1.9%,Mn 0.10%~0.15%,P≤0.035%,S≤0.015%,Ni 1.0%~1.3%,余量为Fe和不可避免的杂质。该专利文献记载所述球墨铸铁铸件具有-40℃低温冲击韧性,其附铸试块抗拉强度保持500~510MPa,伸长率达10%~20%的同时冲击值可达到7~9J,各项性能指标完全符合中国铁路总公司的TJ/JW 065-2015《交流传动机车球铁齿轮箱暂行技术条件》的最新规定。该球墨铸铁的抗拉强度为500~510Mpa,500~510Mpa是球墨铸铁齿轮箱使用要求的下限值。
发明内容
本发明的主要目的在于提供一种-40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件,以解决现有技术中的球墨铸铁不能满足轨道交通用关键零部件材料需求的-40℃和-60℃低温高强高韧要求的问题。
本发明所要解决的技术问题是提供一种无需进行高温石墨化退火热处理,既缩短工艺流程,降低生产成本又能保证高强度高韧性及超低温冲击性能指标,满足轨道交通用关键零部件材料需求的-40℃低温高强高韧球墨铸铁及其制备方法。
为实现以上目的或者其他目的,本发明提供以下技术方案。
按照本发明的第一方面,提供一种-40℃低温高强高韧球墨铸铁,各组分及其相对于所述球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.1%,Mn<0.2%,P<0.03%,S0.003%~0.012%,Cu 0.35%~0.5%,Ni 1.1%~1.5%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质,或者各组分及其相对于球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.3%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.25%~0.5%,Ni 1.1%~1.8%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质。
按照本发明的第二方面,提供一种上述-40℃低温高强高韧球墨铸铁的制备方法,包括以下步骤:
①炉料配制:按球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁。
②熔炼:先将步骤①称取的废钢与增碳剂加入中频炉内,然后加入生铁、纯镍板,待全部炉料熔清后撒除渣剂进行铁水扒渣;当熔炼温度达到1530~1560℃时进行高温静置、除渣,待铁水温度降低到1500~1530℃时再加入纯铜及硅铁,然后待出炉球化。
③球化及孕育处理:先将步骤②铁水总重量的1.0%~1.5%的球化剂加入铁水包内的球化包坑内捣实压平,再在上面加入铁水总重量的0.3%~0.5%的包底孕育剂,在包底孕育剂上加入铁水总重量的0.4%~1.0%的硅钢片进行覆盖。
然后将步骤②中频炉内的铁水分2次出铁,先出部分铁水直接冲入铁水包,然后用包盖将铁水包盖住进行球化和包底孕育,待包内球化反应结束后拿开包盖,将包内孕育剂加入铁水包内,包内孕育剂的加入量为铁水总重量的0.5%~0.7%,然后出完剩下的铁水;出完铁水后,对包内铁水进行搅拌、扒渣,当铁水温度达到1380℃~1420℃时进行浇注。
④浇注和保温处理:将步骤③球化及孕育处理后的铁水浇注到铸型中,浇注过程中在铁水流上方加入铁水总重量的0.1%~0.2%的随流孕育剂进行浇注随流孕育,浇注结束后,待铸型自然冷却至温度≤300℃,开箱落砂清理,得到-40℃低温高强高韧球墨铸铁。
按照本发明的第三方面,提供一种铁路机车零部件,采用如上所述的-40℃低温高强高韧球墨铸铁制备而成;所述铁路机车零部件为交流传动机车球墨铸铁齿轮箱或具有同等机械性能要求的其他零部件。
进一步地,相对于上述球墨铸铁总重,C的重量百分比为3.7%~3.8%。
进一步地,相对于上述球墨铸铁总重,Si的重量百分比为1.98%~2.08%。
进一步地,相对于上述球墨铸铁总重,S的重量百分比为0.003%~0.010%。
进一步地,相对于上述球墨铸铁总重,Cu的重量百分比为0.40%~0.46%或0.30%~0.35%。
进一步地,相对于上述球墨铸铁总重,Ni的重量百分比为1.3%~1.5%。
进一步地,上述球墨铸铁为铸态,基体金相组织由珠光体+铁素体组成,其中铁素体含量≤20%或-60℃低温高强高韧球墨铸铁铁素体含量≤35%。
进一步地,上述球墨铸铁的基体金相组织中石墨形态为Ⅴ形石墨和Ⅵ形石墨的数量在石墨总量中的占比≥95%,Ⅵ形石墨的数量在石墨总量中的占比≥80%,石墨大小为6~8级。
进一步地,上述抗拉强度Rm≥600Mpa,伸长率A≥7.5%,-40℃低温冲击功AKV≥4J,优选-60℃低温冲击功AKV≥3J。
进一步地,上述步骤③中的球化剂是低稀土镁硅剂,其中含Si 40%~50%,Mg 5%~8%,Re 1%~3%,Ca 1%~3%,Al 0.5%~1%以及余量的铁;包底孕育剂和包内孕育剂是为硅钡钙孕育剂,其中含Si 70%~75%,Ba 2%~4%,Ca 0.7%~1.5%以及余量的铁。
进一步地,上述步骤④中的随流孕育剂为硅钡钙孕育剂,其中含Si 65%~75%,Ba 1.5%~3%,Ca 1%~2%,Al 0.6%~1%以及余量的铁,粒度为0.2~0.7mm。本发明具有积极的效果:
