WO2019119556A1 - 固定翼海空多栖航行器与控制方法 - Google Patents

固定翼海空多栖航行器与控制方法 Download PDF

Info

Publication number
WO2019119556A1
WO2019119556A1 PCT/CN2018/072018 CN2018072018W WO2019119556A1 WO 2019119556 A1 WO2019119556 A1 WO 2019119556A1 CN 2018072018 W CN2018072018 W CN 2018072018W WO 2019119556 A1 WO2019119556 A1 WO 2019119556A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fixed
wing
assembly
sea
Prior art date
Application number
PCT/CN2018/072018
Other languages
English (en)
French (fr)
Inventor
曾铮
连琏
卢迪
任平
马厦飞
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US16/956,868 priority Critical patent/US11530036B2/en
Publication of WO2019119556A1 publication Critical patent/WO2019119556A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/16Control of attitude or depth by direct use of propellers or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to an aircraft, and in particular to a fixed-wing sea-air amphibious vehicle and a control method.
  • the water glider As an emerging underwater mobile observation platform, the water glider has shown increasingly important application value in military and civil fields such as marine resource exploration, environmental monitoring and seabed exploration with its advantages of low power consumption, long range and low cost. . It adjusts its own net buoyancy and attitude adjustment mechanism to adjust the internal center of gravity position through the buoyancy adjustment mechanism, thereby completing the adjustment of the floating, dive action, pitch angle and roll angle.
  • the glider relies solely on net buoyancy as the driving force, and its speed and maneuverability are not as good as those of other propeller-driven underwater vehicles.
  • many water gliders have been developed at home and abroad, such as Slocum, Seaglider and Spray developed by foreign countries.
  • Common unmanned aerial vehicles include fixed-wing UAVs and rotary-wing UAVs; fixed-wing UAVs mainly rely on the wings to generate lift to balance the weight of the aircraft.
  • the flight speed is fast, the range and cruising time are long, but the take-off and landing distance is long.
  • Multi-rotor flight control is relatively simple, which can realize multiple movements such as vertical lifting, hovering, forward and backward of the drone, and the maneuverability is more flexible, but the efficiency of the rotorcraft is far less than that of the fixed-wing drone, and the power consumption is large.
  • the resistance is large, thus affecting the flight speed and battery life.
  • the flight operation of the drone is relatively simple and intelligent. It can fly and record autonomously according to the scheduled route, and provide monitoring data and video in real time. However, its function is also limited, and it is impossible to detect and sample water and underwater in specific sea areas. .
  • the Loon Copter developed by the University of Auckland in the United States uses a wireless remote control method to realize the water inlet and outlet switching of the submersible through the pumping and drainage mechanism, and the pool test verifies that it can complete the movement and shooting tasks of several meters in the air, water and water.
  • the sea and air amphibious crafts developed abroad adopt the type of rotor.
  • the common shortcoming is that the airborne and underwater endurance are limited, which cannot meet the requirements of long-time sea-air joint observation.
  • a fixed-wing sea-air amphibious aircraft provided in accordance with the present invention includes a housing assembly, a flight assembly, and a pneumatic buoyancy assembly;
  • the flight assembly includes a fixed wing and a rotor assembly, and the fixed wing and rotor assembly are mounted on the outer casing assembly;
  • the pneumatic buoyancy assembly comprises an air bag and a charging and exhausting structure, and the air bag is connected to the charging and exhausting structure, and the charging and exhausting structure can inflate and exhaust the air bag;
  • the air bag is mounted on the outer casing assembly, and a space is formed inside the outer casing assembly, and the charging and exhausting structure is partially or entirely located in the container space.
  • the rotor assembly includes a rotor support rod, a motor fixed base, a motor, and a paddle body connected in sequence;
  • a plurality of rotor assemblies are arranged along the circumferential direction of the housing assembly.
  • the paddle body comprises a self-folding paddle
  • the self-folding paddle comprises a self-folding paddle hub and a self-folding air paddle
  • the motor includes a waterproof brushless motor.
  • the charging and exhausting structure comprises a gas cylinder, a solenoid valve, a gas tube sealing passage member and an exhaust pipe sealing passage member;
  • a plurality of solenoid valves including a charge solenoid valve and an exhaust solenoid valve;
  • the gas cylinder, the inflatable tube sealing passage member, the air bag, and the exhaust pipe sealing passage member are sequentially connected.
  • the air bag comprises an annular air bag, and the annular air bag is sleeved on the outer casing assembly;
  • a safety valve is provided on the annular airbag.
  • a depth sensor, a receiver, an ESC, a battery, and a controller are further disposed in the container space;
  • the ESC comprises a four-in-one ESC, and the battery comprises a lithium battery;
  • a pressure sensor is disposed on the airbag.
  • the controller comprises the following modules:
  • Signal acquisition module acquiring a depth signal, a pressure signal, and a remote control signal
  • Flight control module controls the operation of the flight components
  • Buoyancy Control Module Controls the operation of the pneumatic buoyancy component.
  • the outer casing assembly comprises a bottom sealed end cap, a pressure resistant sealed casing, a top sealed hatch, and a top shroud;
  • the bottom seal end cap is spherical, and the top shroud is ellipsoidal.
  • the housing assembly is provided with a frame fixing plate and a fixed wing support ring;
  • the rotor assembly and the fixed wing are respectively fastened to the outer casing assembly through the frame fixing plate and the fixed wing supporting ring;
  • the plurality of fixed wing support rings include an upper fixed wing support ring and a lower fixed wing support ring disposed along an axial direction of the outer casing assembly.
  • the present invention also provides a control method using the above-described fixed-wing sea-air amphibious aircraft, comprising the following steps:
  • the water discharge step the inflation solenoid valve is opened, and the annular airbag is inflated.
  • the inflation solenoid valve is closed, so that the waterproof brushless motor operates, and the self-folding paddle rotates and opens;
  • Flight attitude adjustment step controlling the four-in-one ESC, controlling the output current of the plurality of waterproof brushless motors, and generating a rotation speed difference between the plurality of self-folding paddles;
  • Water entering step the waterproof brushless motor is closed, the self-folding paddle is contracted, the exhaust solenoid valve is opened, and the annular air bag is exhausted.
  • the exhaust electromagnetic valve is closed;
