WO2019119899A1 - 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法 - Google Patents

基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法 Download PDF

Info

Publication number
WO2019119899A1
WO2019119899A1 PCT/CN2018/105354 CN2018105354W WO2019119899A1 WO 2019119899 A1 WO2019119899 A1 WO 2019119899A1 CN 2018105354 W CN2018105354 W CN 2018105354W WO 2019119899 A1 WO2019119899 A1 WO 2019119899A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
electromagnet
electromagnetic
anchor cable
hydraulic
Prior art date
Application number
PCT/CN2018/105354
Other languages
English (en)
French (fr)
Inventor
张农
谢正正
周俊瑶
项哲
李新跃
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3070440A priority Critical patent/CA3070440C/en
Priority to US16/487,425 priority patent/US11199484B2/en
Priority to AU2018388916A priority patent/AU2018388916B2/en
Publication of WO2019119899A1 publication Critical patent/WO2019119899A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention relates to a device and a method for testing the working performance of a rock bolt for simulating rock formation fracture and separation layer based on electromagnetic action, and is particularly suitable for simulating the technical field of working performance of the anchor cable in the roadway.
  • the existing anchor cable performance monitoring device simply tests the material properties of the anchor cable and does not reflect the basic performance characteristics of the anchor cable under actual working conditions. In the working state of the anchor cable, not only the vertical stress of the overburden but also the horizontal stress of the surrounding rock mass. Therefore, the basic performance of the anchor cable in the working state is different from the basic performance of the anchor cable in the non-working state. Therefore, the data obtained by simply testing the basic performance of the anchor cable cannot completely guide the on-site anchor. Or the support work of the anchor cable will cause a roof safety accident caused by the breaking of the anchor cable due to the inaccurate monitoring of the performance of the anchor cable.
  • the structure is simple and convenient to use, and can effectively test the layered rock movement of the performance change characteristics of the anchor rope under the surrounding rock under the action of surrounding rock in the roadway engineering. Test device and test method for working performance of anchor cable under load.
  • the working device for testing the working capacity of the anchor cable under the dynamic load of the layered rock mass of the present invention the device for testing the working performance of the anchor cable and the separation layer based on the electromagnetic action, including the top seat and a plurality of hydraulic columns are arranged between the base, the top seat and the base, and a plurality of hydraulic columns are provided with clamping devices;
  • the clamping device comprises two sets of drawn block-shaped clamping bodies, and the two sets of drawn block-shaped clamping bodies are respectively arranged on hydraulic rods or hydraulic cylinders of a plurality of hydraulic columns, and two sets of drawn block-shaped clamping bodies are up and down
  • the drawn block-shaped clamping body comprises a plurality of sets of clamping bodies, and the plurality of sets of clamping bodies are used for clamping or loosening the tested anchoring cables
  • each set of clamping bodies comprises a front block-shaped clamping body and
  • the rear block-shaped clamping body is provided with a block-shaped clamping body hydraulic cylinder connected to the rear block-shaped clamping body, and the front block-shaped clamping body and the rear block-shaped clamping body are slidably connected.
  • a block-shaped holder sensor is disposed on a contact surface between the front block-shaped clamping body of each group of clamping bodies and the front block-shaped clamping body of the other group of clamping bodies;
  • a layered rock mass simulation device is disposed below the drawn block-shaped clamping body disposed at the hydraulic rod, and the layered rock mass simulation device includes an electromagnet portion
  • a hydraulic pushing baffle is respectively arranged on both sides of the electromagnet portion, and each hydraulic pushing baffle is pressed against the hydraulic column on both sides by a baffle at the bottom of the electromagnetic jack, wherein the electromagnetic jack comprises an electromagnet hydraulic cylinder and a hydraulic pressure
  • the electromagnet portion includes two sets of corresponding electromagnets, the electromagnet includes an end electromagnet and a front end electromagnet, wherein the end electromagnet is fixed on the finger hydraulic column, and the front end electromagnet is movably connected with the end electromagnet.
  • the inner corner of the front end electromagnet and the end electromagnet is provided with an arc-shaped groove at the contact point of the anchor cable test piece, the rubber groove is arranged in the arc-shaped groove, and the safety door is arranged between the two front end electromagnets
  • the electromagnet portion can be taken out after the safety door is opened, and the front end electromagnet is composed of a plurality of rectangular electromagnetic blocks arranged side by side, the safety door is disposed outside the plurality of electromagnetic blocks, and the electromagnetic block is provided with a plurality of The solenoid portion, the electromagnet is provided with a gate valve safety door handle and door safety, protection safety door is provided at a front end portion of the electromagnet.
  • the number of the rectangular electromagnetic blocks is 4-6, the height of each electromagnetic block is 3-10 cm, the total height is 12 cm-60 cm, and the electromagnet blocks are magnetically interacted to form a complete whole.
  • the plurality of internal electromagnetic coils are wound around the cylindrical iron block and integrally embedded in the electromagnetic block body to form a whole body.
  • the rubber elastic gasket has a thickness of 2 to 5 cm and is bonded to the inner wall of the arcuate groove of the quarter circle of the electromagnetic block.
  • the circular groove formed by the combination of the arc groove is 10 to 50 mm, and the rubber elastic pad.
  • the sheet effectively prevents direct contact between the anchor cable and the electromagnet portion, causing damage to the electromagnet block.
  • the rubber elastic gasket is used to change the steel contact into elastic contact, thereby reducing the damage to the electromagnet when the bolt cable is broken. .
  • a method for testing the working performance of anchor cables based on electromagnetic interaction to simulate rock fracture and separation the steps are as follows:
  • the body sensor performs monitoring of the stress change of the anchor cable test piece
  • the electromagnetic block is controlled to be powered off, and the hydraulic rods of the plurality of hydraulic columns are controlled to reset, the electromagnetic jack is controlled to contract, the safety gate valve is opened, the safety door portion is opened by the electromagnet door handle, the electromagnet portion is removed, and the drawing is opened.
  • the block-shaped holder is taken out and the anchor cable test piece is taken out.
