WO2019117220A1 - Composite pipe - Google Patents

Composite pipe Download PDF

Info

Publication number
WO2019117220A1
WO2019117220A1 PCT/JP2018/045767 JP2018045767W WO2019117220A1 WO 2019117220 A1 WO2019117220 A1 WO 2019117220A1 JP 2018045767 W JP2018045767 W JP 2018045767W WO 2019117220 A1 WO2019117220 A1 WO 2019117220A1
Authority
WO
WIPO (PCT)
Prior art keywords
covering layer
tube
axial direction
composite
tubular
Prior art date
Application number
PCT/JP2018/045767
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 三觜
清太朗 尾上
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019117220A1 publication Critical patent/WO2019117220A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/22Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of spaced pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
    • F16L11/115Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having reinforcements not embedded in the wall

Definitions

  • the present disclosure relates to composite tubes.
  • Japanese Patent Application Laid-Open No. 2013-231490 describes a composite pipe in which a protective layer is formed between a tubular body and a holding layer covering the outer periphery of the tubular body.
  • the tubular body is held inside the holding layer by providing the protective layer.
  • the inner peripheral surface of the protective layer is made uneven to reduce the frictional resistance between the outer peripheral surface of the tube and the protective layer.
  • the protective layer covers the outer peripheral surface of the tubular body, there is a possibility that it may become difficult to expand or contract when the holding layer is expanded or contracted.
  • the present disclosure provides a composite tube that is easy to stretch the covering layer while holding the tube inside the covering layer.
  • the composite tube of the first aspect is a tubular tube, and an annular peak which is formed into a tubular shape and covers the outer periphery of the tube and which is convex radially outward, and an annular valley which is concave radially outward.
  • a coating layer made of a resin material alternately formed in the axial direction of the tubular body and formed in an axially expandable and bellows-like shape, and either the circumferential direction or the axial direction of the coating layer
  • a holding mechanism extending along the other and spaced apart along the other, and holding the tube inside the covering layer.
  • the tube is held inside the covering layer by the holding mechanism.
  • the holding mechanism extends along the circumferential direction of the covering layer and is spaced along the axial direction. Alternatively, it extends along the axial direction of the covering layer and is spaced apart along the circumferential direction.
  • the friction between the tube and the holding mechanism is compared with the holding mechanism extending along both the circumferential direction and the axial direction of the covering layer, in other words, the holding mechanism covering the outer periphery of the tube. Or friction between the cover layer and the holding mechanism is small. For this reason, it is easy to extend and contract the covering layer in the axial direction.
  • a composite tube according to a second aspect is the composite tube according to the first aspect, wherein the holding mechanism is a reduced diameter portion in which the valley portion protrudes radially inward.
  • the valley portion of the covering layer protrudes radially inward to form a reduced diameter portion. Then, the tube is held inside the covering layer by the reduced diameter portion.
  • the reduced diameter portion can move axially as the covering layer expands and contracts. Further, the diameter-reduced portions are arranged at intervals along the axial direction. For this reason, the contact area of a coating layer and a pipe body is small, and a frictional force is small. This makes it easy to stretch the covering layer.
  • a composite tube according to a third aspect is the composite tube according to the first aspect, wherein the holding mechanism is an elastic body disposed along the axial direction between the valley and the tubular body.
  • the elastic body is disposed along the axial direction between the valley portion of the coating layer and the tube body.
  • the elastic bodies are disposed at intervals along the circumferential direction. For this reason, the contact area of a coating layer and an elastic body is small, and a frictional force is small. This makes it easy to stretch the covering layer.
  • a composite tube according to a fourth aspect is the composite tube according to the third aspect, wherein the elastic body is formed in a wave shape having an amplitude in the circumferential direction of the covering layer.
  • the elastic body extended along the axial direction of the covering layer has an amplitude in the circumferential direction of the covering layer. Therefore, the elastic body is easily deformed along the axial direction. This makes it easier to stretch the covering layer.
  • FIG. 1 is a perspective view of a compound tube according to an embodiment of the present disclosure. It is a longitudinal section showing a compound tube concerning an embodiment of this indication. 1 is a partially enlarged view of a longitudinal cross section of a composite tube according to an embodiment of the present disclosure. It is a perspective view showing the modification of the holding mechanism in the compound pipe concerning the embodiment of this indication.
  • FIG. 4B is a perspective view showing the end of the tube of the composite tube of FIG. 4A exposed. It is a perspective view which shows the state which the elastic body also shortened and deformed with the shortening deformation of a coating layer. It is a longitudinal section showing the state where the end of the tube of a compound tube concerning an embodiment of this indication was exposed.
  • FIG. 4 is a view showing a state in which a covering layer is shortened and deformed in the vertical cross-sectional portion of FIG. 3;
  • FIG. 7 is a perspective view showing the end of the tubular body of the composite tube according to the embodiment of the present disclosure in an exposed state. It is a perspective view showing the modification of the holding mechanism in the compound pipe concerning the embodiment of this indication.
  • FIG. 9C is a perspective view showing the end of the tube of the composite tube of FIG. 9A exposed. It is a perspective view which shows the state which the elastic body also shortened and deformed with the shortening deformation of a coating layer. It is a longitudinal cross-sectional view which shows the compound pipe which concerns on a comparative example.
  • the term “process” is not limited to an independent process, and even if it can not be clearly distinguished from other processes, the term “process” is also used if the purpose is achieved. include.
  • the amount of each component in the composition is the total amount of a plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.
  • the “main component” refers to the component having the highest content by mass in the mixture, unless otherwise specified.
  • the composite tube according to the present disclosure has a tubular tube, a covering layer that is tubular and covers the outer periphery of the tube, and a holding mechanism that holds the tube inside the covering layer.
  • the tube is made of a resin material.
  • the covering layer is made of a resin material. Further, the shape thereof is a bellows-like shape in which an annular peak that is convex outward in the radial direction and an annular valley that is concave in the outer radial direction are alternately formed in the axial direction of the tube. It can be shortened in the axial direction while being guided by the outer periphery of the body.
  • the holding mechanism is integrally formed with the covering layer.
  • the composite pipe 10 according to the present embodiment shown in FIG. 1 includes a pipe body 12 and a covering layer 20.
  • the tube body 12 is a resin tube which is tubular and made of a resin material.
  • the resin in the resin material include polyolefins such as polybutene, polyethylene, crosslinked polyethylene and polypropylene, and vinyl chloride. Resin may be used alone or in combination of two or more. Among them, polybutene is suitably used, and it is preferable to contain polybutene as a main component, for example, it is more preferable to contain 85% by mass or more in the resin material constituting the tubular body.
  • the resin material which comprises a pipe body may contain another additive.
