WO2019119258A1 - 光学***及近眼显示装置 - Google Patents

光学***及近眼显示装置 Download PDF

Info

Publication number
WO2019119258A1
WO2019119258A1 PCT/CN2017/117107 CN2017117107W WO2019119258A1 WO 2019119258 A1 WO2019119258 A1 WO 2019119258A1 CN 2017117107 W CN2017117107 W CN 2017117107W WO 2019119258 A1 WO2019119258 A1 WO 2019119258A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
polarization
image light
lens
light
Prior art date
Application number
PCT/CN2017/117107
Other languages
English (en)
French (fr)
Inventor
郑琼羽
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/117107 priority Critical patent/WO2019119258A1/zh
Priority to CN201780097414.2A priority patent/CN111433656A/zh
Publication of WO2019119258A1 publication Critical patent/WO2019119258A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an optical system and a near-eye display device.
  • the related art near-eye display device utilizes a polarizing reflection device to cause light to be folded back to shorten the length of the lens.
  • a polarizing reflection device to cause light to be folded back to shorten the length of the lens.
  • there is a loss in the deviation of the light deviation which is disadvantageous for improving the energy efficiency of the near-eye display device.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention is required to provide an optical system and a near-eye display device.
  • the present invention discloses an optical system and a near-eye display device including the optical system.
  • An optical system includes a display screen for emitting image light, a polarization beam splitter for splitting the image light into first polarization image light and second polarization image light, both of which are different in polarization state and propagation direction, and respectively for The first polarized image light and the second polarized image light are projected to the first polarization foldback system and the second polarization foldback system of the left and right eyes.
  • optical system of the embodiment of the present invention can be applied to the near-eye display device of the embodiment of the present invention.
  • the near-eye display device of the embodiment of the present invention further includes a housing.
  • the optical system is disposed within the housing.
  • the optical system and the near-eye display device of the embodiment of the present invention are polarized by using a polarization splitting device, and the polarized light splitting light and the second polarized image light can be used for the polarization turn-back system of the left and right eyes, respectively, to improve the light. Utilization rate.
  • FIG. 1 is a schematic view showing an optical path of an optical system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a near-eye display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical path of a first polarization foldback system according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of an optical path of an optical system according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optical path of a second polarization foldback system according to an embodiment of the present invention.
  • Figure 6 is a spatial frequency diagram of an optical system in accordance with an embodiment of the present invention.
  • Fig. 7 is a graph showing an image field curvature and a distortion curve of an optical system according to an embodiment of the present invention.
  • Optical system 10 display screen 12, polarization beam splitter 14, first polarization foldback system 16, first phase retarder 162, first lens L1, first transflective 164, second lens L2, second phase
  • First polarized image light PIMG circularly polarized light CPL1 in the first rotational direction, first transmitted light TL1, first reflected light RL1, first polarized light PL1, circularly polarized light CPL2 in the second rotational direction, and second transmitted Light TL2, second reflected light RL2, second polarized light PL2, second polarized image light SIMG, circularly polarized light CPL3 in the third rotational direction, third transmitted light TL3, third reflected light RL3, third polarized light PL3, Circularly polarized light CPL4, fourth transmitted light TL4, and fourth reflected light in the fourth rotation direction RL4, fourth polarized light PL4.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • Connected, or integrally connected may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • an optical system 10 includes a display screen 12 for emitting image light, and a first polarization image light PIMG and a second polarization image for separating the image light IMG into a polarization state and a propagation direction.
  • a polarization splitter 14 of the optical SIMG a first polarization foldback system 16 for projecting the first polarized image light PIMG to the right eye, and a second polarization foldback system 18 for projecting the second polarized image light SIMG to the left eye.
  • the optical system 10 may be applied to the near-eye display device 100 of the embodiment of the present invention, or the near-eye display device 100 of the embodiment of the present invention includes the optical system 10 of the embodiment of the present invention.
  • the near-eye display device 100 of the embodiment of the present invention generally further includes a housing 20.
  • the optical system 10 can be disposed within the outer casing 20.
  • the optical system 10 and the near-eye display device 100 of the embodiment of the present invention are polarized by using the polarization beam splitter 14, the first polarized image light PIMG and the second polarized image light SIMG after the polarizing can be used for the first polarization folding system 16, respectively. And the second polarization foldback system 18 improves the utilization of light.
  • optical system 10 is not limited to the above embodiments but can be applied to other suitable scenarios.
  • display screen 12 includes an OLED display screen.
  • the OLED display does not require a backlight, which is advantageous for the thinning of the near-eye display device.
  • the OLED screen has a large viewing angle and low power consumption, which is conducive to saving power consumption.
  • the polarization beam splitter 14 includes a polarization beam splitting prism (PBS).
  • PBS polarization beam splitting prism
  • the polarization beam splitting prism has high extinction ratio, good imaging quality, small beam deflection angle, and can separate the horizontal polarization and the vertical polarization of the image light IMG into first polarization image light PIMG and second polarization which are different in polarization direction and propagation direction.
  • Image light SIMG The polarization direction of the second polarization image light SIMG is perpendicular to the polarization direction of the first polarization image light PIMG, and the propagation direction of the second polarization image light SIMG is perpendicular to the propagation direction of the first polarization image light PIMG.
  • the polarization beam splitter 14 includes a Nicol prism.