  • the invention directly utilizes the electromagnetic force of the electromagnetic block body to simulate the interaction between the surrounding rock and the anchor cable test piece, and accurately records various performance parameters of the working state of the anchor cable test piece through the monitoring part, and has high precision. , has a positive guiding significance for guiding on-site work;
  • the horizontal stress of the present invention can be adjusted by pushing the pressure baffle through the hydraulic power part, thereby realizing both the vertical stress effect on the anchor cable material and the horizontal stress effect, and more in line with the actual working state of the anchor cable;
  • the invention is designed to use the safety protection door and the safety gate valve to completely close the broken part of the anchor cable test piece in an independent area, thereby improving the safety of equipment instruments and experimental operators;
  • the plurality of sets of plate-shaped electromagnetic monomers of the invention are composed, each group of electromagnetic monomers simulates a layer of rock layers, and electromagnetic force gravitation and repulsive force between the electromagnetic cells causes the electromagnetic block parts to move at a certain place.
  • the separation layer is used to simulate the separation phenomenon of the rock formation structure on the site, which is convenient to disassemble and assemble, simple in structure and convenient in operation.
  • FIG. 1 is a schematic structural view of a bolt and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • FIG. 2 is a cross-sectional view showing the structure A-A of the anchor rod and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • FIG. 3 is a schematic view showing an electromagnet portion of a bolt and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • FIG. 4 is a schematic view showing an electromagnetic block body of a bolt and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • Figure 5 is a schematic view showing the electromagnetic coil inside the electromagnetic block of the anchor rod and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • FIG. 6 is a schematic view of a portion of an electromagnet hydraulic cylinder of a bolt and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention
  • Fig. 7 is a partial plan view showing the drawing block holder of the anchor rod and anchor cable performance testing device under the dynamic load of the layered rock mass of the present invention.
  • the apparatus for testing the working performance of the anchor cable and the separation layer based on the electromagnetic action of the present invention comprises a top seat 1 and a base 2, and a plurality of hydraulic columns 3 are arranged between the top seat 1 and the base 2 a plurality of hydraulic columns 3 are provided with clamping devices;
  • the clamping device comprises two sets of drawn block-shaped clamping bodies 4, and two sets of drawn block-shaped clamping bodies 4 are respectively arranged on hydraulic rods or hydraulic cylinders of a plurality of hydraulic columns 3, and two sets of drawing block clamps
  • the holding body 4 is disposed upside down, the drawing block-shaped clamping body 4 comprises a plurality of sets of clamping bodies, and the plurality of sets of clamping bodies are used for clamping or loosening the tested anchoring cables, and each set of clamping bodies comprises a front block.
  • the block-shaped holder body 4-1 and the rear block-shaped holder 4-2 are provided with a block-shaped holder hydraulic cylinder 4 connected to the rear block-shaped holder 4-2.
  • the front block-shaped holding body 4-1 and the rear block-shaped holding body 4-2 are slidably connected, and the front block-shaped holding body 4-1 of each group of the holding body and the front of the other group holding body a block-shaped holder sensor 4-4 is disposed on the contact surface between the block-shaped clamping bodies 4-1;
  • a layered rock mass simulation device is provided below the drawn block-shaped clamping body 4 disposed at the hydraulic rod, and the layered rock mass simulation device includes electromagnetic
  • the body portion 7 is provided with hydraulic pushing baffles 14 on both sides of the electromagnet portion 7, and each hydraulic pressing baffle 14 is pressed against the hydraulic column 3 on both sides by a baffle at the bottom of the electromagnetic jack, the electromagnetic jack
  • the electromagnet cylinder 6 and the hydraulic support portion 5 are included, and the electromagnet portion 7 includes two sets of corresponding electromagnets, and the electromagnet includes an end electromagnet 7-1 and a front end electromagnet 7-2, wherein the end electromagnet 7-1 Fixed on the finger hydraulic column 3, the front end electromagnet 7-2 and the end electromagnet 7-1 are movably connected to facilitate free disassembly, the inner corner of the front end electromagnet 7-2 and the end electromagnet 7-1 and the anchor cable test
  • the contact portion of the member 8 is provided with an arc-shaped groove
  • the circular groove formed by the combination of the arc groove is 10 to 50 mm, and the rubber elastic gasket 12 is effectively prevented.
  • the anchor cable directly contacts the electromagnet portion 7 to cause damage to the electromagnet block.
  • the rubber elastic gasket 12 is used to change the steel contact into an elastic contact, thereby reducing damage to the electromagnet when the anchor cable is broken.
  • a safety door 7-3 is disposed between the two front end electromagnets 7-2.
  • the electromagnet portion 7 can be taken out after the safety door 7-3 is opened.
  • the front end electromagnet 7-2 is composed of a plurality of rectangular electromagnetic block bodies 9 side by side, rectangular electromagnetic The number of blocks 9 is 4-6, the height of each electromagnetic block 9 is 3-10 cm, and the total height is 12 cm-60 cm.
  • the electromagnet block 9 uses magnetic force to form a complete whole, and the safety door 7-3 is set.
  • a plurality of internal electromagnetic coils 10 are disposed in the electromagnetic block body 9, and the plurality of internal electromagnetic coils 10 are wound around the cylindrical iron block and integrally embedded in the electromagnetic block body 9 to form a whole body.
  • the safety door 7-3 is provided with an electromagnet door handle 11 and a safety gate valve 13, and the safety door 7-3 is a protection measure provided at the front end of the electromagnet portion 7.
  • a method for testing the working performance of anchor cables based on electromagnetic interaction to simulate rock fracture and separation the steps are as follows:
  • the block-shaped holder sensor 4-4 performs monitoring of the stress change of the anchor cable test piece 8;
  • the electromagnetic block 9 is controlled to be powered off, and at the same time, the hydraulic rods of the plurality of hydraulic columns 3 are controlled to be reset, the electromagnetic jack is controlled to contract, the safety gate valve 13 is opened, and the safety door portion 7-3 is opened by the electromagnet door handle 11 and removed.
  • the electromagnet portion 7, the pull-up block-shaped holder 4 is opened, and the anchor cable test piece 8 is taken out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法,适用于模拟巷道现场测试锚杆索工作性能的技术领域。其包括顶座(1)和底座(2),顶座(1)和底座(2)之间设有多根液压立柱(3),多根液压立柱(3)上设有夹持装置,在两组拉拔块状夹持体(4)之间设有电磁块体(9)。利用电磁块体(9)的引力与斥力作用,使层状的电磁块体在加载过程中,发生离层或断裂效果,模拟现场围岩与锚杆索试件(8)的相互作用,准确记录锚杆索试件(8)工作状态的各项性能参数,对于指导现场工作具有积极地指导意义。

