WO2019120042A1 - 一种网络中传输报文的方法和节点 - Google Patents

一种网络中传输报文的方法和节点 Download PDF

Info

Publication number
WO2019120042A1
WO2019120042A1 PCT/CN2018/117365 CN2018117365W WO2019120042A1 WO 2019120042 A1 WO2019120042 A1 WO 2019120042A1 CN 2018117365 W CN2018117365 W CN 2018117365W WO 2019120042 A1 WO2019120042 A1 WO 2019120042A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
packet
segment identifier
network
Prior art date
Application number
PCT/CN2018/117365
Other languages
English (en)
French (fr)
Inventor
胡志波
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227015507A priority Critical patent/KR102450096B1/ko
Priority to KR1020207020647A priority patent/KR102397232B1/ko
Priority to JP2020534191A priority patent/JP7039707B2/ja
Priority to EP18890708.3A priority patent/EP3716542A4/en
Publication of WO2019120042A1 publication Critical patent/WO2019120042A1/zh
Priority to US16/906,859 priority patent/US11336565B2/en
Priority to JP2022036012A priority patent/JP7288993B2/ja
Priority to US17/729,865 priority patent/US11882026B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/18Loop-free operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/659Internet protocol version 6 [IPv6] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a node for transmitting a message in a network.
  • IGP fast reroute (FRR) technology when a node node of the primary path detects that the next hop node of the node is faulty, A topology-independent loop-free algorithm (English: Topology Independent Loop-free-alternate algorithm, TI-LFA) is used to calculate a backup path to the destination node. The node then forwards the packet through the next hop of the backup path. The message is highly reliable and forwarded.
  • the IGP FRR technology calculates the backup path based on the IGP shortest path first (English: shortest path first, SPF) principle, so that if the node on the alternate path, the node is configured with a local forwarding policy, for example, a traffic engineering tunnel.
  • the embodiment of the present invention provides a method and a node for transmitting a packet in a network, so that the packet carries a segment identifier for transmission, so as to avoid a loop problem in the packet forwarding process.
  • the present application provides a method for transmitting a message in a network, where the network includes a first node, a second node, and a third node.
  • a first path from the second node to the third node is established in the network, the first path is established according to the first segment identifier of the third node, and the first node is a node on the first path.
  • the method includes: the first node receives the second segment identifier of the third node sent by the third node; the first node receives the packet sent by the second node by using the first path, where the address of the packet is the first node a segment identifier of the next hop node; the first node determines that the next hop node of the first node on the first path is faulty; and in response to the first node determining that the next hop node of the first node is faulty, the first node The second segment identifier is added to the packet, and the packet is sent to the third node by using the second path, where the second path is established by the first node according to the second segment identifier.
  • the first node in the network can establish a primary path for sending a packet according to the first segment identifier of the third node, and when the node on the primary path of the sent packet fails, the previous hop of the failed network
  • the node for example, the first node, can establish an alternate path to continue to send packets according to the second segment identifier of the third node in the network, so as to ensure normal forwarding of the packet and avoid loops in the process of forwarding the packet.
  • the second path is established when the first node determines that the next hop node of the first node on the first path is faulty, or the second path is determined by the first node.
  • the next hop node of the first node on the first path is established before the failure occurs.
  • the first node is established when determining that the next hop node is faulty, and the first node is not required to establish the second path in advance, which can reduce resource waste of the first node.
  • the adding, by the first node, the second segment identifier to the packet includes: the first node replacing the second segment identifier with a destination address of the packet.
  • the first node may be configured to send the packet to the third node according to the address of the packet.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to instruct the first node to establish the second path according to the shortest path first algorithm.
  • the second segment identifier includes the path calculation identifier, so that the packet is excluded from the local policy, and the shortest path first algorithm is used to forward the packet to avoid looping of the forwarded packet.
  • the first segment identifier and the second segment identifier are the sixth version of the Internet Protocol version (English: Internet Protocol version 6, IPv6) address of the third node.
  • the present application provides a first node in a network for transmitting a message, and the method in any one of the possible implementation manners of the first aspect or the first aspect.
  • the node comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a system for transmitting a message in a network, where the system includes a first node, a second node, and a third node. Establishing, by the network, a first path from the second node to the third node, where the first path is established according to the first segment identifier of the third node, the first node For the node on the first path, the system includes:
  • the first node is configured to receive the second segment identifier of the third node that is sent by the third node, and is further configured to receive the packet sent by the second node by using the first path.
  • the first node is further configured to determine that the next hop node of the first node on the first path is faulty, and determine, in response to the first node, the next step of the first node on the first path.
  • the hop node is faulty, the second segment identifier is added to the packet, the second path is established according to the second segment identifier, and the packet is sent to the third node by using the second path.
  • the address of the packet is a segment identifier of a next hop node of the first node.
  • the second node is configured to receive the first segment identifier of the third node, establish a first path from the second node to the third node according to the first segment identifier, and send a packet to the first node by using the first path .
  • the third node is configured to send the first segment identifier to the first node, the second segment identifier to the second node, and receive the packet sent by the first node by using the second path.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to indicate that the first node establishes the first according to a shortest path first algorithm Two paths.
  • the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the first aspect and various possible implementations described above The method described.
  • the present application provides a network device including a network interface, a processor, a memory, and a bus connecting the network interface, the processor, and the memory.
  • the memory is for storing a program, an instruction, or a code
  • the processor is configured to execute a program, an instruction, or a code in the memory to perform the method of the first aspect and the various possible implementations.
  • FIG. 1 is a schematic diagram of an application scenario of a packet transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting a message in a network according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another method for transmitting a message in a network according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a packet format according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another packet format according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a node for transmitting a message according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another node for transmitting a message according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a system for transmitting a message in a network according to an embodiment of the present invention.
  • the "node” in the embodiment of the present application may refer to a device that forwards service traffic.
  • the "node” may be a router, a switch, an optical transport network (English: Optical Transport Network, OTN) device, and a packet transport network. (English: Packet Transport Network, PTN for short) Equipment or Wavelength Division Multiplexing (WDM) equipment.
  • OTN Optical Transport Network
  • WDM Wavelength Division Multiplexing
  • FIG. 1 is a schematic diagram of a system architecture for transmitting a message in a network.
  • the system is a possible application scenario implemented by the present application.
  • the network system 100 includes a node 101, a node 102, a node 103, a node 104, a node 105, and a node 106 in a segment routing (SR) network, and nodes 107 and 108 outside the network.
  • Node 101 is the ingress node of the network
  • node 103 is the egress node of the network
  • there are two paths from the node 101 to the node 103 namely: the primary path and the backup path.
  • the node 101, the node 104, the node 105, and the node 106 are sequentially included on the main path.
  • the message arrives at the node 101 in the SR network, it then passes through node 104 and node 105 in sequence to node 106.
  • the node 101, the node 102, the node 103, and the node 106 are sequentially included on the backup path.
  • the primary path is used for packet forwarding.
  • the packet can be sent to the backup path by the node 104 according to the IGP FRR technology, that is, the packet passes through the node 101 and the node 102 in sequence.
  • Node 103 arrives at node 106.
  • the node may configure the local forwarding policy to guide the forwarding of the packet.
  • the forwarding policy configured by the node 101 is to forward the received packet to the node 104 through the TE tunnel.
  • the node 104 sends the message to the node 101 via the IGP FRR technique, so that the message can be forwarded through the alternate path.
  • the node 101 After receiving the packet sent by the node 104, the node 101 will send the packet to the node 104 through the TE tunnel again according to the local forwarding policy.
  • the node 104 receives the message sent by the node 101 and continues to forward the message to the node 101 until the node 101 receives the notification that the node 105 has failed.
  • the packet is forwarded through the alternate path, and the packet is not sent to the node 101 through the TE tunnel.
  • the node 101 may be separated from the failed node 105 by a long distance.
  • the information that the node 105 fails may take a long time to notify the device such as the node 101, and the node 101 may be configured with a local forwarding policy. For example, a local policy such as a TE tunnel or a policy-based route is configured, so that the packet is preferentially selected by the local policy to forward the packet, and the packet cannot be forwarded normally on the alternate path.
  • the present application provides a system for transmitting a message in a network
  • the network may be an SR network.
  • the following describes the system by taking an SR network as an example.
  • the SR network includes an ingress node 101, an egress node 106, nodes 104 and nodes 105 on the primary path, and nodes 102 and nodes 103 on the alternate path.
  • the egress node 106 in the SR network advertises two different segment identifiers, which may be a Multi-Protocol Label Switching (MPLS) label or an IPv6 address.
  • MPLS Multi-Protocol Label Switching
  • IPv6 IPv6 address
  • two different addresses advertised by the egress node 106 are A4::00 and C4::00, and the two addresses are flooded to other nodes in the SR network.
  • the address of C4::00 has a strict SPF flag. If the address C4::00 in the packet carries a strict SPF flag, the packet will be forwarded according to the path of the SPF. The local policy is no longer applicable to forward packets.
  • Node 104 will store the two different addresses received.
  • the node 104 When the message is forwarded to the node 104 and it is determined that the node 105 on the primary path has failed, the node 104 replaces the address in the message from the original A4::00 to C4::00, since the address is C4::00. A strict SPF flag is used. Therefore, the packet is replaced with the C4::00 packet. The packet is forwarded according to the SPF algorithm. The packet is sent to the egress node of the SR network through the alternate path to prevent packet forwarding. A loop occurs.