  • the image light IMG is divided into first polarized image light PIMG and second polarized image light SIMG, which are different in polarization direction and propagation direction, by using a Nicol prism.
  • the polarizing beamsplitter 14 comprises a transparent plate coated with a plurality of layers of polarizing diffusing dielectric film.
  • the image light IMG is divided into a first polarized image light PIMG and a second polarized image light SIMG, both of which have different polarization directions and propagation directions, by plating a multi-layer polarization splitting dielectric film on a transparent plate.
  • the polarizing beamsplitter 14 includes a transparent plate to which a metal grating polarizer (WGF) is attached.
  • WGF metal grating polarizer
  • the image light IMG is divided into a first polarization image light PIMG and a second polarization image light SIMG, both of which have different polarization directions and propagation directions, by attaching a metal grating polarizing plate (WGF) to the transparent plate.
  • WGF metal grating polarizing plate
  • the polarizing beamsplitter 14 includes a transparent plate to which a brightness enhancing sheet (APF) is attached.
  • APF brightness enhancing sheet
  • the image light IMG is divided into a first polarized image light PIMG and a second polarized image light SIMG which are different in polarization direction and propagation direction by attaching a brightness enhancement sheet (APF) on the transparent flat plate.
  • APF brightness enhancement sheet
  • polarization beam splitter 14 is not limited to the embodiments discussed above and other suitable components or components may be employed in other embodiments as desired.
  • the first polarization reentry system 16 includes, in order from the image side to the object side, a first phase retarder 162, a first lens L1, a first transflective 164, and a second lens L2.
  • the first phase retarder 162 converts the first polarized image light PIMG into circularly polarized light CPL1 in the first rotational direction.
  • the circularly polarized light CPL1 in the first rotational direction passes through the first lens L1 and is incident on the first transflective 164.
  • the first half transflective 164 divides the circularly polarized light CPL1 in the first rotational direction into the first transmitted light TL1 and the first reflected light RL1.
  • the first transmitted light TL1 passes through the second lens L2 and is incident on the second phase retarder 166.
  • the second phase retarder 166 converts the first transmitted light TL1 into the first polarized light PL1 whose polarization direction is parallel to the first polarized image light PIMG.
  • the first polarized light PL1 is reflected by the first reflection type analyzer 168 and is incident on the second phase retarder 166 again.
  • the second phase retarder 166 converts the first polarized light PL1 into the circularly polarized light CPL2 in the second rotational direction, and the circularly polarized light CPL2 in the second rotational direction passes through the second lens L2 and is incident on the first transflective splitter. 164.
  • the first half transflective 164 divides the circularly polarized light CPL2 in the second rotational direction into the second transmitted light TL2 and the second reflected light RL2.
  • the second reflected light RL2 passes through the second lens L2 and is incident on the second phase retarder 166.
  • the second phase retarder 166 converts the second reflected light RL2 into a second polarized light PL2 whose polarization direction is perpendicular to the first polarized light PL1, that is, perpendicular to the polarization direction of the first polarized image light PIMG.
  • the second polarized light PL2 is emitted from the first polarization folding system 16 via the first reflection type analyzer 168 and the third lens L3.
  • the first polarization image light PIMG is deflected once in the first polarization folding system 16 by the first polarization folding system 16 and then projected to the right eye, which is advantageous for shortening the lens length and allowing the light to be quickly focused.
  • the first phase retarder 162 includes a 1/4 wavelength retardation film disposed on the image side of the first lens L1.
  • the angle between the fast axis of the 1/4 wavelength retardation film and the polarization direction of the first polarized image light PIMG is 45°.
  • the emitted light is circularly polarized light, and the 1/4 wavelength retardation film is utilized. Converting the first polarized image light PIMG into the circularly polarized light CPL1 in the first rotational direction is simple and convenient, and is easy to implement.
  • the first transflective 164 includes a transflective film disposed on a side of the first lens L1.
  • the light of half light intensity can be transmitted and the light of half light intensity can be reflected without changing the polarization direction of the light, and the circular polarization of the first rotating direction is utilized by the transflective film.
  • the light CPL1 is divided into the first transmitted light TL1 and the first reflected light RL1, and the circularly polarized light CPL2 in the second rotational direction is divided into the second transmitted light TL2 and the second reflected light RL2, which is simple and convenient, and is easy to implement.
  • the second phase retarder 166 includes a 1/4 wavelength retardation film disposed on the object side of the second lens L2.
  • the angle between the fast axis of the 1/4 wavelength retardation film and the polarization direction of the first polarized image light PIMG is -45.
  • the first transmitted light TL1 can be converted into parallel with the polarization direction of the first polarization image light PIMG.
  • the first polarized light PL1 converts the first polarized light PL1 into circularly polarized light CPL2 in the second rotational direction.
  • the first reflective analyzer 168 is disposed on the object side of the second lens L2.
  • the transmission axis of the first reflection type analyzer 168 is perpendicular to the polarization direction of the first polarization image light PIMG.
  • the first polarization PL1 whose polarization direction is parallel to the polarization direction of the first polarization image light PIMG can be made first.
  • the reflective analyzer 168 reflects and re-enters the second phase retarder 166, so that the second polarized light PL2 whose polarization direction is perpendicular to the polarization direction of the first polarized image light PIMG passes through the first reflective analyzer 168 and the third.
  • Lens L3 is emitted from first polarization foldback system 16.
  • the optical system 10 includes an optical axis deflection system 11 for deflecting the direction of propagation of the second polarized image light SIMG, and projecting the second polarized image light SIMG to the second polarization foldback system 18 in.
  • the optical axis deflection system 11 includes a fourth lens L4, a reflective device 112.
