WO2019119226A1 - 雷达装置、雷达的无线旋转装置及无人机 - Google Patents

雷达装置、雷达的无线旋转装置及无人机 Download PDF

Info

Publication number
WO2019119226A1
WO2019119226A1 PCT/CN2017/117004 CN2017117004W WO2019119226A1 WO 2019119226 A1 WO2019119226 A1 WO 2019119226A1 CN 2017117004 W CN2017117004 W CN 2017117004W WO 2019119226 A1 WO2019119226 A1 WO 2019119226A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmitting
component
power
receiving
Prior art date
Application number
PCT/CN2017/117004
Other languages
English (en)
French (fr)
Inventor
匡亮亮
王春明
王佳迪
贺翔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780018604.0A priority Critical patent/CN108885248B/zh
Priority to PCT/CN2017/117004 priority patent/WO2019119226A1/zh
Publication of WO2019119226A1 publication Critical patent/WO2019119226A1/zh
Priority to US16/890,627 priority patent/US20200292697A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present application relates to the field of radar technology, and in particular, to a radar device, a wireless rotating device for a radar, and a drone.
  • the antenna assembly is the core component of radar.
  • a driving mechanism such as a motor.
  • the driving action can be rotated around a rotating shaft to detect obstacles in different directions.
  • the antenna assembly and the external power supply are connected by cables to supply power to the antenna assembly.
  • the rotation angle of the driving mechanism is limited, for example, the rotation angle is only It can reach 270°, making it impossible to achieve 360° omnidirectional rotation of the antenna assembly.
  • the present application discloses a radar device, a wireless rotating device for radar, and a drone.
  • a radar apparatus includes: a base; an antenna assembly disposed on the base, the antenna assembly rotating relative to the base about a rotation axis; and an electrical energy emitting component, For converting electrical energy into electromagnetic energy and transmitting the electromagnetic energy; a power receiving component disposed at an interval from the electrical energy transmitting component; wherein the electrical energy receiving component is electrically connected to the antenna component and coupled to the antenna The components rotate together for converting the received electromagnetic energy into electrical energy and transmitting the converted electrical energy to the antenna assembly.
  • a wireless rotating device for a radar comprising: a base; an antenna assembly disposed on the base, the antenna assembly rotating relative to the base about a rotating shaft; a transmitting component for converting electrical energy into electromagnetic energy and emitting the electromagnetic energy; and a power receiving component disposed at an interval from the electrical energy transmitting component; wherein the electrical energy receiving component is electrically connected to the antenna component, and The antenna assembly rotates together for converting the received electromagnetic energy into electrical energy and transmitting the converted electrical energy to the antenna assembly.
  • a drone comprising: a rack; a load; and a radar device mounted on one of the rack and the load, including
  • An antenna assembly is disposed on the base, the antenna assembly rotates relative to the base about a rotating shaft, and an electrical energy emitting component is configured to convert electrical energy into electromagnetic energy and emit the electromagnetic energy; and the power receiving component; Interposed with the power transmitting component; wherein the power receiving component is electrically connected to the antenna component and rotates together with the antenna component for converting received electromagnetic energy into electrical energy, The converted electrical energy is transmitted to the antenna assembly.
  • the power receiving component is electrically connected to the antenna component by being fixedly mounted on the base, and is arranged to rotate together with the antenna component, and further based on the principle of electromagnetic induction, the power transmitting component can receive the received
  • the DC power is converted into electromagnetic energy, and the electromagnetic energy is emitted.
  • the power receiving component converts the received electromagnetic energy into DC power, and transmits the DC power to the antenna component electrically connected thereto, thereby implementing wirelessly on the antenna component. powered by.
  • the limitation of the cable is eliminated, so that the motor can achieve 360° omnidirectional rotation, and then the antenna assembly is driven to achieve 360° omnidirectional rotation. To better detect obstacles in different directions.
  • FIG. 1 is a schematic structural diagram of a radar apparatus according to an embodiment of the present application.
  • Figure 2 is a cross-sectional view of the radar device of Figure 1;
  • FIG. 3 is a schematic structural view of a power transmitting component and a power receiving component of the radar device shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a first wireless communication component and a second wireless communication component of the radar apparatus shown in FIG. 1;
  • Fig. 5 is a drone to which the radar apparatus shown in Fig. 1 is applied.
  • FIG. 1 and FIG. 2 are respectively a schematic structural view and a cross-sectional view of a radar device 100 according to an embodiment of the present application.
  • the radar device 100 includes a base 110 , an antenna assembly 120 , and the like. Supporting the antenna assembly 120 The antenna holder 140, the motor 130, and the power transmitting assembly 200 and the power receiving assembly 300.
  • the antenna assembly 120 is disposed on the base 110 , and is rotatable relative to the base 110 about a rotating shaft.
  • the rotating shaft may be a real axis or an imaginary axis.
  • the antenna assembly 120 can be rotated relative to the axis of rotation, or the antenna assembly 120 can rotate with the axis of rotation.
  • the motor 130 is disposed on the base 110 and may include a rotor 131 coupled to the antenna assembly 120 for driving the antenna holder 140 to rotate such that the antenna assembly 120 rotates along the aforementioned rotating shaft along with the antenna holder 140.
  • the power receiving component 300 is spaced from the power transmitting component 400.
  • the power receiving assembly is electrically coupled to the antenna assembly 120 and is rotatable with the antenna assembly 120.
  • the power receiving component can cooperate with the power transmitting component to provide electrical energy to the antenna component 120 for the antenna component 120 to function properly.
  • the power transmitting component 200 can be fixedly disposed on the base 110 of the example shown in FIG. 1 in combination with the radar device 100 illustrated in FIG. 1 and FIG. 2, and the power receiving component can be fixedly mounted on the antenna bracket 140, along with the antenna. The components rotate together.
  • FIG. 3 is a structural diagram of the power transmitting component 200 and the power receiving component 300 of the radar device shown in FIG. 1 .
  • the power transmitting component 200 can include a power supply circuit board 210, a transmitting end control chip 220, a transmitting end current adjusting circuit 230, and a transmitting coil 240.
  • the power supply circuit board 210 is electrically connected to the transmitting end control chip 220 and the transmitting end current adjusting circuit 230, and can supply power to the transmitting end control chip 220 and the transmitting end current adjusting circuit 230.