  • the diameter (i.e., outer diameter) of the tubular body 12 is not particularly limited, but can be, for example, in the range of 10 mm to 100 mm, and preferably in the range of 12 mm to 35 mm.
  • the thickness of the tubular body 12 is not particularly limited, but, for example, 1.0 mm or more and 5.0 mm or less can be mentioned, and preferably 1.4 mm or more and 3.2 mm or less.
  • the covering layer 20 is tubular and covers the outer periphery of the tubular body 12.
  • the covering layer 20 is made of a resin material.
  • the resin in the resin material constituting the covering layer 20 include polyolefins such as polybutene, polyethylene, polypropylene and cross-linked polyethylene, and vinyl chloride, etc. Resins may be used alone or in combination of two or more Good.
  • low density polyethylene is suitably used, preferably containing low density polyethylene as a main component, for example, more preferably containing 80% by mass or more, and containing 90% by mass or more in the resin material constituting the coating layer. More preferable.
  • the MFR (Melt Flow Rate) of the resin used is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.4 or more and 1.2 or less. By making MFR 1.2 or less, it becomes difficult to generate a burr. When MFR is larger than 1.2, the molten resin easily flows into the parting surface of the mold for forming the covering layer 20, and burrs are easily generated.
  • the resin material which comprises a coating layer may contain another additive.
  • the covering layer 20 is bellows-like, and has an annular peak 22 that is convex radially outward and an annular valley 24 that is concave radially outward. They are alternately and continuously formed in the axial direction S of the tubular body 12.
  • the ridges 22 are disposed on the outer side in the radial direction R than the valleys 24.
  • the bellows-like outermost portion of the covering layer 20 is the outer wall 22A and the innermost portion in the radial direction is the inner wall 24A
  • the outer wall 22A and the inner wall 24A in the radial direction With the intermediate portion M as a boundary, the radially outer side is a peak 22, and the radially inner side is a valley 24.
  • the ridge 22 has an outer wall 22A extending in the axial direction S (see FIG. 2) and side walls 22B extending in the radial direction R from both ends of the outer wall 22A.
  • An outer bend 22C is formed between the outer wall 22A and the side wall 22B.
  • the valley portion 24 has an inner side wall 24A extending in the axial direction S and side walls 24B extending in the radial direction R from both ends of the inner side wall 24A.
  • An inner bent portion 24C is formed between the inner side wall 24A and the side wall 24B.
  • the length L1 of axial direction S of the peak part 22 is set longer than the length L2 of axial direction S of the valley part 24.
  • the length L1 is preferably 1.2 times or more of the length L2 in order to ensure the deformability of the outer wall 22A at the time of the shortening deformation described later.
  • the length L2 is preferably 0.8 mm or more. If the length L2 is less than 0.8 mm, the width of the valley of the mold for producing the covering layer 20 is too small. As a result, at the time of manufacturing the covering layer 20, when the resin constituting the covering layer 20 is extruded and then the resin is made uneven by the mold, the portion corresponding to the valley of the mold of the resin becomes thin and fragile Become. This is because the formation of the covering layer 20 becomes difficult.
  • the length L1 is preferably 5 times or less of the length L2. This is because the flexibility of the composite tube 10 can be maintained by setting the length L1 to 5 times or less of the length L2. Moreover, when the length L1 is too long, when laying the composite pipe 10, the contact area with the ground becomes large and it becomes difficult to construct.
  • the length L1 is the distance between the axial direction S outside of the surface of the covering layer 20 as viewed from the outside in the radial direction R at the portion intersecting the middle portion M in the covering layer 20 ( That is, it is the distance between the surface in the axial direction S on one side of the portion convex on the outside in the radial direction R of the covering layer 20 and the surface on the other side in the axial direction S).
  • the length L2 is the distance between the axial direction S outside of the surface of the covering layer 20 seen from the inside in the radial direction R at a portion intersecting the middle portion M in the covering layer 20 (ie, the radial direction R of the covering layer 20 The distance between the surface on one side in the axial direction S of the portion to be convex inward and the surface on the other side in the axial direction S).
  • the thickness of the covering layer 20 is preferably 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion in order to shorten the covering layer 20.
  • the thickness H1 of the outer side wall 22A is smaller than the thickness H2 of the inner side wall 24A.
  • the thickness H1 is preferably equal to or less than 0.9 times the thickness H2 in order to ensure the deformability of the outer side wall 22A at the time of the shortening deformation described later.
  • the difference in radius ⁇ R at the outer surfaces of the ridges 22 and the valleys 24 is preferably 800% or less of the average thickness of the covering layer 20. If the radius difference ⁇ R is large, the valleys 24 expand radially outward at the time of shortening even if the portion along the axial direction S of the ridges 22 is not deformed, or the adjacent ridges 22 do not approach each other It is hard to be distorted or distorted.
  • the radius difference ⁇ R is 800% or less of the average of the thickness of the covering layer 20
  • the length of the axial direction S of the peak 22 is set to It is preferred to be longer than the axial length. In addition, when it is 600% or less, it is further suitable.
  • the diameter of the covering layer 20 (that is, the outer diameter of the outermost portion) is not particularly limited, but can be, for example, in the range of 13 mm or more and 130 mm or less.
  • the covering layer 20 is partially formed with a reduced diameter portion 26 as a holding mechanism for holding the tube 12.
  • the diameter-reduced portion 26 is an annular support formed by projecting the valley portion 24 inward in the radial direction, and is extended along the circumferential direction of the covering layer 20.
  • a plurality of reduced diameter portions 26 are arranged at intervals along the axial direction of the covering layer 20. In the present embodiment, for example, three valleys 24 and one reduced diameter portion 26 which are not the reduced diameter portion 26 are arranged to be alternately continuous in the axial direction.
  • the radius of the inner side wall 26 ⁇ / b> A of the reduced diameter portion 26 substantially matches the radius of the outer circumferential surface 12 ⁇ / b> A of the tube 12.
  • the tube 12 is held inside the covering layer 20 by the reduced diameter portion 26.
  • the tube body 12 is held inside the covering layer 20 by the reduced diameter portion 26.
  • the reduced diameter portion 26 is extended along the circumferential direction of the covering layer 20. Therefore, the tubular body 12 can be reliably held.
  • the tube 12 for example, even when the water hammer phenomenon occurs due to the liquid flowing in the inside of the tube 12, it is possible to suppress the vibration of the tube 12 and to suppress the generation of noise.
  • the reduced diameter portion 26 can move in the axial direction as the covering layer 20 expands and contracts.
  • the reduced diameter portion 26 is arranged at intervals along the axial direction, so the contact area with the tubular body 12 is small. Therefore, the covering layer 20 can be easily expanded and contracted.