  • FIG. 2 is a method for transmitting a packet in a network.
  • the method is applicable to the SR network, wherein the node 104 in FIG. 1 is referred to as the first node in FIG. 1, and any one of the nodes in FIG. 1 can perform the steps in the method flow of FIG.
  • the network includes a first node, a second node, and a third node, and the network may further include nodes other than the first node, the second node, and the third node, for example, the network may further include a fourth node.
  • a first path from the second node to the third node is established in the network, where the first path is established according to the first segment identifier of the third node, and the first node is a node on the first path.
  • the second node may be the ingress node 101 in FIG. 1, and the third node may be the egress node 103 in FIG.
  • the method specifically includes:
  • the first node receives a second segment identifier of the third node that is sent by the third node.
  • the method may be applicable to an SR network provided by an operator.
  • the egress node of the SR network can obtain two labels by using a label distribution protocol (English: Label Distribution Protocol, LDP for short) or a segment routing protocol. Both labels can be used to identify the third node.
  • LDP Label Distribution Protocol
  • Both labels can be used to identify the third node.
  • the two labels obtained are referred to as a first segment identifier and a second segment identifier, respectively.
  • the third node sends the generated first segment identifier and the second segment identifier to an open shortest-path first interior gateway protocol (OSPF) or intermediate
  • OSPF open shortest-path first interior gateway protocol
  • the system to intermediate system routing information exchange protocol (English: Intermediate System to Intermediate System, IS-IS for short) is flooded to other nodes in the SR network, and the first node and the second node in the network can receive
  • the first node identifier and the second segment identifier are used to identify the third node, and the second node in the network can establish a first path for sending the packet to the egress node according to the first segment identifier.
  • the first segment identifier and the second segment identifier are the sixth version of the Internet Protocol IPv6 address of the third node.
  • the first identifier and the second identifier may be two different addresses advertised by the egress node, for example, the two addresses are A4::00. And C4::00.
  • the first node receives a packet sent by the second node by using the first path, where the address of the packet is a segment identifier of a next hop node of the first node.
  • the second node calculates, according to the first segment identifier, a first path that the forwarding packet arrives at the third node.
  • the second node forwards the packet to the first node by using the first path, and the first node receives the packet and forwards the packet according to the destination address of the next hop node carried in the packet.
  • the second node may be an ingress node of the SR network, and the second node may add a segment identifier of the node on the first path in the packet header, where the second node may be based on the first path.
  • the segment identifier establishment label stack of the node is added to the packet header, so that the packet forwards the packet to the third node according to the label stack, where the outer address of the packet is the segment identifier of the next hop network device.
  • the second node sequentially forwards the message to the third node by using the first node on the first path and the next hop node of the first node.
  • the segment identifier of the second node is A1::00.
  • the segment identifier of the first node is A2::00, the segment identifier of the next hop of the first node is A3::00, and the segment identifier of the third node is A4::00.
  • the second node adds a segment identifier of the node identifier of the first path to the packet header, and the specific addition manner can add the label stack by extending the segment routing header in the packet header.
  • the added label stack of the second node in the header includes A2::00, A3::00 and A4::00, and the destination address of the packet is A2::00, and the packet is sent.
  • the first node receives the packet according to the destination address A2::00 of the packet, and replaces the destination address A2::00 of the packet with A3::00 in the label stack, and the first node according to the destination address of the packet A3:: 00, the packet is sent to the next hop of the first node, and the next hop of the first node receives the packet carrying the destination address of A3::00, and replaces the destination address with A4::00 in the label stack, so that The packet is sent to the third node, so that the packet is sent to the third node by using the first path.
  • the method for forwarding a packet by using the first path is only an exemplary description.
  • the second node may further forward the packet to the third node by using the first path.
  • the first node determines that a fault occurs in a next hop node of the first node on the first path.
  • the node of the next hop is faulty, and the other nodes in the network, including the first node, obtain the message that the next hop node is faulty through IS-IS or OSPF. Since the first node is adjacent to the next hop node, the first node may quickly determine that the next hop node has failed.
  • the first node in response to the first node determining that the next hop node of the first node is faulty, the first node adds the second segment identifier to the packet, and uses the second path to The message is sent to the third node, and the second path is established by the first node according to the second segment identifier.
  • the first node may send a second path according to the second segment identifier to send the message to the third node.
  • the first node may add the second segment identifier to the destination address of the packet, that is, the first node replaces the packet with the second segment identifier.
  • the destination address is such that the packet sends a packet to the third node according to the second path established by the second identifier.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to instruct the first node to establish the second path according to a shortest path first algorithm.
  • the second segment identifier carries the path calculation identifier, for example, carries a strict SPF flag, and the strict SPF (English: Strict Shortest Path First) algorithm is based on the SPF algorithm to determine the path of forwarding the packet, but strict SPF requirements All the nodes in the SR network must strictly follow the SPF algorithm to determine the path to send packets. Exclude the application of the local policy.
  • the priority of the local policy such as the SR TE tunnel or the configured routing policy is lower than the strict SPF calculation path.
  • the SPF algorithm is preferentially used to calculate the second path.
  • the local policy refers to a local routing and forwarding policy that requires priority processing, such as an SR TE tunnel or a local routing policy.
  • the second node configures the SR TE tunnel to make the second node take precedence.
  • the packet is forwarded to the first node through the configured SR TE tunnel, instead of sending the packet to the node of the next hop according to the path calculated by the second node.
  • the second segment identifier and the first segment identifier are both used to identify the egress node of the SR network, the second segment identifier is different from the first segment identifier, and the first segment identifier does not carry the strict SPF flag.
  • the first node will use the SPF to calculate the alternate path according to the second segment identifier. This allows the first node to use the SPF algorithm to calculate the second path and send the packet to the egress node through the second path to avoid loops. .
  • the first node when the first node determines that the next hop of the first node fails, the first node adds the second segment identifier C4::00 of the third node to the destination address of the packet, where the second segment The identifier C4::00 carries the strict SPF flag, and the first node establishes the second path by using the shortest path first algorithm according to the destination address C4::00 in the packet, and sends the packet to the third node by using the second path. .
  • the second path is established by the first node when determining that a next hop node of the first node on the first path is faulty.
  • the adding, by the first node, the second segment identifier to the packet includes: the first node replacing the second segment identifier with an address of the packet.
  • the first node when the first node determines that the network device of the next hop is faulty, the first node replaces the second segment identifier with the address of the packet, and according to the replaced The address forwards the packet.
  • the SR network that forwards IPv6 packets in the loop-free alternate (LFA) scenario with the local forwarding policy is used as an example, and is combined with the network system shown in Figure 1.
  • the application further provides a schematic diagram of a method for transmitting a message in a network.
  • the method for the node 104 in FIG. 3 can be applied to the first node in FIG. 2, and the method in which the node 105 in FIG. 3 operates can be applied to the method in FIG.
  • the node of the next hop of the first node, the method of the node 101 in FIG. 3 can be applied to the ingress node in FIG. 2, and the method in which the node 105 in FIG. 3 operates can be applied to the egress node in FIG.
  • the node 101 in FIG. 3 is adjacent to the node 104, and the node 104 is adjacent to the node 105.
  • the method specifically includes:
  • the egress node 101 issues a first address and a second address, where the first address carries a strict SPF tag.
  • the egress node of the SR network advertises two different addresses of the egress node itself through the IS-IS protocol or the OSPF protocol: C4::00 and A4::00, where C4::00 carries the strict SPF tag.
  • FIG. 4 and FIG. 5 are merely exemplary implementations, and are not limited to the present application.
  • the reserved bit (English: Reserved) field in the flag (English: flags) field in FIG. 5 is set to 1 to indicate that the address needs to be strictly calculated according to the SPF path, and the setting to 0 indicates that it is not required.
  • the strict SPF calculation path when the Reserved field is set to 1, the packet is forwarded by the local forwarding policy, and the packet forwarding path is calculated according to the SPF.
  • the network node 104 receives the first address and the second address.
  • the node may receive two different addresses C4::00 and A4::00 issued by the egress node 106 according to the IS-IS protocol or the OSPF protocol, where the C4::00 address carries a strict SPF tag.
  • the network node 104 stores the above two addresses after receiving the above two addresses.
  • the ingress node 101 receives the first address and the second address.
  • the ingress node 101 calculates, according to the second address, a primary path of the packet to the egress node.
  • the ingress node 101 can calculate the forwarding path of the packet and the packet according to the second address of the egress node 106, for example, A4::00, by using the node label mode or the link label.
  • the tag is assigned and the message is sent to the egress node 106.
  • the ingress node 101 receives the message, it will calculate the message to the egress node 103 according to the second address A4::00, and add the tag to the egress node 106 to the tag.
  • the feature of the node label is that the path of the forwarded packet can be obtained by the SPF algorithm or other algorithms as long as the egress node 106 can be reached.
  • the ingress node 101 sends the packet to the network node 104 according to a local routing forwarding policy.
  • the ingress node 101 can calculate the forwarding path of the message according to the second address of the egress node 106, the message is sent to the egress node 106, and if one or more nodes on the main path are configured with a local forwarding policy, If the SR TE tunnel is configured between the ingress node 101 and the network node 104, the ingress node 101 preferentially forwards the packet to the network node 104 through the SR TE tunnel when receiving the packet, and the local forwarding policy is configured at this time. The ingress node 101 preferentially forwards the message to the network node 104 using the SR TE tunnel.