  • the current supplied by the power supply circuit board 210 is a direct current, and the magnitude of the direct current may be constant or dynamic, which is not limited in this application.
  • the transmitting end control chip 220 is electrically connected to the transmitting end current adjusting circuit 230, and can be used to control the transmitting end current adjusting circuit 230 to convert the received DC electric energy into AC power of a preset frequency range.
  • the transmitting terminal current adjusting circuit 230 is electrically connected to the transmitting coil 240, which can transmit the converted AC power to the transmitting coil 240. Further, the transmitting coil 240 can convert the received alternating current electrical energy into electromagnetic energy and emit the electromagnetic energy.
  • the transmitter current adjustment circuit 230 may specifically include a transmitter current conversion circuit and a resonance circuit, in order to implement the conversion of the DC power to the AC power of the preset frequency range.
  • the transmitting end current conversion circuit and the harmonic The vibration circuit is electrically connected.
  • the transmitting end current conversion circuit can adopt the “inverting” principle, convert the DC power provided by the power supply circuit board 210 into AC power, and transmit the converted AC power to the resonant circuit. Further, the resonant circuit can adjust the frequency of the received AC power to a preset frequency range.
  • the power receiving component 300 includes a receiving end control chip 310, a receiving end current adjusting circuit 320, and a receiving coil 330.
  • the receiving coil 330 is disposed at a distance from the transmitting coil 240, and electrical energy can be transmitted between the receiving coil 330 and the transmitting coil 240.
  • the receiving coil 330 can be electrically connected to the receiving current adjustment circuit 320. Since it is disposed at a distance from the transmitting coil 240, it can sense the electromagnetic energy emitted by the transmitting coil 240, and then receive the electromagnetic energy based on the principle of electromagnetic induction. The electromagnetic energy is converted into alternating current energy, and the converted alternating current energy is transmitted to the receiving end current adjusting circuit 320.
  • the receiving end current adjusting circuit 320 is electrically connected to the receiving end control chip 310, and can perform rectification, filtering, and the like on the received alternating current electric energy under the control of the receiving end control chip 310 to convert the received alternating current electric energy. It is DC power. Further, the receiving current adjustment circuit 320 is electrically connected to the antenna assembly 120, which can transmit the converted DC power to the antenna assembly 120 to supply power to the antenna assembly 120 to ensure normal operation of the antenna assembly 120.
  • the inventors have found that the distance between the transmitting coil 240 and the receiving coil 330 is related to the power transmission efficiency if the distance between the transmitting coil 240 and the receiving coil 330 is too small.
  • the transmitting coil 240 and the receiving coil 330 generate a mutual inductance phenomenon, which affects the transmission efficiency; if the distance between the transmitting coil 240 and the receiving coil 330 is too large, the transmission distance is long, which affects the transmission efficiency. Therefore, it is necessary to transmit the transmitting coil 240 and
  • the distance between the receiving coils 330 is designed to a suitable range of values.
  • the distance between the transmitting coil 240 and the receiving coil 330 can preferably be controlled within a distance of 1.5 mm to 5 mm.
  • the distance between the transmitting coil 240 and the receiving coil 330 may be 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2.0 mm, 2.1 mm, 2.2 mm, 2.3 mm, 2.4 mm, 2.5 mm, 2.6 mm.
  • the current required for the antenna module 120 to operate normally in the prior art can be satisfied.
  • the following settings are also proposed in the embodiment of the present application:
  • the inductance of the transmitting coil 240 is related to the power transmission efficiency. If the inductance of the transmitting coil 240 is too large or too small, the transmitting coil 240 is caused. The degree of coupling with the capacitive device is reduced, affecting the transmission efficiency, and therefore it is necessary to design the inductance of the transmitting coil 240 to a suitable range value.
  • the sense value of the transmitting coil 240 can be preferably controlled from 8.5 uH to 11 uH. Within the range of sensitivity.
  • the sense of the above-mentioned transmitting coil 240 may be 8.5 uH, 8.6 uH, 8.7 uH, 8.8 uH, 8.9 uH, 9.0 uH, 9.1 uH, 9.2 uH, 9.3 uH, 9.4 uH, 9.5 uH, 9.6 uH, 9.7 uH, 9.8uH, 9.9uH, 10.0uH, 10.1uH, 10.2uH, 10.3uH, 10.4uH, 10.5uH, 10.6uH, 10.7uH, 10.8uH, 10.9uH, 11.0uH.
  • the sense value of the receiving coil 330 is related to the power transmission efficiency. If the sensed value of the receiving coil 330 is too large or too small, the receiving coil 330 is caused. The degree of coupling with the capacitive device is lowered, affecting the transmission efficiency, and therefore it is necessary to design the inductance of the receiving coil 330 to a suitable range value. In a preferred embodiment, the sense value of the receiving coil 330 can be preferably controlled within a range of 7.5uH to 11uH.
  • the sense value of the receiving coil 330 may be 7.5 uH, 7.6 uH, 7.7 uH, 7.8 uH, 7.9 uH, 8.0 uH, 8.1 uH, 8.2 uH, 8.3 uH, 8.4 uH, 8.5 uH, 8.6 uH, 8.7 uH, 8.8uH, 8.9uH, 9.0uH, 9.1uH, 9.2uH, 9.3uH, 9.4uH, 9.5uH, 9.6uH, 9.7uH, 9.8uH, 9.9uH, 10.0uH, 10.1uH, 10.2uH, 10.3uH, 10.4uH , 10.5 uH, 10.6 uH, 10.7 uH, 10.8 uH, 10.9 uH, 11.0 uH.
  • the frequency of the alternating current is related to the power transmission efficiency. If the frequency of the alternating current is too large or too small, the power transmitting component 200 or/and the power receiving is caused. The power consumption of the component 300 is increased, which affects the transmission efficiency. Therefore, it is necessary to design the frequency of the alternating current to a suitable range value.
  • the predetermined frequency range may be preferably set to a frequency range of 120 kHz to 150 kHz.
  • the preset frequency may be 120KHz, 121KHz, 122KHz, 123KHz, 124KHz, 125KHz, 126KHz, 127KHz, 128KHz, 129KHz, 130KHz, 131KHz, 132KHz, 133KHz, 134KHz, 135KHz, 136KHz, 137KHz, 138KHz, 139KHz, 140KHz, 141 KHz, 142 KHz, 143 KHz, 144 KHz, 145 KHz, 146 KHz, 147 KHz, 148 KHz, 149 KHz, 150 KHz.
  • the power receiving component is electrically connected to the antenna component by being fixedly mounted on the base, and is disposed to rotate together with the antenna component, further based on electromagnetic induction.
  • the principle can realize that the power transmitting component converts the received DC power into electromagnetic energy and emits the electromagnetic energy, and the power receiving component converts the received electromagnetic energy into DC energy, and transmits the DC power to the antenna electrically connected thereto
  • the component that is, the wireless power supply to the antenna assembly.
  • the antenna component 120 also needs to transmit the detected information to the ground station and receive the request command sent by the ground station.
