WO2019119210A1 - 电池、电池控制***和无人飞行器 - Google Patents

电池、电池控制***和无人飞行器 Download PDF

Info

Publication number
WO2019119210A1
WO2019119210A1 PCT/CN2017/116930 CN2017116930W WO2019119210A1 WO 2019119210 A1 WO2019119210 A1 WO 2019119210A1 CN 2017116930 W CN2017116930 W CN 2017116930W WO 2019119210 A1 WO2019119210 A1 WO 2019119210A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrical
cells
fuse
electrically connected
Prior art date
Application number
PCT/CN2017/116930
Other languages
English (en)
French (fr)
Inventor
张彩辉
王文韬
田杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780020712.1A priority Critical patent/CN109075301B/zh
Priority to PCT/CN2017/116930 priority patent/WO2019119210A1/zh
Publication of WO2019119210A1 publication Critical patent/WO2019119210A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of battery protection, and more particularly to a battery, a battery control system, and an unmanned aerial vehicle.
  • the positive and negative poles of each cell need to be directly led out through a wire, so that the wires can be led out.
  • the terminal directly connects to the external power source to charge the battery cells, or directly connects the terminals of the wires to the battery protection board to monitor the working state of each battery cell, thereby realizing protection for each battery cell. If the lead ends of the plurality of wires are directly contacted by the lead ends of at least two wires due to human error or corrosion, the corresponding connected cells are short-circuited, causing at least two wires in direct contact to burn, thereby causing corresponding connections. The battery is burned and causes losses to the user.
  • the present invention provides a battery, a battery control system, and an unmanned aerial vehicle.
  • a battery comprising:
  • each of the wires being electrically connected to the positive electrode or the negative electrode of one of the cells, and the other end is provided with a first electrical connector for electrically connecting to the external module;
  • At least two of the first electrical connectors When at least two of the first electrical connectors are in direct electrical contact, at least two of the first electrical connectors in direct electrical contact can be blown corresponding to the series of fuse structures such that at least two of the direct electrical contacts The first electrical connector and the corresponding battery core are mutually intercepted.
  • a battery control system includes a control module and a battery, the battery comprising:
  • each of the wires being electrically connected to a positive electrode or a negative electrode of one of the cells, and the other end is provided with a first electrical connector, wherein the first electrical connector is for electrically connecting with the control module;
  • At least two of the first electrical connectors When at least two of the first electrical connectors are in direct electrical contact, at least two of the first electrical connectors in direct electrical contact can be blown corresponding to the series of fuse structures such that at least two of the direct electrical contacts The first electrical connector and the corresponding battery core are mutually intercepted.
  • an unmanned aerial vehicle includes a body, a power assembly coupled to the body, and a battery inserted in the body, the battery comprising:
  • a plurality of wires each having one end electrically connected to a positive pole or a negative pole of one of the batteries, and the other end being provided with a first electrical connector, the first electrical connector being electrically connected to the power component for the power Component power supply;
  • At least two of the first electrical connectors When at least two of the first electrical connectors are in direct electrical contact, at least two of the first electrical connectors in direct electrical contact can be blown corresponding to the series of fuse structures such that at least two of the direct electrical contacts The first electrical connector and the corresponding battery core are mutually intercepted.
  • the present invention provides a fuse structure on each of the wires.
  • a large current passes through the wires directly contacting the wires. Burning the fuse structure on the wire avoids the risk of burning the corresponding battery core and greatly improves the safety of the battery.
  • FIG. 1 is a block diagram showing the structure of a battery in an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the structure of a battery control system in an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a battery in an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a control module in an embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of a battery protection board in an embodiment of the present invention.
  • Figure 6 is a perspective view of an unmanned aerial vehicle in accordance with an embodiment of the present invention.
  • 10 control module
  • 11 battery protection board
  • 111 voltage monitoring unit
  • 112 temperature monitoring unit
  • 12 balance charger
  • 20 battery
  • 21 battery
  • 22 wire
  • 23 first electrical connector
  • 24 Fuse structure
  • R resistance
  • 100 body
  • 200 power component.
  • a first embodiment of the present invention provides a battery 20 that can include a plurality of cells 21, a plurality of wires 22, and a plurality of fuse structures 24. Among them, a plurality of cells 21 are connected in series. One end of each of the wires 22 is electrically connected to the positive electrode or the negative electrode of one of the cells 21, and the other end is provided with a first electrical connector 23, which can be used for electrical connection with an external module, through the wire 22 and The first electrical connector 23 realizes electrical connection between the external module and each of the cells 21, so that the battery 20 can be charged by the external module or the operating state of each of the cells 21 can be monitored.
  • the positive electrode and the negative electrode of each of the cells 21 are respectively led out by one wire 22, and the adjacent cells 21 share the same wire 22.