  • Water Gliding Step Control the opening or closing of the pneumatic solenoid valve and the exhaust solenoid valve to change the volume of the annular airbag.
  • the present invention has the following beneficial effects:
  • the fixed-wing air-to-air versatile vehicle provided by the invention can realize large-scale flight observation in the air, can also realize underwater long-range gliding observation, and realize different movement modes in water and air by virtue of the vertical take-off and landing function provided. Switching.
  • the present invention abandons the buoyancy adjustment scheme used by the conventional water glider, and adopts a new buoyancy adjustment method that relies on gas to change the buoyancy of the body, thereby simplifying the weight and complexity of the functional subsystem of the aircraft to the greatest extent, while retaining the traditional underwater
  • the glider's buoyancy adjustment capability also helps to reduce the weight of the body and improve flight capacity.
  • the invention can change the inflation amount of the annular airbag according to requirements, and at the same time realize the coupling control of the net buoyancy and the attitude angle.
  • the invention combines the design concepts of the fixed wing and the rotorcraft, and realizes the air-sea cross-media motion function by integrating the rotor power system and the fixed-wing power system on the fixed-wing sea-air hobby aircraft.
  • Figure 1 is a structural view of a fixed-wing sea-air amphibious vehicle
  • Figure 2 is a perspective view of a fixed-wing sea-air amphibious vehicle
  • Figure 3 is a schematic diagram of multi-mode motion and switching of a fixed-wing sea-air amphibious aircraft.
  • the figure shows:
  • the present invention provides a fixed-wing sea-air amphibious aircraft characterized by comprising a casing assembly, a flight assembly, and a pneumatic buoyancy assembly.
  • the flight assembly includes a fixed wing 3 and a rotor assembly.
  • the pneumatic buoyancy assembly includes an air bag and a charging and exhausting structure.
  • the air bag is connected to the charging and exhausting structure, and the charging and exhausting structure can inflate and exhaust the air bag, and the inside of the outer casing assembly is formed.
  • the container space, the charging and exhausting structure is partially or entirely located in the container space.
  • the outer casing assembly includes a bottom seal end cap 1, a pressure resistant seal housing 2, a top seal hatch 7, and a top shroud 6 that are sequentially connected.
  • the bottom sealing end cover 1 is spherical, not only for pressure-sealing the bottom end surface of the pressure-resistant sealing housing 2, but also utilizing its streamline shape advantage to reduce the water resistance of the water gliding movement; the top sealing hatch 7 is used Sealing the pressure protection of the top end of the pressure-resistant sealed casing 2; the ellipsoidal top shroud 6 is advantageous for improving the first flow field of the aircraft when advancing in air and water, reducing the movement resistance; the pressure-resistant sealed casing 2 is used for All parts of the aircraft that require water isolation are protected from water and pressure, while providing primary buoyancy.
  • the outer casing assembly is provided with a frame fixing plate 8 and a fixed wing supporting ring.
  • the rotor assembly and the fixed wing 3 are respectively fastened to the outer casing assembly through the frame fixing plate 8 and the fixed wing supporting ring, and the plurality of fixed wing supporting rings are included
  • the upper fixed wing support ring 9 and the lower fixed wing support ring 14 are arranged in the axial direction of the outer casing assembly.
  • the fixed wing 3 can provide lift to balance the weight of the machine, allowing the invention to maintain a smooth flight.
  • the airbag includes an annular airbag 4 that is sleeved at the upper end of the pressure-resistant sealed casing 2. During use, the position of the annular airbag 4 is also the head of the water gliding mode and the air flight mode.
  • the rotor assembly includes a rotor support rod 5, a motor fixed base 10, a motor, and a paddle body that are sequentially connected.
  • the plurality of rotor assemblies are arranged along a circumferential direction of the outer casing assembly.
  • the frame fixing plate 8 is located in the pressure resistant sealed casing.
  • the upper end of the body 2, and four rotor assemblies are used to be evenly arranged in the circumferential direction, the motor comprising a waterproof brushless motor 11, the paddle comprising a self-folding paddle, the self-folding paddle comprising a self-folding paddle hub 12 and self-folding
  • the air paddle 13 is mounted on the self-folding paddle hub 12, and the blades of the self-folding air paddle 13 are switchable between the open state and the contracted state.
  • the waterproof brushless motor 11 is fixed to the motor fixing base 10 in an upwardly inverted orientation, and the high-speed rotation of the self-folding paddle hub 12 is driven by the waterproof brushless motor 11 to generate the lift and horizontal flight required for the vertical take-off and landing of the body. The driving force needed at the time.
  • the charging and exhausting structure includes a gas cylinder, a solenoid valve 15, an inflation tube sealing passage member 19, and an exhaust pipe sealing passage member 20.
  • the plurality of electromagnetic valves 15 include a pneumatic solenoid valve and an exhaust solenoid valve.
  • a safety valve 18 is disposed on the annular airbag 4, and a pressure sensor 22 is disposed in the annular airbag 4.
  • a depth sensor 21, a receiver 23, an ESC, a battery, and a controller 17 are also disposed in the container space.
  • the gas cylinder is a high pressure gas cylinder 16 for storing high pressure gas
  • the electrical adjustment is a four-in-one electrical regulation 24
  • the battery is a lithium battery 25.
  • the ESC can also be four separate ESCs, and the battery type can also be selected according to the needs of use.
  • the controller includes the following modules: a signal acquisition module: acquiring a depth signal, a pressure signal, and a remote control signal; a flight control module: controlling the operation of the flight component; and a buoyancy control module: controlling the operation of the pneumatic buoyancy component.
  • the two solenoid valves 15 and the high pressure gas cylinder 16 are the main actuators of the pneumatic buoyancy assembly.
  • the annular airbag 4 can be inflated by the high pressure gas inside the high pressure gas cylinder 16 or The gas in the annular airbag 4 is discharged to the outside, thereby achieving the purpose of changing the buoyancy of the aircraft under water.
  • the controller 17 is the control core of the aircraft, analyzes and processes the external environment according to the mounted sensor, and commands the power system to act according to the operator's control command, so that the aircraft achieves the specified motion effect; the safety valve 18 directly and the annular airbag 4 communicating, directly sensing the inflated state of the annular airbag 4 to prevent its overcharge from exploding; the inflation tube sealing passage member 19 and the exhaust pipe sealing passage member 20 are both the air passage and the outside of the pressure resistant sealed casing 2