Description

基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法 技术领域
本发明涉及一种基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法,尤其适用于模拟巷道现场测试锚杆索工作性能的技术领域。
技术背景
在煤矿深部开采中,由于地应力的增加,巷道围岩更容易发生变形,而围岩变形量超出锚杆索的极限变形能力时,锚杆索将会发生破断。同时,在回采工作面中,由于煤岩体受强采动影响,将会发生较大变形,从而将会引起锚杆索的较大变形,当变形量超出锚杆索的极限变形能力时,锚杆索将会发生破断。锚杆索的破断会引起冒顶或岩爆事故,造成人员伤亡或机械设备损伤。一种层状岩体动载荷作用下锚杆索工作性能测试装置,将模拟围岩对锚杆索的相互作用,监测锚杆索的实际工作性能,为现场施工具有积极的指导作用。
现有的锚杆索性能监测装置只是单纯的测试锚杆索的材料性能,并不能反映锚杆索实际工作下基本性能的特征。锚杆索工作状态中不仅受到上覆岩层的垂直应力,同时也受周围岩体的水平应力。所以在工作状态下的锚杆索的基本性能与非工作状态的锚杆索的基本性能是有区别的,因此单纯的测试锚杆索的基本性能而得到的数据,并不能完全指导现场锚杆或锚索的支护工作,将会因锚杆索的性能监测不准确而发生因锚杆索破断引起的顶板安全事故。
随着矿井向深地化和大型机械化开采的发展,采掘过程中的地应力与围岩扰动都将逐渐增大,因此为更好指导现场的工程实践,需要对锚杆索的工作性能有准确的把握。目前尚缺一种能够模拟现场围岩与锚杆索相互作用,监测工程实践中的锚杆索工作性能的监测装置,现有的监测装置只能单纯的测验无工作状态下的锚杆索的基本性能,对于指导现场的工程实践并不具有真正的实际意义。
发明内容
技术问题:针对上述技术的不足之处,提供一种结构简单,使用方便,可以有效测试井巷工程中在围岩作用下对锚杆索拉拔状态下的性能变化特征的层状岩体动载荷作用下锚杆索工作性能测试装置及测试方法。
技术方案:为实现上述技术目的,本发明的层状岩体动载荷作用下锚杆索工作性能测试装置,基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,包括顶座和底座,顶座和底座之间设有多根液压立柱,多根液压立柱上设有夹持装置;
所述夹持装置包括两组拉拔块状夹持体,两组拉拔块状夹持体分别设置在多根液压立柱的液压杆或者液压缸上,两组拉拔块状夹持体上下相对设置,所述拉拔块状夹持体包括多组夹持体,多组夹持体用于夹住或松开被测锚杆索,每组夹持体包括前块状夹持体和后块状夹 持体,前块状夹持体内设有与后块状夹持体连接的块状夹持体液压缸,前块状夹持体与后块状夹持体之间滑动连接,每组夹持体的前块状夹持体与其他组夹持体的前块状夹持体之间的接触面上设有块状夹持体感应器;
在两组拉拔块状夹持体之间,靠近设置在液压杆处的拉拔块状夹持体的下方设有层状岩体模拟装置,所述层状岩体模拟装置包括电磁体部分,电磁体部分两侧分别设有液压推压挡板,每个液压推压挡板通过电磁千斤顶底部的挡板抵在两侧的液压立柱上,所述的电磁千斤顶包括电磁体液压缸和液压支撑部分,电磁体部分包括两组相对应设置的电磁体,电磁体包括末端电磁体和前端电磁体,其中末端电磁体固定在指液压立柱上,前端电磁体与末端电磁体之间活动连接,便于自由拆卸,前端电磁体和末端电磁体的内角与锚杆索试件接触处设有弧形凹槽,弧形凹槽内设有橡胶弹性垫片,两个前端电磁体之间设有安全门,打开安全门后才可以取出电磁体部分,前端电磁体由多个矩形电磁块体并排构成,安全门设置在多个电磁块体的外侧,电磁块体中设有多个内部电磁线圈,安全门上设有电磁体门把手和安全门阀,安全门为设置在电磁体部分前端的保护措施。
所述的矩形电磁块体数量在4~6个,每个电磁块体的高度为3~10cm,总高度为12cm~60cm,电磁体块体利用磁力相互作用形成一个完整的整体。
所述多个内部电磁线圈缠绕在圆柱状铁块上整体嵌入电磁块体体内形成一个整体。
所述橡胶弹性垫片厚度为2~5cm,粘结在电磁块体的四分之一圆的弧形凹槽内壁上,弧形凹槽组合形成的圆形孔径为10~50mm,橡胶弹性垫片有效防止锚杆索与电磁体部分直接的钢性接触,造成对电磁体块的损伤,利用橡胶弹性垫片,改钢性接触为弹性接触,减少了锚杆索破断时对电磁体的损伤。
