WO2019117479A1 - 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈 - Google Patents

공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈 Download PDF

Info

Publication number
WO2019117479A1
WO2019117479A1 PCT/KR2018/013841 KR2018013841W WO2019117479A1 WO 2019117479 A1 WO2019117479 A1 WO 2019117479A1 KR 2018013841 W KR2018013841 W KR 2018013841W WO 2019117479 A1 WO2019117479 A1 WO 2019117479A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
sets
supply
warp
diameter
Prior art date
Application number
PCT/KR2018/013841
Other languages
English (en)
French (fr)
Inventor
김대헌
이아영
민경훈
김범주
임예훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180137968A external-priority patent/KR102230979B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880034558.8A priority Critical patent/CN110662596B/zh
Priority to US16/623,735 priority patent/US11478750B2/en
Priority to EP18888465.4A priority patent/EP3608012B1/en
Priority to JP2019561830A priority patent/JP6957648B2/ja
Publication of WO2019117479A1 publication Critical patent/WO2019117479A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a feed spacer and a reverse osmosis filter module including the feed spacer, and more particularly, to a feed- Recovery area is separated so as to provide multifunctional supply spacers and reverse osmosis filter modules comprising the same.
  • the reverse osmosis membrane permeated by this reverse osmosis membrane has been used in a variety of fields such as sterile water for medical use, purified water for population dialysis, or water for the production of semiconductors in the electronic industry, since it becomes pure water or nearly pure water.
  • the two solutions having the difference in reverse osmosis concentration are separated into semi-permeable membranes, and after a certain time, the solution having a low concentration moves to the higher concentration side to generate a constant water level difference, which is called osmotic phenomenon.
  • the difference in water level that occurs during this process is called reverse osmosis.
  • Such a reverse osmosis filter module comprises a center tube, a feed spacer, an RO membrane, a tricot filtration furnace, and the like.
  • the supply spacers serve as passages through which the raw water flows.
  • the supply spacers are formed into a net shape.
  • a differential pressure is generated due to a flow disturbance caused by the feed spacer, which results in an increase in energy cost.
  • Concentration polarization is inevitably generated near the reverse osmosis membrane by the water permeation flux. As the phenomenon becomes worse, the osmotic pressure increases near the reverse osmosis membrane and the water permeability decreases.
  • the present invention has been conceived to solve the above-mentioned problems, and an object of the present invention is to provide an apparatus and a method for manufacturing a semiconductor device, which are capable of forming a region having a different crossing angle in one supply spacer, To thereby provide a feed spacer structure in which a region for reducing the differential pressure and a region for increasing the recovery rate are simultaneously formed.
  • a feed spacer includes a first set in which a plurality of warp strands are positioned in parallel; And a second set in which a plurality of warp yarns intersect and are disposed in parallel with the first set, wherein the crossing angles of the first and second sets increase along the flow direction of the raw water.
  • the intersecting angles of the first and second sets increase stepwise along the flow direction of the raw water.
  • the feed spacer is characterized in that the diameter of the non-intersecting point is different from the intersection of the first and second sets.
  • the feed spacer is characterized in that the difference in diameter of the intersection of the first and second sets and the non-intersection point along the flow direction of the raw water is reduced.
  • the feed spacer is formed with a first end and a second end, wherein the first end is characterized by a smaller crossing angle of the first set and the second set than the second end.
  • the distance between the intersections of the first and second sets is characterized in that the second end is shorter than the first end.
  • the feed spacer is characterized in that the diameter difference of the first end along the flow direction of the raw water is larger than the diameter difference of the second end.
  • the warp diameters of the intersections of the first and second sets are the same.
  • the warp diameter of the first and second sets of non-intersecting points is characterized in that the warp of the first set is thinner than the warp of the second set.
  • the reverse osmosis filter module includes the supply spacer.
  • the reverse osmosis filter module comprises: a tube including an opening for receiving permeate therethrough; And one or more reverse osmosis membranes extending outwardly from the tubes and wound around the tubes, wherein the spacers contact the one or more reverse osmosis membranes and are wound around the tubes.
  • the cross-sectional area of the flow path is increased to reduce the pressure difference, So that a plurality of effects are generated using one supply spacer.
  • FIG. 1 is a top view of a supply spacer according to one embodiment of the present invention.
  • FIG. 2 is a perspective view of a feed spacer according to one embodiment of the present invention.
  • Fig. 3 (a) is an enlarged view of the warp in Fig. 1
  • Fig. 3 (b) is an enlarged view of the warp in Fig.
  • FIG. 1 is a plan view of a supply spacer according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a supply spacer according to an embodiment of the present invention
  • FIG. 3 (a) is a perspective view of a supply spacer according to an embodiment of the present invention
  • FIG. 3 (a) is a perspective view of a supply spacer according to an embodiment of the present invention
  • FIG. 3 (b) is an enlarged view of the warp in the portion B in Fig.
  • the feed spacer according to the present invention may be constituted of a first set and a second set in which a plurality of warp strands are positioned in parallel.
  • the first set may have one or more warps positioned in parallel, wherein the warp yarns may be positioned obliquely to the direction of the enemy.
  • the second set can also be positioned more than one warp in parallel and positioned to intersect the first set.
  • the second set may be positioned opposite the first set and the tilting direction so that the first set and the second set 10, 20 may be provided in a lattice shape.
  • the first set 10 may be positioned at an angle of 10 ° to 80 ° from the flow direction of the raw water
  • the second set 20 may be positioned at a slope of 100 ° to 170 ° from the flow direction of the raw water.
  • the warp of the second set 20 can be positioned at an angle of 120 from the flow direction of the raw water.
  • the sectional area of the flow path formed by the warp decreases and the laminar flow velocity gradient does not occur in the central portion of the supply spacer, If the angle is more than 80, the cross-sectional area of the flow passage may be reduced and the flow of the raw water may actively occur in the up and down direction, thereby increasing the pressure loss.
  • the flow path may be formed by a warp constituting each set, and may mean an empty space between the reverse osmosis membrane and each set, which are located at the upper and lower portions of the supply spacers.
  • the supply spacers according to the present invention may have different angles at which the first and second sets 10 and 20 intersect along the flow direction of the raw water. More specifically, the area A for reducing the differential pressure and the area B for increasing the recovery may be separated according to the angle between the first and second sets. It should be noted that the area for reducing the differential pressure and the area for increasing the recovery rate are not limited as long as they can perform their functions.
  • the area A for reducing the differential pressure can be located at the first contact with the raw water, and the area B for increasing the recovery rate along the flow direction of the raw water can be located.
  • the crossing angles of the first and second sets 10, 20 along the flow direction of the raw water can increase along the flow direction of the raw water, and the angle increase can be made stepwise. Therefore, the supply space according to the present invention can be formed in two stages, and the region (A, first stage) in which the differential pressure is reduced can be formed in a region B (where the first and second set intersection angles a 1 ) It may be smaller than the intersection angle (a 2) of the second stage).