(1)本发明通过对低温球墨铸铁的合金成分进行优化,通过合理控制高碳、低硅、低锰,保证了铁水碳当量使铁水具有较好的流动充型性能,同时降低其低温脆性转变温度;控制一定的硫、稀土含量,既保证了铁水纯净度,又使其具有良好的孕育能力,同时细化晶粒、提高石墨球数量;控制合适的镁含量并进行随流孕育使石墨球既圆整又多;通过添加一定含量的镍、铜合金,保证了球墨铸铁的高强高韧性能。本发明的球墨铸铁中S含量可高达0.012%。
(2)本发明的球墨铸铁材料的组成,达到了高强、高韧与低温冲击韧性在球墨铸铁上的有机融合,可以满足更高使用要求,具有技术的前瞻性。本发明的球墨铸铁满足了轨道交通用关键零部件材料需求。
(3)本发明的球墨铸铁的制备方法无需高温石墨化退火热处理,从而大大缩短了工艺流程,避免了热处理过程和高温后表面清理的能源和人工投入,有效节约了生产成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为实施例2的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(95%P+5%F);
图2为实施例2的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(95%P+5%F);
图3为实施例9的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(90%P+10%F);
图4为实施例9的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(90%P+10%F);
图5为实施例11的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(85%P+15%F);
图6为实施例11的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(85%P+15%F);
图7为实施例12的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(80%P+20%F);
图8为实施例12的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(80%P+20%F)。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
正如背景技术所描述的,现有技术中存在球墨铸铁不能满足轨道交通用关键零部件材料需求的-40℃以及-60℃低温高强高韧要求的问题。为了解决上述技术问题,本发明提供了一种-40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件。
下面介绍的是本发明的多个可能实施例中的一些,旨在提供对本发明的基本了解,并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。容易理解,根据本发明的技术方案,在不变更本发明的实质精神下,本领域的一般技术人员可以提出可相互替换的其他实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
本申请提供以下技术方案:
技术方案1,一种-40℃低温高强高韧球墨铸铁,其特征在于,各组分及其相对于所述球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.1%,Mn<0.2%,P<0.03%,S 0.003%~ 0.012%,Cu 0.35%~0.5%,Ni 1.1%~1.5%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质。
技术方案2,如技术方案1所述的球墨铸铁,其中,相对于所述球墨铸铁总重,C的重量百分比为3.7%~3.8%。
技术方案3,如技术方案1至2中任一所述的球墨铸铁,其中,相对于所述球墨铸铁总重,Si的重量百分比为1.98%~2.08%。
技术方案4,如技术方案1至3中任一所述的球墨铸铁,其中,相对于所述球墨铸铁总重,S的重量百分比为0.003%~0.010%。
技术方案5,如技术方案1至4中任一所述的球墨铸铁,其中,相对于所述球墨铸铁总重,Cu的重量百分比为0.40%~0.46%。
技术方案6,如技术方案1至5中任一所述的球墨铸铁,其中,相对于所述球墨铸铁总重,Ni的重量百分比为1.3%~1.5%。
技术方案7,如技术方案1至6中任一所述的球墨铸铁,其中,球墨铸铁为铸态,基体金相组织由珠光体+铁素体组成,其中铁素体含量≤20%。
技术方案8,如技术方案1至7中任一所述的球墨铸铁,其中,球墨铸铁的基体金相组织中石墨形态为Ⅴ形石墨和Ⅵ形石墨的数量在石墨总量中的占比≥95%,Ⅵ形石墨的数量在石墨总量中的占比≥80%,石墨大小为6~8级。
技术方案9,如技术方案1至8中任一所述的球墨铸铁,其中,球墨铸铁的抗拉强度Rm≥600Mpa,伸长率A≥7.5%,-40℃低温冲击功AKV≥4J。
技术方案10,如技术方案1至9中任一项所述的-40℃低温高强高韧球墨铸铁的制备方法,包括以下步骤:
①炉料配制:按球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁。