一种基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试方法,其步骤如下:
a、调整多根液压立柱的液压杆升起,带动上拉拔夹持部分移动,使上下拉拔块状夹持体的位置适合锚杆索试件的长度,前端块状夹持体中的块状夹持体液压缸的伸长,使块状夹持体的末端延前端块状夹持体斜向上运动,从而张开拉拔块状夹持体,将锚杆索试件放入张开拉拔块状夹持体中,控制拉拔块状夹持体中的夹持块体的液压缸收缩,使块状夹持体的末端斜向下运动,闭合拉拔块状夹持部分的夹持部分,将锚杆索的试件夹持紧固;
b、打开安全门阀,开启安全门,调整两侧的电磁千斤顶收缩,在锚杆索试件四周分别先后水平安装末端电磁体和前端电磁体从而将锚杆索试件包裹住,同时保证末端电磁体和前端电磁体与锚杆索试件接触处位于橡胶弹性垫片处;
c、将电磁体部分安装水平后,关闭安全门部分,固定安全门阀;
d、推送电磁千斤顶带动液压推压挡板,将水平安装的电磁体部分整体向锚杆索试件施加 水平应力,从而向锚杆索试件模拟围岩紧固相互影响的作用;
e、控制多根液压立柱的液压杆上升,从而向固定在拉拔块状夹持体中的锚杆索试件施加拉拔力,同时利用拉拔块状夹持体上的块状夹持体感应器实施监测锚杆索试件的应力变化;
f、根据需要控制任意电磁块体中的内部电磁线圈电流反向,从而产生相反的力,使得产生方向电流的电磁块体所在的电磁体部分指定位置模拟出层状岩体动载荷的离层现象;
g、持续监测锚杆索试件的应力变化,记录锚杆索试件在发生层状岩体动载荷离层现象时的力学数据的变化;
h、观测完毕,控制电磁块体断电,同时控制多根液压立柱的液压杆复位,控制电磁千斤顶收缩,打开安全门阀,利用电磁体门把手打开安全门部分,取下电磁体部分,打开拉拔块状夹持体,取出锚杆索试件。
有益效果
(1)本发明直接利用电磁块体的电磁力作用,模拟现场围岩与锚杆索试件的相互作用,通过监测部分准确记录锚杆索试件工作状态的各项性能参数,精确度高,对于指导现场工作具有积极地指导意义;
(2)本发明的水平应力可以通过液压动力部分推送压挡板进行调节,实现对锚杆索材料既有垂直应力的作用,也有水平应力作用,更加符合锚杆索的实际工作状态;
(3)本发明设计使用安全防护门和安全门阀,将锚杆索试件的断裂部分完全封闭在独立区域,提高了对设备仪器和实验操作人员的安全性;
(4)本发明的多组板状电磁单体组成,每组电磁单体模拟一层岩层,而电磁单体之间通过电磁力的引力与斥力,使电磁块体部分在某一处发生动载离层,模拟现场岩层结构的离层现象,拆装方便,结构简单,操作方便。
附图说明
图1是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的结构示意图;
图2是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的结构A-A剖面图;
图3是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的电磁体部分示意图;
图4是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的电磁块体示意图;
图5是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的电磁块体内部电磁线圈示意图;
图6是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的电磁体液压缸部分示意图;
图7是本发明层状岩体动载荷作用下锚杆和锚索性能测试装置的拉拔块状夹持体部分示 意图。
图中:1-顶座;2-底座;3-液压立柱;4拉拔块状夹持体;4-1前端块状夹持体;4-2末端块状夹持体;4-3块状夹持体液压缸;4-4块状夹持体感应部分;5-液压支撑部分;6-电磁体液压缸;7-电磁体部分;7-1末端电磁体;7-2前端电磁体;7-3安全门;8-锚杆索试件;9-电磁块体;10-内部电磁线圈;11-电磁体门把手;12-橡胶弹性垫片;13-安全门阀;14-液压推压挡板。
具体实施方式
下面结合附图对本发明具体实施步骤进行如下描述:
如图1所示,本发明的基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,包括顶座1和底座2,顶座1和底座2之间设有多根液压立柱3,多根液压立柱3上设有夹持装置;