  • the area to reduce the pressure difference (A, first stage) is the distance between the intersection of the first and the distance between the intersection points which the second set is crossed formation area (B, the second stage) to (d 1) to increase the recovery rate (d 2 ). That is, the region where the differential pressure is decreased based on the same area can be formed such that the density of the intersection is low and the density of the intersection is high in the region where the recovery rate is increased.
  • the feed spacers according to the present invention can be provided with different diameter ratios of the warp yarns constituting the first and second sets depending on the region and the diameter of the intersection of the first and second sets 10 and 20 and the non- Can be provided differently.
  • the warp yarns forming the first and second sets 10, 20 can be formed asymmetrically in thickness, because the protruding portions are formed in the middle of the warp yarns to increase the diameter of the warp yarns , It can mean that the diameter of the protruded portion and the protruded portion can be formed asymmetrically.
  • the diameter ratio of the warp yarns forming the area A for decreasing the differential pressure may be greater than the diameter ratio of the warp yarns forming the area B for increasing the recovery.
  • the difference between the protruding portion diameter W2 and the non-protruding portion diameter W1 of the warp yarns forming the region A for decreasing the differential pressure is the ratio of the protruding portion diameter W2 of the warp portion May be formed larger than the difference between the diameter W2 and the non-protruding portion diameter W1 '. That is, the diameter difference between the intersection point and the non-intersecting point warp along the raw water flow direction can be reduced.
  • the supply spacers according to the present invention have the same thickness regardless of the region. That is, the first and second sets 10 and 20 can intersect the protrusions to form the supply spacers.
  • the diameter W2 of the protrusions can be formed to be the same in both the area for reducing the differential pressure and the area for increasing the collection ratio have.
  • the first and second sets 10 and 20 according to the present invention comprise a protruding portion of the warp forming the first set 10 and a protruding portion of the warp forming the second set 20 By intersecting, the thickness of the supply spacers can be determined. Therefore, the difference in the diameter ratio of the warp yarns forming each region can be controlled by the non-protruding portions W1 and W1 '.
  • the feed spacer according to the present invention has an angle a 1 between the first and second sets 10, 20, a 2 ) By adjusting the diameter and the ratio of the diameter of the warp, it is possible to generate a plurality of functions and effects by using one supply spacer.
  • the area (A) to reduce the differential pressure is the diameter difference between the first and the projecting portion reduces through the angle (a 1) 2 sets (10, 20) (W2) and the non-protruding portion (W1)
  • the flow path of the supply spacers can be increased. Accordingly, when the raw water is introduced through the supply spacers, the supply spacers do not interfere with the flow of the raw water due to the wide flow path, so that the differential pressure may be reduced.
  • By reducing the generation of differential pressure it is possible to provide a supply spacer that can alleviate concentration polarization of the supply spacers and increase the efficiency of the reverse osmosis filter module.
  • the flow path of the supply spacer can be reduced to increase the permeation amount. That is, when raw water is supplied to the supply spacers with the same pressure, the pressure increases when the flow path of the supply spacers is reduced. Therefore, the effect of increasing the recovery rate depending on the increased pressure may occur.
  • the non-protruding portion W1 of the area A for reducing the differential pressure and the non-protruding portion W1 'of the area B for increasing the recovery rate may have different diameters. That is, the adjustment of the diameter ratio of the area A in which the differential pressure is reduced and the area B in which the recovery rate is increased can be adjusted by the non-protruding parts W1 and W1 '.
  • the height of the supply spacer according to the present invention is characterized in that the area A in which the differential pressure is reduced is equal to the area B in which the recovery rate is increased.
  • the reverse osmosis filter module is a component of a membrane separation device that performs the function of purifying water that is actually supplied using the reverse osmosis principle.
  • the reverse osmosis filter module may include a reverse osmosis membrane, a supply spacer, a tube containing tricot filtrate water and an opening to receive permeate along its length. Further, a pair of telescoping prevention devices may be further included, but a detailed description thereof will be omitted.
  • One or more reverse osmosis membranes use osmotic phenomenon to filter foreign substances contained in water and to perform a role of a flow path so that purified water flows effectively. These one or more reverse osmosis membranes extend outwardly from the tube and are wound around the tube.
  • the supply spacers may be provided with the supply spacers according to the present invention described above. More specifically, the feed spacers may be comprised of a first and a second set in which a plurality of warp yarns are positioned in parallel, and may be separated into one or more regions due to differences in angle and diameter ratio between the first and second sets have. Since the supply spacers according to the present invention are the same as the supply spacers described above, a detailed description thereof will be omitted.
  • the supply spacers form a passage through which the raw water flows from the outside, and serve to maintain a gap between one reverse osmosis membrane and another reverse osmosis membrane.
  • the feed spacer is configured to contact upstream and downstream with one or more reverse osmosis membranes and to be wound around the tube, such as one or more reverse osmosis membranes.
  • the material of the supply spacers is not particularly limited, but is preferably composed of any one of polyethylene, polyvinyl chloride, polyester, and polypropylene.
  • the tricot filtration water generally has a fabric-like structure and acts as a channel for making purified water flow through the reverse osmosis membrane 10.
  • the tricot filtration water generally has a fabric-like structure and acts as a channel for making purified water flow through the reverse osmosis membrane (10).
  • the tube is located at the center of the water treatment reverse osmosis filter module and serves as a passage through which the filtered water flows.
  • a space (or an opening) of a predetermined size is formed on the outside of the tube so that the filtered water flows in.
  • the pores are formed more than one so that the filtered water can be introduced more efficiently.
  • Conventional feed spacers were made in the form of a single mesh having the same first and second set angles, the distance of the warp yarns (the distance between the cross points) and the difference in diameter of the warp yarns.
  • An embodiment is a feed spacer according to the present invention, which has two different forms in which the set angle, the distance of the warp (the distance between the intersections) and the difference in the diameter of the warp are different.
  • Table 1 shows the differential pressure (Pa / ⁇ ⁇ ) with respect to the unit length of each of the first and second stages of the embodiment
  • Table 2 shows the differential pressures (Pa / ⁇ ⁇ ) with respect to the unit lengths of each of the comparative example and the example will be.
  • the differential pressure (Pa / ⁇ ⁇ ) is reduced by 70% in the region (A, first stage) where the differential pressure is decreased in the embodiment (B, second stage) where the recovery rate is increased.
  • the differential pressure per unit length of the comparative example is 0.123 Pa / ⁇ ⁇
  • the differential pressure per unit length of the embodiment is 0.105 Pa / ⁇ ⁇ , which is 85% lower than that of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈에 관한 것으로써, 보다 상세하게는, 하나의 공급 스페이서에 원수의 흐름방향을 따라 날실(Strand)의 각도를 상이하게 형성함으로써, 차압감소 영역과 회수율(Recovery) 증가 영역이 분리되어 다기능을 갖는 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈에 관한 것이다.