  • the necessary connection of the annular airbag 23 is connected; the depth sensor 21 can sense the water depth or altitude at which the aircraft is currently located, and provides necessary external environmental parameters for the control decision of the controller 17; the gas pressure sensor 22 inside the airbag is used to sense the ring in real time.
  • the inflation pressure inside the airbag 4 is fed back to the controller 17 to generate a judgment basis for the buoyancy adjustment operation command; the receiver 23 is used for infinitely remotely receiving the remote control command from the operator and transmitting it to the controller 17; the four-in-one ESC 24 is used to control the rotational speed of the waterproof brushless motor 11, thereby generating different rotor lift; the lithium battery 25 is used for all Standby power supply.
  • the present invention also provides a control method using the above-described fixed-wing 3 sea-air amphibious aircraft, characterized in that it comprises the following steps: a water discharging step: opening the inflation solenoid valve, inflating the annular airbag 4, when the annular airbag 4 When the middle air pressure reaches the set value, the pneumatic solenoid valve is closed, the self-folding paddle is opened, the waterproof brushless motor 11 is operated, and the self-folding paddle is rotated; the flight attitude adjustment step: controlling the four-in-one electric adjustment 24, controlling multiple The output current of the waterproof brushless motor 11 causes a difference in rotational speed between the plurality of self-folding paddles; the water entering step: closing the waterproof brushless motor 11 to shrink the self-folding paddle, opening the exhaust solenoid valve, and exhausting the annular air bag 4 When the air pressure in the annular airbag 4 reaches the set value, the exhaust solenoid valve is closed; the water sliding step: controlling the opening or closing of the inflation solenoid valve and the exhaust solenoid
  • the fixed-wing air-to-air hobby aircraft provided by the present invention can realize large-scale flight observation in the air, and can realize underwater long-range gliding observation, and realize the water in the water by relying on the vertical take-off and landing function. Switching between different sports modes in the air.
  • the controller 17 issues an instruction to open the inflation solenoid valve, and the gas in the high pressure gas cylinder 16 flows through the gas line through the inflation solenoid valve to reach the ring.
  • the airbag 4 inflates the annular airbag 4, the annular airbag 4 expands, and the buoyancy of the airframe increases.
  • the body After the buoyancy exceeds the gravity, the body begins to float until the pressure in the annular airbag 4 reaches the set value, that is, after the annular airbag 4 expands to the preset maximum volume, the controller 17 issues an instruction to close the inflation solenoid valve, thereby stopping the ring.
  • the inflation action of the airbag 4, the final annular airbag 4 is always maintained in the maximum volume state until the body floats out of the water.
  • the posture of the body is also constantly changing, that is, the nose of the machine is continuously raised, and the body gradually approaches the vertical state.
  • the annular airbag 4 reaches the maximum volume, the attitude angle of the body reaches the maximum.
  • the controller 17 issues a throttle command to the four-in-one ESC 24, and the four-in-one ESC 24 processes the throttle command to output a control current to the four waterproof brushless motors 11 to rotate at a high speed.
  • the folding air paddle 13 is rotated by the waterproof brushless motor 11 , and the blade of the self-folding air paddle 13 is lifted and raised under the centrifugal force and the lift generated by the self-movement until it becomes open, and finally stabilizes.
  • the ground provides the required power for the vertical take-off and landing of the aircraft.
  • the aircraft achieves vertical lift water.
  • the controller 17 performs a rotational speed difference control on the four self-folding air blades 13, so that each self-folding air blade 13 generates different pulling forces, and finally generates a pitching moment that causes the body to tilt, so that The body is constantly tilted. Since the pulling force generated by the self-folding air paddle 13 is always directed to the head direction, the aircraft can accelerate forward at the same time while the body is tilted. As the horizontal speed increases, the aerodynamic effect of the fixed wing 3 gradually increases, and the lift provided by it gradually increases.
  • the lift compensates for the vertical pulling force of the four self-folding air blades 13 due to the gradual pointing in the horizontal direction, and plays a role in balancing the gravity of the body.
  • the aircraft stabilized in a fixed-wing level flight mode.
  • the controller 17 firstly controls the four waterproof brushless motors 11 to generate a difference in rotational speed by controlling the four-in-one ESC 24, thereby making the four self-folding air blades 13
  • the resultant force produces a pitching moment that causes the fuselage to change from horizontal to vertical, causing the fuselage to be vertically vertical.
  • the controller 17 needs to continuously adjust the rotational speed of the waterproof brushless motor 11 according to the state data returned by its own sensor, and correct the lift provided by the four self-folding air blades 13, so that the component force in the vertical direction is continuously increased. In order to overcome the lifting loss of the fixed wing 3 due to the speed drop, the balance of gravity has been achieved.
  • the controller 17 directs the air to reduce the rotational speed from the folding paddle 13 to reduce the lift and lower the aircraft.
  • the waterproof brushless motor 11 is turned off, and the blades of the self-folding air paddle 13 are gathered downward in the direction of the body axis to reduce the resistance to movement in the water.
  • the controller 17 controls the inflation solenoid valve and the exhaust solenoid valve to open and close, and can selectively control the drainage volume of the annular airbag 4, thereby realizing the buoyancy adjustment of the aircraft.
  • the expansion of the annular airbag 4 not only causes the body to float, but also causes the floating center to move forward, generating a tilting pitching moment, so that the body produces a pitch angle corresponding to the glider's floating motion, and the annular airbag 4
  • the contraction will cause the body to move back and move, and the floating center will move backwards, resulting in a tilting pitching moment, which causes the fuselage to produce a pitch angle corresponding to the glider's dive motion.
  • the craft produced a jagged water gliding movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Toys (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种固定翼海空多栖航行器,包含外壳组件、飞行组件以及气动浮力组件;飞行组件包含固定翼(3)与旋翼组件,固定翼与旋翼组件均安装在外壳组件上;气动浮力组件包含气囊(4)与充排气结构,气囊与充排气结构相连,充排气结构能够对气囊进行充气与排气;气囊安装在外壳组件上,外壳组件内部形成容物空间,充排气结构部分或整***于容物空间内。本发明还提供了一种使用上述固定翼海空多栖航行器的控制方法。固定翼海空多栖航行器,可实现空中大范围飞行观测,也可实现水下长航程滑翔观测,并且依靠所具备的垂直起降功能实现在水、空中不同运动模式的切换。