所述夹持装置包括两组拉拔块状夹持体4,两组拉拔块状夹持体4分别设置在多根液压立柱3的液压杆或者液压缸上,两组拉拔块状夹持体4上下相对设置,所述拉拔块状夹持体4包括多组夹持体,多组夹持体用于夹住或松开被测锚杆索,每组夹持体包括前块状夹持体4-1和后块状夹持体4-2,前块状夹持体4-1内设有与后块状夹持体4-2连接的块状夹持体液压缸4-3,前块状夹持体4-1与后块状夹持体4-2之间滑动连接,每组夹持体的前块状夹持体4-1与其他组夹持体的前块状夹持体4-1之间的接触面上设有块状夹持体感应器4-4;
在两组拉拔块状夹持体4之间,靠近设置在液压杆处的拉拔块状夹持体4的下方设有层状岩体模拟装置,所述层状岩体模拟装置包括电磁体部分7,电磁体部分7两侧分别设有液压推压挡板14,每个液压推压挡板14通过电磁千斤顶底部的挡板抵在两侧的液压立柱3上,所述的电磁千斤顶包括电磁体液压缸6和液压支撑部分5,电磁体部分7包括两组相对应设置的电磁体,电磁体包括末端电磁体7-1和前端电磁体7-2,其中末端电磁体7-1固定在指液压立柱3上,前端电磁体7-2与末端电磁体7-1之间活动连接,便于自由拆卸,前端电磁体7-2和末端电磁体7-1的内角与锚杆索试件8接触处设有弧形凹槽,弧形凹槽内设有橡胶弹性垫片12,橡胶弹性垫片12厚度为2~5cm,粘结在电磁块体9的四分之一圆的弧形凹槽内壁上,弧形凹槽组合形成的圆形孔径为10~50mm,橡胶弹性垫片12有效防止锚杆索与电磁体部分7直接的钢性接触,造成对电磁体块的损伤,利用橡胶弹性垫片12,改钢性接触为弹性接触,减少了锚杆索破断时对电磁体的损伤,两个前端电磁体7-2之间设有安全门7-3,打开安全门7-3后才可以取出电磁体部分7,前端电磁体7-2由多个矩形电磁块体9并排构成,矩形电磁块体9数量在4~6个,每个电磁块体9的高度为3~10cm,总高度为12cm~60cm, 电磁体块体9利用磁力相互作用形成一个完整的整体,安全门7-3设置在多个电磁块体9的外侧,电磁块体9中设有多个内部电磁线圈10,所述多个内部电磁线圈10缠绕在圆柱状铁块上整体嵌入电磁块体9体内形成一个整体,安全门7-3上设有电磁体门把手11和安全门阀13,安全门7-3为设置在电磁体部分7前端的保护措施。
一种基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试方法,其步骤如下:
a、调整多根液压立柱3的液压杆升起,带动上拉拔夹持部分4移动,使上下拉拔块状夹持体4的位置适合锚杆索试件8的长度,前端块状夹持体4-1中的块状夹持体液压缸4-3的伸长,使块状夹持体的末端4-2延前端块状夹持体4-1斜向上运动,从而张开拉拔块状夹持体4,将锚杆索试件8放入张开拉拔块状夹持体4中,控制拉拔块状夹持体4中的夹持块体的液压缸4-3收缩,使块状夹持体的末端4-2斜向下运动,闭合拉拔块状夹持部分4的夹持部分,将锚杆索的试件8夹持紧固;
b、打开安全门阀13,开启安全门7-3,调整两侧的电磁千斤顶收缩,在锚杆索试件8四周分别先后水平安装末端电磁体7-1和前端电磁体7-2从而将锚杆索试件8包裹住,同时保证末端电磁体7-1和前端电磁体7-2与锚杆索试件8接触处位于橡胶弹性垫片12处;
c、将电磁体部分7安装水平后,关闭安全门部分7-3,固定安全门阀13;
d、推送电磁千斤顶带动液压推压挡板14,将水平安装的电磁体部分7整体向锚杆索试件8施加水平应力,从而向锚杆索试件8模拟围岩紧固相互影响的作用;
e、控制多根液压立柱3的液压杆上升,从而向固定在拉拔块状夹持体4中的锚杆索试件8施加拉拔力,同时利用拉拔块状夹持体4上的块状夹持体感应器4-4实施监测锚杆索试件8的应力变化;
f、根据需要控制任意电磁块体9中的内部电磁线圈10电流反向,从而产生相反的力,使得产生方向电流的电磁块体9所在的电磁体部分7指定位置模拟出层状岩体动载荷的离层现象;
g、持续监测锚杆索试件8的应力变化,记录锚杆索试件8在发生层状岩体动载荷离层现象时的力学数据的变化;
h、观测完毕,控制电磁块体9断电,同时控制多根液压立柱3的液压杆复位,控制电磁千斤顶收缩,打开安全门阀13,利用电磁体门把手11打开安全门部分7-3,取下电磁体部分7,打开拉拔块状夹持体4,取出锚杆索试件8。