Description

공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈
본 명세서는 2017년 12월 12일 한국 특허청에 제출된 한국 특허 출원 제10-2017-0170395호 및 2018년 11월 12일 한국 특허청에 제출된 한국 특허 출원 제10-2018-0137968호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈에 관한 것으로써, 보다 상세하게는, 하나의 공급 스페이서에 원수의 흐름방향을 따라 날실(Strand)의 각도를 상이하게 형성함으로써, 차압감소 영역과 회수율(Recovery) 증가 영역이 분리되어 다기능을 갖는 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈에 관한 것이다.
전 세계적으로 지구온난화에 따른 물 부족 현상이 심화되고 있는 가운데 대체 수자원 확보기술인 물 정화 기술이 주목을 받고 있다.
따라서, 해수담수화, 물의 재이용 등 대체 수자원을 활용한 차세대 수도사업의 핵심기술인 역삼투막(Reverse osmosis membrane)을 이용한 수처리 공정이 물 산업 시장을 주도할 것으로 예상되고 있다.
이러한 역삼투막에 의한 역삼투막 투과수는 순수한 물 내지 한없이 순수한 물에 가까운 물이 되어 의료용의 무균수나 인구 투석용 정제수, 혹은 전자 산업의 반도체의 제조용 물 등 다양한 분야에서 이용되고 있다.
여기서, 역삼투란 농도차가 있는 두 용액을 반투막으로 분리하고 일정 시간이 지나면 농도가 낮은 용액이 농도가 높은 쪽으로 이동하면서 일정한 수위차를 발생시키는데 이를 삼투 현상이라고 한다. 아울러 이 과정에서 발생하는 수위의 차이를 역삼투압이라고 한다. 이 원리를 이용해 물 분자만 반투막을 통과시켜 물을 정화하는 장치를 역삼투압 설비라고 하며, 여기에 들어가는 반투막이 역삼투압 필터 모듈이다.
이러한 역삼투압 필터 모듈은 중앙 튜브, 공급 스페이서(Feed spacer), 역삼투막(RO membrane), 트리코트 여과수로 등을 포함하여 구성된다.
이 중, 공급 스페이서는 원수가 유입되는 통로 역할을 수행한다. 공급 스페이서는 그물망 형태의 하나의 형상으로 형성된다. 하나의 형상으로 이루어진 공급 스페이서에 원수가 유입되는 경우, 공급 스페이서에 의한 흐름 방해로 차압이 발생하게 되며 이는 에너지 비용의 증가로 귀결되는 문제점이 발생한다.
그리고, 수투과 플럭스에 의해 필연적으로 역삼투막 근처에서는 농도 분극 현상이 발생하게 되며 이러한 현상이 심해질수록 역삼투막 근처에서 삼투압이 높아져 수투과율이 저하되는 문제점이 발생한다.
이와 관련하여, 하나의 공급 스페이서를 이용하여 차압의 발생을 감소시키며 농도 분극 현상을 완화시킴으로써 역삼투압 필터 모듈의 효율을 증가시킬 수 있는 공급 스페이서가 필요한 실정이다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 하나의 공급 스페이서에 교차각이 상이한 영역을 형성하고, 교차영역과 비교차영역의 직경비율을 달리함으로써, 유로의 단면적을 증가시켜 차압을 감소시키는 영역과 회수율을 증가시키는 영역이 동시에 형성된 공급 스페이서 구조를 제공하는 것이다.
본 발명의 일 실시예에 따른 공급 스페이서는 복수의 날실(Strand)이 평행하게 위치되는 제1 세트; 및 복수의 날실이 상기 제1 세트와 교차되고 평행하게 위치되는 제2 세트;를 포함하고, 상기 제1 및 제2 세트의 교차 각도는, 원수의 흐름 방향을 따라 증가하는 것을 특징으로 한다.
일 실시예에서, 상기 제1 및 제2 세트의 교차 각도는, 상기 원수의 흐름 방향을 따라 단계적으로 증가하는 것을 특징으로 한다.
일 실시예에서, 상기 공급 스페이서는, 상기 제1 및 제2 세트의 교차점과 비교차점의 직경이 상이한 것을 특징으로 한다.
일 실시예에서, 상기 공급 스페이서는, 원수의 흐름방향을 따라 상기 제1 및 제2 세트의 교차점과 비교차점의 직경 차이가 감소되는 것을 특징으로 한다.
일 실시예에서, 상기 공급 스페이서는, 제1 단 및 제2 단으로 형성되고, 상기 제1 단은 상기 제2 단보다 상기 제1 세트 및 제2 세트의 교차 각도가 작은 것을 특징으로 한다.