Description

固定翼海空多栖航行器与控制方法 技术领域
本发明涉及一种航行器,具体地,涉及一种固定翼海空多栖航行器与控制方法。
背景技术
水下滑翔机作为新兴的水下移动观测平台,以其低功耗、长航程、造价低等优势在海洋资源勘探、环境监测、海底侦查等军事、民用领域表现出了越来越重要的应用价值。它通过浮力调节机构改变自身的净浮力和姿态调节机构调整内部重心位置,从而完成上浮、下潜动作和俯仰角、横滚角的调节。滑翔机仅依靠净浮力作为驱动力,其航行速度和机动性能都不及其他螺旋桨驱动的水下航行器。目前国内外已开发出多款水下滑翔机,如国外研制的Slocum、Seaglider和Spray等多种水下滑翔机等,国内有天津大学研制的“海燕”号,中国科学院沈阳自动化所研制的“海翼”号,上海交通大学研制的“海鸥”号等等。然而水下滑翔机其主要功能是实现水下的观测和探测,无法实现空中或者海空联合观测,并需要水面支持***进行吊放和回收。
常见的无人飞行器有固定翼无人机和旋翼无人机;固定翼无人机主要靠机翼产生升力平衡飞机重量,其飞行速度快,航程和巡航时间长,但起降距离长,不能垂直起降、悬停,机动性较差。多旋翼飞行控制比较简单,可实现无人机的垂直升降、悬停、前进后退等多个动作,机动性比较灵活,但旋翼无人机效率远不如固定翼无人机,功耗大,飞行阻力大,因而影响飞行速度以及续航时间。无人机飞行操作相对简单,智能化程度高,可按预定航线自主飞行、摄像,实时提供监测数据和视频,但同样它的功能也有限,无法对特定海域进行水面和水下的探测和采样。
国外研究机构近期开展了多项旋翼海空两栖航行器的研究。美国乔治亚理工大学发布GTQ-Cormorant样机,其采用无线遥控方式,搭载小型摄像机,水池实验验证了该原理样机空中飞行和潜水的功能,但其续航能力及其有限。美国罗格斯大学发布的Naviator通过共轴布置的两套螺旋桨实现空中和水中运动的切换,并且水池实验验证了该潜水器可在水空两种介质中运动的能力。但Naviator需以线控方式 操作,大大限制了飞行和潜航航程,而且该样机没有任何负载能力,难以进行侦测或搜救任务。美国奥克兰大学于研制的Loon Copter采用无线遥控方式,通过抽排水机构实现潜水器的出入水切换,并水池试验验证能够完成在空中、水面及水下数米的运动和拍摄任务。当前国外研制的海空两栖航行器都采用旋翼类型,其共同的缺点是空中和水下的续航能力都及其有限,无法满足长时序海空联合观测的需求。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种固定翼海空多栖航行器与控制方法。
根据本发明提供的固定翼海空多栖航行器,包含外壳组件、飞行组件以及气动浮力组件;
所述飞行组件包含固定翼与旋翼组件,固定翼与旋翼组件均安装在外壳组件上;
所述气动浮力组件包含气囊与充排气结构,气囊与充排气结构相连,充排气结构能够对气囊进行充气与排气;
气囊安装在外壳组件上,外壳组件内部形成容物空间,充排气结构部分或整***于容物空间内。
优选地,所述旋翼组件包含依次连接的旋翼支撑杆、电机固定基座、电机、桨体;
多个旋翼组件沿外壳组件周向方向布置。
优选地,所述桨体包含自折叠桨,自折叠桨包含自折叠桨桨毂与自折叠空气桨;
所述电机包含防水无刷电机。
优选地,充排气结构包含气瓶、电磁阀、充气管密封穿舱件以及排气管密封穿舱件;
多个电磁阀包含充气电磁阀与排气电磁阀;
气瓶、充气管密封穿舱件、气囊、排气管密封穿舱件依次连接。
优选地,所述气囊包含环形气囊,环形气囊套接在外壳组件上;
环形气囊上设置有安全阀。
优选地,所述容物空间内还设置有深度传感器、接收机、电调、电池以及控制器;
所述电调包含四合一电调,电池包含锂电池;
所述气囊上设置有压力传感器。
优选地,所述控制器包含以下模块:
信号获取模块:获取深度信号、压力信号以及远程控制信号;
飞行控制模块:控制飞行组件的运行;
浮力控制模块:控制气动浮力组件的运行。
优选地,所述外壳组件包含依次连接的底部密封端盖、耐压密封壳体、顶部密封舱盖、顶部导流罩;
所述底部密封端盖为球形,所述顶部导流罩为椭球形。
优选地,外壳组件上设置有机架固定板与固定翼支撑环;
旋翼组件、固定翼分别通过机架固定板、固定翼支撑环紧固连接在外壳组件上;
多个固定翼支撑环包含沿外壳组件轴向方向布置的上固定翼支撑环与下固定翼支撑环。
本发明还提供了一种使用上述的固定翼海空多栖航行器的控制方法,包含以下步骤:
出水步骤:令充气电磁阀打开,环形气囊中充气,当环形气囊中气压到达设定值时,关闭充气电磁阀,令防水无刷电机运行,自折叠桨转动并张开;
飞行姿态调节步骤:控制四合一电调,控制对多个防水无刷电机的输出电流,令多个自折叠桨之间产生转速差;
入水步骤:令防水无刷电机关闭,自折叠桨收缩,令排气电磁阀打开,环形气囊排气,当环形气囊中气压到达设定值时,关闭排气电磁阀;
水下滑翔步骤:控制充气电磁阀与排气电磁阀的打开或关闭,使环形气囊体积变化。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提供的固定翼海空多栖航行器,可实现空中大范围飞行观测,也可实现水下长航程滑翔观测,并且依靠所具备的垂直起降功能实现在水、空中不同运动模式的切换。
2、本发明摒弃传统水下滑翔机所用的浮力调节方案,采用以依靠气体改变机体浮力的新型浮力调节方式,从最大程度上简化航行器的功能子***重量和复杂程度,既保留了传统水下滑翔机浮力调节能力,同时还有利于减轻机体重量,提升飞行能力。
3、本发明可根据需求改变环形气囊的充气量,同时实现对净浮力和姿态角的耦合控制。
4、本发明将固定翼与旋翼飞行器的设计理念进行融合,通过在固定翼海空多栖航行器上集成旋翼动力***和固定翼动力***,实现海空跨介质运动功能。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为固定翼海空多栖航行器的结构图;
图2为固定翼海空多栖航行器的透视图;
图3为固定翼海空多栖航行器多模式运动与切换的示意图。
图中示出:
Figure PCTCN2018072018-appb-000001
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的 限制。