Claims (5)

  1. 一种基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,包括顶座(1)和底座(2),顶座(1)和底座(2)之间设有多根液压立柱(3),多根液压立柱(3)上设有夹持装置,其特征在于:
    所述夹持装置包括两组拉拔块状夹持体(4),两组拉拔块状夹持体(4)分别设置在多根液压立柱(3)的液压杆或者液压缸上,两组拉拔块状夹持体(4)上下相对设置,所述拉拔块状夹持体(4)包括多组夹持体,多组夹持体用于夹住或松开被测锚杆索,每组夹持体包括前块状夹持体(4-1)和后块状夹持体(4-2),前块状夹持体(4-1)内设有与后块状夹持体(4-2)连接的块状夹持体液压缸(4-3),前块状夹持体(4-1)与后块状夹持体(4-2)之间滑动连接,每组夹持体的前块状夹持体(4-1)与其他组夹持体的前块状夹持体(4-1)之间的接触面上设有块状夹持体感应器(4-4);
    在两组拉拔块状夹持体(4)之间,靠近设置在液压杆处的拉拔块状夹持体(4)的下方设有层状岩体模拟装置,所述层状岩体模拟装置包括电磁体部分(7),电磁体部分(7)两侧分别设有液压推压挡板(14),每个液压推压挡板(14)通过电磁千斤顶底部的挡板抵在两侧的液压立柱(3)上,所述的电磁千斤顶包括电磁体液压缸(6)和液压支撑部分(5),电磁体部分(7)包括两组相对应设置的电磁体,电磁体包括末端电磁体(7-1)和前端电磁体(7-2),其中末端电磁体(7-1)固定在指液压立柱(3)上,前端电磁体(7-2)与末端电磁体(7-1)之间活动连接,便于自由拆卸,前端电磁体(7-2)和末端电磁体(7-1)的内角与锚杆索试件(8)接触处设有弧形凹槽,弧形凹槽内设有橡胶弹性垫片(12),两个前端电磁体(7-2)之间设有安全门(7-3),打开安全门(7-3)后才可以取出电磁体部分(7),前端电磁体(7-2)由多个矩形电磁块体(9)并排构成,安全门(7-3)设置在多个电磁块体(9)的外侧,电磁块体(9)中设有多个内部电磁线圈(10),安全门(7-3)上设有电磁体门把手(11)和安全门阀(13),安全门(7-3)为设置在电磁体部分(7)前端的保护措施。
  2. 根据权利要求1所述的基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,其特征在于:所述的矩形电磁块体(9)数量在4~6个,每个电磁块体(9)的高度为3~10cm,总高度为12cm~60cm,电磁体块体(9)利用磁力相互作用形成一个完整的整体。
  3. 根据权利要求1所述的基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,其特征在于:所述多个内部电磁线圈(10)缠绕在圆柱状铁块上整体嵌入电磁块体(9)体内形成一个整体。
  4. 根据权利要求1所述的基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置,其特征在于:所述橡胶弹性垫片(12)厚度为2~5cm,粘结在电磁块体(9)的四分之一圆的弧形凹槽内壁上,弧形凹槽组合形成的圆形孔径为10~50mm,橡胶弹性垫片(12) 有效防止锚杆索与电磁体部分(7)直接的钢性接触,造成对电磁体块的损伤,利用橡胶弹性垫片(12),改钢性接触为弹性接触,减少了锚杆索破断时对电磁体的损伤。
  5. 一种使用权利要求1所述基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置的测试方法,其特征在于步骤如下:
    a、调整多根液压立柱(3)的液压杆升起,带动上拉拔夹持部分(4)移动,使上下拉拔块状夹持体(4)的位置适合锚杆索试件(8)的长度,前端块状夹持体(4-1)中的块状夹持体液压缸(4-3)的伸长,使块状夹持体的末端(4-2)延前端块状夹持体(4-1)斜向上运动,从而张开拉拔块状夹持体(4),将锚杆索试件(8)放入张开拉拔块状夹持体(4)中,控制拉拔块状夹持体(4)中的夹持块体的液压缸(4-3)收缩,使块状夹持体的末端(4-2)斜向下运动,闭合拉拔块状夹持部分(4)的夹持部分,将锚杆索的试件(8)夹持紧固;
    b、打开安全门阀(13),开启安全门(7-3),调整两侧的电磁千斤顶收缩,在锚杆索试件(8)四周分别先后水平安装末端电磁体(7-1)和前端电磁体(7-2)从而将锚杆索试件(8)包裹住,同时保证末端电磁体(7-1)和前端电磁体(7-2)与锚杆索试件(8)接触处位于橡胶弹性垫片(12)处;
    c、将电磁体部分(7)安装水平后,关闭安全门部分(7-3),固定安全门阀(13);
    d、推送电磁千斤顶带动液压推压挡板(14),将水平安装的电磁体部分(7)整体向锚杆索试件(8)施加水平应力,从而向锚杆索试件(8)模拟围岩紧固相互影响的作用;
    e、控制多根液压立柱(3)的液压杆上升,从而向固定在拉拔块状夹持体(4)中的锚杆索试件(8)施加拉拔力,同时利用拉拔块状夹持体(4)上的块状夹持体感应器(4-4)实施监测锚杆索试件(8)的应力变化;
    f、根据需要控制任意电磁块体(9)中的内部电磁线圈(10)电流反向,从而产生相反的力,使得产生方向电流的电磁块体(9)所在的电磁体部分(7)指定位置模拟出层状岩体动载荷的离层现象;
    g、持续监测锚杆索试件(8)的应力变化,记录锚杆索试件(8)在发生层状岩体动载荷离层现象时的力学数据的变化;
    h、观测完毕,控制电磁块体(9)断电,同时控制多根液压立柱(3)的液压杆复位,控制电磁千斤顶收缩,打开安全门阀(13),利用电磁体门把手(11)打开安全门部分(7-3),取下电磁体部分(7),打开拉拔块状夹持体(4),取出锚杆索试件(8)。
PCT/CN2018/105354 2017-12-18 2018-09-13 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法 WO2019119899A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3070440A CA3070440C (en) 2017-12-18 2018-09-13 Anchor rod or cable operating performance testing device designed to simulate fracturation and bed separation based on electromagnetic action and method thereof
US16/487,425 US11199484B2 (en) 2017-12-18 2018-09-13 Device and method for testing working performance of anchor rod cable by simulating rock stratum fracture and separation on basis of electromagnetic action
AU2018388916A AU2018388916B2 (en) 2017-12-18 2018-09-13 Device and method for testing working performance of anchor rod cable by simulating rock stratum fracture and separation on basis of electromagnetic action