  • the holding mechanism (intermediate layer 14) according to the comparative example shown in FIG. 10 is extended along both the circumferential direction and the axial direction of the covering layer 20.
  • the intermediate layer 14 covers the entire outer periphery of the tube 12. Therefore, the contact area between the intermediate layer 14 and the tubular body 12 is larger than the contact area between the reduced diameter portion 26 and the tubular body 12 in the present embodiment.
  • a relatively large frictional force acts between the tube body 12 and the intermediate layer 14, which may result in a resistance.
  • the intermediate layer 14 since the intermediate layer 14 is disposed on the entire outer periphery of the tubular body 12, the rigidity in the axial direction is high, and the rigidity is high.
  • the diameter-reduced portion 26 is formed by projecting the valley portion 24 radially inward. Therefore, an air reservoir V is formed between the inner side wall 24A of the valley portion 24 and the outer peripheral surface 12A of the tubular body 12. In other words, the tube 12 is covered by the air reservoir V. For this reason, the heat retention of the pipe body 12 can be ensured.
  • the length L1 in the axial direction S is preferably longer than L2, and the thickness H1 is preferably thinner than H2.
  • the outer side wall 22A is more easily deformed than the inner side wall 24A, and as shown in FIG. 6, the outer side wall 22A deforms so as to bulge radially outward.
  • the outer bending portion 22C of the peak portion 22 and the inner bending portion 24C of the valley portion 24 are deformed such that the adjacent peak portions 22 approach each other.
  • one end of the covering layer 20 is more likely to move in the direction in which the tubular body 12 is exposed.
  • the outer wall 22A deforms so as to expand.
  • the valleys 24 bulge outward in the radial direction, and adjacent peaks 22 do not approach each other, resulting in a distorted deformation state. Can be suppressed. Thereby, the fall of the shortened external appearance of the coating layer 20 can be suppressed.
  • the thickness H1 of the outer side wall 22A is thinner than the thickness H2 of the inner side wall 24A, but the thickness H1 may be the same as the thickness H2.
  • the outer side wall 22A is made into substantially linear shape along the axial direction S, it is good also as arc shape bulging outward in the radial direction.
  • the inner side wall 24A may have an arc shape which bulges radially inward.
  • the inner side wall 26A of the reduced diameter portion 26 may have a shape that bulges radially inward. Thereby, the covering layer 20 can be easily extended and contracted.
  • the holding mechanism for holding the tubular body 12 inside the covering layer 20 the reduced diameter portion 26 in which the valley portion 24 of the covering layer 20 is deformed is used. As such, by integrating the holding mechanism with the covering layer 20, the number of parts can be reduced. This can facilitate the manufacture of the composite pipe.
  • the holding mechanism may be configured separately from the covering layer 20.
  • FIG. The elastic bodies 30 are extended along the axial direction of the covering layer 20, and a plurality of elastic bodies 30 are arranged at intervals along the circumferential direction of the covering layer 20.
  • a total of four are arranged at approximately every 90 degrees along the circumferential direction, but any number can be arranged.
  • a total of three may be disposed approximately every 120 degrees.
  • the elastic body 30 is sandwiched between the outer peripheral surface 12A of the tubular body 12 and the inner side wall 24A of the valley portion 24 of the covering layer 20. Thereby, the tubular body 12 is held inside the covering layer 20.
  • the resin constituting the elastic body 30 examples include polyurethane, polystyrene, polyethylene, polypropylene, ethylene propylene diene rubber, silicone rubber and mixtures of these resins, and among them, silicone rubber is preferable.
  • a spring coil or the like that can extend and contract along the axial direction of the covering layer 20 may be used.
  • the elastic body 30 is a rubber tube using ethylene propylene diene rubber.
  • the rod-like elastic body 30 is extended along the axial direction of the covering layer 20 between the covering layer 20 and the tubular body 12. Therefore, when it is intended to expand and contract the covering layer 20, for example, the covering layer 20 and the elastic body 30 are compared with the comparative example in which the intermediate layer 14 shown in FIG. 10 is disposed between the covering layer 20 and the tubular body 12. The friction force generated between the two is small. For this reason, as shown to FIG. 4B, it is easy to expand-contract the coating layer 20. As shown in FIG.
  • the elastic body 30 may be elastically deformed along with the expansion and contraction of the covering layer 20. is there. Even in such a case, since the frictional force generated between the elastic body 30 and the tubular body 12 is small as compared with the comparative example of FIG. 10, the covering layer 20 is easily expanded and contracted.
  • FIG. 9A you may arrange
  • FIG. The elastic body 40 is extended along the axial direction of the covering layer 20, and is formed in a wave shape with amplitude in the circumferential direction. Further, a plurality of elastic bodies 40 are disposed at intervals along the circumferential direction of the covering layer 20. In the present embodiment, a total of four are disposed at approximately every 90 degrees along the circumferential direction.
  • resin which comprises the elastic body 40 the thing similar to resin which comprises the elastic body 30 can be used.
  • the composite tube provided with the elastic body 40 for example, when it is intended to extend and contract the covering layer 20, as compared with the comparative example in which the intermediate layer 14 shown in FIG. 10 is disposed between the covering layer 20 and the tubular body 12.
  • the frictional force generated between the covering layer 20 and the elastic body 40 is small. For this reason, as shown to FIG. 9B, it is easy to expand-contract the coating layer 20.
  • FIG. 9B As shown in FIG.
  • the elastic body 40 may be elastically deformed as the covering layer 20 expands and contracts. Even in such a case, since the frictional force generated between the elastic body 40 and the tubular body 12 is small as compared with the comparative example of FIG. 10, the covering layer 20 is easily expanded and contracted. Furthermore, since the elastic body 40 itself can be deformed in such a manner as to narrow the distance of waves in the axial direction, the covering layer 20 is further easily deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

A composite pipe having: a tubular pipe body; a tubular coating layer covering the outer circumference of the pipe body, comprising a resin material, and having ring-shaped mountain sections protruding outwards in the radial direction and ring-shaped valley sections whereby the outside is recessed in the radial direction, said mountain and valley sections being alternately formed in the axial direction of the pipe body, and forming a bellows shape capable of expansion and contraction in the axial direction; and a plurality of holding mechanisms that are provided extending either along the circumferential direction or the axial direction of the coating layer and spaced apart along the other direction, holding the pipe body inside the coating layer.

Description

複合管Composite pipe
 本開示は、複合管に関する。 The present disclosure relates to composite tubes.