如图1所示,本发明提供的固定翼海空多栖航行器,其特征在于,包含外壳组件、飞行组件以及气动浮力组件。所述飞行组件包含固定翼3与旋翼组件,所述气动浮力组件包含气囊与充排气结构,气囊与充排气结构相连,充排气结构能够对气囊进行充气与排气,外壳组件内部形成容物空间,充排气结构部分或整***于容物空间内。实施例中,外壳组件包含依次连接的底部密封端盖1、耐压密封壳体2、顶部密封舱盖7、顶部导流罩6。底部密封端盖1为球形,不仅用于对耐压密封壳体2的底端面进行耐压密封,还可利用其流线外形优势减小水下滑翔运动的水阻;顶部密封舱盖7用于对耐压密封壳体2的顶端密封耐压保护;椭球形顶部导流罩6有利于改善航行器在空气和水中前进时的首部流场,降低运动阻力;耐压密封壳体2用于对航行器的所有需进行隔水处理的部件进行防水耐压保护,同时提供主要的机体浮力。外壳组件上设置有机架固定板8与固定翼支撑环,旋翼组件、固定翼3分别通过机架固定板8、固定翼支撑环紧固连接在外壳组件上,多个固定翼支撑环包含沿外壳组件轴向方向布置的上固定翼支撑环9与下固定翼支撑环14。在水平飞行模式下,固定翼3可以提供升力以平衡机体重力,使发明保持平稳的飞行。所述气囊包含环形气囊4,环形气囊4套接在耐压密封壳体2的上端,在使用过程中,环形气囊4所在的位置也是水下滑翔模式与空中飞行模式的首部。通过对环形气囊4进行充气或排气,改变环形气囊4的排水体积,从而给本发明的机体提供不同的水下净浮力,进而驱动机体做锯齿形滑翔运动。所述旋翼组件包含依次连接的旋翼支撑杆5、电机固定基座10、电机、桨体,多个旋翼组件沿外壳组件周向方向布置,实施例中,机架固定板8位于耐压密封壳体2的上端,并使用了四个旋翼组件沿周向均匀布置,所述电机包含防水无刷电机11,所述桨体包含自折叠桨,自折叠桨包含自折叠桨桨毂12与自折叠空气桨13,所述自折叠空气桨13安装在自折叠桨桨毂12上,自折叠空气桨13的桨叶能够在张开状态与收缩状态这两种状态之间转换。防水无刷电机11则以向下倒置的朝向固定于电机固定基座10上,通过防水无刷电机11带动自折叠桨桨毂12进行高速旋转,产生机体垂直起降所需的升力以及水平飞行时所需的前进动力。
如图2所示,充排气结构包含气瓶、电磁阀15、充气管密封穿舱件19以及排气管密封穿舱件20,多个电磁阀15包含充气电磁阀与排气电磁阀。环形气囊4上设置有安全阀18,环形气囊4内设置有压力传感器22。所述容物空间内还设置有深度传感器21、接收机23、电调、电池以及控制器17。实施例中,所述气瓶为储存高压气体的高压气瓶16,所述电调为四合一电调24,电池为锂电池25。优选例中,所述电调也可以是四 个单独的电调,所述电池类型也可以根据使用需求进行选择。控制器包含以下模块:信号获取模块:获取深度信号、压力信号以及远程控制信号;飞行控制模块:控制飞行组件的运行;浮力控制模块:控制气动浮力组件的运行。
两个电磁阀15以及高压气瓶16是气动浮力组件的主要执行元件,通过按需求调整两个电磁阀15的开闭,可实现利用高压气瓶16内部的高压气体对环形气囊4的充气或将环形气囊4内的气体排出外界,从而达到改变航行器在水下浮力的目的。控制器17是航行器的控制核心,依据所搭载的传感器对外界环境进行分析处理,并且依据操作者的控制指令指挥动力***动作,使航行器达到指定的运动效果;安全阀18直接与环形气囊4连通,直接感知环形气囊4的充气状态,防止其过充发生***;充气管密封穿舱件19和排气管密封穿舱件20均是将耐压密封壳体2内部的气路与外部环形气囊23连接的必需连接件;深度传感器21能够感知航行器当前所在的水深或海拔高度,为控制器17的控制决策提供必要的外界环境参数;气囊内部的气体压力传感器22用于实时感知环形气囊4内部的充气压力,反馈给控制器17生成浮力调节动作指令的判断依据;接收机23用于无限远程接收来自操作者的遥控指令,并将其传达给控制器17;四合一电调24用于控制防水无刷电机11的转速,从而产生不同的旋翼升力;锂电池25用于为所有设备的电能供给。
本发明还提供了一种使用上述的固定翼3海空多栖航行器的控制方法,其特征在于,包含以下步骤:出水步骤:令充气电磁阀打开,环形气囊4中充气,当环形气囊4中气压到达设定值时,关闭充气电磁阀,令自折叠桨张开,令防水无刷电机11运行,自折叠桨转动;飞行姿态调节步骤:控制四合一电调24,控制对多个防水无刷电机11的输出电流,令多个自折叠桨之间产生转速差;入水步骤:令防水无刷电机11关闭,令自折叠桨收缩,令排气电磁阀打开,环形气囊4排气,当环形气囊4中气压到达设定值时,关闭排气电磁阀;水下滑翔步骤:控制充气电磁阀与排气电磁阀的打开或关闭,使环形气囊4体积变化。
如图3所示,本发明提供的固定翼海空多栖航行器,可实现空中大范围飞行观测,也可实现水下长航程滑翔观测,并且依靠所具备的垂直起降功能实现在水、空中不同运动模式的切换。当本发明从水下滑翔模式转为固定翼平飞模式时,首先控制器17会发出指令,使充气电磁阀打开,高压气瓶16内的气体通过气体管路流经充气电磁阀后到达环形气囊4,从而对环形气囊4进行充气动作,环形气囊4膨胀,机体的浮力增加。待浮力超过重力后,机体开始上浮,直至环形气囊4内压力达到设定值,也就是说环形 气囊4膨胀到预设最大体积后,控制器17发出指令使充气电磁阀关闭,从而停止对环形气囊4的充气动作,最终环形气囊4一直保持在最大体积状态,直至机体浮出水面。在环形气囊4充气机体上浮的过程中,机体姿态也在不断发生变化,即机首不断抬高,机身逐渐接近竖直状态,当环形气囊4达到最大体积时,机身姿态角达到最大,接近竖直状态,为机体的垂直出水做好姿态准备。机体到达水面后,控制器17对四合一电调24发出油门指令,四合一电调24对油门指令进行处理,对四个防水无刷电机11输出控制电流使其高速转动,此时自折叠空气桨13在防水无刷电机11的带动下产生旋转,自折叠空气桨13的桨叶在离心力和因自身运动产生的升力作用下甩开升起,直至变为张开状态,最后能够稳定地为航行器的垂直起降和水平飞行提供所需的动力。当自折叠空气桨13提供的升力进一步增大至克服了机体重力和外部流场阻力后,航行器实现垂直升空出水。在航行器升空到达一定高度后,控制器17对四个自折叠空气桨13进行转速差控制,使每个自折叠空气桨13产生不同的拉力,最终产生使机体发生倾斜的俯仰力矩,使机身不断倾斜。