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711363794.8A CN108106936B (zh) 2017-12-18 2017-12-18 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法
CN201711363794.8 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019119899A1 true WO2019119899A1 (zh) 2019-06-27

Family

ID=62210819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105354 WO2019119899A1 (zh) 2017-12-18 2018-09-13 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法

Country Status (5)

Country Link
US (1) US11199484B2 (zh)
CN (1) CN108106936B (zh)
AU (1) AU2018388916B2 (zh)
CA (1) CA3070440C (zh)
WO (1) WO2019119899A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023018616A1 (en) * 2021-08-10 2023-02-16 The Chemours Company Fc, Llc Treated inorganic particles for modifying polymer crystallinity
CN117588261A (zh) * 2023-10-19 2024-02-23 西安科技大学 一种煤矿巷道掘锚一体化工作面感知地应力集度方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106936B (zh) 2017-12-18 2019-03-22 中国矿业大学 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法
CN109269743B (zh) * 2018-08-21 2020-07-31 河北建筑工程学院 一种地震波作用下锚杆动态拉拔试验装置及试验方法
CN109187333B (zh) * 2018-10-10 2019-10-08 中国矿业大学 矿井提升摩擦衬垫防滑性能测试装置及方法
CN110261234B (zh) * 2019-07-05 2022-03-29 山东科技大学 裂隙岩体离层锚固控制模拟试验装置及方法
CN111721612B (zh) * 2020-06-04 2023-11-24 河北建筑工程学院 一种考虑温度压力影响的锚杆拉拔试验装置及试验方法
CN111933018B (zh) * 2020-06-12 2021-11-26 同创工程设计有限公司 一种沉管灌注桩断桩与加固效果的演示方法
CN111811951A (zh) * 2020-08-21 2020-10-23 福建路桥建设有限公司 隧道掌子面分段可回收锚杆承载特性测试装置及应用方法
CN114777660B (zh) * 2022-03-28 2023-07-07 呼伦贝尔学院 一种巷道围岩支护变形测试方法
CN115081302B (zh) * 2022-07-15 2023-07-07 中国矿业大学 支护构件与硐室围岩接触及相互作用的模拟方法和***
CN115452225B (zh) * 2022-09-14 2024-07-16 淮南泰隆机械制造有限公司 一种矿用锚索预应力检测装置及方法
CN115655366B (zh) * 2022-10-25 2024-02-02 广东御鑫建筑工程有限公司 一种边坡岩土工程监测***
CN115876571B (zh) * 2022-12-28 2023-06-06 北京城建勘测设计研究院有限责任公司 一种地质勘探用的岩石硬度检测装置
CN116735131B (zh) * 2023-05-22 2024-02-06 石家庄铁道大学 一种用于模拟***荷载下结构抗连续倒塌性能的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762423A (zh) * 2010-01-17 2010-06-30 山东科技大学 预应力锚索锚具试验台
CN101963555A (zh) * 2010-08-19 2011-02-02 天地科技股份有限公司 锚杆或锚索支护应力测试方法及装置
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法
CN206146749U (zh) * 2016-11-15 2017-05-03 河南理工大学 一种锚杆锚索拉拔冲击力学性能测试装置
KR20170061414A (ko) * 2015-11-26 2017-06-05 (주)신우기전 인장력 시험 시스템
CN108106936A (zh) * 2017-12-18 2018-06-01 中国矿业大学 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082564A (zh) * 2006-06-01 2007-12-05 中国矿业大学 锚杆受力状态的随机无损动力检测技术
CN103134725B (zh) * 2011-11-29 2014-11-05 中国科学院武汉岩土力学研究所 一种锚杆性能测试装置
CN102621013B (zh) * 2012-03-31 2015-11-18 中国矿业大学(北京) 动力学性能测试***
CN102621010B (zh) * 2012-04-13 2014-01-29 山东大学 深部围岩锚固性能多功能试验机
CN103512805B (zh) * 2013-10-22 2015-12-30 安徽理工大学 一种模拟锚固体围岩应力的锚杆拉拔实验的加压装置
CN204008300U (zh) * 2014-06-30 2014-12-10 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台
CN104198306B (zh) * 2014-08-08 2016-08-24 太原理工大学 一种冲击主动围压下的动态拉拔实验装置及实验方法
CN104266906B (zh) * 2014-10-15 2017-07-21 安徽省方大水泥制品有限公司 钢筋混凝土排水管内衬pvc片材的拉拔试验装置
CN104697736B (zh) * 2015-02-01 2017-04-05 山东科技大学 考虑支护‑围岩相互作用的锚杆抗冲击测试***及其应用方法
CN105424515B (zh) * 2015-12-03 2018-02-27 山东科技大学 一种相似材料模型动载施加装置及其试验方法
CN205719784U (zh) * 2016-06-27 2016-11-23 山东科技大学 锚杆支护承载力简易评估装置
CN107748064B (zh) * 2017-11-17 2019-04-26 山东科技大学 一种动静组合载荷下锚杆力学响应测试装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762423A (zh) * 2010-01-17 2010-06-30 山东科技大学 预应力锚索锚具试验台
CN101963555A (zh) * 2010-08-19 2011-02-02 天地科技股份有限公司 锚杆或锚索支护应力测试方法及装置
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法
KR20170061414A (ko) * 2015-11-26 2017-06-05 (주)신우기전 인장력 시험 시스템
CN206146749U (zh) * 2016-11-15 2017-05-03 河南理工大学 一种锚杆锚索拉拔冲击力学性能测试装置
CN108106936A (zh) * 2017-12-18 2018-06-01 中国矿业大学 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023018616A1 (en) * 2021-08-10 2023-02-16 The Chemours Company Fc, Llc Treated inorganic particles for modifying polymer crystallinity
CN117588261A (zh) * 2023-10-19 2024-02-23 西安科技大学 一种煤矿巷道掘锚一体化工作面感知地应力集度方法
CN117588261B (zh) * 2023-10-19 2024-04-16 西安科技大学 一种煤矿巷道掘锚一体化工作面感知地应力集度方法