  • the network node 104 receives the packet sent by the ingress node 101 by using the primary path, and the destination address of the packet is the segment identifier of the node 105.
  • next hop node of the network node 104 is 105, and the network node 104 sends the segment identifier of the packet whose destination address is 105 sent by the node 105 to the next hop.
  • the network node 104 replaces the destination address of the message with the first address, and sends the message to the egress node 106 through the alternate path.
  • the node 105 can notify other node nodes 105 in the SR network to fail through the IS-IS protocol or the OSPF protocol.
  • the network node 104 obtains the message that the node 105 is faulty, and replaces the destination address of the received message with A4::00 with C4::00, and the C4::00 carries the strict SPF flag, so the network node 104 should be used strictly.
  • the packet is sent to the egress node 106 according to the alternate path established by the SPF algorithm, and the loop of the forwarded packet is avoided by the foregoing method.
  • the present application provides a first node 600 transmitted in a network, where the network includes a first node 600, a second node, and a third node. Establishing, by the network, a first path from the second node to the third node, where the first path is established according to a first segment identifier of the third node, the first node 600 Is the node on the first path.
  • the first node may be any of the primary path and the alternate path in FIG. 1, or may be the first node in FIGS. 2 and 3.
  • the node includes a receiving unit 601, a determining unit 602, an adding unit 603, an establishing unit 604, and a transmitting unit 605.
  • the receiving unit 601 is configured to receive a second segment identifier of the third node that is sent by the third node, and is further configured to receive a packet that is sent by the second node by using the first path, where the packet is The address is the segment identifier of the next hop node of the first node.
  • the determining unit 602 is configured to determine that the next hop node of the first node on the first path is faulty.
  • the adding unit 603 is configured to add the second hop identifier to the message in response to the determining, by the determining unit 602, that the next hop node of the first node is faulty.
  • the establishing unit 604 establishes a second path according to the second segment identifier received by the receiving unit 601.
  • the sending unit 605 sends the message to the third node by the second path established by the establishing unit 604.
  • the receiving unit 601 of the first node and the ingress node receive the first segment identifier and the second segment identifier for identifying the egress node, where the ingress node establishes the sending packet by using the first first identifier.
  • the first path to the exit node.
  • the ingress node forwards the packet to the first node by using the first path, and the receiving unit 601 of the first node receives the packet and forwards the packet according to the segment identifier of the next hop node carried in the packet.
  • the determining unit 602 of the first node determines that the network device of the next hop of the first node has failed
  • the adding unit 603 of the first node adds the second identifier to the destination address of the message.
  • the establishing unit 604 of the first node establishes a second path, and the sending unit 605 of the first node sends a message to the egress node according to the second path established by the establishing unit 604.
  • the second segment identifier carries the path calculation identifier, for example, carries a strict SPF flag, and the strict SPF (English: Strict Shortest Path First) algorithm also determines the path for forwarding the message based on the SPF algorithm, but strict SPF requirements. All the nodes in the SR network must strictly follow the SPF algorithm to determine the path to send packets. Exclude the application of the local policy. The priority of the local policy such as the SR TE tunnel or the configured routing policy is lower than the strict SPF calculation path. The SPF algorithm is preferentially used to establish the second path.
  • the establishing unit 604 is configured to determine, by the unit 602, that the second path is established when the next hop node of the first node on the first path is determined to be faulty, or The second path is established before the next hop node of the first node on the path fails.
  • the adding unit 603 element adds the second segment identifier to the packet, where the adding unit 603 replaces the destination address of the packet with the second segment identifier.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to instruct the first node to establish the second path according to a shortest path first algorithm.
  • the first segment identifier and the second segment identifier are the sixth version of the Internet Protocol IPv6 address of the third node.
  • the first node 700 includes a network interface 701 and a processor 702, and may further include a memory 703.
  • the network interface 701 can be a wired interface, such as a Fiber Distributed Data Interface (FDDI) or an Ethernet (English) interface.
  • FDDI Fiber Distributed Data Interface
  • Ethernet Ethernet
  • the processor 702 includes, but is not limited to, a central processing unit (English: central processing unit, CPU for short), a network processor (English: network processor, referred to as NP), and an application-specific integrated circuit (English: application-specific integrated circuit, referred to as: ASIC) or one or more of programmable logic devices (English: programmable logic device, abbreviation: PLD).
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the processor 702 is responsible for managing the bus 704 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • Memory 703 can be used to store data used by processor 702 in performing operations.
  • the memory 703 may be, but not limited to, a content-addressable memory (English: content-addressable memory, CAM for short), such as a ternary CAM (abbreviation: TCAM), a random access memory (English: Random-access memory, referred to as: RAM).
  • a content-addressable memory English: content-addressable memory, CAM for short
  • TCAM ternary CAM
  • RAM Random-access memory
  • Memory 703 can also be integrated in processor 702. If memory 703 and processor 702 are mutually independent devices, memory 573 is coupled to processor 702, for example, memory 703 and processor 702 can communicate over a bus. Network interface 701 and processor 702 can communicate over a bus, and network interface 701 can also be directly coupled to processor 702.
  • Bus 704 can include any number of interconnected buses and bridges that link together various circuits including one or more processors 702 represented by processor 702 and memory represented by memory 703.
  • the bus 704 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • the network includes a first node, a second node, and a third node.
  • a first path from the second node to the third node is established in the network, where the first path is established according to the first segment identifier of the third node, the first node Is the node on the first path.
  • the first node includes a network interface 701 and a processor 702.
  • the network interface 701 is configured to receive the second segment identifier of the third node that is sent by the third node.
  • the network interface 701 is configured to receive the packet sent by the second node by using the first path, where the address of the packet is a segment identifier of a next hop node of the first node.
  • the processor 702 is configured to determine that the next hop node of the first node on the first path is faulty.
  • the processor 702 is configured to: when the first node determines that the next hop node of the first node is faulty, add the second segment identifier to the packet, and send the report by using the second path.
  • the text is sent to the third node, where the second path is established by the first node according to the second segment identifier.
  • the processor 702 determines that the next hop node of the first node on the first path is faulty, the destination address of the packet is replaced by the second segment identifier.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to instruct the first node to establish the second path according to a shortest path first algorithm.
  • the first segment identifier and the second segment identifier are the sixth version of the Internet Protocol IPv6 address of the third node.
  • the specific implementation of the processor 702 and the network interface 701 may refer to the functions and implementation methods of the first node in FIG. 2 and FIG. 3, and details are not described herein for brevity.
  • the present application provides a system for transmitting a message in a network, where the system includes a first node 801, a second node 802, and a third node 803.
  • the first node 801 may be the network node 104 in FIG. 1 , and may also be the first node in the method flowchart 2 and FIG. 3 , and may implement the functions of the first node in FIG. 2 and FIG. 3 , and may also It is the first node in Figure 6 or Figure 7.
  • the first node 801 is configured to receive the second segment identifier of the third node that is sent by the third node, and is further configured to receive a packet that is sent by the second node by using the first path.
  • the first node is further configured to determine that the next hop node of the first node on the first path is faulty, and determine, in response to the first node, the next step of the first node on the first path.
  • the hop node is faulty, the second segment identifier is added to the packet, the second path is established according to the second segment identifier, and the packet is sent to the third node by using the second path.
  • the address of the packet is a segment identifier of a next hop node of the first node.
  • the second node 802 is configured to receive a first segment identifier of the third node, establish a first path from the second node to the third node according to the first segment identifier, and send a report to the first node by using the first path Text.
  • the second path is established when the first node determines that the next hop node of the first node on the first path is faulty, or the second path is The first node is established before determining that the next hop node of the first node on the first path fails.
  • the adding, by the first node, the second segment identifier to the packet includes: the first node replacing the destination address of the packet with the second segment identifier.
  • the second segment identifier includes a path calculation identifier, where the path calculation identifier is used to instruct the first node to establish the second path according to a shortest path first algorithm.
  • the first segment identifier and the second segment identifier are the sixth version of the Internet Protocol IPv6 address of the third node.
  • the first node 801 specifically implements the functions and implementation steps of the first node that can be referred to in FIG. 2 and FIG. For the sake of brevity, we will not repeat them.
  • the size of the sequence numbers of the foregoing methods does not mean the order of execution, and the order of execution of each method should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods and apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing unit, or each module may exist physically separately, or two or more modules may be integrated into one unit.
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the integrated unit may be stored in a computer readable storage medium if implemented in the form of hardware in conjunction with software and sold or used as a standalone product. Based on such understanding, some of the technical features of the technical solution of the present invention contributing to the prior art may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer
  • the device (which may be a personal computer, server, or node, etc.) performs some or all of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium may be a USB flash drive, a mobile hard disk, a read only memory (abbreviation: ROM, English: Read-Only Memory), a random access memory (abbreviation: RAM, English: Random Access Memory), a magnetic disk or an optical disk.
  • ROM read only memory
  • RAM random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种网络中传输报文的方法和节点,该网络中建立由从第二节点到第三节点的第一路径,其中,第一路径为根据第三节点的第一段标识建立的,该方法包括:第一节点接收第三节点发送的第二段标识;第一节点接收第二节点通过第一路径发送的报文;第一节点确定第一路径上的第一节点的下一跳节点出现故障;响应于第一节点确定第一路径上的第一节点的下一跳节点出现故障,第一节点将第二段标识添加到报文中,并通过第二路径将报文发送到第三节点,第二路径为第一节点根据第二段标识建立的。通过上述方法,避免在发送报文的过程中出现环路。