由于自折叠空气桨13产生的拉力始终指向机首方向,所以在机体发生倾斜的同时,航行器能同时向前加速飞行。随着水平速度的增加,固定翼3的气动力学效应逐渐增加,其提供的升力逐渐加大。该升力弥补了四个自折叠空气桨13的拉力因逐渐指向水平方向而损失的垂向拉力,起到了平衡机身重力的作用。最终,航行器稳定在固定翼平飞模式。当航行器从固定翼平飞模式转为水下滑翔模式时,控制器17首先通过控制四合一电调24指挥四个防水无刷电机11产生转速差,从而使四个自折叠空气桨13产生合力产生一个使得机身由水平转为竖直的俯仰力矩,使得机身逐渐竖直。在此过程中,由于自折叠空气桨13的拉力逐渐向竖直朝上的方向转动,航行器的前向运动推力逐渐减小,在阻力的作用下,速度逐渐降低,导致固定翼3产生的升力下降。这个过程中,控制器17需要依据自身的传感器返回的状态数据,不断调整防水无刷电机11的转速,修正四个自折叠空气桨13提供的升力,使其在竖直方向的分力不断增加以同步克服固定翼3因速降损失的升力,已达到平衡重力的目的。待航行器在空中悬停稳定后,控制器17指挥空气自折叠桨13降低转速,减小升力,使航行器下降。在航行器稳定降落在水面上后,关闭防水无刷电机11,自折叠空气桨13的桨叶沿机身轴线方向向下收拢,以减小在水中运动的阻力。之后,控制器17通过控制充气电磁阀与排气电磁阀开闭,可有目的地控制环形气囊4的排水体积,从而实现航行器的浮力调节。由于环形气囊至于机首部,环形气囊4的膨胀,不单使得机体上浮,还使得浮心前移,产生一个艉倾的俯仰力矩,使得机身产生与滑翔机上浮运动相应的纵倾角,而环形气囊4 的收缩,则会使得机体在下沉的同时,浮心后移,产生一个艏倾的俯仰力矩,使得机身产生与滑翔机下潜运动相应的纵倾角。最终,航行器产生锯齿状的水下滑翔运动。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种固定翼海空多栖航行器,其特征在于,包含外壳组件、飞行组件以及气动浮力组件;
    所述飞行组件包含固定翼(3)与旋翼组件,固定翼(3)与旋翼组件均安装在外壳组件上;
    所述气动浮力组件包含气囊与充排气结构,气囊与充排气结构相连,充排气结构能够对气囊进行充气与排气;
    气囊安装在外壳组件上,外壳组件内部形成容物空间,充排气结构部分或整***于容物空间内。
  2. 根据权利要求1所述的固定翼海空多栖航行器,其特征在于,所述旋翼组件包含依次连接的旋翼支撑杆(5)、电机固定基座(10)、电机、桨体;
    多个旋翼组件沿外壳组件周向方向布置。
  3. 根据权利要求2所述的固定翼海空多栖航行器,其特征在于,所述桨体包含自折叠桨,自折叠桨包含自折叠桨桨毂(12)与自折叠空气桨(13);
    所述电机包含防水无刷电机(11)。
  4. 根据权利要求1所述的固定翼海空多栖航行器,其特征在于,充排气结构包含气瓶、电磁阀(15)、充气管密封穿舱件(19)以及排气管密封穿舱件(20);
    多个电磁阀(15)包含充气电磁阀与排气电磁阀;
    气瓶、充气管密封穿舱件(19)、气囊、排气管密封穿舱件(20)依次连接。
  5. 根据权利要求4所述的固定翼海空多栖航行器,其特征在于,所述气囊包含环形气囊(4),环形气囊(4)套接在外壳组件上;
    环形气囊(4)上设置有安全阀(18)。
  6. 根据权利要求1所述的固定翼海空多栖航行器,其特征在于,所述容物空间内还设置有深度传感器(21)、接收机(23)、电调、电池以及控制器(17);
    所述电调包含四合一电调(24),电池包含锂电池(25);
    所述气囊上设置有压力传感器(22)。
  7. 根据权利要求6所述的固定翼海空多栖航行器,其特征在于,所述控制器(17)包含以下模块:
    信号获取模块:获取深度信号、压力信号以及远程控制信号;
    飞行控制模块:控制飞行组件的运行;
    浮力控制模块:控制气动浮力组件的运行。
  8. 根据权利要求1所述的固定翼海空多栖航行器,其特征在于,所述外壳组件包含依次连接的底部密封端盖(1)、耐压密封壳体(2)、顶部密封舱盖(7)、顶部导流罩(6);
    所述底部密封端盖(1)为球形,所述顶部导流罩(6)为椭球形。
  9. 根据权利要求8所述的固定翼海空多栖航行器,其特征在于,外壳组件上设置有机架固定板(8)与固定翼支撑环;
    旋翼组件、固定翼(3)分别通过机架固定板(8)、固定翼支撑环紧固连接在外壳组件上;
    多个固定翼支撑环包含沿外壳组件轴向方向布置的上固定翼支撑环(9)与下固定翼支撑环(14)。
  10. 一种使用权利要求1至9中任一项所述的固定翼海空多栖航行器的控制方法,其特征在于,包含以下步骤:
    出水步骤:令充气电磁阀打开,环形气囊(4)中充气,当环形气囊(4)中气压到达设定值时,关闭充气电磁阀,令防水无刷电机(11)运行,自折叠桨转动并张开;
    飞行姿态调节步骤:控制四合一电调(24),控制对多个防水无刷电机(11)的输出电流,令多个自折叠桨之间产生转速差;
    入水步骤:令防水无刷电机(11)关闭,自折叠桨收缩,令排气电磁阀打开,环形气囊(4)排气,当环形气囊(4)中气压到达设定值时,关闭排气电磁阀;
    水下滑翔步骤:控制充气电磁阀与排气电磁阀的打开或关闭,使环形气囊(4)体积变化。
PCT/CN2018/072018 2017-12-20 2018-01-10 固定翼海空多栖航行器与控制方法 WO2019119556A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/956,868 US11530036B2 (en) 2017-12-20 2018-01-10 Fixed-wing aerial underwater vehicle and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711386555.4 2017-12-20
CN201711386555.4A CN108216532B (zh) 2017-12-20 2017-12-20 固定翼海空多栖航行器与控制方法