일 실시예에서, 상기 제1 및 제2 세트의 교차점 사이의 거리는, 상기 제1 단보다 상기 제2 단이 짧은 것을 특징으로 한다.
일 실시예에서, 상기 공급 스페이서는, 원수의 흐름방향을 따라 상기 제1 단의 직경 차이는 상기 제2 단의 직경 차이보다 큰 것을 특징으로 한다.
일 실시예에서, 상기 제1 및 제2 세트의 교차점의 날실 직경이 동일한 것을 특징으로 한다.
일 실시예에서, 상기 제1 및 제2 세트의 비교차점의 날실 직경은, 상기 제1 세트의 날실이 상기 제2 세트의 날실보다 얇은 것을 특징으로 한다.
본 발명의 일 실시예에 따른 역삼투압 필터 모듈은 상기 공급 스페이서를 포함하는 것을 특징으로 한다.
일 실시예에 있어서, 상기 역삼투압 필터 모듈은 길이 방향을 따라 투과액으르 수용하는 개구를 포함하는 튜브; 및 상기 튜브로부터 외측 방향으로 연장되고 상기 튜브 둘레로 권취되는 하나 이상의 역삼투막;을 포함하고, 상기 스페이서는, 상기 하나 이상의 역삼투막과 접촉하며, 상기 튜브 둘레로 권취되는 것을 특징으로 한다.
본 발명에 따르면, 하나의 공급 스페이서에 교차각이 상이한 영역을 형성하고, 교차영역과 비교차영역의 직경비율을 달리함으로써, 유로의 단면적을 증가시켜 차압을 감소시키는 영역과 회수율을 증가시키는 영역이 동시에 형성하여 하나의 공급 스페이서를 이용하여 복수의 효과가 발생하게 된다.
도 1은 본 발명의 일 실시 예에 따른 공급 스페이서의 평면도이다.
도 2는 본 발명의 일 실시 예에 따른 공급 스페이서의 사시도이다.
도 3(a)는 도 1의 A부분의 날실 확대도이고, 도 3(b)는 도 1의 B부분의 날실 확대도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
<공급 스페이서 >
도 1은 본 발명의 일 실시 예에 따른 공급 스페이서의 평면도이고, 도 2는 본 발명의 일 실시 예에 따른 공급 스페이서의 사시도이며, 도 3(a)는 도 1의 A부분의 날실 확대도이고, 도 3(b)는 도 1의 B부분의 날실 확대도이다.
본 발명에 따른 공급 스페이서는 복수개의 날실(Strand)이 평행하게 위치되는 제1 세트 및 제2 세트로 구성될 수 있다.
제1 세트는 하나 이상의 날실이 평행하게 위치될 수 있는데, 여기서 날실은 원수 방향과 경사지게 위치될 수 있다. 그리고, 제2 세트도 하나 이상의 날실이 평행하게 위치될 수 있고, 제1 세트와 교차되게 위치될 수 있다. 또한, 제2 세트는 제1 세트와 기울기 방향이 반대로 위치되어 제1 세트 및 제2 세트(10, 20)는 격자 모양으로 제공될 수 있다.
아울러, 제1 세트(10)는 원수의 흐름 방향으로부터 10°내지 80°각도로 위치될 수 있고, 제2 세트(20)는 원수의 흐름 방향으로부터 100°내지 170°기울기로 위치될 수 있다. 예를 들어, 제1 세트(10)를 구성하는 날실이 원수의 흐름 방향으로부터 30°기울어져 있을 경우, 제2 세트(20)의 날실은 원수의 흐름 방향으로부터 120°기울어져 위치될 수 있다.
이때, 제1 세트(10)와 원수의 흐름 방향 사이 형성되는 각도가 10°미만인 경우, 날실에 의해 형성되는 유로의 단면적이 감소하고 공급 스페이서 중앙 부분에서 층류성 유속 구배가 발생하지 않아 분극 현상이 증가하는 문제점이 발생할 수 있고, 80°초과일 경우, 유로 단면적이 감소하여 원수의 유동이 상하 방향으로 활발하게 일어나 압력 손실이 증가하는 문제점이 발생할 수 있다. 여기서, 유로는 각 세트를 구성하는 날실에 의해 형성되는 것으로 공급 스페이서의 상부 및 하부에 위치되는 역삼투막과 각 세트 사이의 빈 공간을 의미할 수 있다.
그리고, 본 발명에 따른 공급 스페이서는 원수의 흐름방향을 따라 제1 및 제2 세트(10, 20)가 교차하는 각도가 상이해질 수 있다. 좀 더 상세하게는, 제1 및 제2 세트 사이 각도에 따라 차압을 감소시키는 영역(A)과 회수율(Recovery)을 증가시키는 영역(B)이 분리되어 있을 수 있다. 차압을 감소시키는 영역과 회수율을 증가시키는 영역의 넓이는 그 기능을 수행할 수 있는 한 한정하지 않는 것을 유의한다.