Description

一种网络中传输报文的方法和节点
本申请要求于2017年12月22日提交中国专利局、申请号为201711408028.9、申请名称为“一种网络中传输报文的方法和节点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种网络中传输报文的方法和节点。
背景技术
根据内部网关协议(英文:Interior Gateway Protocol,简称:IGP)快速重路由(英文:fast reroute,简称:FRR)技术,当主路径的一个节点节点检测到该节点的下一跳节点发生故障时,会通过拓扑无关无环算法(英文:Topology Independent Loop-free-alternate algorithm,简称:TI-LFA)计算到达目标节点的一条备份路径,进而该节点通过备份路径的下一跳继续转发报文,从而保证报文高可靠性转发。而IGP FRR技术计算备路径是依据IGP最短路径优先(英文:shortest path first,简称:SPF)原则转发报文,这样如果备用路径上的节点,节点上配置了本地转发策略,例如,流量工程隧道策略(英文:traffic engineering,简称:TE)或者策略路由等,这些本地策略重新定义了流量的转发路径,使得本地策略和IGP FRR在计算路径时发生冲突的情况下形成报文转发环路,进而影响报文的正常转发,导致无法部署FRR技术。
发明内容
本申请实施例提供了一种网络中传输报文的方法和节点,使报文携带段标识进行传输,以避免报文转发过程中出现环路的问题。
第一方面,本申请提供了一种网络中传输报文的方法,该网络包括第一节点、第二节点和第三节点。该网络中建立有从第二节点到第三节点的第一路径,该第一路径为根据第三节点的第一段标识建立的,该第一节点为第一路径上的节点。该方法包括:第一节点接收第三节点发送的第三节点的第二段标识;第一节点接收第二节点通过第一路径发送的报文,该报文的地址为所述第一节点的下一跳段节点的段标识;第一节点确定第一路径上的第一节点的下一跳节点出现故障;响应于第一节点确定第一节点的下一跳节点出现故障,第一节点将第二段标识添加到该报文中,并通过第二路径将该报文发送到第三节点,其中,该第二路径为第一节点根据第二段标识建立的。
通过上述方法,网络中的第一节点可以根据第三节点的第一段标识建立发送报文的主路径,而当发送报文的主路径上的节点出现故障,出现故障的网络的上一跳节点,例如第一节点,可以根据网络中的第三节点的第二段标识建立备用路径继续发送报文,保证报文的正常转发,避免转发报文过程出现环路。
在一种可能的实现方式中,该第二路径为第一节点在确定第一路径上的第一节点的下一跳节点出现故障时建立的,或者,该第二路径为第一节点在确定第一路径上的 第一节点的下一跳节点出现故障之前建立的。
通过上述方法,使得第一节点在确定其下一跳节点出现故障时才建立,不需要第一节点提前建立第二路径,可以降低第一节点的资源浪费。
在一种可能的实现方式中,第一节点将第二段标识添加到该报文中包括:第一节点将第二段标识替换该报文的目的地址。
通过上述方法,可以使第一节点根据报文的地址将报文发送给第三节点。
在一种可能的实现方式中,第二段标识包含路径计算标识,该路径计算标识用于指示第一节点根据最短路径优先算法建立第二路径。
采用上述方法,第二段标识包含路径计算标识,可以使得报文排除本地策略,使用最短路径优先算法对报文进行转发,避免转发报文发生环路。
在一种可能的实现方式中,第一段标识和第二段标识为所述第三节点的第六版互联网协议(英文:Internet Protocol version 6,简称:IPv6)地址。
第二方面,本申请提供了一种网络中传输报文的第一节点,执行第一方面或第一方面的任意一种可能的实现方式中的方法。具体地,该节点包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第三方面,本申请提供了一种网络中传输报文的***,该***中包括第一节点、第二节点和第三节点。所述网络中建立由从所述第二节点到所述第三节点的第一路径,其中,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点为所述第一路径上的节点,该***包括:
第一节点用于接收所述第三节点发送的所述第三节点的第二段标识,还用于接收所述第二节点通过所述第一路径发送的报文。第一节点还用于确定所述第一路径上的所述第一节点的下一跳节点出现故障,响应于所述第一节点确定所述第一路径上的所述第一节点的下一跳节点出现故障,将所述第二段标识添加到所述报文中,根据所述第二段标识建立第二路径,并通过第二路径将所述报文发送到所述第三节点,其中,所述报文的地址为所述第一节点的下一跳段节点的段标识。
第二节点用于接收第三节点的第一段标识,根据该第一段标识建立由第二节点到所述第三节点的第一路径,并通过该第一路径向第一节点发送报文。
第三节点用于向第一节点发送第一段标识,向第二节点发送第二段标识,以及接收第一节点通过第二路径发送的报文。
结合第三方面,在第一种可能的实现方式中,所述第二段标识包含路径计算标识,其中,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面以及各个可能实现方式的所述的方法。
第五方面,本申请提供了一种网络设备,该网络设备包括网络接口、处理器、存储器和连接所述网络接口、处理器和存储器的总线。所述存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成上述第一方面以及各个可能实现方式的所述的方法。
附图说明
图1为本发明实施例提供的一种报文传输方法应用场景示意图。
图2为本发明实施例提供的一种网络中传输报文的方法流程示意图。
图3为本发明实施例提供的又一种网络中传输报文的方法流程示意图。
图4为本发明实施例提供的一种报文格式示意图。
图5为本发明实施例提供的又一种报文格式示意图。
图6为本发明实施例提供的一种传输报文的节点结构图示意图。
图7为本发明实施例提供的又一种传输报文的节点结构示意图。
图8为本发明实施例提供的一种网络中传输报文的***结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中所述的“节点”可以指对业务流量进行转发的设备,比如“节点”可以是路由器、交换机、光传送网(英文:Optical Transport Network,简称:OTN)设备、分组传送网(英文:Packet Transport Network,简称:PTN)设备或者波分复用(英文:Wavelength Division Multiplexing,简称:WDM)设备。
图1提供了一种网络中传输报文的***架构示意图,该***是本申请实施的一种可能的应用场景。该网络***100包括在分段路由(英文:segment routing,SR)网络中的节点101、节点102、节点103、节点104、节点105和节点106,以及在上述网络之外的节点107和节点108。节点101是该网络的入口节点,节点103是该网络的出口节点,报文从节点101到达节点103的路径有两条,即:主路径和备份路径。主路径上依次包括节点101、节点104、节点105和节点106。当报文到达SR网络中的节点101后,接着会依次经过节点104和节点105到达节点106。备份路径上依次包括节点101、节点102、节点103和节点106。在正常情况下,主路径用于报文转发,当主路径上的节点105出现故障,根据IGP FRR技术,报文可以由节点104发送到备份路径上,即报文会依次经过节点101、节点102、节点103到达节点106。
然而,可能有节点会配置本地转发策略指导报文的转发,例如,节点101配置的转发策略为通过TE隧道将接收到报文转发给节点104。在这种情况下,如果节点105出现故障,则节点104会通过IGP FRR技术将所述报文发送给节点101,以便于使得报文能通过备用路径转发所述报文。但节点101接收节点104发送的所述报文后,会根据本地转发策略,会再次将通过TE隧道将所述报文发送给节点104。由于节点105 发生故障不能发送所述报文,节点104接收到节点101发送的所述报文会继续将所述报文转发给节点101,直到节点101接收到节点105发生故障的通知,才会将所述报文通过备用路径转发所述报文,而不再将所述报文通过TE隧道发送给节点101。实际链路中,节点101与发生故障的节点105之间可能间隔较长的距离,节点105发生故障的信息需要较长时间才能通知到节点101等设备,而节点101有可能配置了本地转发策略,例如配置TE隧道或者策略路由等本地策略,使得报文会优先选择本地策略对报文进行转发,而不能在备用路径上正常转发报文,进而发生环路。
为了解决上述问题,本申请提供了一种网络中传输报文的***,所述网络可以是SR网络,下面以SR网络为例对该***进行介绍。该SR网络包括入口节点101,出口节点106,主路径上的节点104和节点105以及备用路径上的节点102和节点103。
该SR网络中的出口节点106发布两个不同的段标识,该段标识可以为多协议标签交换(英文:Multi-Protocol Label Switching,简称:MPLS)标签或IPv6地址。下面以标签为IPv6地址为例进行介绍,例如出口节点106发布的两个不同地址为A4::00和C4::00,并将所述两个地址泛洪给所述SR网络中的其它节点,其中,C4::00的地址带有严格SPF标记,即如果报文中的地址C4::00带有严格SPF标记,则对该报文的转发会严格按照SPF计算转发报文的路径,而不再适用本地策略对报文进行转发。节点104会存储接收到所述两个不同的地址。