  • the second polarized image light SIMG is incident on the reflective device 112 through the fourth lens L4, and the reflective device 112 changes the propagation direction of the second polarized image light SIMG, that is, the propagation direction of the second polarized image light SIMG and the first polarized image light
  • the propagation directions of the PIMG are parallel, thereby allowing the second polarized image light SIMG to be incident into the second polarization foldback system 18.
  • the optical axis deflection system 11 includes a third phase retarder 114.
  • a third phase retarder 114 is added to the optical axis deflection system 11 to convert the polarization direction of the second polarization image light SIMG from being perpendicular to the polarization direction of the first polarization image light PIMG to be parallel to the polarization direction of the first polarization image light PIMG.
  • the angle setting of the polarizing device in the second polarization folding back system 18 can be made consistent with the angle setting of the polarizing device in the first polarization folding system 16, and no further variation is needed, which is advantageous for simplifying the production process and improving the production efficiency.
  • the third phase retarder 114 includes a 1/2 wavelength retarder.
  • the 1/2 wavelength retarder can change the polarization direction of the incident light, and the 1/2 wavelength retarder can change the polarization direction of the second polarized image light SIMG, which is simple, convenient, and easy to implement.
  • the second polarization reentry system 18 includes, in order from the image side to the object side, a fourth phase retarder 182, a fifth lens L5, a second transflective 184, a sixth lens L6, and a A five-phase retarder 186, a second reflective type analyzer 188, and a seventh lens L7.
  • the fourth phase retarder 182 converts the second polarized image light SIMG into circularly polarized light CPL3 in the third rotational direction.
  • the circularly polarized light CPL3 in the third rotational direction passes through the fifth lens L5 and is incident on the second transflective 184.
  • the second transflective 184 splits the circularly polarized light CPL3 in the third rotational direction into a third transmitted light TL3 and a third reflected light RL3.
  • the third transmitted light TL3 passes through the sixth lens L6 and is incident on the fifth phase retarder 186.
  • the fifth phase retarder 186 converts the third transmitted light TL3 into the third polarized light PL3 that is parallel to the polarization direction and the second polarized image light SIMG.
  • the third polarized light PL3 is reflected by the second reflection type analyzer 188 and is incident on the fifth phase retarder 186 again.
  • the fifth phase retarder 186 converts the third polarized light PL3 into the circularly polarized light CPL4 in the fourth rotational direction, and the circularly polarized light CPL4 in the fourth rotational direction passes through the sixth lens L6, and is incident on the second transflective splitter.
  • the second transflective 184 splits the circularly polarized light CPL4 in the fourth rotational direction into a fourth transmitted light TL4 and a fourth reflected light RL4.
  • the four reflected light RL4 passes through the sixth lens L6 and is incident on the fifth phase retarder 186.
  • the fifth phase retarder 186 converts the fourth reflected light RL4 into a fourth polarized light PL4 whose polarization direction is perpendicular to the third polarized light PL3, that is, perpendicular to the polarization direction of the second polarized image light SIMG.
  • the four polarized light PL4 is emitted from the second polarization folding system 18 via the second reflection type analyzer 188 and the seventh lens L7.
  • the second polarized image light SIMG is folded back once in the second polarization folding system 18 by the second polarization folding back system 18 and then projected to the left eye, which is advantageous for shortening the lens length and quickly focusing the light.
  • the fourth phase retarder 182 includes a 1/4 wavelength retardation film disposed on the image side of the fourth lens L4.
  • the angle between the fast axis of the 1/4 wavelength retardation film and the polarization direction of the second polarized image light SIMG is 45°.
  • the emitted light is circularly polarized light, and the 1/4 wavelength retardation film is utilized. Converting the second polarized image light SIMG into the circularly polarized light CPL3 in the third rotational direction is simple, convenient, and easy to implement.
  • the second transflective 184 comprises a transflective film disposed on the side of the fourth lens L4.
  • the light of half light intensity can be transmitted and the light of half light intensity can be reflected without changing the polarization direction of the light, and the circular polarization of the third rotation direction is utilized by the transflective film.
  • the light CPL 3 is divided into the third transmitted light TL3 and the third reflected light RL3, and the circularly polarized light CPL4 in the fourth rotational direction is divided into the fourth transmitted light TL4 and the fourth reflected light RL4, which is simple and convenient, and is easy to implement.
  • the fifth phase retarder 186 includes a 1/4 wavelength retardation film disposed on the object side of the fifth lens L5.
  • the angle between the fast axis of the 1/4 wavelength retardation film and the polarization direction of the second polarized image light SIMG is -45.
  • the third transmitted light TL3 can be converted into parallel with the polarization direction and the second polarization image light SIMG.
  • the third polarized light PL3 converts the third polarized light PL3 into circularly polarized light CPL4 in the fourth rotational direction.
  • the second reflective analyzer 188 is disposed on the object side of the fifth lens L5.
  • the transmission axis of the second reflection type analyzer 188 is perpendicular to the polarization direction of the second polarization image light SIMG.
  • the third polarization PL3 whose polarization direction is parallel to the polarization direction of the second polarization image light SIMG can be made second.
  • the reflective analyzer 188 reflects and is incident on the fifth phase retarder 186 again, and the fourth polarized light PL4 whose polarization direction is perpendicular to the polarization direction of the second polarized image light SIMG passes through the second reflection type analyzer 188 and the seventh.
  • Lens L7 exits from second polarization foldback system 18.
  • optical system 10 of the embodiment of the present invention satisfies the conditions of the following tables:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学***(10)和包括光学***(10)的近眼显示装置(100)。光学***(10)包括用于发出图像光(IMG)的显示屏(12)、用于将图像光(IMG)分成偏振态与传播方向均不同的第一偏振图像光(PIMG)和第二偏振图像光(SIMG)的偏振分光器(14)、用于将第一偏振图像光(PIMG)投射到右眼的第一偏振折返***(16)和用于将第二偏振图像光(SIMG)投射到左眼的第二偏振折返***(18)。光学***(10)和近眼显示装置(100)由于采用偏振分光器(14)来起偏,起偏后的第一偏振图像光(PIMG)和第二偏振图像光(SIMG)可以分别用于第一偏振折返***(16)和第二偏振折返***(18),提高了光线的利用率。