②熔炼:先将步骤①称取的废钢与增碳剂加入中频炉内,然后加入生铁、纯镍板,待全部炉料熔清后撒除渣剂进行铁水扒渣;当熔炼温度达到1530~1560℃时进行高温静置、除渣,待铁水温度降低到1500~1530℃时再加入纯铜及硅铁,然后待出炉球化。
③球化及孕育处理:先将步骤②铁水总重量的1.0%~1.5%的球化剂加入铁水包内的球化包坑内捣实压平,再在上面加入铁水总重量的0.3%~0.5%的包底孕育剂,在包底孕育剂上加入铁水总重量的0.4%~1.0%的硅钢片进行覆盖。
然后将步骤②中频炉内的铁水分两次出铁,先出部分铁水直接冲入铁水包,然后用包盖将铁水包盖住进行球化和包底孕育,待包内球化反应结束后拿开包盖,将包内孕育剂加入铁 水包内,包内孕育剂的加入量为铁水总重量的0.5%~0.7%,然后出完剩下的铁水;出完铁水后,对包内铁水进行搅拌、扒渣,当铁水温度达到1380℃~1420℃时进行浇注。
④浇注和保温处理:将步骤③球化及孕育处理后的铁水浇注到铸型中,浇注过程中在铁水流上方加入铁水总重量的0.1%~0.2%的随流孕育剂进行浇注随流孕育,浇注结束后,待铸型自然冷却至温度≤300℃,开箱落砂清理,得到-40℃低温高强高韧球墨铸铁。
技术方案11,如技术方案10所述的制备方法,步骤③中的球化剂是低稀土镁硅剂,其中含Si 40%~50%,Mg 5%~8%,Re 1%~3%,Ca 1%~3%,Al 0.5%~1%;包底孕育剂和包内孕育剂是为硅钡钙孕育剂,其中含Si 70%~75%,Ba2%~4%,Ca0.7%~1.5%。
技术方案12,如技术方案10所述的制备方法,步骤④中的随流孕育剂为硅钡钙孕育剂,其中含Si 65%~75%,Ba 1.5%~3%,Ca 1%~2%,Al 0.6%~1%,粒度为0.2~0.7mm。
技术方案13,采用如技术方案1至9中任一项所述的-40℃低温高强高韧球墨铸铁制备而成的铁路机车零部件;所述铁路机车零部件为交流传动机车球墨铸铁齿轮箱或具有同等机械性能要求的其他零部件。
在本申请一种典型的实施方式中,提供一种-40℃低温高强高韧球墨铸铁,各组分及其相对于球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.1%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.35%~0.5%,Ni 1.1%~1.5%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质,或者各组分及其相对于球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.3%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.25%~0.5%,Ni 1.1%~1.8%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质。
上述实施方式通过对低温球墨铸铁的合金成分进行优化,通过合理控制高碳、低硅、低锰,保证了铁水碳当量使铁水具有较好的流动充型性能,同时降低其低温脆性转变温度;控制一定的硫、稀土含量,既保证了铁水纯净度,又使其具有良好的孕育能力,同时细化晶粒、提高石墨球数量;控制合适的镁含量使石墨球既圆整又多;通过添加一定含量的镍、铜合金,保证了球墨铸铁的高强高韧性能。通过上述球墨铸铁材料的组成,达到了高强、高韧与低温冲击韧性在球墨铸铁上的有机融合,可以满足更高使用要求,具有技术的前瞻性。本发明的球墨铸铁满足了轨道交通用关键零部件材料对-40℃低温高强高韧的需求,甚至还可以满足-60℃的低温高强高韧的需求。且采用上述球墨铸铁的组成,无需高温石墨化退火热处理,从而大大缩短了工艺流程,避免了热处理过程和高温后表面清理的能源和人工投入,有效节约了生产成本。
碳的主要作用是作为间隙固溶元素,以提高铸铁的强度,过高的碳会降低塑性、韧性,尤其是塑性,为了有效控制球墨铸铁的强度和韧性,优选相对于上述球墨铸铁总重,C的重量百分比为3.7%~3.8%。
硅的作用主要作为还原剂和脱氧剂进行使用,但过高的硅会对奥氏体和铁素体固溶强化,导致韧性降低,为了和碳进行更好地匹配,提高韧性优选相对于上述球墨铸铁总重,Si的重量百分比为1.98%~2.08%。
硫是有害元素,影响铸铁的纯净性,过高的硫会降低冲击韧性,尤其是低温韧性。但控制太低,会增加较大的生产成本,综合上述因素控制,进一步优选相对于上述球墨铸铁总重,S的重量百分比为0.003%~0.010%。
Cu含量过高时,试样的抗拉强度和屈服强度较高,伸长率降低;Cu含量较低时,基体组织中的铁素体较多,连接成片,强度损害较大。为了进一步提高球墨铸铁的球化效果,增加珠光体含量以及球墨铸铁试样的强度,改善铸件断面组织与性能的均匀性,优选相对于上述球墨铸铁总重,Cu的重量百分比为0.40%~0.46%或0.30%~0.35%。
为了进一步控制球墨铸铁具有稳定的高强高韧性能,优选相对于上述球墨铸铁总重,Ni的重量百分比为1.3%~1.5%。
在本申请一种实施例中,上述球墨铸铁为铸态,基体金相组织由珠光体+铁素体组成,其中铁素体含量≤20%或-60℃低温高强高韧球墨铸铁铁素体含量≤35%。通过进一步控制金相组织中的铁素体含量,来提高球墨铸铁的耐低温效果。
在本申请另一种优选的实施例中,上述球墨铸铁的基体金相组织中石墨形态为Ⅴ形石墨和Ⅵ形石墨的数量在石墨总量中的占比≥95%,Ⅵ形石墨的数量在石墨总量中的占比≥80%,石墨大小为6~8级。通过控制石墨形态李艾提高球墨铸铁的强度和韧性。