  • Each of the cells 21 includes a positive electrode and a negative electrode, and one end of each of the wires 22 is electrically connected to the positive or negative electrode of the corresponding battery 21, thereby leading the positive and negative electrodes of each of the cells 21 through the wires 22.
  • the first electrical connector 23 can be an electrical socket or an electrical plug.
  • the positive electrode of each of the cells 21 and the first electrical connector 23 electrically connected to the positive electrode of the current cell 21, the negative electrode of each of the cells 21, and the negative electrode of the current cell 21 are electrically connected.
  • a fuse structure 24 is connected in series between the first electrical connectors 23. When at least two of the first electrical connectors 23 are in direct electrical contact, at least two of the first electrical connectors 23 in direct electrical contact can be blown corresponding to the series of fuse structures 24 to allow direct electrical contact. The two first electrical connectors 23 and the corresponding cells 21 are mutually intercepted.
  • the fuse structure 24 is not connected in series to the wires 22 leading to the positive and negative poles of each of the cells 21, the two first electrical connectors 23 are directly electrically connected, that is, the positive electrode and the negative electrode of the battery cell 21 are directly passed.
  • the wires 22 are connected, causing the battery cells 21 to be short-circuited and burned, and the safety of the battery 20 is poor.
  • the reasons for causing direct electrical contact between at least two of the first electrical connectors 23 may include the following:
  • the first electrical connector 23 is mostly a copper terminal, when the battery 20 is placed in a humid environment, particularly in a salt spray environment, the copper terminal is easily corroded and the adjacent two copper terminals are in direct contact, thereby Causes the battery core 21 to be short-circuited.
  • Second type the first electrical connector 23 is plugged in multiple times, causing the first electrical connector 23 to wear and short circuit.
  • the at least two first electrical connectors 23 are deformed in contact due to excessive force, thereby short-circuiting.
  • the fourth type the user misuses, so that two or two of the copper terminals directly contact will also cause the battery 21 to be short-circuited.
  • the fuse structure 24 can be in various forms.
  • the fuse structure 24 is a portion of the corresponding wire 22, and the width of the fuse structure 24 is smaller than the width of other portions of the corresponding wire 22. That is, the width of a part of the wire 22 is smaller than the width of other parts.
  • the corresponding fuse structure 24 When the battery 21 is short-circuited, the corresponding fuse structure 24 is blown.
  • the design of the width of the fuse structure 24 also needs to take into account the strength of the wire 22, preventing the wire 22 from being easily lost under the action of an external force.
  • the fuse structure 24 is disposed at a central portion of the corresponding wire 22.
  • the fuse structure 24 is adjacent to the corresponding cell 21, i.e., the length from the head of the fuse structure 24 to the wire 22 of the corresponding cell 21 is less than the length of the wire 22 from the fuse structure 24 to the corresponding first electrical connector 23.
  • the fuse structure 24 is a resistor R of a predetermined resistance magnitude.
  • the resistor R needs to be satisfied: when the battery core 21 is working normally, the corresponding resistor R is not blown. When the battery 21 is short-circuited, the corresponding resistor R is blown.
  • the preset resistance is greater than or equal to 10 m ⁇ (unit: milliohm) and less than or equal to 100 m ⁇ .
  • the predetermined resistance is 10 m ⁇ , 20 m ⁇ , 30 m ⁇ , 40 m ⁇ , 50 m ⁇ , 60 m ⁇ , 70 m ⁇ , 80 m ⁇ , 90 m ⁇ , 100 m ⁇ , and the like.
  • the type of the resistor R may be any type of resistor R in the prior art, and preferably, the resistor R is a fuse resistor. Since the fuse resistor has the function of a common resistor under normal conditions, once the circuit fails and exceeds its rated power, it will open the circuit within a specified time, thereby achieving the protection of other components. In this embodiment, in the case of electricity When the core 21 is short-circuited, the fuse resistor is broken to protect the battery core 21.
  • the fuse resistor may be of a repairable type or an unrepairable type. Preferably, the fuse resistor is of a repairable type, and when the battery core 21 returns to normal again, the fuse resistor is automatically restored, and the battery core 21 can continue to operate.
  • the battery 20 includes six cells 21, and six cells 21 are connected in series.
  • the positive and negative electrodes of each cell 21 are connected to the first electrical connector 23 via a resistor R, and two adjacent cells are connected. 21 sharing the same wire 22, the positive and negative poles of all the cells 21 can be monitored.
  • the fuse structure 24 is a fuse.
  • the fuse needs to be satisfied: when the battery core 21 is working normally, the corresponding fuse will not be blown. When the battery 21 is short-circuited, the corresponding fuse will be blown.
  • the wire 22 is electrically connected to one end of the fuse through a second electrical connection and is electrically connected to the other end of the fuse through a third electrical connection. After the fuse is blown, the safety of the battery core 21 can be continued by replacing the fuse.
  • the second electrical connector and the third electrical connector may be any one of an electrical socket and an electrical plug.
  • a second embodiment of the present invention provides a battery control system.
  • the battery control system can include the control module 10 and the battery 20 described in the first embodiment above.