当报文转发到节点104,并确定主路径上的节点105出现故障,节点104将报文中的地址由原来的A4::00更换为C4::00,由于地址为C4::00是带有严格SPF标记,因此地址更换为C4::00的报文会根据SPF算法进行转发,即该报文会通过备用路径将所述报文发送到所述SR网络的出口节点,防止报文转发出现环路。
结合图1所示的应用场景,参阅图2,下面以图2为例对图1中的节点104传输报文的方法进行详细介绍,图2为本申请提供一种网络中传输报文的方法流程示意图,所述方法适用于SR网络,其中图2中称图1中节点104为第一节点,图1中的任意一个节点可以执行图2方法流程中的步骤。该网络包括第一节点、第二节点和第三节点,该网络中还可以包括第一节点、第二节点和第三节点之外的节点,例如该网络还可以包括第四节点。该网络中建立有从所述第二节点到所述第三节点的第一路径,其中,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点为所述第一路径上的节点。第二节点可以是图1中的入口节点101,第三节点可以是图1中的出口节点103。该方法具体包括:
S210,所述第一节点接收所述第三节点发送的所述第三节点的第二段标识;
在一种可能的实现方式中,所述方法可以适用于运营商提供的SR网络。SR网络的出口节点可以通过标签分配协议(英文:Label Distribution Protocol,简称:LDP)或者分段路由(segment routing)协议获得两个标签,这两个标签都可以用来用来标识第三节点,例如将获得的两个标签分别称为第一段标识和第二段标识。
在一种可能的实现方式中,第三节点将生成的第一段标识和第二段标识通过开放最短路径优先内部网关协议(英文:open shortest-path first interior gateway protocol,简称:OSPF)或者中间***到中间***的域内路由信息交换协议(英文:Intermediate System to Intermediate System,简称:IS-IS)泛洪给SR网络中的其他节点,该网 络中的第一节点和第二节点都可以接收到用于标识第三节点的第一段标识和第二段标识,该网络中的第二节点可以根据第一段标识建立发送报文到出口节点的第一路径。
可选的,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
在一种可能的实现方式中,第一报文如果是IPv6报文,第一段标识和第二段标识可以是出口节点发布的两个不同的地址,例如两个地址分别为A4::00和C4::00。
S220,所述第一节点接收所述第二节点通过所述第一路径发送的报文,所述报文的地址为所述第一节点的下一跳节点的段标识。
在一种可能的实现方式中,第二节点根据第一段标识计算获得转发报文到达第三节点的第一路径。第二节点通过第一路径向第一节点转发报文,第一节点接收到该报文并根据报文携带的下一跳节点的目的地址转发报文。
在一种可能的实现方式中,第二节点可以是SR网络的入口节点,第二节点可以在该报文头中添加第一路径上节点的段标识,第二节点可以根据第一路径上的节点的段标识建立标签栈添加在该报文头中,使报文根据该标签栈转发报文到第三节点,其中该报文的外层的目的地址为下一跳网络设备的段标识。
举例来说,第二节点依次通过第一路径上的第一节点和第一节点的下一跳节点将该报文转发给第三节点,例如,第二节点的段标识为A1::00,第一节点的段标识为A2::00,第一节点的下一跳的段标识为A3::00,第三节点的段标识为A4::00。第二节点会将第一路径的节点的段标识建立一个标签栈添加在报文头中,该具体添加方式可以通过在报文头中扩展段路由头来添加该标签栈。第二节点会在该报文头中的添加的标签栈包括A2::00,A3::00和A4::00,并且该报文的目的地址为A2::00,并将该报文发送给第一节点。第一节点根据报文的目的地址A2::00接收该报文,并用标签栈中的A3::00替换报文的目的地址A2::00,第一节点根据报文的目的地址A3::00将该报文发送给第一节点的下一跳,同样第一节点的下一跳接收携带A3::00为目的地址的报文将目的地址替换为标签栈中A4::00,以将该报文发送给第三节点,从而实现通过第一路径将报文发送给第三节点。上述通过第一路径转发报文的方法只是一种示例性的说明,第二节点还可以通过其他方式通过第一路径将报文转发给第三节点。
S230,所述第一节点确定所述第一路径上的所述第一节点的下一跳节点出现故障。
在一种可能的实现方式中,所述下一跳的节点发生故障,网络中包括第一节点在内的其他节点会通过IS-IS或者OSPF协议获得所述下一跳节点发生故障的消息,由于所述第一节点与所述下一跳节点相邻,因此第一节点会较快确定所述下一跳节点发生故障的消息。
S240,响应于所述第一节点确定所述第一节点的下一跳节点出现故障,所述第一节点将所述第二段标识添加到所述报文中,并通过第二路径将所述报文发送到所述第三节点,所述第二路径为所述第一节点根据所述第二段标识建立的。
在一种可能的实现方式中,当第一节点的下一跳节点出现故障,第一节点可以根据第二段标识建立第二路径发送报文到第三节点。
举例来说,当第一节点的下一跳节点出现故障不能转发报文,第一节点可以将第二段标识添加在报文的目的地址,即该第一节点用第二段标识替换报文的目的地址, 使报文按照第二段标识建立的第二路径发送报文到第三节点。
可选的,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
在一种可能的实现方式中,第二段标识携带路径计算标识,例如携带严格SPF标记,严格SPF(英文:Strict Shortest Path First)算法是基于SPF算法决策转发报文的路径,但是严格SPF要求所有SR网络中的节点都必须严格按照SPF算法决定发送报文的路径,排除本地策略的适用,即SR TE隧道或者配置的路由策略等本地策略的使用优先级低于严格按照SPF计算路径的要求,优先使用SPF算法计算第二路径。所述本地策略是指包括SR TE隧道或者本地路由策略等需要优先处理的本地路由转发策略,例如在SR网络的第二节点转发报文之前,第二节点配置SR TE隧道,使第二节点优先将报文通过已经配置的SR TE隧道转发给第一节点,而不是根据第二节点计算获得的路径将所述报文发送到下一跳的节点。尽管第二段标识和第一段标识都用于标识SR网络的出口节点,第二段标识与第一段标识不同,第一段标识没有携带严格SPF标记。第一节点会根据第二段标识优先使用SPF计算备用路径,这样就可以使第一节点优先使用SPF算法计算建立第二路径,并通过第二路径发送报文到出口节点,避免环路的出现。
举例来说,当第一节点确定第一节点的下一跳出现故障,第一节点将第三节点的第二段标识C4::00添加在报文的目的地址中,其中,该第二段标识C4::00携带严格SPF标记,第一节点根据报文中的目的地址C4::00通过最短路径优先算法建立第二路径,并通过所述第二路径将该报文发送到第三节点。
可选的,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立的。
可选的,所述第一节点将所述第二段标识添加到所述报文中包括:所述第一节点将所述第二段标识替换所述报文的地址。
在一种可能的实现方式中,当第一节点确定其下一跳的网路设备出现故障,所述第一节点将所述第二段标识替换所述报文的地址,并根据替换后的地址对报文进行转发。
下面以在设置有本地转发策略的无环替代冗余(英文:loop-free alternate,简称:LFA)场景中转发IPv6报文的SR网络为例,并结合图1所示的网络***,为本申请又提供一种网络中传输报文的方法流程示意图,图3中的节点104运行的方法可以适用于图2中的第一节点,图3中的节点105运行的方法可以适用于图2中的第一节点的下一跳的节点,图3中的节点101运行的方法可以适用于图2中入口节点,图3中的节点105运行的方法可以适用于图2中的出口节点。图3中的节点101和节点104相邻,节点104和节点105相邻,该方法具体包括:
S310,出口节点101发布第一地址和第二地址,其中,第一地址携带严格SPF标记。
举例来说,SR网络的出口节点通过IS-IS协议或者OSPF协议发布出口节点自身的两个不同的地址分别为C4::00和A4::00,其中,C4::00携带有严格SPF标记,具体如图4和图5所示,图4和图5仅仅是示例性的给出一种实现方式,对本申请并不 构成限定。在图4的IS-IS协议中,将图5中标记(英文:flags)字段中的保留位(英文:Reserved)字段设置为1表示地址为需要严格按照SPF计算路径,设置为0表示不需要按照严格SPF计算路径,其中将Reserved字段设置为1时,则报文排除本地转发策略转发报文,按照SPF计算报文转发路径。
S320,网络节点104接收所述第一地址和所述第二地址。
举例来说,节点可以根据IS-IS协议或者OSPF协议接收出口节点106发布的C4::00和A4::00两个不同的地址,其中C4::00地址携带有严格SPF标记。网络节点104接收到上述两个地址后会存储上述两个地址。
S330,入口节点101接收所述第一地址和所述第二地址。
S340,入口节点101根据所述第二地址计算报文到达出口节点的主路径。