 従来より、管体を複数層重ねて形成する複合管が知られている。例えば特開2013-231490号公報には、管体と管体の外周を覆う保持層との間に保護層を形成した複合管が記載されている。 DESCRIPTION OF RELATED ART Conventionally, the composite pipe which laminates | stacks and forms a pipe body in multiple layers is known. For example, Japanese Patent Application Laid-Open No. 2013-231490 describes a composite pipe in which a protective layer is formed between a tubular body and a holding layer covering the outer periphery of the tubular body.
 特開2013-231490号公報に示された複合管では、保護層を設けることで、管体を保持層の内部に保持している。また、保護層の内周面に凹凸をつけて、管体の外周面と保護層との間の摩擦抵抗を小さくしている。これにより、管継手に管体を接続するために保持層及び保護層を管体の軸方向へたくし寄せる際に、管体の端部が露出しやすくなっている。しかし、保護層は管体の外周面を覆っているため、保持層を伸縮させる際に抵抗となり、伸縮させ難い場合がある可能性がある。 In the composite pipe disclosed in Japanese Patent Application Laid-Open No. 2013-231490, the tubular body is held inside the holding layer by providing the protective layer. In addition, the inner peripheral surface of the protective layer is made uneven to reduce the frictional resistance between the outer peripheral surface of the tube and the protective layer. As a result, when the holding layer and the protective layer are pushed close to the axial direction of the pipe in order to connect the pipe to the pipe joint, the end of the pipe is easily exposed. However, since the protective layer covers the outer peripheral surface of the tubular body, there is a possibility that it may become difficult to expand or contract when the holding layer is expanded or contracted.
 本開示は、管体を被覆層の内部に保持しつつ、被覆層を伸縮させやすい複合管を提供する。 The present disclosure provides a composite tube that is easy to stretch the covering layer while holding the tube inside the covering layer.
 第1態様の複合管は、管状の管体と、管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて軸方向に伸縮可能な蛇腹状とされた、樹脂材料で構成された被覆層と、前記被覆層の周方向又は軸方向の何れか一方に沿って延設され、他方に沿って間隔を開けて複数配置され、前記管体を前記被覆層の内部に保持する保持機構と、を有する。 The composite tube of the first aspect is a tubular tube, and an annular peak which is formed into a tubular shape and covers the outer periphery of the tube and which is convex radially outward, and an annular valley which is concave radially outward. A coating layer made of a resin material alternately formed in the axial direction of the tubular body and formed in an axially expandable and bellows-like shape, and either the circumferential direction or the axial direction of the coating layer And a holding mechanism extending along the other and spaced apart along the other, and holding the tube inside the covering layer.
 第1態様の複合管によると、管体は保持機構によって被覆層の内部に保持される。この保持機構は、被覆層の周方向に沿って延設され、軸方向に沿って間隔を空けて配置されている。又は、被覆層の軸方向に沿って延設され、周方向に沿って間隔を開けて配置されている。 According to the composite tube of the first aspect, the tube is held inside the covering layer by the holding mechanism. The holding mechanism extends along the circumferential direction of the covering layer and is spaced along the axial direction. Alternatively, it extends along the axial direction of the covering layer and is spaced apart along the circumferential direction.
 このため、被覆層の周方向と軸方向の双方に沿って延設されている保持機構、換言すると、管体の外周を覆う保持機構と比較して、管体と保持機構との間の摩擦、または被覆層と保持機構との間の摩擦が小さい。このため、被覆層を軸方向に伸縮させ易い。 For this reason, the friction between the tube and the holding mechanism is compared with the holding mechanism extending along both the circumferential direction and the axial direction of the covering layer, in other words, the holding mechanism covering the outer periphery of the tube. Or friction between the cover layer and the holding mechanism is small. For this reason, it is easy to extend and contract the covering layer in the axial direction.
 第2態様の複合管は、第1態様に記載の複合管において、前記保持機構は前記谷部が径方向内側へ突出した縮径部である。 A composite tube according to a second aspect is the composite tube according to the first aspect, wherein the holding mechanism is a reduced diameter portion in which the valley portion protrudes radially inward.
 第2態様の複合管では、被覆層の谷部が径方向内側へ突出して縮径部が形成されている。そして、この縮径部により、管体が被覆層の内部に保持されている。縮径部は、被覆層の伸縮に伴って軸方向に動くことができる。また、縮径部は軸方向に沿って間隔を開けて配置されている。このため、被覆層と管体との接触面積が小さく、摩擦力が小さい。これにより、被覆層を伸縮させやすい。 In the composite tube of the second aspect, the valley portion of the covering layer protrudes radially inward to form a reduced diameter portion. Then, the tube is held inside the covering layer by the reduced diameter portion. The reduced diameter portion can move axially as the covering layer expands and contracts. Further, the diameter-reduced portions are arranged at intervals along the axial direction. For this reason, the contact area of a coating layer and a pipe body is small, and a frictional force is small. This makes it easy to stretch the covering layer.
 第3態様の複合管は、第1態様に記載の複合管において、前記保持機構は、前記谷部と前記管体との間に軸方向に沿って配置された弾性体である。 A composite tube according to a third aspect is the composite tube according to the first aspect, wherein the holding mechanism is an elastic body disposed along the axial direction between the valley and the tubular body.
 第2態様の複合管では、被覆層の谷部と管体との間に、軸方向に沿って弾性体が配置されている。また、この弾性体は、周方向に沿って間隔を開けて配置されている。このため、被覆層と弾性体との接触面積が小さく、摩擦力が小さい。これにより、被覆層を伸縮させやすい。 In the composite tube of the second aspect, the elastic body is disposed along the axial direction between the valley portion of the coating layer and the tube body. In addition, the elastic bodies are disposed at intervals along the circumferential direction. For this reason, the contact area of a coating layer and an elastic body is small, and a frictional force is small. This makes it easy to stretch the covering layer.
 第4態様の複合管は、第3態様に記載の複合管において、前記弾性体は、前記被覆層の周方向に振幅を持つ波状に形成されている。 A composite tube according to a fourth aspect is the composite tube according to the third aspect, wherein the elastic body is formed in a wave shape having an amplitude in the circumferential direction of the covering layer.
 第4態様の複合管では、被覆層の軸方向に沿って延設された弾性体が、被覆層の周方向に振幅を持っている。このため、弾性体が軸方向に沿って変形し易い。これにより、被覆層をさらに伸縮させやすい。 In the composite tube of the fourth aspect, the elastic body extended along the axial direction of the covering layer has an amplitude in the circumferential direction of the covering layer. Therefore, the elastic body is easily deformed along the axial direction. This makes it easier to stretch the covering layer.
 本開示によれば、管体を被覆層の内部に保持しつつ、被覆層を伸縮させやすい複合管を提供することができる。 According to the present disclosure, it is possible to provide a composite tube in which the covering layer can be easily expanded and contracted while holding the tube inside the covering layer.