  • the structure, function, working principle and effect of the battery 20 refer to the description of the first embodiment, and details are not described herein again.
  • the first electrical connector 23 of the battery 20 is electrically connected to the control module 10.
  • the control module 10 can be provided with a plurality of electrical fittings for correspondingly engaging with the plurality of first electrical connectors 23.
  • the corresponding electrical component is an electrical plug.
  • the corresponding electrical component is an electrical socket.
  • the control module 10 is a battery protection board 11 to monitor the operating state of the battery 20.
  • the battery protection board 11 may include a voltage monitoring unit 111, a temperature monitoring unit 112, or other units.
  • the voltage monitoring unit 111 can be used to monitor the voltage of each of the cells 21 and the total voltage of the plurality of cells 21 connected in series as one of the indicators for determining the operating state of the battery 20.
  • the temperature monitoring unit 112 can be used to monitor the temperature of each of the cells 21 and the total temperature of the plurality of cells 21 connected in series as one of the indicators for determining the operating state of the battery 20.
  • the voltage of each of the cells 21 monitored by the voltage monitoring unit 111 and the total voltage of the plurality of cells 21 connected in series and the temperature and temperature of each of the cells 21 monitored by the temperature monitoring unit 112 can be connected in series.
  • the total temperature of the plurality of cells 21 connected is used to evaluate the use and life of the battery 20.
  • the control module 10 is a balanced charger 12 to accommodate voltage balancing between different cells 21 in the battery 20.
  • the balance charger 12 is used as an adapter for charging and discharging the battery core 21 with an external power source, and the voltage between the different batteries 21 can be balanced, so that the service life of the battery core 21 can be improved.
  • a third embodiment of the present invention provides an unmanned aerial vehicle, which may include a body 100, a power assembly 200 coupled to the body 100, and a battery inserted into the body 100.
  • an unmanned aerial vehicle which may include a body 100, a power assembly 200 coupled to the body 100, and a battery inserted into the body 100.
  • a battery inserted into the body 100.
  • the first electrical connector 23 is a connector for plugging the battery 20 into the UAV body 100.
  • the connector is electrically coupled to the power system 200 to power the power assembly through the battery 20.
  • the UAV of the present embodiment may be a multi-rotor unmanned aerial vehicle, such as a quadrotor unmanned aerial vehicle or an eight-rotor unmanned aerial vehicle.
  • the UAV may further include a robot arm coupled to the body 100, and the power assembly 200 may include a motor coupled to the propeller side of the arm away from the body and for driving the propeller to rotate.
  • the connector When the connector is inserted into the body 100, the connector is electrically connected to a motor for driving the rotation of the propeller, so that the motor for driving the rotation of the propeller can be powered by the battery 20. .
  • the arm can be rotated relative to the body 100 to an unfolded state or a folded state
  • the power assembly 200 can further include a motor for driving the arm to rotate relative to the body 100.
  • the connector When the connector is inserted into the body 100, the connector is electrically connected to a motor for driving the arm to rotate relative to the body 100, so that the battery 20 can be used for driving
  • the arm is powered by a motor that rotates with the body 100.
  • the unmanned aerial vehicle is equipped with a pan/tilt camera
  • the power assembly 200 may further include a motor for driving the rotation of the gimbal.
  • the connector When the connector is inserted into the body 100, the connector is electrically connected to a motor for driving the pan/tilt rotation, so that the motor for driving the pan/tilt can be powered by the battery 20.
  • the UAV may further include a flight controller and a battery protection panel electrically coupled to the flight controller.
  • a flight controller and a battery protection panel electrically coupled to the flight controller.
  • the battery protection board is configured to monitor an operating state of the battery 20 and send the monitored operating state of the battery 20 to the
  • the flight controller is further configured to send the operating status of the battery 20 to the terminal device by the flight controller to inform the user of the operating state of the battery 20.
  • the battery protection board may include a voltage monitoring unit, a temperature monitoring unit or other unit.
  • the voltage monitoring unit may be configured to monitor a voltage of each of the cells and a total voltage of the plurality of cells connected in series as one of indicators for determining the operating state of the battery 20.
  • the temperature monitoring unit can be used to monitor the temperature of each of the cells and the total temperature of the plurality of cells connected in series as one of the indicators for determining the operating state of the battery 20.
  • the voltage of each cell monitored by the voltage monitoring unit and the total voltage of the plurality of cells connected in series and the temperature of each cell monitored by the temperature monitoring unit and the plurality of cells connected in series may be The total temperature of the cells is used to evaluate the use and life of the battery 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池、电池控制***和无人飞行器,所述电池(20)包括:串联连接的多个电芯(21);多根导线(22),每根导线(22)的一端与其中一个电芯(21)的正极或负极电连接,另一端设有第一电连接件(23),第一电连接件(23)用于与外部模块电连接;每个电芯(21)的正极和与当前电芯的正极电连接的第一电连接件(23)之间、每个电芯(21)的负极和与当前电芯的负极电连接的第一电连接件(23)之间均串联有熔断结构(24);当至少两个第一电连接件(23)之间直接电接触时,直接电接触的至少两个第一电连接件(23)对应串联的熔断结构(24)能够被烧断,以使直接电接触的两个第一电连接件(23)和对应的电芯(21)之间相互截断。通过在每根导线上设置熔断结构,大电流通过导线时,熔断结构会被烧断,避免了对应的电芯燃烧的风险,提高电池的安全性。