举例来说,报文进入SR网络时,入口节点101可以使用节点标签方式或者链路标签的方式根据出口节点106的第二地址,例如A4::00,计算报文的转发路径并对报文分配标签,将报文发送到出口节点106。以节点标签的方式为例,入口节点101接收到报文时,会根据第二地址A4::00给计算报文到达出口节点103的主路径,并将到达出口节点106的标签添加到所述报文中。节点标签的特点就是只要能够到达出口节点106就可以,对于转发报文的路径可以通过SPF算法或者其他算法计算出转发报文的路径。
S350,入口节点101根据本地路由转发策略将所述报文发送给网络节点104。
举例来说,尽管入口节点101可以根据出口节点106的第二地址计算报文的转发路径,将报文发送到出口节点106,而如果主路径上的一个或多个节点配置有本地转发策略,如入口节点101和网络节点104之间配置SR TE隧道,则入口节点101接收到报文时会优先通过所述SR TE隧道将所述报文转发给网络节点104,此时配置有本地转发策略的入口节点101就优先使用SR TE隧道将报文转发给网络节点104。
S360,网络节点104通过所述主路径接收入口节点101发送的报文,该报文的目的地址为节点105的段标识。
举例来说,网络节点104的下一跳节点为105,网络节点104向下一跳发送节点105发送的报文的目的地址为105的段标识。
S370,如果节点105出现故障,则网络节点104用所述报文的目的地址替换为第一地址,并通过备用路径发送该报文到出口节点106。
举例来说,节点105可以通过IS-IS协议或者OSPF协议通知SR网络中的其他节点节点105出现故障。网络节点104获得节点105故障的消息,将接收到的报文的目的地址用C4::00替换A4::00,而所述C4::00携带严格SPF标记,因此网络节点104应该使用经过严格按照SPF算法建立的备用路径发送报文到出口节点106,通过上述方法避免转发报文出现环路。
如图6为所示,为本申请提供一种网络中传输的第一节点600,该网络包括第一节点600、第二节点和第三节点。该网络中建立由从所述第二节点到所述第三节点的第一路径,其中,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点600为所述第一路径上的节点。该第一节点可以是图1中的主路径和备用路径上的任一节点,也可以是图2和图3中的第一节点。该节点包括:接收单元601、确定 单元602、添加单元603、建立单元604和发送单元605。
接收单元601用于接收所述第三节点发送的所述第三节点的第二段标识,还用于接收所述第二节点通过所述第一路径发送的报文,其中,所述报文的地址为所述第一节点的下一跳节点的段标识。
确定单元602用于确定所述第一路径上的所述第一节点的下一跳节点出现故障。
添加单元603用于响应于确定单元602确定的所述第一节点的下一跳节点出现故障,用所述第二段标识添加到所述报文中。
建立单元604根据所述接收单元601接收的所述第二段标识建立第二路径。
发送单元605通过建立单元604建立的第二路径将所述报文发送到所述第三节点。
在一种可能的实现方式中,第一节点的接收单元601以及入口节点接收到用于标识出口节点的第一段标识和第二段标识,其中入口节点使用第一第一标识建立发送报文到出口节点的第一路径。入口节点通过第一路径向第一节点转发报文,第一节点的接收单元601接收到报文并根据报文携带的下一跳节点的段标识转发报文。当第一节点的确定单元602确定第一节点的下一跳的网路设备出现故障,第一节点的添加单元603将第二标识添加在报文的目的地址。第一节点的建立单元604建立第二路径,第一节点的发送单元605根据建立单元604建立的第二路径发送报文到出口节点。
可选的,所述第二段标识包含路径计算标识,其中,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
在一种可能实现方式中,第二段标识携带路径计算标识,例如携带严格SPF标记,严格SPF(英文:Strict Shortest Path First)算法同样是基于SPF算法决策转发报文的路径,但是严格SPF要求所有SR网络中的节点都必须严格按照SPF算法决定发送报文的路径,排除本地策略的适用,即SR TE隧道或者配置的路由策略等本地策略的使用优先级低于严格按照SPF计算路径的要求,优先使用SPF算法建立第二路径。
可选的,所述建立单元604用于确定单元602在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立所述第二路径,或在确定所述第一路径上的所述第一节点的下一跳节点出现故障之前建立所述第二路径。
可选的,添加单元603元将所述第二段标识添加到所述报文中包括:所述添加单元603用所述第二段标识替换所述报文的目的地址。
可选的,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
可选的,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
在该具体实施方式中,所述接收单元601、所述确定单元602、所述添加单元603、建立单元604和发送单元605的具体实现可以参考图2和图3中所述的第一节点的功能和实施步骤,为了简洁,不再赘述。
以图7为例,为本申请提供另一种第一节点700的硬件构造图。所述第一节点包括网络接口701和处理器702,还可以包括存储器703。
网络接口701可以是有线接口,例如光纤分布式数据接口(英文:Fiber Distributed Data Interface,简称:FDDI)、以太网(英文:Ethernet)接口。
处理器702包括但不限于中央处理器(英文:central processing unit,简称:CPU),网络处理器(英文:network processor,简称:NP),专用集成电路(英文:application-specific integrated circuit,简称:ASIC)或者可编程逻辑器件(英文:programmable logic device,缩写:PLD)中的一个或多个。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。处理器702负责管理总线704和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节,电源管理以及其他控制功能。存储器703可以用于存储处理器702在执行操作时所使用的数据。
存储器703可以是包括但不限于内容寻址存储器(英文:content-addressable memory,简称:CAM),例如三态内容寻址存储器(英文:ternary CAM,简称:TCAM),随机存取存储器(英文:random-access memory,简称:RAM)。
存储器703也可以集成在处理器702中。如果存储器703和处理器702是相互独立的器件,存储器573和处理器702相连,例如存储器703和处理器702可以通过总线通信。网络接口701和处理器702可以通过总线通信,网络接口701也可以与处理器702直连。
总线704可以包括任意数量的互联的总线和桥,总线704将包括由处理器702代表的一个或多个处理器702和存储器703代表的存储器的各种电路链接在一起。总线704还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
在一种可能的实现方式中,该网络包括第一节点、第二节点和第三节点。所述网络中建立有从所述第二节点到所述第三节点的第一路径,其中,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点为所述第一路径上的节点。该第一节点包括:网络接口701和处理器702。
网络接口701用于接收所述第三节点发送的所述第三节点的第二段标识。
网络接口701用于接收所述第二节点通过所述第一路径发送的报文,其中,所述报文的地址为所述第一节点的下一跳节点的段标识。
处理器702用于确定所述第一路径上的所述第一节点的下一跳节点出现故障。
处理器702用于响应于所述第一节点确定所述第一节点的下一跳节点出现故障,将所述第二段标识添加到所述报文中,并通过第二路径将所述报文发送到所述第三节点,其中所述第二路径为所述第一节点根据所述第二段标识建立的。
可选的,处理器702在所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立的第二路径,或者,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障之前建立的。
可选的,处理器702确定所述第一路径上的所述第一节点的下一跳节点出现故障时,用所述第二段标识替换所述报文的目的地址。
可选的,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
可选的,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
在该具体实施方式中,所述处理器702和所述网络接口701的具体实现可以参考图2和图3中所述第一节点的功能和实施方法,为了简洁,不再赘述。
如图8所示,为本申请提供一种网络中传输报文的***,所述***包括第一节点801、第二节点802和第三节点803。