优选地,上述抗拉强度Rm≥600Mpa,伸长率A≥7.5%,-40℃低温冲击功AKV≥4J,优选-60℃低温冲击功AKV≥3J。
在本申请又一种典型的实施方式中,提供了一种上述任一种的-40℃低温高强高韧球墨铸铁的制备方法,包括以下步骤:①炉料配制:按上述球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁;②熔炼:先将废钢与增碳剂加入中频炉内,然后加入生铁、纯镍,待全部炉料熔清后加入除渣剂进行铁水扒渣;当熔炼温度达到1530~1560℃时进行静置、除渣,待铁水温度降低到1500~1530℃时再加入纯铜及硅铁,得到铁水;③球化及孕育处理:向铁水包内依次加入球化剂、包底孕育剂和硅钢片;将中频炉内的铁水分两次出铁,先出部分铁水冲入铁水包进行球化和包底孕育,然后将包内孕育剂加入铁水包内,然后出完剩下的铁水;出完铁水后,对铁水包内的铁水进行搅拌、扒渣;④浇注和保温处理:当扒渣后的铁水温度达到1380℃~1420℃时进行浇注,并在浇注过程中进行利用随流孕育剂进行浇注随流孕育,浇注结束后,待铸型冷却至温度≤300℃,开箱落砂清理,得到-40℃低温高强高韧球墨铸铁。
本申请通过对低温球墨铸铁的合金成分进行优化,通过合理控制高碳、低硅、低锰,保证了铁水碳当量使铁水具有较好的流动充型性能,同时降低其低温脆性转变温度;控制一定的硫、稀土含量,既保证了铁水纯净度,又使其具有良好的孕育能力,同时细化晶粒、提高石墨球数量;控制合适的镁含量并进行随流孕育使石墨球既圆整又多;通过添加一定含量的 镍、铜合金,保证了球墨铸铁的高强高韧性能。上述球墨铸铁的制备方法无需高温石墨化退火热处理,从而大大缩短了工艺流程,避免了热处理过程和高温后表面清理的能源和人工投入,有效节约了生产成本。
孕育是提高球墨铸铁质量的冶金技术的重要手段之一,一次孕育处理易发生孕育衰退,采用多次孕育的球墨铸铁的石墨组织可以得到进一步明显得到改善,基体中珠光体的含量略有增加,强度、硬度提高。本方法通过包底化学覆盖剂+冲入孕育剂+随流孕育剂三次孕育的方式,大大的确保了铁水的孕育质量,提高材料性能。
为了进一步提高上述球化和孕育的效果,优选上述球化剂的重量为铁水总重量的1.0%~1.5%,优选包底孕育剂的重量为铁水总重量的0.3%~0.5%,优选硅钢片的重量为铁水总重量的0.4%~1.0%,优选包内孕育剂的加入量为铁水总重量的0.5%~0.7%。
在本申请一种实施例中,上述步骤③包括:先将球化剂加入铁水包内的球化包坑内捣实压平,再在上面加入包底孕育剂,在包底孕育剂上加入硅钢片进行覆盖;然后将中频炉内的铁水分两次出铁,先出部分铁水直接冲入铁水包,然后用包盖将铁水包盖住进行球化和包底孕育,待铁水包内球化反应结束后拿开包盖,将包内孕育剂加入铁水包内,然后出完剩下的铁水;出完铁水后,对铁水包内的铁水进行搅拌、扒渣。通过上述操作保证球化开始时间,以防止球化开始时间过早,导致球化衰退。
进一步地,上述步骤④的浇注随流孕育过程包括:浇注过程中在铁水流上方加入铁水总重量的0.1%~0.2%的随流孕育剂进行浇注随流孕育。通过上述浇注随流孕育,控制石墨形态,得到更多圆整的石墨球。
上述球化过程采用的球化剂、孕育剂可以为现有技术中常规的球化剂和孕育剂,优选上述球化剂是低稀土镁硅剂,优选地,以重量百分比计,低稀土镁硅剂包含Si 40%~50%,Mg 5%~8%,Re 1%~3%,Ca 1%~3%,Al 0.5%~1%以及余量的铁;优选包底孕育剂和包内孕育剂是为硅钡钙孕育剂,进一步优选地,以重量百分比计,硅钡钙孕育剂包含Si 70%~75%,Ba 2%~4%,Ca 0.7%~1.5%以及余量的铁。
进一步地,上述随流孕育剂为硅钡钙孕育剂,优选地,以重量百分比计,硅钡钙孕育剂包含Si 65%~75%,Ba 1.5%~3%,Ca 1%~2%,Al 0.6%~1%以及余量的铁,优选硅钡钙孕育剂的粒度为0.2~0.7mm。
以下结合具体实施例对本发明作进一步详细描述,这些实施例不能理解为限制本发明所要求保护的范围。
实施例1至实施例18的-40℃低温高强高韧球墨铸铁的各组分及其相对于所述球墨铸铁总重的重量百分比见下表1。
表1球墨铸铁的组分及重量百分比(wt%)
实施例 C Si Mn P S Cu Ni Re Mg Fe和杂质
1 3.65 2.00 0.15 0.020 0.005 0.50 1.1 0.012 0.048 余量
2 3.70 2.02 0.16 0.022 0.006 0.46 1.30 0.013 0.044 余量
3 3.66 2.05 0.16 0.021 0.009 0.44 1.23 0.015 0.028 余量
4 3.67 2.03 0.16 0.021 0.009 0.43 1.24 0.017 0.028 余量
5 3.68 2.02 0.12 0.028 0.008 0.42 1.25 0.017 0.032 余量
6 3.60 2.10 0.13 0.026 0.010 0.48 1.16 0.016 0.038 余量
7 3.90 1.90 0.17 0.024 0.007 0.40 1.35 0.015 0.041 余量
8 3.85 1.95 0.14 0.022 0.003 0.36 1.40 0.009 0.050 余量
9 3.75 2.08 0.17 0.023 0.008 0.44 1.32 0.014 0.041 余量