本開示の実施形態に係る複合管を示す斜視図である。1 is a perspective view of a compound tube according to an embodiment of the present disclosure. 本開示の実施形態に係る複合管を示す縦断面図である。It is a longitudinal section showing a compound tube concerning an embodiment of this indication. 本開示の実施形態に係る複合管の縦断面一部拡大図である。1 is a partially enlarged view of a longitudinal cross section of a composite tube according to an embodiment of the present disclosure. 本開示の実施形態に係る複合管における保持機構の変形例を示す斜視図である。It is a perspective view showing the modification of the holding mechanism in the compound pipe concerning the embodiment of this indication. 図4Aの複合管の管体の端部が露出された状態を示す斜視図でる。FIG. 4B is a perspective view showing the end of the tube of the composite tube of FIG. 4A exposed. 被覆層の短縮変形に伴って弾性体も短縮変形した状態を示す斜視図である。It is a perspective view which shows the state which the elastic body also shortened and deformed with the shortening deformation of a coating layer. 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す縦断面図である。It is a longitudinal section showing the state where the end of the tube of a compound tube concerning an embodiment of this indication was exposed. 図3の縦断面部分において、被覆層が短縮変形される過程を示す図である。It is a figure which shows the process in which a coating layer is shortened and deformed in the longitudinal cross-section part of FIG. 図3の縦断面部分において、被覆層が短縮変形された状態を示す図である。FIG. 4 is a view showing a state in which a covering layer is shortened and deformed in the vertical cross-sectional portion of FIG. 3; 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す斜視図である。FIG. 7 is a perspective view showing the end of the tubular body of the composite tube according to the embodiment of the present disclosure in an exposed state. 本開示の実施形態に係る複合管における保持機構の変形例を示す斜視図である。It is a perspective view showing the modification of the holding mechanism in the compound pipe concerning the embodiment of this indication. 図9Aの複合管の管体の端部が露出された状態を示す斜視図である。FIG. 9C is a perspective view showing the end of the tube of the composite tube of FIG. 9A exposed. 被覆層の短縮変形に伴って弾性体も短縮変形した状態を示す斜視図である。It is a perspective view which shows the state which the elastic body also shortened and deformed with the shortening deformation of a coating layer. 比較例に係る複合管を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compound pipe which concerns on a comparative example.
 以下、本開示に係る複合管の一例である実施形態について、図面を適宜参照しながら詳細に説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。また、各構成要素は1つに限定されず、複数存在してもよい。なお、以下に説明する実施形態において重複する構成及び符号については、説明を省略する場合がある。また、本開示は以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, an embodiment which is an example of a composite pipe according to the present disclosure will be described in detail with reference to the drawings as appropriate. Components indicated by the same reference numerals in the drawings mean that they are the same components. Further, each component is not limited to one, and a plurality of components may exist. In addition, description may be abbreviate | omitted about the structure and code | symbol which overlap in embodiment described below. Further, the present disclosure is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure.
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分をいう。 In the present specification, the term “process” is not limited to an independent process, and even if it can not be clearly distinguished from other processes, the term “process” is also used if the purpose is achieved. include. In the present specification, the amount of each component in the composition is the total amount of a plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. Means In the present specification, the “main component” refers to the component having the highest content by mass in the mixture, unless otherwise specified.
<複合管>
 本開示に係る複合管は、管状の管体と、管状とされて管体の外周を覆う被覆層と、管体を被覆層の内部に保持する保持機構と、を有する。管体は、樹脂材料で構成される。被覆層は、樹脂材料で構成される。また、その形状は、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、管体の軸方向に交互に形成されて蛇腹状とされ、管体の外周にガイドされつつ軸方向に短縮可能とされる。保持機構は、被覆層と一体的に形成される。
<Complex pipe>
The composite tube according to the present disclosure has a tubular tube, a covering layer that is tubular and covers the outer periphery of the tube, and a holding mechanism that holds the tube inside the covering layer. The tube is made of a resin material. The covering layer is made of a resin material. Further, the shape thereof is a bellows-like shape in which an annular peak that is convex outward in the radial direction and an annular valley that is concave in the outer radial direction are alternately formed in the axial direction of the tube. It can be shortened in the axial direction while being guided by the outer periphery of the body. The holding mechanism is integrally formed with the covering layer.
 次いで、本開示の複合管を実施するための形態を、一例を挙げ図面に基づき説明する。図1に示される本実施形態に係る複合管10は、管体12、被覆層20を備えている。 Next, a mode for carrying out the composite tube of the present disclosure will be described based on the drawings, taking an example. The composite pipe 10 according to the present embodiment shown in FIG. 1 includes a pipe body 12 and a covering layer 20.
 (管体)
 管体12は、管状とされ、樹脂材料で構成される樹脂管である。樹脂材料における樹脂としては、例えば、ポリブテン、ポリエチレン、架橋ポリエチレン及びポリプロピレン等のポリオレフィン、並びに塩化ビニル等が挙げられ、樹脂は1種のみを用いても2種以上を併用してもよい。中でも、ポリブテンが好適に用いられ、ポリブテンを主成分として含むことが好ましく、例えば管体を構成する樹脂材料中において85質量%以上含むことがより好ましい。また、管体を構成する樹脂材料には、他の添加剤を含有してもよい。
(Tube)
The tube body 12 is a resin tube which is tubular and made of a resin material. Examples of the resin in the resin material include polyolefins such as polybutene, polyethylene, crosslinked polyethylene and polypropylene, and vinyl chloride. Resin may be used alone or in combination of two or more. Among them, polybutene is suitably used, and it is preferable to contain polybutene as a main component, for example, it is more preferable to contain 85% by mass or more in the resin material constituting the tubular body. Moreover, the resin material which comprises a pipe body may contain another additive.
 管体12の径(すなわち外径)としては、特に限定されるものではないが、例えば10mm以上100mm以下の範囲とすることができ、12mm以上35mm以下の範囲が好ましい。また、管体12の厚さは、特に限定されるものではないが、例えば1.0mm以上5.0mm以下が挙げられ、1.4mm以上3.2mm以下が好ましい。 The diameter (i.e., outer diameter) of the tubular body 12 is not particularly limited, but can be, for example, in the range of 10 mm to 100 mm, and preferably in the range of 12 mm to 35 mm. Moreover, the thickness of the tubular body 12 is not particularly limited, but, for example, 1.0 mm or more and 5.0 mm or less can be mentioned, and preferably 1.4 mm or more and 3.2 mm or less.