Description

电池、电池控制***和无人飞行器 技术领域
本发明涉及电池保护领域,尤其涉及一种电池、电池控制***和无人飞行器。
背景技术
锂电池中,多个电芯串联应用非常广泛。目前,为了对电芯进行充电、采样各电芯的电压、温度等参数以监控各电芯的工作状态,各电芯的正极和负极需要通过一根导线直接引出,从而可将各导线的引出端直接连接外部电源以对电芯充电,或者,将各导线的引出端直接连接电池保护板以监测各电芯的工作状态,实现对每个电芯的保护。多根导线的引出端若由于人为误碰或腐蚀等因素导致至少两根导线的引出端直接接触,则会造成对应连接的电芯短路,导致直接接触的至少两根导线燃烧,从而导致对应连接的电芯被烧毁,给用户造成损失。
发明内容
本发明提供一种电池、电池控制***和无人飞行器。
根据本发明的第一方面,提供一种电池,包括:
串联连接的多个电芯;
多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件用于与外部模块电连接;
其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
当至少两个所述第一电连接件之间直接电接触时,直接电接触的至 少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接触的至少两个所述第一电连接件和对应的电芯之间相互截断。
根据本发明的第二方面,提供一种电池控制***,包括控制模块和电池,所述电池包括:
串联连接的多个电芯;
多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件用于与所述控制模块电连接;
其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
当至少两个所述第一电连接件之间直接电接触时,直接电接触的至少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接触的至少两个所述第一电连接件和对应的电芯之间相互截断。
根据本发明的第三方面,提供一种无人飞行器,包括机体、与所述机体连接的动力组件和插接于所述机体中的电池,所述电池包括:
串联连接的多个电芯;
多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件与所述动力组件电连接,为所述动力组件供电;
其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
当至少两个所述第一电连接件之间直接电接触时,直接电接触的至少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接 触的至少两个所述第一电连接件和对应的电芯之间相互截断。
由以上本发明实施例提供的技术方案可见,本发明通过在每根导线上设置熔断结构,当至少两个导线的第一电连接件直接电接触时,大电流通过直接电接触的导线,会将导线上的熔断结构烧断,避免了对应的电芯燃烧的风险,极大地提高了电池的安全性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的电池的结构框图;
图2是本发明一实施例中的电池控制***的结构框图;
图3是本发明一实施例中的电池的结构示意图;
图4是本发明一实施例中的控制模块的结构框图;
图5是本发明一实施例中的电池保护板的结构框图;
图6是本发明一实施例中的无人飞行器的立体图。
附图标记:
10:控制模块;11:电池保护板;111:电压监测单元;112:温度监测单元;12:平衡充电器;20:电池;21:电芯;22:导线;23:第一电连接件;24:熔断结构;R:电阻;100:机体;200:动力组件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的电池20和电池控制***进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
结合图1至图3,本发明实施例一提供一种电池20,所述电池20可包括多个电芯21、多根导线22和多个熔断结构24。其中,多个电芯21串联连接。每根导线22的一端与其中一个电芯21的正极或负极电连接,另一端设有第一电连接件23,所述第一电连接件23可用于与外部模块电连接,通过导线22和第一电连接件23,实现外部模块与各电芯21的电连接,从而可通过外部模块对电池20充电或监测各电芯21的工作状态。本实施例中,每个电芯21的正极和负极分别通过一根导线22引出,相邻电芯21共用同一根导线22。每个电芯21包括正极耳和负极耳,每根导线22的一端与对应电芯21的正极耳或负极耳电连接,从而通过导线22将每个电芯21的正极和负极引出。所述第一电连接件23可为电插口或电插头。