所述第一节点801可以是图1中的网络节点104,还可以是方法流程图2和图3中的第一节点,可以实现图2和图3中所述第一节点的功能,还可以是图6或图7中的第一节点。
第一节点801用于接收所述第三节点发送的所述第三节点的第二段标识,还用于接收所述第二节点通过所述第一路径发送的报文。第一节点还用于确定所述第一路径上的所述第一节点的下一跳节点出现故障,响应于所述第一节点确定所述第一路径上的所述第一节点的下一跳节点出现故障,将所述第二段标识添加到所述报文中,根据所述第二段标识建立第二路径,并通过第二路径将所述报文发送到所述第三节点,其中,所述报文的地址为所述第一节点的下一跳段节点的段标识。
第二节点802用于接收第三节点的第一段标识,根据该第一段标识建立由第二节点到所述第三节点的第一路径,并通过该第一路径向第一节点发送报文。
第三节点803用于向第一节点发送第一段标识,向第二节点发送第二段标识,以及接收第一节点通过第二路径发送的报文。
可选的,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立的,或者,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障之前建立的。
可选的,所述第一节点将所述第二段标识添加到所述报文中包括:所述第一节点用所述第二段标识替换所述报文的目的地址。
可选的,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
可选的,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
在该具体实施方式中,所述第一节点801具体实现可以参考图2和图3中所述的第一节点的功能和实施步骤。为了简洁,不再赘述。
应理解,在本申请的各种实施例中,上述各方法的序号的大小并不意味着执行顺序的先后,各方法的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所公开的方法和设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
所述集成的单元如果以硬件结合软件的形式实现并作为独立的产品销售或使用时,所述软件可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案对现有技术做出贡献的部分技术特征可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者节点等)执行本发明各个实施例所述方法的部分或全部步骤。而前述的存储介质可以是U盘、移动硬盘、只读存储器(简称:ROM,英文:Read-Only Memory)、随机存取存储器(简称:RAM,英文:Random Access Memory)、磁碟或者光盘。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种网络中传输报文的方法,所述网络包括第一节点、第二节点和第三节点,其特征在于,所述网络中建立有从所述第二节点到所述第三节点的第一路径,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点为所述第一路径上的节点,所述方法包括:
    所述第一节点接收所述第三节点发送的所述第三节点的第二段标识;
    所述第一节点接收所述第二节点通过所述第一路径发送的报文,所述报文的地址为所述第一节点的下一跳节点的段标识;
    所述第一节点确定所述第一路径上的所述第一节点的下一跳节点出现故障;
    响应于所述第一节点确定所述第一节点的下一跳节点出现故障,所述第一节点将所述第二段标识添加到所述报文中,并通过第二路径将所述报文发送到所述第三节点,所述第二路径为所述第一节点根据所述第二段标识建立的。
  2. 根据权利要求1所述的方法,其特征在于,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立的,或者,所述第二路径为所述第一节点在确定所述第一路径上的所述第一节点的下一跳节点出现故障之前建立的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点将所述第二段标识添加到所述报文中包括:
    所述第一节点用所述第二段标识替换所述报文的目的地址。
  4. 根据权利要求1至3任一权利要求所述的方法,其特征在于,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
  5. 根据权利要求1至4任一权利要求所述的方法,其特征在于,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
  6. 一种网络中传输报文的第一节点,所述网络包括第一节点、第二节点和第三节点,其特征在于,所述网络中建立有从所述第二节点到所述第三节点的第一路径,所述第一路径为根据所述第三节点的第一段标识建立的,所述第一节点为所述第一路径上的节点,所述第一节点包括:
    接收单元,用于接收所述第三节点发送的所述第三节点的第二段标识,接收所述第二节点通过所述第一路径发送的报文,所述报文的地址为所述第一节点的下一跳节点的段标识;
    确定单元,用于确定所述第一路径上的所述第一节点的下一跳节点出现故障;
    添加单元,用于响应于所述确定单元所确定的所述第一路径上的所述第一节点的下一跳节点出现故障,将所述第二段标识添加到所述报文中;
    建立单元,用于根据所述接收单元接收的所述第二段标识建立第二路径;
    发送单元,用于通过所述建立单元建立的第二路径将所述报文发送到所述第三节点。
  7. 根据权利要求6所述的第一节点,其特征在于,所述建立单元,用于确定单元在确定所述第一路径上的所述第一节点的下一跳节点出现故障时建立所述第二路径,或在确定所述第一路径上的所述第一节点的下一跳节点出现故障之前建立所述第二路径。
  8. 根据权利要求6或7所述的第一节点,其特征在于,所述添加单元将所述第二段标识添加到所述报文中包括:
    所述添加单元用所述第二段标识替换所述报文的目的地址。
  9. 根据权利要求6至8任一所述的第一节点,其特征在于,所述第二段标识包含路径计算标识,所述路径计算标识用于指示所述第一节点根据最短路径优先算法建立所述第二路径。
  10. 根据权利要求6至9任一所述的第一节点,其特征在于,所述第一段标识和第二段标识为所述第三节点的第六版互联网协议IPv6地址。
  11. 一种网络中传输报文的节点,其特征在于,所述节点包括:处理器以及与处理器耦合的存储器,其中,
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器中的程序指令执行权利要求1至5任意一项所述的方法。
  12. 一种计算机可读介质,包括指令,当其在计算机上执行时,使得所述计算机执行如权利要求1至5任意一项所述的方法。
PCT/CN2018/117365 2017-12-22 2018-11-26 一种网络中传输报文的方法和节点 WO2019120042A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227015507A KR102450096B1 (ko) 2017-12-22 2018-11-26 네트워크에서의 패킷을 송신하기 위한 방법 및 노드
KR1020207020647A KR102397232B1 (ko) 2017-12-22 2018-11-26 네트워크에서의 패킷을 송신하기 위한 방법 및 노드
JP2020534191A JP7039707B2 (ja) 2017-12-22 2018-11-26 ネットワークにおけるパケット伝送のための方法及びノード
EP18890708.3A EP3716542A4 (en) 2017-12-22 2018-11-26 PROCESS AND NODE FOR TRANSMITTING A PACKAGE IN A NETWORK
US16/906,859 US11336565B2 (en) 2017-12-22 2020-06-19 Method and node for packet transmission in network
JP2022036012A JP7288993B2 (ja) 2017-12-22 2022-03-09 ネットワークにおけるパケット伝送のための方法及びノード
US17/729,865 US11882026B2 (en) 2017-12-22 2022-04-26 Method and node for packet transmission in network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711408028.9A CN108337157B (zh) 2017-12-22 2017-12-22 一种网络中传输报文的方法和节点
CN201711408028.9 2017-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/906,859 Continuation US11336565B2 (en) 2017-12-22 2020-06-19 Method and node for packet transmission in network