 (被覆層)
 被覆層20は、管状とされ、管体12の外周を覆っている。被覆層20は、樹脂材料で構成される。被覆層20を構成する樹脂材料における樹脂としては、ポリブテン、ポリエチレン、ポリプロピレン及び架橋ポリエチレン等のポリオレフィン、並びに塩化ビニル等が挙げられ、樹脂は1種のみを用いても2種以上を併用してもよい。中でも、低密度ポリエチレンが好適に用いられ、低密度ポリエチレンを主成分として含むことが好ましく、例えば被覆層を構成する樹脂材料中において80質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましい。
(Cover layer)
The covering layer 20 is tubular and covers the outer periphery of the tubular body 12. The covering layer 20 is made of a resin material. Examples of the resin in the resin material constituting the covering layer 20 include polyolefins such as polybutene, polyethylene, polypropylene and cross-linked polyethylene, and vinyl chloride, etc. Resins may be used alone or in combination of two or more Good. Among them, low density polyethylene is suitably used, preferably containing low density polyethylene as a main component, for example, more preferably containing 80% by mass or more, and containing 90% by mass or more in the resin material constituting the coating layer. More preferable.
 また、使用する樹脂のMFR(Melt Flow Rate)は、0.25以上であることが好ましく、0.3以上であることがより好ましく、0.4以上1.2以下であることがさらに好ましい。MFRを1.2以下にすることにより、バリが発生しにくくなる。MFRが1.2より大きい場合は、被覆層20を形成するための金型のパーティング面に溶融樹脂が流れ込み易くなり、バリが発生しやすくなる。なお、被覆層を構成する樹脂材料には、他の添加剤を含有してもよい。 The MFR (Melt Flow Rate) of the resin used is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.4 or more and 1.2 or less. By making MFR 1.2 or less, it becomes difficult to generate a burr. When MFR is larger than 1.2, the molten resin easily flows into the parting surface of the mold for forming the covering layer 20, and burrs are easily generated. In addition, the resin material which comprises a coating layer may contain another additive.
 図2にも示されるように、被覆層20は、蛇腹状とされており、径方向外側へ凸となる環状の山部22と、径方向外側が凹となる環状の谷部24とが、管体12の軸方向Sに交互に連続して形成されている。山部22は、谷部24よりも径方向Rの外側に配置されている。図3に示されるように、被覆層20の蛇腹状の最も径方向外側の部分を外側壁22A、最も径方向内側の部分を内側壁24Aとすると、径方向における外側壁22Aと内側壁24Aの中間部Mを境界として、径方向外側を山部22とし、径方向内側を谷部24とする。 As also shown in FIG. 2, the covering layer 20 is bellows-like, and has an annular peak 22 that is convex radially outward and an annular valley 24 that is concave radially outward. They are alternately and continuously formed in the axial direction S of the tubular body 12. The ridges 22 are disposed on the outer side in the radial direction R than the valleys 24. As shown in FIG. 3, assuming that the bellows-like outermost portion of the covering layer 20 is the outer wall 22A and the innermost portion in the radial direction is the inner wall 24A, the outer wall 22A and the inner wall 24A in the radial direction With the intermediate portion M as a boundary, the radially outer side is a peak 22, and the radially inner side is a valley 24.
 山部22は、軸方向S(図2参照)に延びる外側壁22Aと、外側壁22Aの両端から径方向Rに沿って延びる側壁22Bを有している。外側壁22Aと側壁22Bの間には、外屈曲部22Cが形成されている。谷部24は、軸方向Sに延びる内側壁24Aと、内側壁24Aの両端から径方向Rに延びる側壁24Bを有している。内側壁24Aと側壁24Bの間には、内屈曲部24Cが形成されている。 The ridge 22 has an outer wall 22A extending in the axial direction S (see FIG. 2) and side walls 22B extending in the radial direction R from both ends of the outer wall 22A. An outer bend 22C is formed between the outer wall 22A and the side wall 22B. The valley portion 24 has an inner side wall 24A extending in the axial direction S and side walls 24B extending in the radial direction R from both ends of the inner side wall 24A. An inner bent portion 24C is formed between the inner side wall 24A and the side wall 24B.
 また、特に限定されるものではないが、山部22の軸方向Sの長さL1は、谷部24の軸方向Sの長さL2よりも長く設定されていることが好ましい。長さL1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、長さL2の1.2倍以上であることが好ましい。 Moreover, although it does not specifically limit, it is preferable that the length L1 of axial direction S of the peak part 22 is set longer than the length L2 of axial direction S of the valley part 24. As shown in FIG. The length L1 is preferably 1.2 times or more of the length L2 in order to ensure the deformability of the outer wall 22A at the time of the shortening deformation described later.
 また、長さL2は、0.8mm以上であることが好ましい。長さL2が0.8mm未満では、被覆層20を製造する金型の谷部の幅が小さすぎる。この結果、被覆層20の製造時において、被覆層20を構成する樹脂を押し出した後に、金型で当該樹脂に凹凸をつける時に、当該樹脂の金型の谷部に対応する部分が細く壊れやすくなる。これにより被覆層20の成形が難しくなるからである。一方、長さL1は、長さL2の5倍以下であることが好ましい。これは、長さL1を長さL2の5倍以下にすることにより、複合管10の可撓性を保つことができるからである。また、長さL1が長すぎると、複合管10を敷設する際に、地面との接触面積が大きくなって施工しにくくなるためでもある。 The length L2 is preferably 0.8 mm or more. If the length L2 is less than 0.8 mm, the width of the valley of the mold for producing the covering layer 20 is too small. As a result, at the time of manufacturing the covering layer 20, when the resin constituting the covering layer 20 is extruded and then the resin is made uneven by the mold, the portion corresponding to the valley of the mold of the resin becomes thin and fragile Become. This is because the formation of the covering layer 20 becomes difficult. On the other hand, the length L1 is preferably 5 times or less of the length L2. This is because the flexibility of the composite tube 10 can be maintained by setting the length L1 to 5 times or less of the length L2. Moreover, when the length L1 is too long, when laying the composite pipe 10, the contact area with the ground becomes large and it becomes difficult to construct.
 なお、図3に示されるように、長さL1は、被覆層20における中間部Mと交差する部分において、被覆層20の径方向Rの外側から見た表面における軸方向S外側間の距離(すなわち被覆層20の径方向Rの外側に凸となる部分の軸方向S一方側の表面と軸方向S他方側の表面との距離)である。また、長さL2は、被覆層20における中間部Mと交差する部分において、被覆層20の径方向Rの内側から見た表面における軸方向S外側間の距離(すなわち被覆層20の径方向Rの内側に凸となる部分の軸方向S一方側の表面と軸方向S他方側の表面との距離)である。 As shown in FIG. 3, the length L1 is the distance between the axial direction S outside of the surface of the covering layer 20 as viewed from the outside in the radial direction R at the portion intersecting the middle portion M in the covering layer 20 ( That is, it is the distance between the surface in the axial direction S on one side of the portion convex on the outside in the radial direction R of the covering layer 20 and the surface on the other side in the axial direction S). The length L2 is the distance between the axial direction S outside of the surface of the covering layer 20 seen from the inside in the radial direction R at a portion intersecting the middle portion M in the covering layer 20 (ie, the radial direction R of the covering layer 20 The distance between the surface on one side in the axial direction S of the portion to be convex inward and the surface on the other side in the axial direction S).