나아가, 원수와 처음 닿는 부분은 차압을 감소시키는 영역(A)이 위치될 수 있고, 원수의 흐름 방향을 따라 회수율을 증가시키는 영역(B)이 위치될 수 있다. 다시 말해, 원수의 흐름방향을 따라 제1 및 제2 세트(10, 20)의 교차 각도는 원수의 흐름 방향을 따라 증가할 수 있고, 각도 증가는 단계적으로 이루어질 수 있다. 따라서, 본 발명에 따른 공급 스페이스는 2단으로 형성될 수 있고, 차압을 감소시키는 영역(A, 제1 단)은 제1 및 제2 세트 교차 각도(a1)가 회수율을 증가시키는 영역(B, 제2 단)의 교차 각도(a2)보다 작게 형성될 수 있다. 즉, 차압을 감소시키는 영역(A, 제1 단)은 제1 및 제2 세트가 교차되어 형성되는 교차점 사이 거리(d1)가 회수율을 증가시키는 영역(B, 제2 단)의 교차점 사이 거리(d2)보다 넓게 형성될 수 있다. 즉, 동일한 면적을 기준으로 차압을 감소시키는 영역은 교차점의 밀도가 낮고 회수율을 증가시키는 영역은 교차점의 밀도가 높게 형성될 수 있다.
본 발명에 따른 공급 스페이서는 영역에 따라 제1 및 제2 세트를 구성하는 날실의 직경 비율이 상이하게 제공될 수 있고, 제1 및 제2 세트(10, 20)의 교차점과 비교차점의 직경이 상이하게 제공될 수 있다. 도 2를 참고하면, 제1 및 제2 세트(10, 20)를 형성하는 날실은 두께가 비대칭적으로 형성될 수 있는데, 이는, 날실의 중간에 돌출되는 부분이 형성되어 날실의 직경이 두꺼워짐으로써, 돌출부분과 비 돌출부분의 직경이 비대칭적으로 형성될 수 있는 것을 의미할 수 있다.
일 실시 예에 있어서, 차압을 감소시키는 영역(A)을 형성하는 날실의 직경 비율은 회수율을 증가시키는 영역(B)을 형성하는 날실의 직경 비율보다 크게 형성될 수 있다. 도 3을 참고하면, 차압을 감소시키는 영역(A)을 형성하는 날실의 돌출부분 직경(W2)과 비 돌출부분 직경(W1) 차이는 회수율을 증가시키는 영역을 형성(B)하는 날실의 돌출부분 직경(W2)과 비 돌출부분 직경(W1') 차이보다 크게 형성될 수 있다. 즉, 원수 흐름방향을 따라 교차점과 비교차점 날실의 직경 차이가 감소될 수 있다.
그리고, 본 발명에 따른 공급 스페이서는 영역에 상관없이 두께가 동일한 것을 유의한다. 즉, 제1 및 제2 세트(10, 20)는 돌출부가 교차되어 공급 스페이서를 형성할 수 있는데, 차압을 감소시키는 영역과 회수율을 증가시키는 영역 모두 돌출부의 직경(W2)은 동일하게 형성될 수 있다. 좀 더 상세하게는, 본 발명에 따른 제1 및 제2 세트(10, 20)는 제1 세트(10)를 형성하는 날실의 돌출부분과 제2 세트(20)를 형성하는 날실의 돌출부분이 교차됨으로써 공급 스페이서의 두께를 결정할 수 있다. 따라서, 각 영역을 형성하는 날실의 직경 비율 차이는 비 돌출부(W1, W1')에 의해 조절될 수 있다.
본 발명에 따른 공급 스페이서는 제1 및 제2 세트(10, 20) 사이 각도(a1, a2) 조절 및 날실의 직경 비율을 조절함으로써, 하나의 공급 스페이서를 이용해 복수개의 기능 및 효과를 발생시킬 수 있는 효과가 있다.
좀 더 상세하게는, 차압을 감소시키는 영역(A)은 제1 및 제2 세트(10, 20) 사이 각도(a1)를 줄이고 돌출부분(W2)과 비 돌출부분(W1)의 직경 차이를 증가시킴으로써, 공급 스페이서의 유로를 증가시킬 수 있다. 이에 따라, 원수가 공급 스페이서를 통하여 유입되는 경우 넓은 유로로 인해 공급 스페이서가 원수의 흐름을 방해하지 않아 차압이 감소되는 효과가 발생할 수 있다. 차압의 발생을 감소시킴으로써 공급 스페이서의 농도 분극 현상을 완화시키고 역삼투압 필터 모듈의 효율을 증가시킬 수 있는 공급 스페이서를 제공할 수 있다.
그리고, 회수율을 증가시키는 영역(B)은 제1 및 제2 세트(10, 20) 사이 각도(a2)를 증가시키고 돌출부분(W2)과 비 돌출부분(W1')의 직경 차이를 감소시킴으로써, 공급 스페이서의 유로를 감소시켜 투과수량을 증가시킬 수 있다. 즉, 같은 압력으로 원수를 공급 스페이서에 제공할 경우, 공급 스페이서의 유로가 감소되면 압력은 증가하게 된다. 따라서, 증가된 압력에 따라 회수율이 증가하는 효과가 발생할 수 있다.