Description

光学***及近眼显示装置 技术领域
本发明涉及显示技术领域,具体涉及一种光学***及近眼显示装置。
背景技术
相关技术的近眼显示装置利用偏振反射器件使得光线折返从而缩短镜头长度,然而,光线起偏跟检偏存在损耗,不利于提高近眼显示装置的能效。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种光学***及近眼显示装置。
本发明公开了一种光学***和包括光学***的近眼显示装置。
本发明实施方式的光学***包括用于发出图像光的显示屏、用于将图像光分成偏振态与传播方向均不同的第一偏振图像光和第二偏振图像光的偏振分光器以及分别用于将第一偏振图像光和第二偏振图像光投射到左右眼的第一偏振折返***和第二偏振折返***。
本发明实施方式的光学***可以应用于本发明实施方式的近眼显示装置。
除了光学***外,本发明实施方式的近眼显示装置还包括外壳。光学***设置在外壳内。
本发明实施方式的光学***和近眼显示装置由于采用偏振分光器件来起偏,起偏后的第一偏振图像光和第二偏振图像光可以分别用于左右眼的偏振折返***,提高了光线的利用率。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的光学***的光路示意图;
图2是本发明实施方式的近眼显示装置的示意图;
图3是本发明实施方式第一偏振折返***的的光路示意图;
图4是本发明另一实施方式的光学***的的光路示意图;
图5是本发明实施方式第二偏振折返***的的光路示意图;
图6是本发明实施方式的光学***的空间频率图;
图7是本发明实施方式的光学***的像场弯曲曲线图和畸变曲线图。
主要元件符号说明:
光学***10、显示屏12、偏振分光器14、第一偏振折返***16、第一相位延迟器162、第一透镜L1、第一半透半反分光器164、第二透镜L2、第二相位延迟器166、第一反射型检偏器168、第三透镜L3、第二偏振折返***18、第四相位延迟器182、第五透镜L5、第二半透半反分光器184、第六透镜L6、第五相位延迟器186、第二反射型检偏器188、第七透镜L7、光轴偏转***11、第四透镜L4、反射器件112、第三相位延迟器114、近眼装置100、外壳20、第一偏振图像光PIMG、第一旋转方向的圆偏振光CPL1、第一透射光TL1、第一反射光RL1、第一偏振光PL1、第二旋转方向的圆偏振光CPL2、第二透射光TL2、第二反射光RL2、第二偏振光PL2、第二偏振图像光SIMG、第三旋转方向的圆偏振光CPL3、第三透射光TL3、第三反射光RL3、第三偏振光PL3、第四旋转方向的圆偏振光CPL4、第四透射光TL4、第四反射光RL4、第四偏振光PL4。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的光学***10包括用于发出图像光的显示屏12、用于将图像光IMG分成偏振态与传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG的偏振分光器14、用于将第一偏振图像光PIMG投射到右眼的第一偏振折返***16和用于将第二偏振图像光SIMG投射到左眼的第二偏振折返***18。
请参阅图2,本发明实施方式的光学***10可以应用于本发明实施方式的近眼显示装置100,或者说,本发明实施方式的近眼显示装置100包括本发明实施方式的光学***10。本发明实施方式的近眼显示装置100通常还包括外壳20。光学***10可以设置在外壳20内。
本发明实施方式的光学***10和近眼显示装置100由于采用偏振分光器14来起偏,起偏后的第一偏振图像光PIMG和第二偏振图像光SIMG可以分别用于第一偏振折返***16和第二偏振折返***18,提高了光线的利用率。
可以理解,光学***10的应用并不限于上述实施方式而可以应用于其他合适的场景。
在某些实施方式中,显示屏12包括OLED显示屏。
OLED显示屏无需背光灯,有利于近眼显示装置的轻薄化。此外,OLED屏幕可视角度大,耗电较低,有利于节省耗电量。
在某些实施方式中,偏振分光器14包括偏振分光棱镜(PBS)。
偏振分光棱镜消光比高、成像质量好、光束偏转角小,且可以将图像光IMG的水平偏振和垂直偏振分开,分为偏振方向和传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG。第二偏振图像光SIMG的偏振方向与第一偏振图像光PIMG的偏振方向垂直,第二偏振图像光SIMG的传播方向与第一偏振图像光PIMG的传播方向垂直。
在某些实施方式中,偏振分光器14包括尼科尔棱镜。
利用尼科尔棱镜使得图像光IMG分成偏振方向和传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG。