Publications (1)

Publication Number Publication Date
WO2019120042A1 true WO2019120042A1 (zh) 2019-06-27

Family

ID=62924363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117365 WO2019120042A1 (zh) 2017-12-22 2018-11-26 一种网络中传输报文的方法和节点

Country Status (6)

Country Link
US (2) US11336565B2 (zh)
EP (1) EP3716542A4 (zh)
JP (2) JP7039707B2 (zh)
KR (2) KR102397232B1 (zh)
CN (2) CN108337157B (zh)
WO (1) WO2019120042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691445A (zh) * 2020-05-18 2021-11-23 华为技术有限公司 报文转发备份路径确定方法及相关设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337157B (zh) 2017-12-22 2021-06-15 华为技术有限公司 一种网络中传输报文的方法和节点
CN109246011B (zh) * 2018-10-25 2021-05-25 新华三技术有限公司 一种报文转发方法及装置
CN113507417B (zh) 2018-10-27 2023-05-09 华为技术有限公司 报文处理方法、相关设备及计算机存储介质
US11245617B1 (en) 2018-12-28 2022-02-08 Juniper Networks, Inc. Compressed routing header
CN111669422B (zh) * 2019-03-08 2022-03-11 华为技术有限公司 报文的传输方法和设备
CN111682996B (zh) * 2019-03-11 2024-01-05 华为技术有限公司 网络中报文转发的方法、网络节点、网络***
US11412071B2 (en) * 2019-05-13 2022-08-09 Juniper Networks, Inc. Compressed routing header information for networks
CN112217651B (zh) * 2019-07-09 2023-07-07 中兴通讯股份有限公司 融合网络的路径标签确定方法及装置
CN112398732B (zh) * 2019-08-12 2023-09-12 迈普通信技术股份有限公司 一种报文处理方法、装置及***
CN112714061A (zh) * 2019-10-24 2021-04-27 华为技术有限公司 路由方法和装置
CN112804140B (zh) * 2019-11-14 2023-08-01 中兴通讯股份有限公司 传输路径切换方法、装置、网络节点、介质及网络***
CN113225258B (zh) * 2020-02-06 2023-04-07 阿里巴巴集团控股有限公司 一种报文转发方法、装置、网络设备及***
CN113285876B (zh) * 2020-02-19 2024-04-23 中兴通讯股份有限公司 路由方法、路由装置及计算机可读存储介质
CN111885630B (zh) * 2020-07-01 2023-06-30 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN112104557B (zh) * 2020-08-27 2022-10-21 新华三技术有限公司 一种检测链路的方法和装置
CN114629834B (zh) * 2020-11-27 2023-06-27 华为技术有限公司 通信方法及装置
CA3233012A1 (en) * 2021-12-30 2023-07-06 Lianhai WU Methods and apparatuses for handling establishment and failure in multi-path case
CN117527684A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 一种报文传输方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055273A1 (en) * 2009-11-06 2011-05-12 Telefonaktiebolaget L M Ericsson (Publ) Disjoint path computation algorithm
CN102972009A (zh) * 2010-07-02 2013-03-13 华为技术有限公司 用于实施联合服务器选择和路径选择的***与方法
US20130077475A1 (en) * 2011-09-27 2013-03-28 Telefonaktiebolaget L M Ericsson (Publ) Optimizing Endpoint Selection of MRT-FRR Detour Paths
US20130077476A1 (en) * 2011-09-27 2013-03-28 Telefonaktiebolaget L M Ericsson (Publ) Incremental Deployment of MRT Based IPFRR
CN108337157A (zh) * 2017-12-22 2018-07-27 华为技术有限公司 一种网络中传输报文的方法和节点

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3356145B2 (ja) 1999-12-22 2002-12-09 日本電気株式会社 伝送路障害救済方法、伝送路障害救済システム、記憶媒体およびルータ
US7864669B2 (en) * 2005-10-20 2011-01-04 Cisco Technology, Inc. Method of constructing a backup path in an autonomous system
JP5180977B2 (ja) 2010-01-28 2013-04-10 日本電信電話株式会社 ノード、パケット転送方法およびそのプログラム
US9049233B2 (en) * 2012-10-05 2015-06-02 Cisco Technology, Inc. MPLS segment-routing
US10044607B2 (en) * 2015-06-09 2018-08-07 Cisco Technology, Inc. Communication with segment routing in a cable modem network environment
US10069725B1 (en) * 2016-03-18 2018-09-04 Cisco Technology, Inc. Collapsed forwarding for service domain routers
US10263881B2 (en) * 2016-05-26 2019-04-16 Cisco Technology, Inc. Enforcing strict shortest path forwarding using strict segment identifiers
US11032197B2 (en) * 2016-09-15 2021-06-08 Cisco Technology, Inc. Reroute detection in segment routing data plane
US10506083B2 (en) * 2017-06-27 2019-12-10 Cisco Technology, Inc. Segment routing gateway storing segment routing encapsulating header used in encapsulating and forwarding of returned native packet
US10469367B2 (en) * 2017-10-04 2019-11-05 Cisco Technology, Inc. Segment routing network processing of packets including operations signaling and processing of packets in manners providing processing and/or memory efficiencies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055273A1 (en) * 2009-11-06 2011-05-12 Telefonaktiebolaget L M Ericsson (Publ) Disjoint path computation algorithm
CN102972009A (zh) * 2010-07-02 2013-03-13 华为技术有限公司 用于实施联合服务器选择和路径选择的***与方法
US20130077475A1 (en) * 2011-09-27 2013-03-28 Telefonaktiebolaget L M Ericsson (Publ) Optimizing Endpoint Selection of MRT-FRR Detour Paths
US20130077476A1 (en) * 2011-09-27 2013-03-28 Telefonaktiebolaget L M Ericsson (Publ) Incremental Deployment of MRT Based IPFRR
CN108337157A (zh) * 2017-12-22 2018-07-27 华为技术有限公司 一种网络中传输报文的方法和节点

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691445A (zh) * 2020-05-18 2021-11-23 华为技术有限公司 报文转发备份路径确定方法及相关设备

Also Published As

Publication number Publication date
US11882026B2 (en) 2024-01-23
EP3716542A1 (en) 2020-09-30
US20220255851A1 (en) 2022-08-11
US11336565B2 (en) 2022-05-17
CN113489641A (zh) 2021-10-08
KR102450096B1 (ko) 2022-10-04
KR20200096642A (ko) 2020-08-12
US20200322261A1 (en) 2020-10-08
JP2021507625A (ja) 2021-02-22
JP7288993B2 (ja) 2023-06-08
JP2022078251A (ja) 2022-05-24
JP7039707B2 (ja) 2022-03-22
KR20220065893A (ko) 2022-05-20
CN108337157A (zh) 2018-07-27
CN108337157B (zh) 2021-06-15
KR102397232B1 (ko) 2022-05-12
EP3716542A4 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2019120042A1 (zh) 一种网络中传输报文的方法和节点
CN111385206B (zh) 报文转发的方法、网络***、相关设备及计算机存储介质
EP2761827B1 (en) Incremental deployment of mrt based ipfrr
US8259564B1 (en) Egress protection for label switched paths
US20170093611A1 (en) Egress node protection in evpn all-active topology
US8040792B2 (en) Techniques for determining local repair connections
US20200396162A1 (en) Service function chain sfc-based communication method, and apparatus
US7936667B2 (en) Building backup tunnels for fast reroute in communications networks
US20210409312A1 (en) Fault Protection Method, Node, and Storage Medium
US11431618B2 (en) Flexible path encoding in packet switched networks
US10439880B2 (en) Loop-free convergence in communication networks
US9246838B1 (en) Label switched path setup using fast reroute bypass tunnel
WO2020135395A1 (zh) 一种跨内部网关协议的前缀标识通告方法和装置
US11646960B2 (en) Controller provided protection paths
WO2022166543A1 (zh) 故障保护方法及装置、存储介质、电子装置
CN111064596B (zh) 对于用于多宿主节点故障的bum流量的节点保护
US20090292942A1 (en) Techniques for determining optimized local repair paths
WO2008145046A1 (fr) Procédé de détermination d'un nœud de protection local, et routeur
WO2022222884A1 (zh) 转发路径的故障感知方法、装置及***
CN114978975B (zh) 以太网虚拟私有网络中的bum业务的快速重路由
Garg Label Distribution Protocol & Loop Free Alternative
CN115134283A (zh) 一种环网保护方法及装置
CN115499369A (zh) 路径保护方法及装置
CN114978975A (zh) 以太网虚拟私有网络中的bum业务的快速重路由

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890708

Country of ref document: EP

Effective date: 20200623

ENP Entry into the national phase

Ref document number: 20207020647

Country of ref document: KR

Kind code of ref document: A