Publications (1)

Publication Number Publication Date
WO2019119556A1 true WO2019119556A1 (zh) 2019-06-27

Family

ID=62649963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072018 WO2019119556A1 (zh) 2017-12-20 2018-01-10 固定翼海空多栖航行器与控制方法

Country Status (3)

Country Link
US (1) US11530036B2 (zh)
CN (1) CN108216532B (zh)
WO (1) WO2019119556A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792033A (zh) * 2020-06-17 2020-10-20 南宁慧视科技有限责任公司 一种便于组装的水上固定翼无人飞行器
CN112319790A (zh) * 2020-11-05 2021-02-05 国网福建省电力有限公司电力科学研究院 融合多旋翼与固定翼的长航时飞行器的气动布局结构及其控制方法
CN113173237A (zh) * 2021-04-19 2021-07-27 江苏省海洋资源开发研究院(连云港) 一种模态可切换跨介质环境探测平台及其探测方法
CN113942626A (zh) * 2021-10-15 2022-01-18 九江海天设备制造有限公司 一种用于无人潜航器的浮心补偿装置及其使用方法
CN114644112A (zh) * 2022-03-29 2022-06-21 中国电子科技南湖研究院 一种水空两用无人机
CN115320843A (zh) * 2022-09-02 2022-11-11 中南大学 水空双动力倾转旋翼跨介质无人机
CN115593653A (zh) * 2022-10-28 2023-01-13 中国工程物理研究院总体工程研究所(Cn) 高速空-水介质跨越测试回收试验装置及试验方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406653A (zh) * 2019-07-16 2019-11-05 沈阳航空航天大学 一种基于四旋翼的水下无人飞行器
CN110588972B (zh) * 2019-09-06 2022-09-09 西安电子科技大学 一种基于共轴式水空双动力无人机的水空转换装置及方法
CN110775266A (zh) * 2019-10-28 2020-02-11 上海交通大学 基于油电混动的海空两栖航行器
CN110775264B (zh) * 2019-10-28 2022-10-18 上海交通大学 水空两栖无人航行器及其控制方法
CN110979666B (zh) 2019-12-27 2021-09-21 浙江大学 水空机器人
CN113126633B (zh) * 2019-12-30 2022-05-06 中国科学院沈阳自动化研究所 一种轻型长航程auv的零攻角定深航行控制方法
CN111301079B (zh) * 2019-12-31 2023-03-24 中国海洋大学 一种跨介质海空两栖无人机
CN111267568B (zh) * 2020-02-29 2024-06-11 南京航空航天大学 可作两栖动力装置的飞行器及其工作方法
CN112373701B (zh) * 2020-11-12 2022-04-01 河南大学 一种石油管道检测用5g即时通讯的四旋翼无人机
CN112428760B (zh) * 2020-12-04 2022-04-15 中船海洋探测技术研究院有限公司 复杂水域环境贴底定高航行的跨介质航行器和航行方法
CN113580860A (zh) * 2021-08-10 2021-11-02 上海交通大学 高速大负载组合推进式海空跨域飞行探测平台
CN113460299B (zh) * 2021-09-02 2021-11-30 中国空气动力研究与发展中心低速空气动力研究所 一种用于共轴刚性旋翼桨毂减阻的射流结构及其使用方法
CN114148495B (zh) * 2021-12-02 2023-03-14 中国船舶科学研究中心 双功能无人潜航器模式切换方法及装置
CN114852300B (zh) * 2022-07-07 2022-10-21 中国空气动力研究与发展中心空天技术研究所 一种矢量推进的水下航行器及其航行方法
CN115230961A (zh) * 2022-07-22 2022-10-25 中国空气动力研究与发展中心空天技术研究所 一种水空两用内外压平衡式耐压舱及其作业方法
CN115303483A (zh) * 2022-08-31 2022-11-08 南京航空航天大学 一种具有桨叶复用功能的两栖旋翼无人机及其操控方法
CN115817083B (zh) * 2022-12-12 2024-05-28 山东大学 海空两栖航行器
CN115903056B (zh) * 2023-02-23 2023-05-30 武汉大学 轨条砦水空两栖无人航行器低频无源自主探测***和方法
CN117262267B (zh) * 2023-11-21 2024-02-09 山东字节信息科技有限公司 两栖无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724284A (zh) * 2015-03-25 2015-06-24 朱威 一种多旋翼潜水无人飞行器及其控制方法
CN205113714U (zh) * 2015-11-23 2016-03-30 厦门翔腾航空科技有限公司 一种空中水下两用无人航行器装置
US20160376000A1 (en) * 2014-07-10 2016-12-29 Christoph Kohstall Submersible unmanned aerial vehicles and associated systems and methods
CN205971839U (zh) * 2016-08-30 2017-02-22 苏跃进 航空器固定翼及使用固定翼的多旋翼飞机和固定翼飞机
CN106516110A (zh) * 2016-12-22 2017-03-22 中国海洋大学 可垂直起降飞行的水空两栖滑翔机
CN206218223U (zh) * 2016-09-23 2017-06-06 广东天米教育科技有限公司 一种多形态无人机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493235B2 (en) * 2002-10-01 2016-11-15 Dylan T X Zhou Amphibious vertical takeoff and landing unmanned device
CN103587665B (zh) * 2013-11-15 2015-12-09 华中科技大学 一种深海滑翔机的浮力调节装置和方法
CN104802962B (zh) * 2015-03-27 2017-08-04 徐州飞梦电子科技有限公司 一种水上救援***及其方法