在本实施例中,每个电芯21的正极和与当前电芯21的正极电连接的第一电连接件23之间、每个电芯21的负极和与当前电芯21的负极电连接的第一电连接件23之间均串联有熔断结构24。当至少两个所述第一电连接件23之间直接电接触时,直接电接触的至少两个所述第一电连接件23对应串联的熔断结构24能够被烧断,以使直接电接触的两个所述第一电连接件23和对应的电芯21之间相互截断。现有技术中,由于引出各电芯21正负极的导线22上未串联有熔断结构24,两个第一电连接件23直接电连接,即相当于将电芯21的正极和负极直接通过导线22连接,从而导致电芯21短路而被烧毁,电池20的安全性差。本发明实施例中,通过在每根导线22上设置熔断结构24,当至少两个导线22的第一电连接件23直接电接触时,大电流通过直接电接触的导线22,会将导线22上的熔断 结构24烧断,避免了对应的电芯21燃烧的风险,极大地提高了电池20的安全性。
造成至少两个所述第一电连接件23之间直接电接触的原因可包括如下几种:
第一种:由于第一电连接件23大部分为铜端子,当电池20置于潮湿环境中,特别是盐雾环境中,铜端子容易腐蚀而导致相邻的两个铜端子直接接触,从而导致电芯21短路。
第二种:将第一电连接件23多次插接,导致第一电连接件23磨损进而短路。
第三种:用户在插拔多个第一电连接件23时,由于用力过大而将至少两个第一电连接件23变形接触,从而短路。
第四种:用户误操作,使得两个或两个以使的铜端子直接接触也会导致电芯21短路。
熔断结构24的形式可为多种,比如,在一实施例中,所述熔断结构24为对应导线22的一部分,且所述熔断结构24的宽度小于所述对应导线22的其他部分的宽度,即导线22其中一部分的宽度要小于其他部分的宽度,大电流流过导线22时,导线22上宽度较小的区域会被烧断,将对应的电芯21和电连接隔开,防止大电流流入对应的电芯21而烧毁电芯21。需要说明的是,熔断结构24的宽度需要满足的条件包括:当电芯21正常工作时,对应的熔断结构24不会被烧断。而当电芯21短路时,对应的熔断结构24会被烧断。此外,本实施例中,熔断结构24的宽度的设计还需考虑到导线22的强度,防止导线22在外力作用下易损耗。进一步地,本实施例中,熔断结构24设于对应导线22的中部区域。优选地,熔断结构24靠近对应的电芯21,即从熔断结构24的头部至对应电芯21的导线22的长度小于从熔断结构24至对应第一电连接件23的导线22的长度。
在另一实施例中,参见图3,所述熔断结构24为预设阻值大小的电阻R。本实施例中,电阻R需满足:当电芯21正常工作时,对应的电阻R不会被烧断。而当电芯21短路时,对应的电阻R会被烧断。其中,预设阻值大于等于10mΩ(单位:毫欧)并小于等于100mΩ。例如,所述预设阻值为10mΩ、20mΩ、30mΩ、40mΩ、50mΩ、60mΩ、70mΩ、80mΩ、90mΩ、100mΩ等。电阻R的类型可为现有技术中任意类型电阻R,优选地,所述电阻R为保险电阻。由于保险电阻在正常情况下具有普通电阻的功能,一旦电路出现故障,超过其额定功率时,它会在规定时间内断开电路,从而达到保护其它元器件的作用,本实施例中,在电芯21短路时,保险电阻会断开,保护电芯21。所述保险电阻可以为可修复型的,也可以为不可修复型的。优选地,所述保险电阻为可修复型的,当电芯21再次恢复正常时,保险电阻会自动恢复,电芯21能够继续工作。本实施例中,电池20包括6个电芯21,6个电芯21串联连接,每个电芯21的正极和负极均经电阻R连接第一电连接件23,并且相邻两个电芯21共用同一导线22,即可对所有电芯21的正、负极进行监测。
在又一实施例中,所述熔断结构24为保险丝。本实施例中,保险丝需满足:当电芯21正常工作时,对应的保险丝不会被烧断。而当电芯21短路时,对应的保险丝会被烧断。优选地,导线22通过第二电连接件与保险丝的一端电连接,并通过第三电连接件与保险丝的另一端电连接。在保险丝被烧断后,可通过更换保险丝来继续保障电芯21的安全。同样地,第二电连接件、第三电连接件可为电插口、电插头中的任意一种。
实施例二