在某些实施方式中,偏振分光器14包括镀多层偏振分光介质膜的透明平板。
通过在透明平板上镀多层偏振分光介质膜,使得图像光IMG分成偏振方向和传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG。
在某些实施方式中,偏振分光器14包括贴附有金属光栅偏振片(WGF)的透明平板。
通过在透明平板上贴附金属光栅偏振片(WGF),使得图像光IMG分成偏振方向和传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG。
在某些实施方式中,偏振分光器14包括贴附有增亮片(APF)的透明平板。
通过在透明平板上贴附增亮片(APF),使得图像光IMG分成偏振方向和传播方向均不同的第一偏振图像光PIMG和第二偏振图像光SIMG。
当然,偏振分光器14并不限于上面讨论的实施方式而可以根据需要在其他实施方式中采用其他合适的元器件或者组件。
在某些实施方式中,第一偏振折返***16从像侧到物侧依次包括:第一相位延迟器162、第一透镜L1、第一半透半反分光器164、第二透镜L2、第二相位延迟器166、第一反射型检偏器168和第三透镜L3。
请参阅图3,第一相位延迟器162将第一偏振图像光PIMG转化成第一旋转方向的圆偏振光CPL1。第一旋转方向的圆偏振光CPL1经过第一透镜L1后,入射到第一半透半反分光器164。第一半透半反分光器164将第一旋转方向的圆偏振光CPL1分成第一透射光TL1和第一反射光RL1。第一透射光TL1经过第二透镜L2后,入射到第二相位延迟器166。第二相位延迟器166将第一透射光TL1转化成与偏振方向与第一偏振图像光PIMG平行的第一偏振光PL1。
第一偏振光PL1经第一反射型检偏器168反射,再次入射到第二相位延迟器166。第二相位延迟器166将第一偏振光PL1转化成第二旋转方向的圆偏振光CPL2,第二旋转方向的圆偏振光CPL2经过第二透镜L2后,入射到第一半透半反分光器164。第一半透半反分光器164将第二旋转方向的圆偏振光CPL2分成第二透射光TL2和第二反射光RL2。第二反射光RL2经过第二透镜L2后,入射到第二相位延迟器166。第二相位延迟器166将第二反射光RL2转化成偏振方向与第一偏振光PL1垂直即与第一偏振图像光PIMG的偏振方向垂直的第二偏振光PL2。第二偏振光PL2经过第一反射型检偏器168和第三透镜L3从第一偏振折返***16中射出。
如此,通过第一偏振折返***16使第一偏振图像光PIMG在第一偏振折返***16中折 返一次后投射到右眼,有利于缩短镜头长度和使光线迅速聚焦。
在某些实施方式中,第一相位延迟器162包括设置在第一透镜L1上的像侧面上的1/4波长延迟膜。1/4波长延迟膜的快轴与第一偏振图像光PIMG的偏振方向的夹角为45°。
基于1/4波长延迟膜的特性,即当1/4波长延迟膜的快轴与入射的线偏振光的夹角为45°时,出射的光为圆偏振光,利用1/4波长延迟膜将第一偏振图像光PIMG转化成第一旋转方向的圆偏振光CPL1,简单方便,容易实现。
在某些实施方式中,第一半透半反分光器164包括设置在第一透镜L1物侧面上的半透半反分光膜。
基于半透半反分光膜在不改变光的偏振方向的前提下能够透射一半光强的光并反射一半光强的光的特性,利用半透半反分光膜,将第一旋转方向的圆偏振光CPL1分成第一透射光TL1和第一反射光RL1,将第二旋转方向的圆偏振光CPL2分成第二透射光TL2和第二反射光RL2,简单方便,容易实现。
在某些实施方式中,第二相位延迟器166包括设置在第二透镜L2的物侧面上的1/4波长延迟膜。1/4波长延迟膜的快轴与第一偏振图像光PIMG的偏振方向的夹角成-45°。
通过令1/4波长延迟膜的快轴与第一偏振图像光PIMG的偏振方向的夹角成-45°,能够使第一透射光TL1转化成与偏振方向与第一偏振图像光PIMG平行的第一偏振光PL1,将第一偏振光PL1转化成第二旋转方向的圆偏振光CPL2。
在某些实施方式中,第一反射型检偏器168设置在第二透镜L2的物侧面。第一反射型检偏器168的透光轴与第一偏振图像光PIMG的偏振方向垂直。
通过令第一反射型检偏器168的透光轴与第一偏振图像光PIMG的偏振方向垂直,能够使偏振方向与第一偏振图像光PIMG的偏振方向平行的第一偏振光PL1被第一反射型检偏器168反射,再次入射到第二相位延迟器166,使偏振方向与第一偏振图像光PIMG的偏振方向垂直的第二偏振光PL2经过第一反射型检偏器168和第三透镜L3从第一偏振折返***16中射出。
在某些实施方式中,光学***10包括光轴偏转***11,光轴偏转***11用于偏转第二偏振图像光SIMG的传播方向,使第二偏振图像光SIMG投射到第二偏振折返***18中。
在某些实施方式中,光轴偏转***11包括第四透镜L4、反射器件112。