CN205686596U (zh) * 2016-06-24 2016-11-16 天津深之蓝海洋设备科技有限公司 一种水下滑翔机快速浮力调节装置
CN107128443A (zh) * 2017-05-09 2017-09-05 南京航空航天大学 一种可垂直起降的海空两栖飞船
US10661623B2 (en) * 2018-03-01 2020-05-26 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Multi-modal flying airplane and underwater glider
US20190351996A1 (en) * 2018-05-15 2019-11-21 Evangelos Livieratos Breaching for submergible fixed wing aircraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160376000A1 (en) * 2014-07-10 2016-12-29 Christoph Kohstall Submersible unmanned aerial vehicles and associated systems and methods
CN104724284A (zh) * 2015-03-25 2015-06-24 朱威 一种多旋翼潜水无人飞行器及其控制方法
CN205113714U (zh) * 2015-11-23 2016-03-30 厦门翔腾航空科技有限公司 一种空中水下两用无人航行器装置
CN205971839U (zh) * 2016-08-30 2017-02-22 苏跃进 航空器固定翼及使用固定翼的多旋翼飞机和固定翼飞机
CN206218223U (zh) * 2016-09-23 2017-06-06 广东天米教育科技有限公司 一种多形态无人机
CN106516110A (zh) * 2016-12-22 2017-03-22 中国海洋大学 可垂直起降飞行的水空两栖滑翔机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792033A (zh) * 2020-06-17 2020-10-20 南宁慧视科技有限责任公司 一种便于组装的水上固定翼无人飞行器
CN112319790A (zh) * 2020-11-05 2021-02-05 国网福建省电力有限公司电力科学研究院 融合多旋翼与固定翼的长航时飞行器的气动布局结构及其控制方法
CN112319790B (zh) * 2020-11-05 2024-01-23 国网福建省电力有限公司电力科学研究院 融合多旋翼与固定翼的长航时飞行器的气动布局结构及其控制方法
CN113173237A (zh) * 2021-04-19 2021-07-27 江苏省海洋资源开发研究院(连云港) 一种模态可切换跨介质环境探测平台及其探测方法
CN113173237B (zh) * 2021-04-19 2024-03-08 江苏省海洋资源开发研究院(连云港) 一种模态可切换跨介质环境探测平台及其探测方法
CN113942626A (zh) * 2021-10-15 2022-01-18 九江海天设备制造有限公司 一种用于无人潜航器的浮心补偿装置及其使用方法
CN114644112A (zh) * 2022-03-29 2022-06-21 中国电子科技南湖研究院 一种水空两用无人机
CN114644112B (zh) * 2022-03-29 2024-05-03 中国电子科技南湖研究院 一种水空两用无人机
CN115320843A (zh) * 2022-09-02 2022-11-11 中南大学 水空双动力倾转旋翼跨介质无人机
CN115593653A (zh) * 2022-10-28 2023-01-13 中国工程物理研究院总体工程研究所(Cn) 高速空-水介质跨越测试回收试验装置及试验方法
CN115593653B (zh) * 2022-10-28 2024-04-16 中国工程物理研究院总体工程研究所 高速空-水介质跨越测试回收试验装置及试验方法

Also Published As

Publication number Publication date
CN108216532A (zh) 2018-06-29
US11530036B2 (en) 2022-12-20
CN108216532B (zh) 2020-07-14
US20210061458A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2019119556A1 (zh) 固定翼海空多栖航行器与控制方法
US11420737B2 (en) High speed multi-rotor vertical takeoff and landing aircraft
US10858100B2 (en) Unmanned air and underwater vehicle
EP3287358B1 (en) Tethered unmanned aerial vehicle
CN107416177B (zh) 一种仿生球形结构无人机
CN108698683A (zh) 在空中、水、及地面环境中安全操作的稳定性得到提升的通用汽车
CN109204812B (zh) 一种固定翼与滑翔机结合的海空两栖航行器
EP1551706B1 (en) Dual hull airship controlled by thrust vectoring
CN109606605A (zh) 一种飞艇多旋翼复合式飞行器
CN110722941A (zh) 一种旋翼型水空跨越两栖航行器及其使用方法
WO2020165724A1 (en) Hybrid aquatic unmanned aerial and submersible vehicle
CN110775268A (zh) 一种无人机飞行器
CN114644112B (zh) 一种水空两用无人机
RU195315U1 (ru) Гибридный беспилотный летательный аппарат
CN113753220A (zh) 一种可自动折叠的水空两栖多旋翼飞行器及其工作方法
CN218594543U (zh) 一种旋翼水下航行器
RU213733U1 (ru) Двухсредный беспилотный летательный аппарат
CN215361803U (zh) 一种侦查定位救生一体无人机
JPH058798A (ja) 筒内プロペラ設置・水平室付運搬用筒形気球
CN114030611A (zh) 飞行装置及其飞行方法
CN116477051A (zh) 一种无人机水面起飞时机判断方法及无人机
CN115742645A (zh) 一种垂直起降跨介质无人飞行器布局
CN110466780A (zh) 一种太阳能飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18891726

Country of ref document: EP

Kind code of ref document: A1