이때, 차압을 감소시키는 영역(A)의 비 돌출부분(W1)과 회수율을 증가시키는 영역(B)의 비 돌출부분(W1')은 직경이 상이할 수 있다. 즉, 차압을 감소시키는 영역(A)과 회수율을 증가시키는 영역(B)의 직경 비율 조절은 비 돌출부분(W1, W1')로 조절할 수 있다.
따라서, 본 발명에 따른 공급 스페이서의 높이는 차압을 감소하는 영역(A)과 회수율을 증가시키는 영역(B)이 동일한 것을 특징으로 한다.
<역삼투압 필터 모듈>
역삼투압 필터 모듈은 실제적으로 공급되는 물을 역삼투압 원리를 이용하여 정화하는 역할을 수행하는 멤브레인 분리 장치의 구성 요소이다. 역삼투압 필터 모듈은 역삼투막, 공급 스페이서, 트리코트 여과수로 및 길이 방향을 따라 투과액을 수용하는 개구를 포함하는 튜브를 포함할 수 있다. 또한, 한 쌍의 텔레스코핑 방지 장치를 더 포함할 수 있으나 이에 대한 구체적인 설명은 생략하기로 한다.
하나 이상의 역삼투막은 삼투 현상을 이용하여 물에 포함된 이물질을 여과시키는 동시에 정제수가 효과적으로 흘러가도록 유로의 역할을 수행한다. 이러한 하나 이상의 역삼투막은 튜브로부터 외측 방향으로 연장되고 튜브 둘레로 권취되게 된다.
공급 스페이서는 상술된 본 발명에 따른 공급 스페이서가 제공될 수 있다. 좀 더 상세하게, 공급 스페이서는 복수개의 날실이 평행하게 위치되어 형성되는 제1 및 제2 세트로 구성될 수 있고, 제1 및 제2 세트 사이 각도와 직경 비율 차로 인해 하나 이상의 영역으로 분리될 수 있다. 본 발명에 따른 공급 스페이서는 앞서 설명한 공급 스페이서와 동일함으로 구체적인 설명은 생략하기로 한다.
공급 스페이서는 외부로부터 원수가 유입되는 통로를 형성하며, 하나의 역삼투막과 다른 하나의 역삼투막의 사이의 간격을 유지시키는 역할을 수행한다. 이를 위해, 공급 스페이서는 하나 이상의 역삼투막과 상측 및 하측에서 접촉하며 하나 이상의 역삼투막과 마찬가지로 튜브 둘레로 권취되도록 구성된다.
여기서, 공급 스페이서의 재질은 특별히 한정하지 않지만, 폴리에틸렌(Polyethylene), 폴리염화 비닐(Polyvinyl chloride), 폴리에스테르(Polyseter) 및 폴리프로필렌(Polypropylene) 중 어느 하나로 구성되는 것이 바람직하다.
트리코트 여과수로는 일반적으로 직물 형태의 구조를 가지며, 역삼투막(10)을 통해 정제된 물이 흘러나갈 수 있는 공간을 만들어 주는 유로 역할을 수행하게 된다.
이때, 트리코트 여과수로는 일반적으로 직물 형태의 구조를 가지며, 역삼투막(10)을 통해 정제된 물이 흘러나갈 수 있는 공간을 만들어 주는 유로 역할을 수행하게 된다.
튜브는 수처리용 역삼투압 필터 모듈의 중심에 위치하며, 여과된 물이 유입되어 배출되는 통로 역할을 수행한다.
이를 위해, 튜브의 외측에는 여과된 물이 유입되도록 소정 크기의 공극(혹은 개구)이 형성되는 것이 바람직하다. 이때, 공극은 여과된 물이 보다 효율적으로 유입될 수 있도록 하나 이상 형성되는 것이 바람직하다.
<비교예>
종래 공급 스페이서는 제1 및 제2 세트 각도, 날실의 거리(교차점 사이의 거리) 및 날실의 직경 차이가 모두 동일한 하나의 그물망 형태로 이루어졌다.
<실시예>
실시예는 본 발명에 따른 공급 스페이서로, 세트 각도, 날실의 거리(교차점 사이의 거리) 및 날실의 직경 차이가 서로 다른 2개의 형태로 이루어졌다.
제1 단 제2 단
Pa/㎛ 0.0144 0.0205
비교예 실시예
Pa/㎛ 0.123 0.105
표 1은 실시예의 제1 및 제2 단 각각의 단위길이에 대한 차압(Pa/㎛)을 나타낸 것이고, 표 2는 비교예 및 실시예 각각의 단위길이에 대한 차압(Pa/㎛)을 타나낸 것이다.
우선, 실시예는 차압을 감소시키는 영역(A, 제1 단)이 회수율을 증가시키는 영역(B, 제2 단)보다 차압(Pa/㎛)이 70% 감소된 것을 알 수 있다. 그리고, 비교예의 단위길이당 차압은 0.123Pa/㎛이고, 실시예의 단위길이당 차압은 0.105Pa/㎛로 비교예 대비 85% 감소된 것을 알 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (11)