参见图2,本发明实施例二提供一种电池控制***。该电池控制***可包括控制模块10和上述实施例一所述的电池20。电池20的结构、功能、工作原理及效果可参见实施例一的描述,此处不再赘述。
其中,所述电池20的第一电连接件23与所述控制模块10电连接。 具体地,控制模块10上可设有用以与多个第一电连接件23对应配合的多个电配合件。例如,当第一电连接件23为电插口时,对应的电配合件则为电插头。当第一电连接件23为电插头时,对应的电配合件则为电插口。
在一实施例中,参见图4,所述控制模块10为电池保护板11,以监测电池20的工作状态。其中,所述电池保护板11可包括电压监测单元111、温度监测单元112或其他单元。进一步地,所述电压监测单元111可用于监测每个电芯21的电压和串联连接的多个所述电芯21的总电压,以作为判断电池20工作状态的指标之一。所述温度监测单元112可用于监测每个电芯21的温度和串联连接的多个所述电芯21的总温度,以作为判断电池20工作状态的指标之一。本实施例中,可根据电压监测单元111监测的每个电芯21的电压和串联连接的多个所述电芯21的总电压和温度监测单元112监测的每个电芯21的温度和串联连接的多个所述电芯21的总温度来评估电池20的使用情况和寿命。
在另一实施例中,参见图5,所述控制模块10为平衡充电器12,以适应于电池20中不同电芯21间的电压平衡。在电芯21的实际应用中,由于每个电芯21的制造、使用条件和特性存在差异,这种情况若不进行改善,在充放电过程中差异会进一步加大,进而降低电芯21的使用寿命。本实施例采用平衡充电器12作为电芯21充放电时与外部电源的转接件,可以平衡不同电芯21间的电压,从而可以提高电芯21的使用寿命。
实施例三
参见图6,本发明实施例三提供一种无人飞行器,其可包括机体100、与所述机体100连接的动力组件200和插接于所述机体100中的电池。其中,所述电池20的结构、功能、工作原理及效果可参见实施例一的描述,此处不再赘述。
本实施例中,第一电连接件23为将电池20插接于无人飞行器机体 100上的插接件。将插接件插接于机体100上时,插接件与动力***200电连接,从而通过电池20为动力组件提供动力。
本实施例的无人飞行器可为多旋翼无人飞行器,例如,四旋翼无人飞行器或八旋翼无人飞行器。所述无人飞行器还可包括连接在所述机体100上的机臂,所述动力组件200可包括连接在所述机臂远离所述机体一侧螺旋桨和用于驱动所述螺旋桨转动的电机。当所述插接件插接于所述机体100上时,所述插接件与用于驱动所述螺旋桨转动的电机电连接,从而可通过电池20为用于驱动所述螺旋桨转动的电机供电。
进一步地,所述机臂可相对于所述机体100转动至展开状态或折叠状态,所述动力组件200还可包括用于驱动所述机臂相对于所述机体100转动的电机。当所述插接件插接于所述机体100上时,所述插接件与用于驱动所述机臂相对于所述机体100转动的电机电连接,从而可通过电池20为用于驱动所述机臂相对于所述机体100转动的电机供电。
更进一步地,所述无人飞行器上搭载有云台相机,所述动力组件200还可包括用于驱动云台转动的电机。当所述插接件插接于所述机体100上时,所述插接件与用于驱动云台转动的电机电连接,从而可通过电池20为用于驱动云台转动的电机供电。
此外,所述无人飞行器还可包括飞行控制器和与所述飞行控制器电连接的电池保护板。其中,多个所述第一电连接件均与所述电池保护板电连接,所述电池保护板用于监测所述电池20的工作状态并将所监测的电池20的工作状态发送至所述飞行控制器,再由所述飞行控制器将所述电池20的工作状态发送至终端设备,以告知用户所述电池20的工作状态。
其中,所述电池保护板可包括电压监测单元、温度监测单元或其他单元。进一步地,所述电压监测单元可用于监测每个电芯的电压和串联连接的多个所述电芯的总电压,以作为判断电池20工作状态的指标之一。所 述温度监测单元可用于监测每个电芯的温度和串联连接的多个所述电芯的总温度,以作为判断电池20工作状态的指标之一。本实施例中,可根据电压监测单元监测的每个电芯的电压和串联连接的多个所述电芯的总电压和温度监测单元监测的每个电芯的温度和串联连接的多个所述电芯的总温度来评估电池20的使用情况和寿命。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的电池和电池控制***进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (34)