10 3.72 2.03 0.15 0.025 0.012 0.45 1.35 0.010 0.025 余量
11 3.69 1.92 0.19 0.024 0.007 0.38 1.45 0.025 0.045 余量
12 3.71 1.98 0.16 0.026 0.011 0.35 1.5 0.023 0.027 余量
13 3.74 2.06 0.05 0.031 0.004 0.31 1.30 0.016 0.042 余量
14 3.71 2.15 0.09 0.025 0.006 0.35 1.32 0.017 0.030 余量
15 3.68 2.30 0.09 0.023 0.006 0.32 1.28 0.016 0.035 余量
16 3.62 2.0 0.08 0.03 0.005 0.25 1.57 0.016 0.039 余量
17 3.63 1.95 0.09 0.029 0.006 0.28 1.72 0.016 0.036 余量
18 3.71 2.03 0.05 0.032 0.005 0.30 1.80 0.014 0.037 余量
上表中的杂质为不可避免的杂质。
以实施例1的球墨铸铁为例,对本发明的球墨铸铁的制备方法进行说明。
实施例1的球墨铸铁的制备方法包括以下步骤:
①炉料配制:按实施例1的球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁,其中回炉料的加入量0%~50%。
所述生铁为Q10生铁,其中Mn≤0.06%,P≤0.02%,S≤0.15%,Ti≤0.02%。
所述的废钢为管切头废钢,其中C≤0.2%,Si≤0.2%,Mn≤0.6%,P≤0.15%,S≤0.1%。
所述增碳剂为高温煅烧石墨化的晶体型增碳剂。
②熔炼:先将步骤①称取的废钢与增碳剂加入中频炉内,然后加入生铁、纯镍板,待全部炉料熔清后撒除渣剂进行铁水扒渣;当熔炼温度达到1530~1560℃时进行高温静置、除渣,待铁水温度降低到1500~1530℃时再加入纯铜及硅铁,然后待出炉球化。
③球化及孕育处理:先将步骤②铁水总重量的1.0%~1.5%的球化剂加入铁水包内的球化包坑内捣实压平,再在上面加入铁水总重量的0.3%~0.5%的包底孕育剂,在包底孕育剂上加入铁水总重量的0.4%~1.0%的硅钢片进行覆盖。
所述的球化剂是低稀土镁硅剂,其中含Si 40%~50%,Mg 5%~8%,Re 1%~3%,Ca 1%~3%,Al 0.5%~1%,其余为铁。
包底孕育剂是为硅钡钙孕育剂,其中含Si 70%~75%,Ba2%~4%,Ca0.7%~1.5%,其余为铁,粒度为2~7mm。
然后将步骤②中频炉内的铁水分两次出铁,先出4/5铁水直接冲入铁水包,然后用包盖将铁水包盖住进行球化和包底孕育,待包内球化反应结束后拿开包盖,将包内孕育剂加入铁水包内,包内孕育剂的加入量为铁水总重量的0.5%~0.7%,然后出完剩下的1/5铁水;出完铁水后,对包内铁水进行搅拌、扒渣,当铁水温度达到1380℃~1420℃时进行浇注。
所用的包内孕育剂为硅钡钙孕育剂,其中含Si 70%~75%,Ba2%~4%,Ca0.7%~1.5%,其余为铁,粒度为2~7mm。
④浇注和保温处理:将步骤③球化及孕育处理后的铁水浇注到铸型中,浇注过程中在铁水流上方加入铁水总重量的0.1%~0.2%的随流孕育剂进行浇注随流孕育,浇注结束后,待铸型自然冷却至温度≤300℃,开箱落砂清理,得到实施例1的-40℃低温高强高韧球墨铸铁。
所用的随流孕育剂为硅钡钙孕育剂,其中含Si 65%~75%,Ba 1.5%~3%,Ca 1%~2%,Al 0.6%~1%,其余为铁,粒度为0.2~0.7mm。
实施例2至实施例18的球墨铸铁的制备方法其余与实施例1相同,不同之处在于步骤①炉料配制时,按照各实施例对应的球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁。
对本发明的球磨铸铁的性能和金相组织检测结果如下,其中:
抗拉强度Rm(MPa)、规定塑性延伸强度Rp0.2(MPa)、断后伸长率A(%)按GB/T1348-2009《球墨铸铁件》的标准进行检测。
布氏硬度HBW按GB/T 231.1-2009《金属布氏硬度试验第一部分:试验方法》标准进行检测。
-40℃/-60℃低温冲击功AKV按GB/T229-2007《金属材料夏比摆锤冲击试验方法》标准进行检测。
金相试验按EN ISO945-1:2008标准进行检测。
力学性能检测结果见下表2。
表2力学性能检测结果
实施例序号 Rm(MPa) Rp0.2(MPa) A(%) HBW
1 651 383 8 225
2 651 382 8.5 226
3 636 379 8.5 219
4 643 380 7.5 225
5 674 379 8 224
6 645 379 9 222
7 648 381 8.5 227
8 623 371 9.5 211
9 676 382 8.5 226
10 677 383 7.5 228
11 639 379 9.5 218
12 616 365 9.5 210
13 662 397 8.5 223
14 646 395 10.5 212
15 625 390 11.5 209
16 715 420 8 245
17 760 430 7.5 248
18 771 435 7 255