第二偏振图像光SIMG经过第四透镜L4入射到反射器件112,反射器件112使得第二偏振图像光SIMG的传播方向发生改变,即使得第二偏振图像光SIMG的传播方向与第一偏振图像光PIMG的传播方向平行,进而使第二偏振图像光SIMG得以入射到第二偏振折返***18中。
请参阅图,4,在某些实施方式中,光轴偏转***11包括第三相位延迟器114。
在光轴偏转***11中加入第三相位延迟器114,将第二偏振图像光SIMG的偏振方向从与第一偏振图像光PIMG的偏振方向垂直转化成与第一偏振图像光PIMG的偏振方向平行,可以使第二偏振折返***18中偏振器件的角度设置与第一偏振折返***16中偏振器件的角度设置一致,不必再做变动,有利于简化生产工序,提高生产效率。
在某些实施方式中,第三相位延迟器114包括1/2波长延迟器。
基于1/2波长延迟器可以使入射光的偏振方向发生改变的特性,利用1/2波长延迟器改变第二偏振图像光SIMG的偏振方向,简单方便,容易实现。
在某些实施方式中,第二偏振折返***18从像侧到物侧依次包括:第四相位延迟器182、第五透镜L5、第二半透半反分光器184、第六透镜L6、第五相位延迟器186、第二反射型检偏器188和第七透镜L7。
请参阅图5,第四相位延迟器182将第二偏振图像光SIMG转化成第三旋转方向的圆偏振光CPL3。第三旋转方向的圆偏振光CPL3经过第五透镜L5后,入射到第二半透半反分光器184。第二半透半反分光器184将第三旋转方向的圆偏振光CPL3分成第三透射光TL3和第三反射光RL3。第三透射光TL3经过第六透镜L6后,入射到第五相位延迟器186。第五相位延迟器186将第三透射光TL3转化成与偏振方向与第二偏振图像光SIMG平行的第三偏振光PL3。
第三偏振光PL3经第二反射型检偏器188反射,再次入射到第五相位延迟器186。第五相位延迟器186将第三偏振光PL3转化成第四旋转方向的圆偏振光CPL4,第四旋转方向的圆偏振光CPL4经过第六透镜L6后,入射到第二半透半反分光器184。第二半透半反分光器184将第四旋转方向的圆偏振光CPL4分成第四透射光TL4和第四反射光RL4。四反射光RL4经过第六透镜L6后,入射到第五相位延迟器186。第五相位延迟器186将第四反射光RL4转化成偏振方向与第三偏振光PL3垂直即与第二偏振图像光SIMG的偏振方向垂直的第四偏振光PL4。四偏振光PL4经过第二反射型检偏器188和第七透镜L7从第二偏振折返***18中射出。
如此,通过第二偏振折返***18使第二偏振图像光SIMG在第二偏振折返***18中折返一次后投射到左眼,有利于缩短镜头长度和使光线迅速聚焦。
在某些实施方式中,第四相位延迟器182包括设置在第四透镜L4像侧面上的1/4波长延迟膜。1/4波长延迟膜的快轴与第二偏振图像光SIMG的偏振方向的夹角为45°。
基于1/4波长延迟膜的特性,即当1/4波长延迟膜的快轴与入射的线偏振光的夹角为45°时,出射的光为圆偏振光,利用1/4波长延迟膜将第二偏振图像光SIMG转化成第三旋转方向的圆偏振光CPL3,简单方便,容易实现。
在某些实施方式中,第二半透半反分光器184包括设置在第四透镜L4物侧面上的半透 半反分光膜。
基于半透半反分光膜在不改变光的偏振方向的前提下能够透射一半光强的光并反射一半光强的光的特性,利用半透半反分光膜,将第三旋转方向的圆偏振光CPL3分成第三透射光TL3和第三反射光RL3,将第四旋转方向的圆偏振光CPL4分成第四透射光TL4和第四反射光RL4,简单方便,容易实现。
在某些实施方式中,第五相位延迟器186包括设置在第五透镜L5的物侧面上的1/4波长延迟膜。1/4波长延迟膜的快轴与第二偏振图像光SIMG的偏振方向的夹角成-45°。
通过令1/4波长延迟膜的快轴与第二偏振图像光SIMG的偏振方向的夹角成-45°,能够使第三透射光TL3转化成与偏振方向与第二偏振图像光SIMG平行的第三偏振光PL3,将第三偏振光PL3转化成第四旋转方向的圆偏振光CPL4。
在某些实施方式中,第二反射型检偏器188设置在第五透镜L5的物侧面。第二反射型检偏器188的透光轴与第二偏振图像光SIMG的偏振方向垂直。
通过令第二反射型检偏器188的透光轴与第二偏振图像光SIMG的偏振方向垂直,能够使偏振方向与第二偏振图像光SIMG的偏振方向平行的第三偏振光PL3被第二反射型检偏器188反射,再次入射到第五相位延迟器186,使偏振方向与第二偏振图像光SIMG的偏振方向垂直的第四偏振光PL4经过第二反射型检偏器188和第七透镜L7从第二偏振折返***18中射出。
本发明实施方式的光学***10满足下列表格的条件:
Figure PCTCN2017117107-appb-000001
Figure PCTCN2017117107-appb-000002
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (18)