  1. 복수의 날실(Strand)이 평행하게 위치되는 제1 세트; 및
    복수의 날실이 상기 제1 세트와 교차되고 평행하게 위치되는 제2 세트;를 포함하고,
    상기 제1 및 제2 세트의 교차 각도는,
    원수의 흐름 방향을 따라 증가하는 것을 특징으로 하는,
    공급 스페이서.
  2. 제1항에 있어서,
    상기 제1 및 제2 세트의 교차 각도는,
    상기 원수의 흐름 방향을 따라 단계적으로 증가하는 것을 특징으로 하는, 공급 스페이서.
  3. 제1항에 있어서,
    상기 공급 스페이서는,
    상기 제1 및 제2 세트의 교차점과 비교차점의 직경이 상이한 것을 특징으로 하는, 공급 스페이서.
  4. 제2항에 있어서,
    상기 공급 스페이서는,
    원수의 흐름방향을 따라 상기 제1 및 제2 세트의 교차점과 비교차점의 직경 차이가 감소되는 것을 특징으로 하는, 공급 스페이서.
  5. 제1항에 있어서,
    상기 공급 스페이서는,
    제1 단 및 제2 단으로 형성되고, 상기 제1 단은 상기 제2 단보다 상기 제1 세트 및 제2 세트의 교차 각도가 작은 것을 특징으로 하는, 공급 스페이서.
  6. 제5항에 있어서,
    상기 제1 및 제2 세트의 교차점 사이의 거리는,
    상기 제1 단보다 상기 제2 단이 짧은 것을 특징으로 하는, 공급 스페이서.
  7. 제5항에 있어서,
    상기 공급 스페이서는,
    원수의 흐름방향을 따라 상기 제1 단의 직경 차이는 상기 제2 단의 직경 차이보다 큰 것을 특징으로 하는, 공급 스페이서.
  8. 제1항에 있어서,
    상기 제1 및 제2 세트의 교차점의 날실 직경이 동일한 것을 특징으로 하는, 역삼투압 필터 모듈.
  9. 제1항에 있어서,
    상기 제1 및 제2 세트의 비교차점의 날실 직경은,
    상기 제1 세트의 날실이 상기 제2 세트의 날실보다 얇은 것을 특징으로 하는, 역삼투압 필터 모듈.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 공급 스페이서를 포함하는,
    역삼투압 필터 모듈.
  11. 제10항에 있어서,
    상기 역삼투압 필터 모듈은,
    길이 방향을 따라 투과액으르 수용하는 개구를 포함하는 튜브; 및
    상기 튜브로부터 외측 방향으로 연장되고 상기 튜브 둘레로 권취되는 하나 이상의 역삼투막;를 포함하고,
    상기 스페이서는,
    상기 하나 이상의 역삼투막과 접촉하며, 상기 튜브 둘레로 권취되는 것을 특징으로 하는, 역삼투압 필터 모듈.
PCT/KR2018/013841 2017-12-12 2018-11-13 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈 WO2019117479A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880034558.8A CN110662596B (zh) 2017-12-12 2018-11-13 供给间隔件和包括其的反渗透过滤模块
US16/623,735 US11478750B2 (en) 2017-12-12 2018-11-13 Feed spacer and reverse osmosis filter module including same
EP18888465.4A EP3608012B1 (en) 2017-12-12 2018-11-13 Reverse osmosis filter module with a feedspacer
JP2019561830A JP6957648B2 (ja) 2017-12-12 2018-11-13 供給スペーサおよびこれを含む逆浸透フィルタモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0170395 2017-12-12
KR20170170395 2017-12-12
KR1020180137968A KR102230979B1 (ko) 2017-12-12 2018-11-12 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈
KR10-2018-0137968 2018-11-12