 被覆層20の厚さは、被覆層20を短縮させるために、最も薄い部分で0.1mm以上、最も厚い部分で0.4mm以下であることが好ましい。外側壁22Aの厚さH1は、内側壁24Aの厚さH2よりも薄くなっている。厚さH1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、厚さH2の0.9倍以下であることが好ましい。 The thickness of the covering layer 20 is preferably 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion in order to shorten the covering layer 20. The thickness H1 of the outer side wall 22A is smaller than the thickness H2 of the inner side wall 24A. The thickness H1 is preferably equal to or less than 0.9 times the thickness H2 in order to ensure the deformability of the outer side wall 22A at the time of the shortening deformation described later.
 山部22と谷部24の外表面での半径差ΔRは、被覆層20の厚さの平均の800%以下であることが好ましい。半径差ΔRが大きければ、山部22の軸方向Sに沿った部分が変形しなくても、短縮のときに谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりしにくい。半径差ΔRが、被覆層20の厚さの平均の800%以下となる場合に、上記の変形状態となることを抑制するために、山部22の軸方向Sの長さを谷部24の軸方向の長さよりも長くすることが、好適である。なお、600%以下である場合に、さらに好適である。 The difference in radius ΔR at the outer surfaces of the ridges 22 and the valleys 24 is preferably 800% or less of the average thickness of the covering layer 20. If the radius difference ΔR is large, the valleys 24 expand radially outward at the time of shortening even if the portion along the axial direction S of the ridges 22 is not deformed, or the adjacent ridges 22 do not approach each other It is hard to be distorted or distorted. When the radius difference ΔR is 800% or less of the average of the thickness of the covering layer 20, the length of the axial direction S of the peak 22 is set to It is preferred to be longer than the axial length. In addition, when it is 600% or less, it is further suitable.
 被覆層20の径(すなわち最外部の外径)としては、特に限定されるものではないが、例えば13mm以上130mm以下の範囲とすることができる。 The diameter of the covering layer 20 (that is, the outer diameter of the outermost portion) is not particularly limited, but can be, for example, in the range of 13 mm or more and 130 mm or less.
(保持機構)
 図2に示すように、被覆層20には、管体12を保持するための保持機構としての縮径部26が部分的に形成されている。縮径部26は、谷部24が径方向内側へ突出して形成された環状の支持体であり、被覆層20の周方向に沿って延設されている。縮径部26は、被覆層20の軸方向に沿って間隔を開けて複数配置されている。本実施形態においては、例えば縮径部26ではない3つの谷部24と1つの縮径部26とが、軸方向に交互に連続するように配置されている。
(Retention mechanism)
As shown in FIG. 2, the covering layer 20 is partially formed with a reduced diameter portion 26 as a holding mechanism for holding the tube 12. The diameter-reduced portion 26 is an annular support formed by projecting the valley portion 24 inward in the radial direction, and is extended along the circumferential direction of the covering layer 20. A plurality of reduced diameter portions 26 are arranged at intervals along the axial direction of the covering layer 20. In the present embodiment, for example, three valleys 24 and one reduced diameter portion 26 which are not the reduced diameter portion 26 are arranged to be alternately continuous in the axial direction.
 図3に示すように、縮径部26の内側壁26Aの半径は、管体12の外周面12Aの半径と略一致している。これにより、管体12は縮径部26によって被覆層20の内部に保持される。なお、「略一致している」態様には、図3に二点鎖線で示すように径方向外側へ変形させた状態の縮径部26の内側壁26Aの半径と管体12の外周面12Aの半径とが一致している場合を含む。また、縮径部26の内側壁26Aの半径が管体12の外周面12Aの半径より若干大きく、内側壁26Aと外周面12Aとの間に隙間が形成されている場合を含む。 As shown in FIG. 3, the radius of the inner side wall 26 </ b> A of the reduced diameter portion 26 substantially matches the radius of the outer circumferential surface 12 </ b> A of the tube 12. Thus, the tube 12 is held inside the covering layer 20 by the reduced diameter portion 26. In the "substantially match" mode, the radius of the inner side wall 26A of the reduced diameter portion 26 and the outer peripheral surface 12A of the tubular body 12 in the state of being deformed radially outward as shown by the two-dot chain line in FIG. Including the case where the radius of Further, the case where the radius of the inner side wall 26A of the reduced diameter portion 26 is slightly larger than the radius of the outer peripheral surface 12A of the tube 12 and a gap is formed between the inner side wall 26A and the outer peripheral surface 12A is included.
(作用)
 本実施形態に係る複合管10と継手とを接続する際には、図2に示す状態の被覆層20に対し、被覆層20を軸方向Sに短縮させて管体12を露出させる方向の力を作用させる。これにより、図5に示されるように、一端部の被覆層20は、縮径部26によって管体12を保持した状態を保ちながら、管体12が露出される方向へ移動する。
(Action)
When connecting the composite pipe 10 according to this embodiment and the joint, the force in the direction in which the covering layer 20 is shortened in the axial direction S to expose the pipe body 12 with respect to the covering layer 20 in the state shown in FIG. To work. As a result, as shown in FIG. 5, the covering layer 20 at one end moves in the direction in which the tube 12 is exposed while keeping the tube 12 held by the reduced diameter portion 26.
 このように、本実施形態における複合管10によると、管体12は縮径部26によって被覆層20の内部に保持されている。この縮径部26は、被覆層20の周方向に沿って延設されている。このため、管体12を確実に保持できる。管体12を保持することにより、例えば管体12の内部を流れる液体によりウォーターハンマー現象が発生した場合においても、管体12が振動することを抑制し、騒音の発生を抑制できる。 Thus, according to the composite tube 10 in the present embodiment, the tube body 12 is held inside the covering layer 20 by the reduced diameter portion 26. The reduced diameter portion 26 is extended along the circumferential direction of the covering layer 20. Therefore, the tubular body 12 can be reliably held. By holding the tube 12, for example, even when the water hammer phenomenon occurs due to the liquid flowing in the inside of the tube 12, it is possible to suppress the vibration of the tube 12 and to suppress the generation of noise.