  • the antenna component and the ground station signal source are usually connected by cables to transmit the antenna.
  • the information detected by the component 120 is in response to the request command sent by the ground station described above, and it can be seen that such communication mode will also result in the antenna assembly 120 being unable to perform 360° omnidirectional rotation due to cable limitations. Based on this, it is also proposed in the embodiment of the present application. Wireless communication.
  • the radar device illustrated in FIG. 1 may further include a first wireless communication component 500 and a second wireless communication component 400 (not shown in FIG. 1), the first wireless communication component 500 and the second wireless communication component.
  • a wireless communication connection between 400 and based on the principle similar to the wireless power supply described above, the first wireless communication component 500 can be mounted on the antenna holder 140 and electrically connected to the antenna assembly 120 to fix the second wireless communication component 400.
  • the base 110 At the base 110.
  • the first wireless communication component 500 can be configured to transmit the information detected by the antenna component 120 to the second wireless communication component 400 and receive the request instruction sent by the second wireless communication component 400.
  • the integrated power chip assembly 200 and the second wireless communication component 400 shown in FIG. 3 can be integrated on the same circuit board by using an integrated chip solution.
  • the power receiving component 300 of the example shown in FIG. 3 and the first wireless communication component 500 can be integrated on the same circuit board by using an integrated chip solution.
  • FIG. 4 is based on the foregoing FIG. 3 , and focuses on the structures of the first wireless communication component 500 and the second wireless communication component 400 .
  • the first wireless communication component 500 and the power receiving component 300 are integrated on the receiving end circuit board, which can be electrically connected to the receiving terminal current adjusting circuit 320 in the power receiving component 300 to receive the current regulating circuit by the receiving end. 320 powers it.
  • the first wireless communication component 500 can include a first signal control chip 510 and a first antenna module 520.
  • the first signal control chip 510 can control the first antenna module 520 to transmit the data signal detected by the antenna component 120 electrically connected thereto, and receive the data signal sent by the external signal source, for example, receive the request command sent by the ground station.
  • the second wireless communication component 400 and the power transmitting component 200 are integrated on a transmitting circuit board, which can be electrically connected to the power supply circuit board 210 in the power transmitting component 200 for being carried by the power supply circuit board 210. powered by.
  • the second wireless communication component 400 can include a second signal control chip 410 and a second antenna module 420.
  • the second signal control chip 410 can control the second antenna module 420 to receive the data signal sent by the external signal source, for example, receive the data signal transmitted by the first antenna module 520, and transmit the data signal, for example, send a request command of the ground station.
  • the first antenna module 520 may be a WIFI wireless module
  • the second antenna module 420 may also be a WIFI wireless device. Module.
  • the first antenna module 520 may be a Bluetooth wireless module, and correspondingly, a second antenna module.
  • the 420 can also be a Bluetooth wireless module.
  • the first antenna module 520 may be a 2.4G wireless module.
  • the second antenna module 420 may also be a 2.4G wireless module.
  • the first antenna module 520 may be a 2.5G wireless module.
  • the second antenna module 420 may also be a 2.5G wireless module.
  • the first antenna module 520 may be a plate antenna, and correspondingly, the second antenna module 420 may also be a plate antenna.
  • the second wireless communication component 400 is fixedly mounted on the base, and the first wireless communication component 500 is electrically connected to the antenna component, and has a wireless communication connection therebetween. .
  • the motor can realize 360° omnidirectional rotation, and then drive the antenna assembly to realize 360. ° Omnidirectional rotation to better detect obstacles in different directions.
  • the wireless rotating device of the radar may include: a base, an antenna component, an electrical energy transmitting component, and a power receiving component.
  • the antenna assembly may be disposed on the base and rotatable relative to the base about a rotating shaft, and the power emitting component may be configured to convert electrical energy into electromagnetic energy, and emit the electromagnetic energy, the power receiving component, and
  • the antenna assembly is electrically coupled and rotatable with the antenna assembly for converting the received electromagnetic energy into electrical energy and transmitting the converted electrical energy to the antenna assembly.
  • the specific structure, working principle, working process, and working effect of the wireless rotating device of the radar may be similar to the radar device described in the first embodiment, and details are not described herein again.
  • the UAV may include a housing 610 and a radar device 620.
  • the radar device 620 may be disposed on the housing 610 and the antenna assembly thereof. (not shown in FIG. 5) may establish a communication connection with the control system of the drone (not shown in FIG. 5) to transmit the obstacle information detected by the antenna assembly to the control system, the control The system can control the flight of the drone based on the received obstacle information. Now flying to avoid obstacles.
  • the housing 610 may include a body 630 and a stand 640 attached to both sides of the bottom of the body 630. Further, the housing 610 may further include an arm 650 connected to both sides of the body 630.
  • the radar device 620 can be fixedly coupled to the stand 640.
  • the radar device 620 described above is fixedly connected to the stand 640 as an example. In practical applications, the radar device 620 can also be fixedly connected to other parts, such as the arm 650. Water tank.
  • the UAV illustrated in FIG. 5 may be a multi-rotor UAV, such as a quadrotor UAV or an eight-rotor UAV, such that a propeller 660 may be coupled to an end of the arm 650 remote from the fuselage 630.
  • the propeller 660 provides flight power to the drone.
  • the drone shown in FIG. 5 may be an agricultural drone, and the bottom of the drone is provided with a bin 670 for containing pesticides or seeds, and the bin 670 may be provided with a spreading mechanism. (not shown in Figure 5), the spreading mechanism can spread the seeds contained in the bin 670 to automate agricultural operations. Further, the end of the arm 650 away from the body 630 may further be provided with a spraying mechanism 680, which can spray the pesticide contained in the bin 670 to realize automated agricultural operations.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种雷达装置、雷达的无线旋转装置及无人机,其特征在于,所述雷达装置包括:底座;天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;电能接收组件,与所述电能发射组件间隔设置;其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。应用所述雷达装置,可以实现天线组件进行360°全向旋转。