  1. 一种电池,其特征在于,包括:
    串联连接的多个电芯;
    多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件用于与外部模块电连接;
    其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
    当至少两个所述第一电连接件之间直接电接触时,直接电接触的至少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接触的至少两个所述第一电连接件和对应的电芯之间相互截断。
  2. 根据权利要求1所述的电池,其特征在于,所述熔断结构为对应导线的一部分,且所述熔断结构的宽度小于所述对应导线的其他部分的宽度。
  3. 根据权利要求1所述的电池,其特征在于,所述熔断结构为预设阻值大小的电阻。
  4. 根据权利要求3所述的电池,其特征在于,所述预设阻值为10mΩ-100mΩ。
  5. 根据权利要求3所述的电池,其特征在于,所述电阻为保险电阻。
  6. 根据权利要求1所述的电池,其特征在于,所述熔断结构为保险丝。
  7. 根据权利要求1所述的电池,其特征在于,每个电芯包括正极耳和负极耳,每根导线的一端与对应电芯的正极耳或负极耳电连接。
  8. 根据权利要求1所述的电池,其特征在于,相邻电芯共用同一根导线。
  9. 根据权利要求1所述的电池,其特征在于,所述第一电连接件为电插口或电插头。
  10. 一种电池控制***,其特征在于,包括控制模块和电池,所述电池包括:
    串联连接的多个电芯;
    多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件与所述控制模块电连接;
    其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
    当至少两个所述第一电连接件之间直接电接触时,直接电接触的至少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接触的至少两个所述第一电连接件和对应的电芯之间相互截断。
  11. 根据权利要求10所述的电池控制***,其特征在于,所述熔断结构为对应导线的一部分,且所述熔断结构的宽度小于所述对应导线的其他部分的宽度。
  12. 根据权利要求10所述的电池控制***,其特征在于,所述熔断结构为预设阻值大小的电阻。
  13. 根据权利要求12所述的电池控制***,其特征在于,所述预设阻值为10mΩ-100mΩ。
  14. 根据权利要求12所述的电池控制***,其特征在于,所述电阻为保险电阻。
  15. 根据权利要求10所述的电池控制***,其特征在于,所述熔断结构为保险丝。
  16. 根据权利要求10所述的电池控制***,其特征在于,每个电芯包括正极耳和负极耳,每根导线的一端与对应电芯的正极耳或负极耳电连接。
  17. 根据权利要求10所述的电池控制***,其特征在于,相邻电芯共用同一根导线。
  18. 根据权利要求10所述的电池控制***,其特征在于,所述第一电连接件为电插口或电插头。
  19. 根据权利要求10所述的电池控制***,其特征在于,所述控制模 块为电池保护板。
  20. 根据权利要求19所述的电池控制***,其特征在于,所述电池保护板包括电压监测单元,用于监测每个电芯的电压和串联连接的多个所述电芯的总电压。
  21. 根据权利要求19所述的电池控制***,其特征在于,所述电池保护板包括温度监测单元,用于监测每个电芯的温度和串联连接的多个所述电芯的总温度。
  22. 根据权利要求10所述的电池控制***,其特征在于,所述控制模块为平衡充电器。
  23. 一种无人飞行器,包括机体、与所述机体连接的动力组件和插接于所述机体中的电池,其特征在于,所述电池包括:
    串联连接的多个电芯;
    多根导线,每根导线的一端与其中一个电芯的正极或负极电连接,另一端设有第一电连接件,所述第一电连接件与所述动力组件电连接,为所述动力组件供电;
    其中,每个电芯的正极和与当前电芯的正极电连接的第一电连接件之间、每个电芯的负极和与当前电芯的负极电连接的第一电连接件之间均串联有熔断结构;
    当至少两个所述第一电连接件之间直接电接触时,直接电接触的至少两个所述第一电连接件对应串联的熔断结构能够被烧断,以使直接电接触的至少两个所述第一电连接件和对应的电芯之间相互截断。
  24. 根据权利要求23所述的无人飞行器,其特征在于,所述熔断结构为对应导线的一部分,且所述熔断结构的宽度小于所述对应导线的其他部分的宽度。
  25. 根据权利要求23所述的无人飞行器,其特征在于,所述熔断结构为预设阻值大小的电阻。
  26. 根据权利要求25所述的无人飞行器,其特征在于,所述预设阻值 为10mΩ-100mΩ。
  27. 根据权利要求25所述的无人飞行器,其特征在于,所述电阻为保险电阻。
  28. 根据权利要求23所述的无人飞行器,其特征在于,所述熔断结构为保险丝。
  29. 根据权利要求23所述的无人飞行器,其特征在于,每个电芯包括正极耳和负极耳,每根导线的一端与对应电芯的正极耳或负极耳电连接。
  30. 根据权利要求23所述的无人飞行器,其特征在于,相邻电芯共用同一根导线。
  31. 根据权利要求23所述的无人飞行器,其特征在于,所述第一电连接件为电插口或电插头。
  32. 根据权利要求23所述的无人飞行器,其特征在于,所述无人飞行器还包括飞行控制器和与所述飞行控制器电连接的电池保护板;
    多个所述第一电连接件均与所述电池保护板电连接,所述电池保护板用于监测所述电池的工作状态并将所监测的电池的工作状态发送至所述飞行控制器。
  33. 根据权利要求32所述的无人飞行器,其特征在于,所述电池保护板包括电压监测单元,用于监测每个电芯的电压和串联连接的多个所述电芯的总电压。
  34. 根据权利要求32所述的无人飞行器,其特征在于,所述电池保护板包括温度监测单元,用于监测每个电芯的温度和串联连接的多个所述电芯的总温度。
PCT/CN2017/116930 2017-12-18 2017-12-18 电池、电池控制***和无人飞行器 WO2019119210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780020712.1A CN109075301B (zh) 2017-12-18 2017-12-18 电池、电池控制***和无人飞行器
PCT/CN2017/116930 WO2019119210A1 (zh) 2017-12-18 2017-12-18 电池、电池控制***和无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116930 WO2019119210A1 (zh) 2017-12-18 2017-12-18 电池、电池控制***和无人飞行器