-40℃/-60℃低温冲击功AKV检测结果见下表3。
表3 -40℃/-60℃低温冲击功AKV
Figure PCTCN2018120676-appb-000001
Figure PCTCN2018120676-appb-000002
金相组织检测结果如下表4。
表4金相组织
实施例序号 石墨形态 基体组织
1 85%Ⅵ6/7+15%Ⅴ6 95%P+5%F
2 85%Ⅵ6/7+15%Ⅴ6 95%P+5%F
3 80%Ⅵ6/7+20%Ⅴ6 90%P+10%F
4 85%Ⅵ6/7+15%Ⅴ6 90%P+10%F
5 85%Ⅵ6/7+15%Ⅴ6 90%P+10%F
6 90%Ⅵ6/7+10%Ⅴ6 95%P+5%F
7 85%Ⅵ6/7+15%Ⅴ6 90%P+10%F
8 85%Ⅵ6/7+15%Ⅴ6 80%P+20%F
9 85%Ⅵ6/7+15%Ⅴ6 90%P+10%F
10 85%Ⅵ6/7+15%Ⅴ6 90%P+10%F
11 90%Ⅵ6/7+10%Ⅴ6 85%P+15%F
12 85%Ⅵ6/7+15%Ⅴ6 80%P+20%F
13 85%Ⅵ6/7+15%Ⅴ6 80%P+20%F
14 85%Ⅵ6/7+15%Ⅴ6 70%P+30%F
15 85%Ⅵ6/7+15%Ⅴ6 65%P+35%F
16 85%Ⅵ6/7+15%Ⅴ6 80%P+20%F
17 85%Ⅵ6/7+15%Ⅴ6 80%P+20%F
18 85%Ⅵ6/7+15%Ⅴ6 80%P+15%F
其中实施例2的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(95%P+5%F)见图1。
实施例2的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(95%P+5%F)见图2。
实施例9的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(90%P+10%F)见图3。
实施例9的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(90%P+10%F)见图4。
实施例11的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(85%P+15%F)见图5。
实施例11的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(85%P+15%F)见图6。
实施例12的球墨铸铁铸态条件下未经腐蚀的100倍金相组织中石墨形态图(80%P+20%F)见图7。
实施例12的球墨铸铁铸态条件下腐蚀后的100倍金相组织中基体组织图(80%P+20%F)见图8。
由上述金相组织检测结果可知:本发明各实施例的材料为铸态,且材料的基体金相组织由珠光体+铁素体组成,其中铁素体含量≤20%。按ISO945标准,材料的基体金相组织中石墨形态为:Ⅴ形石墨和Ⅵ形石墨的数量在石墨总量中的占比≥95%,Ⅵ形石墨的数量在石墨总量中的占比≥80%,石墨大小为6-8级。
本发明的球墨铸铁的组成达到了力学性能与低温冲击韧性在高强度球墨铸铁上的有机融合,满足了更高使用要求。本发明获得了性能高于QT500-7的超低温球墨铸铁,本发明的超低温球墨铸铁高强(抗拉强度Rm≥600MPa)、高韧(伸长率A≥7.5%)、具有良好的超低温性能(-40℃冲击功AKV均值≥4J),各项性能指标完全符合中国铁路总公司的TJ/JW 065-2015《交流传动机车球墨铸铁齿轮箱暂行技术条件》的最新规定。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种-40℃低温高强高韧球墨铸铁,其特征在于,各组分及其相对于所述球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.1%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.35%~0.5%,Ni 1.1%~1.5%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质,或者各组分及其相对于所述球墨铸铁总重的重量百分比为:C 3.6%~3.9%,Si 1.9%~2.3%,Mn<0.2%,P<0.03%,S 0.003%~0.012%,Cu 0.25%~0.5%,Ni 1.1%~1.8%,Re≤0.03%,Mg 0.025%~0.05%,余量为铁和不可避免的杂质。
  2. 根据权利要求1所述的-40℃低温高强高韧球墨铸铁,其特征在于:相对于所述球墨铸铁总重,C的重量百分比为3.7%~3.8%。
  3. 根据权利要求1所述的-40℃低温高强高韧球墨铸铁,其特征在于:相对于所述球墨铸铁总重,Si的重量百分比为1.98%~2.08%。
  4. 根据权利要求1所述的-40℃低温高强高韧球墨铸铁,其特征在于:相对于所述球墨铸铁总重,S的重量百分比为0.003%~0.010%。
  5. 根据权利要求1所述的-40℃低温高强高韧球墨铸铁,其特征在于:相对于所述球墨铸铁总重,Cu的重量百分比为0.40%~0.46%或0.30%~0.35%。
  6. 根据权利要求1所述的-40℃低温高强高韧球墨铸铁,其特征在于:相对于所述球墨铸铁总重,Ni的重量百分比为1.3%~1.5%。