  1. 一种用于近眼显示装置的光学***,其特征在于,所述光学***包括:
    显示屏,用于发出图像光;
    偏振分光器,用于将所述图像光分成偏振态和传播方向均不同的第一偏振图像光和第二偏振图像光;
    第一偏振折返***,用于将所述第一偏振图像光透射到右眼;和
    第二偏振折返***,用于将所述第二偏振图像光投射到左眼。
  2. 如权利要求1所述的光学***,其特征在于,所述显示屏包括OLED显示屏。
  3. 如权利要求1所述的光学***,其特征在于,所述偏振分光器包括偏振分光棱镜(PBS)、尼科尔棱镜、镀多层偏振分光介质膜的透明平板或贴附有增亮片(APF)的透明平板。
  4. 如权利要求1所述的光学***,其特征在于,所述第一偏振折返***从像侧到物侧依次包括:
    第一相位延迟器;
    第一透镜;
    第一半透半反分光器;
    第二透镜;
    第二相位延迟器;
    第一反射型检偏器;和
    第三透镜。
  5. 如权利要求4所述的光学***,其特征在于,所述第一相位延迟器包括设置在所述第一透镜上的像侧面上的1/4波长延迟膜,所述1/4波长延迟膜的快轴与所述第一偏振图像光的偏振方向的夹角为45°。
  6. 如权利要求4所述的光学***,其特征在于,所述第一半透半反分光器包括设置在所述第一透镜物侧面上的半透半反分光膜。
  7. 如权利要求4所述的光学***,其特征在于,所述第二相位延迟器包括设置在所述 第二透镜的物侧面上的1/4波长延迟膜,所述1/4波长延迟膜的快轴与所述第一偏振图像光的偏振方向的夹角成-45°。
  8. 如权利要求4所述的光学***,其特征在于,所述第一反射型检偏器设置在所述第二透镜的物侧面,所述第一反射型检偏器透光轴与所述第一偏振图像光的偏振方向垂直。
  9. 如权利要求1所述的光学***,其特征在于,所述光学***包括光轴偏转***,所述光轴偏转***用于偏转第二偏振图像光的传播方向,使所述第二偏振图像光投射到所述第二偏振折返***中。
  10. 如权利要求9所述的光学***,其特征在于,所述光轴偏转***包括第四透镜和反射器件。
  11. 如权利要求10所述的光学***,其特征在于,所述光轴偏转***包括第三相位延迟器。
  12. 如权利要求11所述的光学***,其特征在于,所述第三相位延迟器包括1/2波长延迟器。
  13. 如权利要求1所述的光学***,其特征在于,所述第二偏振折返***从像侧到物侧依次包括:
    第四相位延迟器;
    第五透镜;
    第二半透半反分光器;
    第六透镜;
    第五相位延迟器;
    第二反射型检偏器;和
    第七透镜。
  14. 如权利要求13所述的光学***,其特征在于,所述第四相位延迟器包括设置在所述第五透镜上的像侧面上的1/4波长延迟膜,所述1/4波长延迟膜的快轴与所述第二偏振图像光的偏振方向的夹角为45°。
  15. 如权利要求13所述的光学***,其特征在于,所述第二半透半反分光器包括设置在所述第五透镜物侧面上的半透半反分光膜。
  16. 如权利要求13所述的光学***,其特征在于,所述第五相位延迟器包括设置在所述第六透镜的物侧面上的1/4波长延迟膜,所述1/4波长延迟膜的快轴与所述第二偏振图像光的偏振方向的夹角成-45°。
  17. 如权利要求13所述的光学***,其特征在于,所述第二反射型检偏器设置在所述第六透镜的物侧面,所述第二反射型检偏器透光轴与所述第二偏振图像光的偏振方向垂直。
  18. 一种近眼显示装置,其特征在于,包括:
    外壳;和
    如权利要求1-17任意一项所述的光学***,所述光学***设置在所述外壳内。
PCT/CN2017/117107 2017-12-19 2017-12-19 光学***及近眼显示装置 WO2019119258A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/117107 WO2019119258A1 (zh) 2017-12-19 2017-12-19 光学***及近眼显示装置
CN201780097414.2A CN111433656A (zh) 2017-12-19 2017-12-19 光学***及近眼显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117107 WO2019119258A1 (zh) 2017-12-19 2017-12-19 光学***及近眼显示装置