Publications (1)

Publication Number Publication Date
WO2019119210A1 true WO2019119210A1 (zh) 2019-06-27

Family

ID=64812369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116930 WO2019119210A1 (zh) 2017-12-18 2017-12-18 电池、电池控制***和无人飞行器

Country Status (2)

Country Link
CN (1) CN109075301B (zh)
WO (1) WO2019119210A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115347336A (zh) * 2022-10-18 2022-11-15 中国空气动力研究与发展中心空天技术研究所 一种无人机分布式动力电池
CN115436823A (zh) * 2022-10-10 2022-12-06 深圳市卓讯达科技发展有限公司 一种电芯测试方法及测试设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能***
CN113725821A (zh) * 2021-08-23 2021-11-30 Oppo广东移动通信有限公司 电池以及电池保护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042933U (zh) * 2011-05-19 2011-11-16 张家港市江南汽车制造有限公司 电动汽车用电池模块
CN102610778A (zh) * 2011-01-24 2012-07-25 刘吉平 电池组安全防护装置
CN102923133A (zh) * 2012-10-26 2013-02-13 山东科技大学 一种矿用锂离子蓄电池电机车动力总成***
CN103579568A (zh) * 2012-07-24 2014-02-12 电能有限公司 将可充电电池及保险丝以桥式接法构成的安全电池组
CN204205670U (zh) * 2014-11-25 2015-03-11 长城汽车股份有限公司 动力电池内部电路及电动汽车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201966274U (zh) * 2011-01-25 2011-09-07 山东润峰集团新能源科技有限公司 防止外部短路的电池连接装置
CN202930472U (zh) * 2012-11-27 2013-05-08 广东精进能源有限公司 一种具有过流保护的电池
CN104979882B (zh) * 2015-07-30 2017-03-01 安徽啄木鸟无人机科技有限公司 一种无人机快速充电***及其充电方法
CN105911891B (zh) * 2016-05-05 2019-03-19 东莞新能德科技有限公司 一种保护功能的控制方法和电池管理***
CN106684453B (zh) * 2016-12-08 2019-03-15 浙江超威创元实业有限公司 一种锂离子电池转接板及带有该转接板的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610778A (zh) * 2011-01-24 2012-07-25 刘吉平 电池组安全防护装置
CN202042933U (zh) * 2011-05-19 2011-11-16 张家港市江南汽车制造有限公司 电动汽车用电池模块
CN103579568A (zh) * 2012-07-24 2014-02-12 电能有限公司 将可充电电池及保险丝以桥式接法构成的安全电池组
CN102923133A (zh) * 2012-10-26 2013-02-13 山东科技大学 一种矿用锂离子蓄电池电机车动力总成***
CN204205670U (zh) * 2014-11-25 2015-03-11 长城汽车股份有限公司 动力电池内部电路及电动汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436823A (zh) * 2022-10-10 2022-12-06 深圳市卓讯达科技发展有限公司 一种电芯测试方法及测试设备
CN115347336A (zh) * 2022-10-18 2022-11-15 中国空气动力研究与发展中心空天技术研究所 一种无人机分布式动力电池

Also Published As

Publication number Publication date
CN109075301A (zh) 2018-12-21
CN109075301B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2019119210A1 (zh) 电池、电池控制***和无人飞行器
US11205907B2 (en) Rechargeable battery jump starting device with battery detection system
US8179092B2 (en) Lithium-ion aircraft battery with automatically activated battery management system
US20240149424A1 (en) Power tool system and battery pack thereof
US20160303989A1 (en) Portable backup charger
JP2009231138A (ja) 電池パック
US8704485B1 (en) Battery pack system
JP2014130794A (ja) 車両用バッテリーモジュールの安全装置
JP2015202029A (ja) 二次電池用保護装置
JP5298158B2 (ja) 電源装置
CN217009386U (zh) 储能电池簇
CN104779361A (zh) 用于导电连接和电子监视多个电池组电池的电缆束
CN113054330A (zh) 电池模组和具有其的动力电池包、电动汽车
CN206893745U (zh) 具有电力平衡结构的电池模块
CN108075054B (zh) 动力电池顶盖结构及动力电池
JP7067556B2 (ja) 故障診断装置
US10476067B2 (en) Battery pack and electrical combination
CN107742685B (zh) 一种电池模组
JP6130062B2 (ja) 電池パック放電デバイス及び電池パック放電方法
CN107910488B (zh) 一种串联连接件、电池及电池组
CN107134831B (zh) 一种矿用锂离子蓄电池电源
CN207758582U (zh) 充电连接器,充电装置以及套件
CN104681757A (zh) 集合电池的电池架结构
JP4842734B2 (ja) 電池駆動機器
CN214380040U (zh) 一种用于电动汽车电源***的接地电路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935191

Country of ref document: EP

Kind code of ref document: A1