  7. 根据权利要求1至6之一所述的-40℃低温高强高韧球墨铸铁,其特征在于:球墨铸铁为铸态,基体金相组织由珠光体+铁素体组成,其中铁素体含量≤20%或-60℃低温高强高韧球墨铸铁铁素体含量≤35%。
  8. 根据权利要求1至6之一所述的-40℃低温高强高韧球墨铸铁,其特征在于:球墨铸铁的基体金相组织中石墨形态为Ⅴ形石墨和Ⅵ形石墨的数量在石墨总量中的占比≥95%,Ⅵ形石墨的数量在石墨总量中的占比≥80%,石墨大小为6~8级。
  9. 根据权利要求1至6之一所述的-40℃低温高强高韧球墨铸铁,其特征在于:其抗拉强度Rm≥600Mpa,伸长率A≥7.5%,-40℃低温冲击功AKV≥4J,优选-60℃低温冲击功AKV≥3J。
  10. 一种如权利要求1至6中任一项所述的-40℃低温高强高韧球墨铸铁的制备方法,其特征在于包括以下步骤:
    ①炉料配制:按球墨铸铁的化学成分称取所需量的生铁、废钢、增碳剂、纯铜、纯镍、硅铁;
    ②熔炼:先将步骤①称取的废钢与增碳剂加入中频炉内,然后加入生铁、纯镍板,待全部炉料熔清后撒除渣剂进行铁水扒渣;当熔炼温度达到1530~1560℃时进行高温静置、除渣,待铁水温度降低到1500~1530℃时再加入纯铜及硅铁,然后待出炉球化;
    ③球化及孕育处理:先将步骤②铁水总重量的1.0%~1.5%的球化剂加入铁水包内的球化包坑内捣实压平,再在上面加入铁水总重量的0.3%~0.5%的包底孕育剂,在包底孕育剂上加入铁水总重量的0.4%~1.0%的硅钢片进行覆盖;
    然后将步骤②中频炉内的铁水分两次出铁,先出部分铁水直接冲入铁水包,然后用包盖将铁水包盖住进行球化和包底孕育,待包内球化反应结束后拿开包盖,将包内孕育剂加入铁水包内,包内孕育剂的加入量为铁水总重量的0.5%~0.7%,然后出完剩下的铁水;出完铁水后,对包内铁水进行搅拌、扒渣,当铁水温度达到1380℃~1420℃时进行浇注;
    ④浇注和保温处理:将步骤③球化及孕育处理后的铁水浇注到铸型中,浇注过程中在铁水流上方加入铁水总重量的0.1%~0.2%的随流孕育剂进行浇注随流孕育,浇注结束后,待铸型自然冷却至温度≤300℃,开箱落砂清理,得到-40℃低温高强高韧球墨铸铁。
  11. 根据权利要求10所述的-40℃低温高强高韧球墨铸铁的制备方法,其特征在于:
    步骤③中的球化剂是低稀土镁硅剂,其中含Si 40%~50%,Mg 5%~8%,Re 1%~3%,Ca 1%~3%,Al 0.5%~1%以及余量的铁;包底孕育剂和包内孕育剂是为硅钡钙孕育剂,其中含Si 70%~75%,Ba 2%~4%,Ca 0.7%~1.5%以及余量的铁。
  12. 根据权利要求10所述的-40℃低温高强高韧球墨铸铁的制备方法,其特征在于:步骤④中的随流孕育剂为硅钡钙孕育剂,其中含Si 65%~75%,Ba 1.5%~3%,Ca 1%~2%,Al 0.6%~1%以及余量的铁,粒度为0.2~0.7mm。
  13. 一种铁路机车零部件,其特征在于:采用如权利要求1所述的-40℃低温高强高韧球墨铸铁制备而成;所述铁路机车零部件为交流传动机车球墨铸铁齿轮箱或具有同等机械性能要求的其他零部件。
PCT/CN2018/120676 2017-12-19 2018-12-12 -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件 WO2019120122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711375272.XA CN109930058B (zh) 2017-12-19 2017-12-19 -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件
CN201711375272.X 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019120122A1 true WO2019120122A1 (zh) 2019-06-27

Family

ID=66983724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120676 WO2019120122A1 (zh) 2017-12-19 2018-12-12 -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件

Country Status (2)

Country Link
CN (1) CN109930058B (zh)
WO (1) WO2019120122A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331331B (zh) * 2019-07-26 2020-07-03 天津达祥精密工业有限公司 一种高硅钼铁素体耐热蠕墨铸铁及其制备方法与应用
CN111321267A (zh) * 2020-04-29 2020-06-23 锦州捷通铁路机械股份有限公司 -40℃低温冲击韧性球墨铸铁的铸态生产工艺
CN112359269A (zh) * 2020-09-29 2021-02-12 国电联合动力技术有限公司 风机用球墨铸铁材料、风机用球墨铸铁的制备方法及应用