Description

雷达装置、雷达的无线旋转装置及无人机 技术领域
本申请涉及雷达技术领域,尤其涉及一种雷达装置、雷达的无线旋转装置及无人机。
背景技术
随着无人机技术的飞速发展及雷达小型化技术的提高,雷达逐渐成为无人机载荷的重要组成部分,而天线组件作为雷达的核心元件,其在雷达工作时,受驱动机构,例如电机驱动作用,可绕一转轴进行旋转,以探测不同方向上的障碍物。现有技术中,采用线缆连接天线组件与外部电源,以对天线组件进行供电,然而,在此种供电方式下,由于线缆的限制,将导致驱动机构的旋转角度有限,例如旋转角度仅能达到270°,从而无法实现天线组件进行360°全向旋转。
发明内容
有鉴于此,本申请公开了一种雷达装置、雷达的无线旋转装置及无人机。
根据本申请实施例的第一方面,提供一种雷达装置,所述装置包括:底座;天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;电能接收组件,与所述电能发射组件间隔设置;其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。
根据本申请实施例的第二方面,提供一种雷达的无线旋转装置,所述装置包括:底座;天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;电能接收组件,与所述电能发射组件间隔设置;其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。
根据本申请实施例的第三方面,提供一种无人机,所述无人机包括:机架;负载;及雷达装置,安装于所述机架和所述负载的其中一者上,包括:底座;天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;电能接收组件,与所述电能发射组件间隔设置;其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能, 并将转换后的电能传输给所述天线组件。
由上述实施例可见,通过将电能发射组件固定安装于底座,将电能接收组件与天线组件电连接,并设置为同天线组件一起旋转,进一步基于电磁感应原理,可以实现电能发射组件将接收到的直流电能转换为电磁能,并发射该电磁能,电能接收组件则将接收到的电磁能转换为直流电能,将该直流电能传输给与其电连接的天线组件,也即实现了对天线组件进行无线供电。在此种供电方式下,由于无需设置线缆以连接天线组件与外部电源,也即消除了线缆的限制,从而可以使得电机实现360°全向旋转,继而驱动天线组件实现360°全向旋转,以更好地探测不同方向上的障碍物。
附图说明
图1为本申请实施例提供的一种雷达装置的结构示意图;
图2为图1所示雷达装置的剖示图;
图3为图1所示的雷达装置的电能发射组件与电能接收组件的结构示意图;
图4为图1所示的雷达装置的第一无线通信组件与第二无线通信组件的结构示意图;
图5为应用图1所示的雷达装置的无人机。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,示出下述实施例对本申请的雷达装置、雷达的无线旋转装置及无人机进行详细说明。在不冲突的情况下,下述实施例及实施方式中的特征可以相互组合,并且,实施例及实施方式中的特征相互组合构成的技术方案,也属于本发明公开的实施例。
首先,通过下述实施例一对本申请提供的雷达装置进行详细说明:
实施例一
请参见图1及图2,分别为本申请实施例提供的一种雷达装置100的结构示意图与剖视图,如图1及图2所示,该雷达装置100中包括底座110、天线组件120、用于支撑天线组件120 的天线支架140、电机130,以及电能发射组件200与电能接收组件300。
其中,如图1所示,天线组件120设于底座110,其可相对于底座110绕一转轴旋转,需要说明的是,该转轴可以为实轴,也可以为虚轴,当该转轴为实轴时,天线组件120可相对于该转轴旋转,或者,天线组件120跟随该转轴一起旋转。电机130设于底座110上,其可以包括与天线组件120连接的转子131,可用于驱动天线支架140转动,使得天线组件120随着天线支架140一起绕前述转轴进行旋转。电能接收组件300与电能发射组件400间隔设置。电能接收组件与天线组件120电连接,并可与天线组件120一起旋转。电能接收组件可以与电能发射组件共同配合,向天线组件120提供电能,以使天线组件120正常工作。
如下,结合附图,对电能接收组件与电能发射组件各自的结构,以及该两者共同配合,向天线组件120提供电能的具体实现原理、实现过程进行详细描述。
首先说明,结合上述图1及图2所示例的雷达装置100,电能发射组件200可以固定设置于上述图1所示例的底座110上,电能接收组件可以固定安装于上述天线支架140,随着天线组件一起旋转。
其次,对电能发射组件、电能接收组件各自的结构及各自的工作原理,工作过程进行描述。
请参见图3,为图1所示的雷达装置的电能发射组件200与电能接收组件300的结构示意图。
如图3所示,电能发射组件200可以包括供电电路板210、发射端控制芯片220、发射端电流调整电路230,以及发射线圈240。
其中,供电电路板210与发射端控制芯片220、发射端电流调整电路230电连接,其可以向发射端控制芯片220及发射端电流调整电路230进行供电。在本实施例中,该供电电路板210提供的电流为直流电,该直电流的大小可以是恒定的,也可以是动态变化的,本申请对此不作限制。发射端控制芯片220与发射端电流调整电路230电连接,其可以用于控制发射端电流调整电路230将接收到的直流电能转换为预设频率范围的交流电能。
进一步,发射端电流调整电路230与发射线圈240电连接,其可以将转换后的交流电能传输给发射线圈240。进一步,发射线圈240则可以将接收到的交流电能转换为电磁能,并发射该电磁能。
为了实现将直流电能转换为预设频率范围的交流电能,在一实施例中,上述发射端电流调整电路230具体可以包括发射端电流转换电路、谐振电路。该发射端电流转换电路与该谐 振电路电连接。其中,发射端电流转换电路可以采用“逆变”原理,将供电电路板210提供的直流电能转换为交流电能,并将该转换后的交流电能传输给谐振电路。进一步,谐振电路则可以将接收到的交流电能的频率调整至预设频率范围。
如图3所示,电能接收组件300包括:接收端控制芯片310、接收端电流调整电路320,以及接收线圈330。其中,如图3所示,接收线圈330与上述发射线圈240相对间隔设置,且接收线圈330与发射线圈240之间可传输电能。具体的,接收线圈330可与接收端电流调整电路320电连接,由于其与发射线圈240相对间隔设置,故其可以感应到发射线圈240所发射的电磁能,进而基于电磁感应原理,将接收到的电磁能转换为交流电能,并将转换后的交流电能传输给接收端电流调整电路320。进一步,接收端电流调整电路320与接收端控制芯片310电连接,其可以在接收端控制芯片310的控制下,对接收到的交流电能进行整流、滤波等处理,以将接收到的交流电能转换为直流电能。进一步,接收端电流调整电路320与天线组件120电连接,其可以将转换后的直流电能传输给天线组件120,以对天线组件120进行供电,保证天线组件120的正常工作。
在基于小型雷达的体积与结构,发明人在实现本发明的过程中发现,发射线圈240与接收线圈330之间的距离与电能传输效率相关,如果发射线圈240与接收线圈330之间距离过小,则发射线圈240与接收线圈330产生互感现象,影响传输效率;如果发射线圈240与接收线圈330之间距离过大,则传输距离较远,影响传输效率,因此,有必要将发射线圈240与接收线圈330之间的距离设计在一个合适的范围值。在较佳的实施例中,可以将发射线圈240与接收线圈330之间的距离优选地控制在1.5mm~5mm这一距离范围内。例如,发射线圈240与接收线圈330之间的距离可以为1.5mm,1.6mm,1.7mm,1.8mm,1.9mm,2.0mm,2.1mm,2.2mm,2.3mm,2.4mm,2.5mm,2.6mm,2.7mm,2.8mm,2.9mm,3.0mm,3.0mm,3.1mm,3.2mm,3.3mm,3.4mm,3.5mm,3.6mm,3.7mm,3.8mm,3.9mm,4.0mm,4.1mm,4.2mm,4.3mm,4.4mm,4.5mm,4.6mm,4.7mm,4.8mm,4.9mm,5.0mm。
进一步,基于上述发射线圈240与接收线圈330之间的距离范围,以及为了使得后续电能接收组件300向天线组件120提供的直流电能可以满足现有技术中天线组件120正常工作时所需要的电流大小,本申请实施例中还提出如下设置:
在基于小型雷达的体积与结构,发明人在实现本发明的过程中发现,发射线圈240的感值与电能传输效率相关,如果发射线圈240的感值过大或过小,则导致发射线圈240与电容器件的耦合度降低,影响传输效率,因此,有必要将发射线圈240的感值设计在一个合适的范围值。在较佳的实施例中,上述发射线圈240的感值可以优选地控制在8.5uH~11uH这一 感值范围内。例如,上述发射线圈240的感值可以为8.5uH,8.6uH,8.7uH,8.8uH,8.9uH,9.0uH,9.1uH,9.2uH,9.3uH,9.4uH,9.5uH,9.6uH,9.7uH,9.8uH,9.9uH,10.0uH,10.1uH,10.2uH,10.3uH,10.4uH,10.5uH,10.6uH,10.7uH,10.8uH,10.9uH,11.0uH。