Publications (1)

Publication Number Publication Date
WO2019119258A1 true WO2019119258A1 (zh) 2019-06-27

Family

ID=66994321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117107 WO2019119258A1 (zh) 2017-12-19 2017-12-19 光学***及近眼显示装置

Country Status (2)

Country Link
CN (1) CN111433656A (zh)
WO (1) WO2019119258A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175981A (zh) * 2020-02-18 2020-05-19 京东方科技集团股份有限公司 头戴式显示设备
CN114153073A (zh) * 2021-11-29 2022-03-08 谷东科技有限公司 基于单光机的双目近眼显示装置和增强现实显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285936A (zh) * 2008-05-29 2008-10-15 四川虹视显示技术有限公司 双目近眼显示***
CN104635341A (zh) * 2015-02-11 2015-05-20 深圳市安华光电技术有限公司 一种单图像源双目近眼显示装置
WO2016003746A1 (en) * 2014-06-30 2016-01-07 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
CN105629494A (zh) * 2016-03-21 2016-06-01 深圳多哚新技术有限责任公司 一种短距离光学放大模组、眼镜、头盔以及vr***
CN206321874U (zh) * 2016-10-18 2017-07-11 浙江舜通智能科技有限公司 头戴式显示装置
WO2017180408A1 (en) * 2016-04-13 2017-10-19 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246260A (zh) * 2007-02-16 2008-08-20 晶荧光学科技有限公司 头戴式显示装置
EP2732335A4 (en) * 2011-07-14 2015-02-25 Reald Inc OPTICAL SYSTEMS WITH COMPACT CUTTING WIDTH
CN204166196U (zh) * 2014-09-30 2015-02-18 东莞伟信电子有限公司 单屏双眼近眼显示光学***
CN106707510A (zh) * 2016-12-14 2017-05-24 浙江舜通智能科技有限公司 隐形眼镜式的光学***以及装配该光学***的头戴显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285936A (zh) * 2008-05-29 2008-10-15 四川虹视显示技术有限公司 双目近眼显示***
WO2016003746A1 (en) * 2014-06-30 2016-01-07 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
CN104635341A (zh) * 2015-02-11 2015-05-20 深圳市安华光电技术有限公司 一种单图像源双目近眼显示装置
CN105629494A (zh) * 2016-03-21 2016-06-01 深圳多哚新技术有限责任公司 一种短距离光学放大模组、眼镜、头盔以及vr***
WO2017180408A1 (en) * 2016-04-13 2017-10-19 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander
CN206321874U (zh) * 2016-10-18 2017-07-11 浙江舜通智能科技有限公司 头戴式显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175981A (zh) * 2020-02-18 2020-05-19 京东方科技集团股份有限公司 头戴式显示设备
CN111175981B (zh) * 2020-02-18 2022-08-09 京东方科技集团股份有限公司 头戴式显示设备
CN114153073A (zh) * 2021-11-29 2022-03-08 谷东科技有限公司 基于单光机的双目近眼显示装置和增强现实显示设备

Also Published As

Publication number Publication date
CN111433656A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
JP5973098B1 (ja) ニア・アイ・ディスプレイ用光学モジュール
US10641936B2 (en) Composite film and display device
KR102162985B1 (ko) 근거리 광 증폭 모듈, 증폭 방법 및 증폭 시스템
CN105572894B (zh) 一种短距离光学放大模组、放大方法及放大***
WO2017128187A1 (zh) 一种短距离光学放大模组、放大方法及放大***
WO2020244210A1 (zh) 光学***及具有其的虚拟现实设备
WO2013127204A1 (zh) 液晶显示面板及其透反模式转换方法和显示装置
CN113985615B (zh) 成像模组和头戴显示设备
TWI761022B (zh) 光學系統
CN110824720A (zh) 短距离光学放大模组及显示装置
WO2019119258A1 (zh) 光学***及近眼显示装置
US20230176381A1 (en) Augmented reality display system and ar goggle
CN210803872U (zh) 短距离光学放大模组及头戴式显示装置
CN111474715A (zh) 光学***及增强现实设备
CN113485012A (zh) 折叠光路结构、光学成像***及虚拟现实设备
CN215986726U (zh) 一种增强现实显示***
CN113671709B (zh) 光学***和头戴显示设备
WO2024022106A1 (zh) 一种光学模组以及头戴显示设备
US20220155513A1 (en) Liquid crystal reflective polarizer and pancake lens assembly having the same
WO2022068956A1 (zh) 光学模组、近眼显示装置和光投射方法
JP2007093964A (ja) 偏光変換素子
US11215876B2 (en) Backlight source, backlight module and display device
CN217034502U (zh) 一种高光效起偏装置
CN109283774B (zh) 一种投影镜头及投影***
CN214278541U (zh) 一种增强现实光学***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935366

Country of ref document: EP

Kind code of ref document: A1