CN112680650A (zh) * 2020-12-21 2021-04-20 福建丰力机械科技有限公司 一种高强度球墨铸铁及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602433A (zh) * 2009-07-01 2009-12-16 宣化冶金工业有限责任公司 CuNiMo合金化等温淬火球铁刮板输送机刮板及制备方法
CN104988382A (zh) * 2015-07-31 2015-10-21 中国北车集团大连机车车辆有限公司 具有超低温高冲击韧性的球墨铸铁齿轮箱及其制造方法
CN106811676A (zh) * 2017-01-04 2017-06-09 山东汇金股份有限公司 一种高强度高韧性铸态qt700‑10及其生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145444A (ja) * 1993-11-24 1995-06-06 Wing Kinzoku Kk 高強度球状黒鉛鋳鉄
CN101760689B (zh) * 2009-12-30 2011-11-30 山东汇金股份有限公司 一种抗低温冲击高强度球墨铸铁生产方法
CN102051520B (zh) * 2011-01-25 2013-03-27 上海圣德曼铸造有限公司 磁悬浮列车复合梁连接件及其铸造方法
CN102690986B (zh) * 2012-05-25 2013-09-11 南车戚墅堰机车车辆工艺研究所有限公司 一种中薄壁铸态无镍低温球墨铸铁熔炼方法
CN103602883B (zh) * 2013-12-06 2015-11-18 上海大众汽车有限公司 球墨铸铁铸件
CN104404363B (zh) * 2014-12-26 2016-08-17 湖北丹江口志成铸造有限公司 一种汽车飞轮用高强球墨铸铁及其高致密化铸造成形方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602433A (zh) * 2009-07-01 2009-12-16 宣化冶金工业有限责任公司 CuNiMo合金化等温淬火球铁刮板输送机刮板及制备方法
CN104988382A (zh) * 2015-07-31 2015-10-21 中国北车集团大连机车车辆有限公司 具有超低温高冲击韧性的球墨铸铁齿轮箱及其制造方法
CN106811676A (zh) * 2017-01-04 2017-06-09 山东汇金股份有限公司 一种高强度高韧性铸态qt700‑10及其生产方法

Also Published As

Publication number Publication date
CN109930058B (zh) 2021-08-10
CN109930058A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2019120122A1 (zh) -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件
CN105483508B (zh) 铁道车辆制动盘用合金蠕墨铸铁及其熔炼方法
CN104120332B (zh) 高强度高韧性球墨铸铁600-10及其生产工艺
CN106811676A (zh) 一种高强度高韧性铸态qt700‑10及其生产方法
WO2013051698A1 (ja) 球状黒鉛鋳鉄の製造方法、および、該球状黒鉛鋳鉄を用いた車両用部品
CN108624806B (zh) 一种高强度高韧性的球墨铸铁的制备方法
CN103352161A (zh) 一种球铁铸件及其铸造工艺
CN104846265A (zh) 一种超低温奥氏体耐磨球铁材质及其制备方法
CN108396219A (zh) 一种曲轴用铸态高强度球墨铸铁及其制备方法
CN110129661A (zh) 高强度低温高韧性球墨铸铁的生产工艺
CN109930059B (zh) 低温高强高韧球墨铸铁及其制备方法和铁路机车零部件
CN111187973A (zh) 一种高伸长率RuT400蠕墨铸铁及其生产工艺
CN101525719B (zh) 金属型生产薄壁玛钢件用孕育剂
CN110295312A (zh) 一种低温球墨铸铁及其生产工艺和应用
CN105420592A (zh) 耐低温球墨铸铁件及其制备方法
CN102400032B (zh) 一种大断面球墨铸铁
CN108707813B (zh) 铸态高强度球铁及其制造工艺
WO2018166247A1 (zh) 一种风电用高强高韧球墨铸铁的研制方法
CN109161650B (zh) 一种低合金铸钢、制造方法及其应用
CN109097670B (zh) 一种高强度高韧性的球墨铸铁
CN101407887A (zh) 一种用于制造风能设备的铸件
CN111850385B (zh) 一种硅钼涡轮增压器壳体及其制备方法
US2867555A (en) Nodular cast iron and process of manufacture thereof
CN111748722A (zh) 一种球墨铸铁及其制备方法
CN113737085B (zh) 一种球墨铸铁桥壳及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892379

Country of ref document: EP

Kind code of ref document: A1