在基于小型雷达的体积与结构,发明人在实现本发明的过程中发现,接收线圈330的感值与电能传输效率相关,如果接收线圈330的感值过大或过小,则导致接收线圈330与电容器件的耦合度降低,影响传输效率,因此,有必要将接收线圈330的感值设计在一个合适的范围值。在较佳的实施例中,上述接收线圈330的感值可以优选地控制在7.5uH~11uH这一感值范围内。例如,上述接收线圈330的感值可以为7.5uH,7.6uH,7.7uH,7.8uH,7.9uH,8.0uH,8.1uH,8.2uH,8.3uH,8.4uH,8.5uH,8.6uH,8.7uH,8.8uH,8.9uH,9.0uH,9.1uH,9.2uH,9.3uH,9.4uH,9.5uH,9.6uH,9.7uH,9.8uH,9.9uH,10.0uH,10.1uH,10.2uH,10.3uH,10.4uH,10.5uH,10.6uH,10.7uH,10.8uH,10.9uH,11.0uH。
在基于小型雷达的体积与结构,发明人在实现本发明的过程中发现,交流电的频率与电能传输效率相关,如果交流电的频率过大或过小,则导致电能发射组件200或/及电能接收组件300的功耗增大,影响传输效率,因此,有必要将交流电的频率设计在一个合适的范围值。在较佳的实施例中,上述预设频率范围可优选设置为120KHz~150KHz这一频率范围。例如,上述预设频率可以为120KHz,121KHz,122KHz,123KHz,124KHz,125KHz,126KHz,127KHz,128KHz,129KHz,130KHz,131KHz,132KHz,133KHz,134KHz,135KHz,136KHz,137KHz,138KHz,139KHz,140KHz,141KHz,142KHz,143KHz,144KHz,145KHz,146KHz,147KHz,148KHz,149KHz,150KHz。
至此,由上述描述可知,在图1所示例的雷达装置中,通过将电能发射组件固定安装于底座,将电能接收组件与天线组件电连接,并设置为同天线组件一起旋转,进一步基于电磁感应原理,可以实现电能发射组件将接收到的直流电能转换为电磁能,并发射该电磁能,电能接收组件则将接收到的电磁能转换为直流电能,将该直流电能传输给与其电连接的天线组件,也即实现了对天线组件进行无线供电。在此种供电方式下,由于无需设置线缆以连接天线组件与外部电源,也即消除了线缆的限制,从而可以使得电机实现360°全向旋转,继而驱动天线组件实现360°全向旋转,以更好地探测不同方向上的障碍物。
进一步,考虑到天线组件120还需要将检测到的信息传输给地面站,并接收地面站发送的请求指令,而现有技术中,通常采用线缆连接天线组件与地面站信号源,以传输天线组件120检测到的信息与上述地面站发送的请求指令,由此可见,此种通信方式也将导致由于线缆的限制,使得天线组件120无法进行360°全向旋转。基于此,在本申请实施例中还提出 了无线通信。
具体的,图1所示例的雷达装置中还可以包括第一无线通信组件500与第二无线通信组件400(图1中未示出),该第一无线通信组件500与该第二无线通信组件400之间具有无线通信连接,且基于与上述无线供电类似的原理,可以将第一无线通信组件500安装于上述天线支架140,并与天线组件120电连接,将第二无线通信组件400固定安装于底座110。
基于上述结构,该第一无线通信组件500可以用于向该第二无线通信组件400发送天线组件120检测到的信息,并接收该第二无线通信组件400发送的请求指令。
如下,结合附图,对第一无线通信组件500与第二无线通信组件400各自的结构,以及该两者之间进行无线通信的实现原理、实现过程进行详细描述。
首先说明,考虑到小型雷达的大小和结构,在本申请实施例中,可以采用集成式芯片方案将上述图3所示例的电能发射组件200与上述第二无线通信组件400集成于同一电路板上;相应的,也可以采用集成式芯片方案将上述图3所示例的电能接收组件300与上述第一无线通信组件500集成于同一电路板上。
具体的,请参见图4,该图4在上述图3的基础上,着重示例了第一无线通信组件500与第二无线通信组件400的结构。如图4所示,第一无线通信组件500与电能接收组件300集成在接收端电路板上,其可以与电能接收组件300中的接收端电流调整电路320电连接,以由接收端电流调整电路320对其进行供电。该第一无线通信组件500可以包括:第一信号控制芯片510、第一天线模块520。其中,第一信号控制芯片510可以控制第一天线模块520发射与其电连接的天线组件120所检测到的数据信号,以及接收外部信号源发送的数据信号,例如接收地面站发送的请求指令。
如图4所示,第二无线通信组件400与电能发射组件200集成在发射端电路板上,其可以与电能发射组件200中的供电电路板210电连接,以由供电电路板210对其进行供电。该第二无线通信组件400可以包括:第二信号控制芯片410、第二天线模块420。其中,第二信号控制芯片410可以控制第二天线模块420接收外部信号源发送的数据信号,例如接收上述第一天线模块520发射的数据信号,以及发射数据信号,例如发送地面站的请求指令。
为了实现第一天线模块520与第二天线模块420之间进行无线通信,在一实施例中,上述第一天线模块520可以为WIFI无线模块,相应的,第二天线模块420也可以为WIFI无线模块。
在另一实施例中,上述第一天线模块520可以为蓝牙无线模块,相应的,第二天线模块 420也可以为蓝牙无线模块。
另外,从频段角度而言,在一实施例中,上述第一天线模块520可以为2.4G无线模块,相应的,第二天线模块420也可以为2.4G无线模块。
在另一实施例中,上述第一天线模块520可以为2.5G无线模块,相应的,第二天线模块420也可以为2.5G无线模块。
另外,从结构形状角度而言,在一实施例中,上述第一天线模块520可以为板状天线,相应的,第二天线模块420也可以为板状天线。
至此,由上述描述可知,在图1所示例的雷达装置中,第二无线通信组件400固定安装于底座,第一无线通信组件500与天线组件电连接,且该两者之间具有无线通信连接。在此种通信方式下,由于无需在天线组件与底座之间布设线缆以传输数据信号,也即消除了线缆的限制,从而可以使得电机实现360°全向旋转,继而驱动天线组件实现360°全向旋转,以更好地探测不同方向上的障碍物。
至此,完成了实施例一的相关描述。
其次,通过下述实施例二对本申请提供的雷达的无线旋转装置进行说明:
实施例二
本申请实施例提供的雷达的无线旋转装置可以包括:底座、天线组件、电能发射组件,以及电能接收组件。其中,天线组件,可设于所述底座,并可相对于所述底座绕一转轴进行旋转,电能发射组件,可用于将电能转换为电磁能,并发射所述电磁能,电能接收组件,与天线组件电连接,并可与天线组件一起旋转,可用于将接收到的电磁能转换为电能,并将转换后的电能传输给天线组件。该雷达的无线旋转装置的具体结构、工作原理、工作过程,以及实现的工作效果可以类似于上述实施例一中所描述的雷达装置,在此不再赘述。
至此,完成实施例二的相关描述。
最后,通过下述实施例三对本申请提供的无人机进行详细说明:
实施例三
请参见图5,为本申请实施例提供的一种无人机,该无人机可以包括壳体610、雷达装置620,其中,雷达装置620可设于壳体610上,并且,其天线组件(图5中未示出)可以与无人机的控制***(图5中未示出)之间建立有通信连接,以实现将天线组件检测到的障碍物信息发送至该控制***,该控制***则可以根据接收到的障碍物信息控制无人机的飞行,实 现飞行避障。
该雷达装置620的具体结构、工作原理、工作过程及工作效果可以参见上述实施例一中的相关描述,在此不再赘述。
如下,进一步对图5所示例的无人机作出说明。请参见图5,壳体610上可包括机身630和连接在机身630底部两侧的脚架640。进一步,壳体610上还可以包括连接在机身630两侧的机臂650。
在一实施例中,如图5所示,雷达装置620可固定连接在脚架640上。
本领域技术人员可以理解的是,上述所描述的雷达装置620固定连接在脚架640上仅仅作为一种示例,在实际应用中,雷达装置620也可固定连接在其他部位,例如机臂650、水箱。
进一步,图5所示例的无人机可以为多旋翼无人机,例如四旋翼无人机或八旋翼无人机,从而,机臂650上远离机身630的一端可连接有螺旋桨660,该螺旋桨660可为无人机提供飞行动力。
在一实施例中,图5所示例的无人机可以为农用无人机,该无人机的底部设有料箱670,用于装盛农药或种子,该料箱670上可设有播撒机构(图5中未示出),该播撒机构可对料箱670中装盛的种子进行播撒,以实现自动化农业作业。进一步,机臂650上远离机身630的一端还可以设有喷洒机构680,该喷洒机构680可对料箱670中装盛的农药进行喷洒,以实现自动化农业作业。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没 有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (54)