Also Published As

Publication number Publication date
CA3070440C (en) 2021-11-16
CN108106936A (zh) 2018-06-01
US20210285857A1 (en) 2021-09-16
CN108106936B (zh) 2019-03-22
AU2018388916A1 (en) 2019-09-12
AU2018388916B2 (en) 2020-09-10
CA3070440A1 (en) 2019-06-27
US11199484B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2019119899A1 (zh) 基于电磁作用模拟岩层断裂与离层的锚杆索工作性能测试装置及方法
CN110595909B (zh) 模拟深部岩体不同温度影响下的真三轴试验***及方法
CA3058031C (en) Integral clamping steel strand drawing test apparatus, and method for using same
CN103558006B (zh) 冲击力可控式冲击矿压巷道支护物理模拟冲击试验方法及装置
CN111175121B (zh) 巷道围岩钻孔卸压相似模拟试验***及使用方法
CN103712852B (zh) 一种岩石侧限抗压实验试样夹具及实验方法
CN108956933B (zh) 一种实验室内模拟逆断层形成的方法及装置
CN103543069A (zh) 锚杆室内拉伸—剪切试验装置
CN107084893B (zh) 一种节理岩体锚杆动载荷试验装置
CN203551388U (zh) 锚杆室内拉伸—剪切试验装置
CN207215572U (zh) 一种pvc管冲击强度试验装置
CN107620260B (zh) 一种拱桥施工缆索吊塔架位移控制***及使用方法
CN109580393A (zh) 一种双轴扰动岩石剪切蠕变试验机及试验方法
CN104374650A (zh) 一种测试管桩与注浆土体之间静力剪切特性的试验装置及方法
CN110007064A (zh) 一种双向加载的岩石钻孔取样试验***及取样方法
KR20180035427A (ko) 중앙 집중식 와이어로프를 이용한 말뚝 정재하 시험 장치
CN112630412A (zh) 实验室断层构造模拟试验台
CN113324838A (zh) 三轴试验装置和***
CN103711152A (zh) X型模型桩加载监测装置及监测方法
CN107328542A (zh) 锚杆抗冲击性能动态定量试验装置及其试验方法
CN116296906A (zh) 用于桥梁frp拉索的落锤冲击试验装置
CN109580395A (zh) 一种落锤冲击岩石剪切蠕变试验机及试验方法
CN114674688B (zh) 适用于真三轴霍普金森压杆的瞬态卸荷试验装置及方法
CN211652398U (zh) 基于岩石试验机的动态扰动伺服三轴加载装置
CN204694563U (zh) 一种土工合成材料各向异性拉伸试验***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3070440

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018388916

Country of ref document: AU

Date of ref document: 20180913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3070440

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890187

Country of ref document: EP

Kind code of ref document: A1