Publications (1)

Publication Number Publication Date
WO2019117479A1 true WO2019117479A1 (ko) 2019-06-20

Family

ID=66819405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013841 WO2019117479A1 (ko) 2017-12-12 2018-11-13 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈

Country Status (1)

Country Link
WO (1) WO2019117479A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020169883A1 (en) * 2019-02-18 2020-08-27 Emp Innovations Oy Feed spacer for cross-flow membrane element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0170395B1 (ko) 1990-06-05 1999-03-20 모리 히데오 포지티브 레지스트 조성물
JP2004089763A (ja) * 2002-08-29 2004-03-25 Japan Organo Co Ltd スパイラル型膜エレメント、分離膜モジュール、分離膜装置及びこれを用いる水処理方法
US20040182774A1 (en) * 2003-03-20 2004-09-23 Nitto Denko Corporation Spiral separation membrane element
US20100108593A1 (en) * 2004-03-26 2010-05-06 Shinichi Chikura Spiral type separation membrane element
KR100976074B1 (ko) * 2002-05-02 2010-08-17 필름텍 코포레이션 개선된 공급 스페이서를 포함하는 나선형 권취 부재
KR20150036192A (ko) * 2012-06-26 2015-04-07 콘웨드 플라스틱스 엘엘씨 저 에너지 피드 스페이서를 사용하는 멤브레인 여과
EP3028761A1 (en) * 2014-12-02 2016-06-08 Center for Research and Technology-Hellas (CERTH) Membrane modules utilizing innovative geometries of net-type feed spacers for improved performance in separations and spacer-fabrication methods therein
KR20170038646A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 역삼투압 필터 모듈
KR20180137968A (ko) 2017-06-20 2018-12-28 배길순 생화를 이용한 조화제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0170395B1 (ko) 1990-06-05 1999-03-20 모리 히데오 포지티브 레지스트 조성물
KR100976074B1 (ko) * 2002-05-02 2010-08-17 필름텍 코포레이션 개선된 공급 스페이서를 포함하는 나선형 권취 부재
JP2004089763A (ja) * 2002-08-29 2004-03-25 Japan Organo Co Ltd スパイラル型膜エレメント、分離膜モジュール、分離膜装置及びこれを用いる水処理方法
US20040182774A1 (en) * 2003-03-20 2004-09-23 Nitto Denko Corporation Spiral separation membrane element
US20100108593A1 (en) * 2004-03-26 2010-05-06 Shinichi Chikura Spiral type separation membrane element
KR20150036192A (ko) * 2012-06-26 2015-04-07 콘웨드 플라스틱스 엘엘씨 저 에너지 피드 스페이서를 사용하는 멤브레인 여과
EP3028761A1 (en) * 2014-12-02 2016-06-08 Center for Research and Technology-Hellas (CERTH) Membrane modules utilizing innovative geometries of net-type feed spacers for improved performance in separations and spacer-fabrication methods therein
KR20170038646A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 역삼투압 필터 모듈
KR20180137968A (ko) 2017-06-20 2018-12-28 배길순 생화를 이용한 조화제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608012A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020169883A1 (en) * 2019-02-18 2020-08-27 Emp Innovations Oy Feed spacer for cross-flow membrane element

Similar Documents

Publication Publication Date Title
EP3357559B1 (en) Reverse osmosis filter module
WO2019078604A1 (ko) 3층 구조의 공급 스페이서 및 이를 포함하는 역삼투막 필터 모듈
CN100435912C (zh) 具有极小死空间的可置换薄膜组件
US20140174998A1 (en) Filtration assembly including multiple modules sharing common hollow fiber support
WO2019117479A1 (ko) 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈
WO2017057833A1 (ko) 역삼투압 필터 모듈
WO2018062712A1 (ko) 역삼투압 필터 모듈
KR20190070259A (ko) 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈
KR102104160B1 (ko) 4층 구조의 공급 스페이서
CN103648620A (zh) 包括中空纤维支架的过滤模块
WO2020197141A1 (ko) 역삼투 엘리먼트 차압 감소 피드 스페이서 및 형성 노즐
WO2020197164A1 (ko) 고회수율 역삼투 스페이서 및 엘리먼트
KR20170023625A (ko) 수처리용 역삼투압막 및 이를 포함하는 수처리용 역삼투압 필터 모듈
WO2022177284A1 (ko) 3층 구조의 공급 스페이서 및 이를 포함하는 역삼투막 필터 모듈
CN218653891U (zh) 过滤模组及净水装置
CN218130447U (zh) 一种滤水装置及具有该装置的净水机
CN211586050U (zh) 净水过滤***
WO2020032577A1 (ko) 수처리용 필터 집합체 및 이를 포함하는 수처리용 필터 모듈
WO2021141149A1 (ko) 수처리용 역삼투 분리막 모듈
WO2012026721A2 (ko) 침지형 중공사막 모듈
CN110681267A (zh) 净水过滤***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018888465

Country of ref document: EP

Effective date: 20191106

ENP Entry into the national phase

Ref document number: 2018888465

Country of ref document: EP

Effective date: 20191106

NENP Non-entry into the national phase

Ref country code: DE