  1. 一种雷达装置,其特征在于,所述装置包括:
    底座;
    天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;
    电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;
    电能接收组件,与所述电能发射组件间隔设置;
    其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    电机,设于所述底座上,其包括与所述天线组件连接的转子,用于驱动所述天线组件绕所述转轴旋转。
  3. 根据权利要求1所述的装置,其特征在于,所述电能发射组件包括发射线圈;所述电能接收组件包括接收线圈;
    所述发射线圈与所述接收线圈相对间隔设置,并且所述发射线圈与所述接收线圈之间传输电能。
  4. 根据权利要求3所述的装置,其特征在于,所述电能发射组件还包括:发射端控制芯片、供电电路板、发射端电流调整电路;
    所述供电电路板与所述发射端控制芯片以及所述发射端电流调整电路电连接,用于向所述发射端电流调整电路以及所述发射端控制芯片供电;
    所述发射端控制芯片与所述发射端电流调整电路电连接,用于控制所述发射端电流调整电路将接收到的直流电能转换为预设频率范围的交流电能;
    所述发射端电流调整电路,与所述发射线圈电连接,用于将转换后的交流电能传输给所述发射线圈;
    所述发射线圈,用于将接收到的交流电能转换为电磁能,并发射所述电磁能。
  5. 根据权利要求4所述的装置,其特征在于,所述发射端电流调整电路包括:发射端电流转换电路、谐振电路;
    所述发射端电流转换电路,用于将所述供电电路板传输的直流电能转换为交流电能;
    所述谐振电路,用于将转换后的交流电能的频率调整至预设频率范围。
  6. 根据权利要求4或5所述的装置,其特征在于,所述预设频率范围为120KHz~150KHz。
  7. 根据权利要求3所述的装置,其特征在于,所述电能接收组件还包括:接收端控制芯 片、接收端电流调整电路;
    所述接收线圈,与所述接收端电流调整电路电连接,用于将接收到的电磁能转换为交流电能,并将转换后的交流电能传输给所述接收端电流调整电路;
    所述接收端控制芯片,与所述接收端电流调整电路电连接,用于控制所述接收端电流调整电路将接收到的交流电能转换为直流电能;
    所述接收端电流调整电路,与所述天线组件电连接,用于将转换后的直流电能传输给所述天线组件。
  8. 根据权利要求3所述的装置,其特征在于,所述发射线圈的感值范围为8.5uH~11uH。
  9. 根据权利要求3所述的装置,其特征在于,所述接收线圈的感值范围为7.5uH~11uH。
  10. 根据权利要求3所述的装置,其特征在于,所述发射线圈与所述接收线圈之间的距离范围为1.5mm~5mm。
  11. 根据权利要求2所述的装置,其特征在于,所述装置还包括支撑所述天线组件的天线支架,所述电机驱动所述天线支架转动,所述天线组件随着所述天线支架一起旋转;
    所述电能接收组件固定安装于所述天线支架。
  12. 根据权利要求1所述的装置,其特征在于,所述装置还包括第一无线通信组件以及与所述第一无线通信组件无线通信连接的第二无线通信组件,所述第一无线通信组件与所述天线组件电连接,所述第二无线通信组件安装于所述底座;
    其中,所述第一无线通信组件用于向所述第二无线通信组件发送所述天线组件检测到的信息,并接收所述第二无线通信组件发送的请求指令。
  13. 根据权利要求12所述的装置,其特征在于,所述第一无线通信组件包括:第一信号控制芯片、第一天线模块;
    所述第一信号控制芯片,与所述第一天线模块电连接,用于控制所述第一天线模块发射数据信号、接收数据信号。
  14. 根据权利要求13所述的装置,其特征在于,所述第一天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第一天线模块为2.4G无线模块或5G无线模块。
  15. 根据权利要求13所述的装置,其特征在于,所述第一天线模块为板状天线。
  16. 根据权利要求12所述的装置,其特征在于,所述第二无线通信组件包括:第二信号控制芯片、第二天线模块;
    所述第二信号控制芯片,与所述第二天线模块电连接,用于控制所述第二天线模块接收 数据信号、发射数据信号。
  17. 根据权利要求16所述的装置,其特征在于,所述第二天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第二天线模块为2.4G无线模块或5G无线模块。
  18. 根据权利要求16所述的装置,其特征在于,所述第二天线模块为板状天线。
  19. 一种雷达的无线旋转装置,其特征在于,所述装置包括:
    底座;
    天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;
    电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;
    电能接收组件,与所述电能发射组件间隔设置;
    其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    电机,设于所述底座上,其包括与所述天线组件连接的转子,用于驱动所述天线组件绕所述转轴旋转。
  21. 根据权利要求19所述的装置,其特征在于,所述电能发射组件包括发射线圈;所述电能接收组件包括接收线圈;
    所述发射线圈与所述接收线圈相对间隔设置,并且所述发射线圈与所述接收线圈之间传输电能。
  22. 根据权利要求21所述的装置,其特征在于,所述电能发射组件还包括:发射端控制芯片、供电电路板、发射端电流调整电路;
    所述供电电路板与所述发射端控制芯片以及所述发射端电流调整电路电连接,用于向所述发射端电流调整电路以及所述发射端控制芯片供电;
    所述发射端控制芯片与所述发射端电流调整电路电连接,用于控制所述发射端电流调整电路将接收到的直流电能转换为预设频率范围的交流电能;
    所述发射端电流调整电路,与所述发射线圈电连接,用于将转换后的交流电能传输给所述发射线圈;
    所述发射线圈,用于将接收到的交流电能转换为电磁能,并发射所述电磁能。
  23. 根据权利要求22所述的装置,其特征在于,所述发射端电流调整电路包括:发射端电流转换电路、谐振电路;
    所述发射端电流转换电路,用于将所述供电电路板传输的直流电能转换为交流电能;
    所述谐振电路,用于将转换后的交流电能的频率调整至预设频率范围。
  24. 根据权利要求22或23所述的装置,其特征在于,所述预设频率范围为120KHz~150KHz。
  25. 根据权利要求21所述的装置,其特征在于,所述电能接收组件还包括:接收端控制芯片、接收端电流调整电路;
    所述接收线圈,与所述接收端电流调整电路电连接,用于将接收到的电磁能转换为交流电能,并将转换后的交流电能传输给所述接收端电流调整电路;
    所述接收端控制芯片,与所述接收端电流调整电路电连接,用于控制所述接收端电流调整电路将接收到的交流电能转换为直流电能;
    所述接收端电流调整电路,与所述天线组件电连接,用于将转换后的直流电能传输给所述天线组件。
  26. 根据权利要求21所述的装置,其特征在于,所述发射线圈的感值范围为8.5uH~11uH。
  27. 根据权利要求21所述的装置,其特征在于,所述接收线圈的感值范围为7.5uH~11uH。
  28. 根据权利要求21所述的装置,其特征在于,所述发射线圈与所述接收线圈之间的距离范围为1.5mm~5mm。
  29. 根据权利要求20所述的装置,其特征在于,所述装置还包括支撑所述天线组件的天线支架,所述电机驱动所述天线支架转动,所述天线组件随着所述天线支架一起旋转;
    所述电能接收组件固定安装于所述天线支架。
  30. 根据权利要求19所述的装置,其特征在于,所述装置还包括第一无线通信组件以及与所述第一无线通信组件无线通信连接的第二无线通信组件,所述第一无线通信组件与所述天线组件电连接,所述第二无线通信组件安装于所述底座;
    其中,所述第一无线通信组件用于向所述第二无线通信组件发送所述天线组件检测到的信息,并接收所述第二无线通信组件发送的请求指令。
  31. 根据权利要求30所述的装置,其特征在于,所述第一无线通信组件包括:第一信号控制芯片、第一天线模块;
    所述第一信号控制芯片,与所述第一天线模块电连接,用于控制所述第一天线模块发射数据信号、接收数据信号。
  32. 根据权利要求31所述的装置,其特征在于,所述第一天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第一天线模块为2.4G无线模块或5G无线模块。
  33. 根据权利要求31所述的装置,其特征在于,所述第一天线模块为板状天线。
  34. 根据权利要求30所述的装置,其特征在于,所述第二无线通信组件包括:第二信号控制芯片、第二天线模块;
    所述第二信号控制芯片,与所述第二天线模块电连接,用于控制所述第二天线模块接收数据信号、发射数据信号。
  35. 根据权利要求34所述的装置,其特征在于,所述第二天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第二天线模块为2.4G无线模块或5G无线模块。
  36. 根据权利要求34所述的装置,其特征在于,所述第二天线模块为板状天线。
  37. 一种无人机,其特征在于,所述无人机包括:
    壳体;
    雷达装置,安装于所述壳体上,包括:
    底座;
    天线组件,设于所述底座,所述天线组件相对于所述底座绕一转轴旋转;
    电能发射组件,用于将电能转换为电磁能,并发射所述电磁能;
    电能接收组件,与所述电能发射组件间隔设置;
    其中,所述电能接收组件,与所述天线组件电连接,并与所述天线组件一起旋转,用于将接收到的电磁能转换为电能,并将转换后的电能传输给所述天线组件。
  38. 根据权利要求37所述的无人机,其特征在于,所述雷达装置还包括:
    电机,设于所述底座上,其包括与所述天线组件连接的转子,用于驱动所述天线组件绕所述转轴旋转。
  39. 根据权利要求37所述的无人机,其特征在于,所述电能发射组件包括发射线圈;所述电能接收组件包括接收线圈;
    所述发射线圈与所述接收线圈相对间隔设置,并且所述发射线圈与所述接收线圈之间传输电能。
  40. 根据权利要求39所述的无人机,其特征在于,所述电能发射组件还包括:发射端控制芯片、供电电路板、发射端电流调整电路;
    所述供电电路板与所述发射端控制芯片以及所述发射端电流调整电路电连接,用于向所述发射端电流调整电路以及所述发射端控制芯片供电;
    所述发射端控制芯片与所述发射端电流调整电路电连接,用于控制所述发射端电流调整电路将接收到的直流电能转换为预设频率范围的交流电能;
    所述发射端电流调整电路,与所述发射线圈电连接,用于将转换后的交流电能传输给所述发射线圈;
    所述发射线圈,用于将接收到的交流电能转换为电磁能,并发射所述电磁能。
  41. 根据权利要求40所述的无人机,其特征在于,所述发射端电流调整电路包括:发射端电流转换电路、谐振电路;
    所述发射端电流转换电路,用于将所述供电电路板传输的直流电能转换为交流电能;
    所述谐振电路,用于将转换后的交流电能的频率调整至预设频率范围。
  42. 根据权利要求40或41所述的装置,其特征在于,所述预设频率范围为120KHz~150KHz。
  43. 根据权利要求39所述的无人机,其特征在于,所述电能接收组件还包括:接收端控制芯片、接收端电流调整电路;
    所述接收线圈,与所述接收端电流调整电路电连接,用于将接收到的电磁能转换为交流电能,并将转换后的交流电能传输给所述接收端电流调整电路;
    所述接收端控制芯片,与所述接收端电流调整电路电连接,用于控制所述接收端电流调整电路将接收到的交流电能转换为直流电能;
    所述接收端电流调整电路,与所述天线组件电连接,用于将转换后的直流电能传输给所述天线组件。
  44. 根据权利要求39所述的无人机,其特征在于,所述发射线圈的感值范围为8.5uH~11uH。
  45. 根据权利要求39所述的无人机,其特征在于,所述接收线圈的感值范围为7.5uH~11uH。
  46. 根据权利要求39所述的无人机,其特征在于,所述发射线圈与所述接收线圈之间的距离范围为1.5mm~5mm。
  47. 根据权利要求38所述的无人机,其特征在于,所述雷达装置还包括支撑所述天线组件的天线支架,所述电机驱动所述天线支架转动,所述天线组件随着所述天线支架一起旋转;
    所述电能接收组件固定安装于所述天线支架。
  48. 根据权利要求37所述的无人机,其特征在于,所述雷达装置还包括第一无线通信组件以及与所述第一无线通信组件无线通信连接的第二无线通信组件,所述第一无线通信组件 与所述天线组件电连接,所述第二无线通信组件安装于所述底座;
    其中,所述第一无线通信组件用于向所述第二无线通信组件发送所述天线组件检测到的信息,并接收所述第二无线通信组件发送的请求指令。
  49. 根据权利要求48所述的无人机,其特征在于,所述第一无线通信组件包括:第一信号控制芯片、第一天线模块;
    所述第一信号控制芯片,与所述第一天线模块电连接,用于控制所述第一天线模块发射数据信号、接收数据信号。
  50. 根据权利要求49所述的无人机,其特征在于,所述第一天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第一天线模块为2.4G无线模块或5G无线模块。
  51. 根据权利要求49所述的无人机,其特征在于,所述第一天线模块为板状天线。
  52. 根据权利要求48所述的无人机,其特征在于,所述第二无线通信组件包括:第二信号控制芯片、第二天线模块;
    所述第二信号控制芯片,与所述第二天线模块电连接,用于控制所述第二天线模块接收数据信号、发射数据信号。
  53. 根据权利要求52所述的无人机,其特征在于,所述第二天线模块包括下述至少一个:
    WIFI无线模块、蓝牙无线模块;
    或者,所述第二天线模块为2.4G无线模块或5G无线模块。
  54. 根据权利要求52所述的无人机,其特征在于,所述第二天线模块为板状天线。
PCT/CN2017/117004 2017-12-18 2017-12-18 雷达装置、雷达的无线旋转装置及无人机 WO2019119226A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780018604.0A CN108885248B (zh) 2017-12-18 2017-12-18 雷达装置、雷达的无线旋转装置及无人机
PCT/CN2017/117004 WO2019119226A1 (zh) 2017-12-18 2017-12-18 雷达装置、雷达的无线旋转装置及无人机
US16/890,627 US20200292697A1 (en) 2017-12-18 2020-06-02 Radar device, wireless rotating device of radar, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117004 WO2019119226A1 (zh) 2017-12-18 2017-12-18 雷达装置、雷达的无线旋转装置及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/890,627 Continuation US20200292697A1 (en) 2017-12-18 2020-06-02 Radar device, wireless rotating device of radar, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019119226A1 true WO2019119226A1 (zh) 2019-06-27

Family

ID=64325919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117004 WO2019119226A1 (zh) 2017-12-18 2017-12-18 雷达装置、雷达的无线旋转装置及无人机

Country Status (3)

Country Link
US (1) US20200292697A1 (zh)
CN (1) CN108885248B (zh)
WO (1) WO2019119226A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368590A (zh) * 2019-10-31 2021-02-12 深圳市大疆创新科技有限公司 微波天线结构、微波旋转雷达及可移动平台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113448A1 (zh) * 2018-12-04 2020-06-11 深圳市大疆创新科技有限公司 旋转***和传感器
CN109703751B (zh) * 2019-02-22 2022-01-28 韩绍泽 一种军用探测飞行仪
CN112119567A (zh) * 2019-09-27 2020-12-22 深圳市大疆创新科技有限公司 无线供电与通信的集成***、雷达装置和无人机
CN112166334B (zh) * 2019-09-30 2024-04-09 深圳市大疆创新科技有限公司 雷达装置及可移动平台
CN112346043B (zh) * 2020-11-06 2023-10-10 江苏方天电力技术有限公司 一种基于频谱识别的无人机侦测方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204188806U (zh) * 2014-10-23 2015-03-04 唐毅成 一种用于检测信号的360度旋转智能雷达
CN205880217U (zh) * 2016-07-19 2017-01-11 上海擎朗智能科技有限公司 旋转式测距雷达
CN106655535A (zh) * 2016-11-07 2017-05-10 深圳市镭神智能***有限公司 基于无线传输的360°tof激光扫描雷达
CN206400103U (zh) * 2016-12-22 2017-08-11 深圳市镭神智能***有限公司 基于光通信的360度扫描的激光雷达

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052565A (ko) * 2007-09-17 2010-05-19 퀄컴 인코포레이티드 무선 전력 자기 공진기에서의 고효율 및 고전력 전송
JP5727146B2 (ja) * 2010-02-05 2015-06-03 日本無線株式会社 レーダアンテナ装置、レーダアンテナ駆動ユニットおよび船舶レーダアンテナ用電力供給装置
CN104515987B (zh) * 2013-09-29 2017-12-15 长春理工大学 毫米波无人机回收引导装置
CN103630892B (zh) * 2013-12-04 2017-02-08 中国电子科技集团公司第五十研究所 高分辨率机场跑道外来物探测成像雷达
CN105162219B (zh) * 2015-07-22 2018-05-11 刘芳 无人机的充电方法以及充电管理方法
EP3203259A1 (en) * 2016-02-03 2017-08-09 Konica Minolta, Inc. Optical scanning type object detection device
CN105866785B (zh) * 2016-05-04 2019-06-28 上海思岚科技有限公司 一种激光扫描测距装置
CN106793417A (zh) * 2017-01-17 2017-05-31 中惠创智(深圳)无线供电技术有限公司 无线供电电灯
CN106842170B (zh) * 2017-03-16 2023-04-07 西安交通大学 一种新型多线360°扫描式激光雷达及其实现方法
CN206601489U (zh) * 2017-03-16 2017-10-31 西安交通大学 一种新型多线360°扫描式激光雷达
CN107238839A (zh) * 2017-07-19 2017-10-10 北醒(北京)光子科技有限公司 一种红外探测与测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204188806U (zh) * 2014-10-23 2015-03-04 唐毅成 一种用于检测信号的360度旋转智能雷达
CN205880217U (zh) * 2016-07-19 2017-01-11 上海擎朗智能科技有限公司 旋转式测距雷达
CN106655535A (zh) * 2016-11-07 2017-05-10 深圳市镭神智能***有限公司 基于无线传输的360°tof激光扫描雷达
CN206400103U (zh) * 2016-12-22 2017-08-11 深圳市镭神智能***有限公司 基于光通信的360度扫描的激光雷达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368590A (zh) * 2019-10-31 2021-02-12 深圳市大疆创新科技有限公司 微波天线结构、微波旋转雷达及可移动平台
WO2021081904A1 (zh) * 2019-10-31 2021-05-06 深圳市大疆创新科技有限公司 微波天线结构、微波旋转雷达及可移动平台

Also Published As

Publication number Publication date
US20200292697A1 (en) 2020-09-17
CN108885248B (zh) 2023-03-31
CN108885248A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2019119226A1 (zh) 雷达装置、雷达的无线旋转装置及无人机
US11011942B2 (en) Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10742268B2 (en) Motion prediction for wireless power transfer
US10389161B2 (en) Surface mount dielectric antennas for wireless power transmitters
US10250955B2 (en) Wireless building sensor system
US20180257502A1 (en) Wireless charging system for unmanned aerial vehicle and method for operating same
JP2020526158A (ja) ワイヤレスで送達される電力を受信するためのアンテナとして、音発生デバイスのワイヤを利用するためのシステム、方法、及びデバイス
US10742267B2 (en) Beam interaction control for wireless power transfer
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
US20150171974A1 (en) Communications for wireless power transfer
CN113597723A (zh) 用于无线电力传输的小型化天线的***和方法
US10644393B2 (en) RF energy transmitting apparatus, RF energy harvesting apparatus and method of RF energy transmitting
CN206195779U (zh) 中继无人机无线自组通信***及飞行式中继设备
KR20170039356A (ko) 무인비행체 무선충전 시스템 및 이의 구동 방법
US10148131B2 (en) Power density control for wireless power transfer
KR20170040961A (ko) 무인비행체 무선충전 시스템 및 이의 구동 방법
US20190199139A1 (en) Coordinated wireless power transfer
CN109073742B (zh) 雷达装置、无线旋转装置及无人机
US11672232B1 (en) Animal feeder control and data distribution
WO2017015519A1 (en) Motion prediction for wireless power transfer
KR20170040960A (ko) 무인비행체 무선충전 시스템 및 이의 구동 방법
KR102182373B1 (ko) 드론용 레이더장치
CN105303812A (zh) 红外转发器及红外智能控制***
KR20180089815A (ko) 무인 비행기
TW201707329A (zh) 無線功率傳輸的功率密度控制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935445

Country of ref document: EP

Kind code of ref document: A1