 また、縮径部26は、被覆層20の伸縮に伴って軸方向に動くことができる。縮径部26は軸方向に沿って間隔を開けて配置されているため、管体12との接触面積が小さい。このため、被覆層20を伸縮させやすい。 In addition, the reduced diameter portion 26 can move in the axial direction as the covering layer 20 expands and contracts. The reduced diameter portion 26 is arranged at intervals along the axial direction, so the contact area with the tubular body 12 is small. Therefore, the covering layer 20 can be easily expanded and contracted.
 これに対して、例えば図10に示す比較例に係る保持機構(中間層14)は、被覆層20の周方向と軸方向の双方に沿って延設されている。換言すると、中間層14は管体12の外周の全体を覆っている。このため、中間層14と管体12との接触面積が、本実施形態における縮径部26と管体12との接触面積より大きい。このため、比較例においては被覆層20を伸縮させた際に、管体12と中間層14との間に比較的大きな摩擦力が作用して、抵抗力となる可能性がある。また、中間層14は管体12の外周の全体に配置されているため、軸方向に縮めようとした際の剛性が高く変形し難いため、被覆層20を伸縮させ難い可能性がある。 On the other hand, for example, the holding mechanism (intermediate layer 14) according to the comparative example shown in FIG. 10 is extended along both the circumferential direction and the axial direction of the covering layer 20. In other words, the intermediate layer 14 covers the entire outer periphery of the tube 12. Therefore, the contact area between the intermediate layer 14 and the tubular body 12 is larger than the contact area between the reduced diameter portion 26 and the tubular body 12 in the present embodiment. For this reason, in the comparative example, when the covering layer 20 is expanded and contracted, a relatively large frictional force acts between the tube body 12 and the intermediate layer 14, which may result in a resistance. In addition, since the intermediate layer 14 is disposed on the entire outer periphery of the tubular body 12, the rigidity in the axial direction is high, and the rigidity is high.
 また、本実施形態に係る複合管10によると、図3に示すように、縮径部26は谷部24を径方向内側へ突出させて形成されている。このため、谷部24の内側壁24Aと管体12の外周面12Aとの間には、空気溜まりVが形成されている。換言すると、管体12が空気溜まりVによって被覆されている。このため、管体12の保温性を確保できる。 Further, according to the composite pipe 10 according to the present embodiment, as shown in FIG. 3, the diameter-reduced portion 26 is formed by projecting the valley portion 24 radially inward. Therefore, an air reservoir V is formed between the inner side wall 24A of the valley portion 24 and the outer peripheral surface 12A of the tubular body 12. In other words, the tube 12 is covered by the air reservoir V. For this reason, the heat retention of the pipe body 12 can be ensured.
 なお、山部22の外側壁22Aと谷部24の内側壁24Aにおいて、軸方向Sの長さL1はL2よりも長く、厚さH1はH2よりも薄いことが好ましい。これにより、外側壁22Aは内側壁24Aよりも変形しやすく、図6に示されるように、径方向外側へ膨出するように変形する。続いて、図7に示されるように、隣り合う山部22同士が近づくように、山部22の外屈曲部22Cと谷部24の内屈曲部24Cが変形する。 In the outer wall 22A of the ridge 22 and the inner wall 24A of the valley 24, the length L1 in the axial direction S is preferably longer than L2, and the thickness H1 is preferably thinner than H2. As a result, the outer side wall 22A is more easily deformed than the inner side wall 24A, and as shown in FIG. 6, the outer side wall 22A deforms so as to bulge radially outward. Subsequently, as shown in FIG. 7, the outer bending portion 22C of the peak portion 22 and the inner bending portion 24C of the valley portion 24 are deformed such that the adjacent peak portions 22 approach each other.
 このようにして、図5に示されるように、被覆層20の一端部は、管体12が露出される方向へより移動し易くなる。このように、被覆層20を短縮させる際に、外側壁22Aが膨出するように変形する。これにより被覆層20の屈曲角度や厚さに多少のバラツキがあっても、谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりすることを抑制できる。これにより、短縮させた被覆層20の外観の低下を抑制することができる。 In this way, as shown in FIG. 5, one end of the covering layer 20 is more likely to move in the direction in which the tubular body 12 is exposed. Thus, when the covering layer 20 is shortened, the outer wall 22A deforms so as to expand. As a result, even if the bending angle and thickness of the covering layer 20 have some variations, the valleys 24 bulge outward in the radial direction, and adjacent peaks 22 do not approach each other, resulting in a distorted deformation state. Can be suppressed. Thereby, the fall of the shortened external appearance of the coating layer 20 can be suppressed.
 なお、本実施形態では、外側壁22Aの厚さH1を内側壁24Aの厚さH2よりも薄くしたが、厚さH1は厚さH2と同じであってもよい。 In the present embodiment, the thickness H1 of the outer side wall 22A is thinner than the thickness H2 of the inner side wall 24A, but the thickness H1 may be the same as the thickness H2.
 また、本実施形態では、外側壁22Aを軸方向Sに沿った略直線状としたが、径方向外側へ膨出する弧状としてもよい。さらに、内側壁24Aについて、径方向内側へ膨出する弧状としてもよい。またさらに、縮径部26の内側壁26Aについて、径方向内側へ膨出形状としてもよい。これにより、被覆層20をさらに伸縮させ易くできる。 Moreover, in this embodiment, although the outer side wall 22A is made into substantially linear shape along the axial direction S, it is good also as arc shape bulging outward in the radial direction. Furthermore, the inner side wall 24A may have an arc shape which bulges radially inward. Furthermore, the inner side wall 26A of the reduced diameter portion 26 may have a shape that bulges radially inward. Thereby, the covering layer 20 can be easily extended and contracted.
 また、本実施形態においては、管体12を被覆層20の内部に保持する保持機構として、被覆層20の谷部24を変形させた縮径部26を用いている。このように、保持機構を被覆層20と一体化することにより、部品点数が少なくなる。これにより複合管を製造しやすくできる。 Further, in the present embodiment, as the holding mechanism for holding the tubular body 12 inside the covering layer 20, the reduced diameter portion 26 in which the valley portion 24 of the covering layer 20 is deformed is used. As such, by integrating the holding mechanism with the covering layer 20, the number of parts can be reduced. This can facilitate the manufacture of the composite pipe.
 なお、保持機構は、被覆層20と別体で構成してもよい。例えば図4Aに示すように、被覆層20と管体12との間に、棒状(例えば円柱状)に形成された樹脂製の弾性体30を配置してもよい。弾性体30は、被覆層20の軸方向に沿って延設され、被覆層20の周方向に沿って間隔を開けて複数配置されている。本実施形態においては、周方向に沿って略90度毎に合計4本配置されているが、任意の本数配置することができる。例えば略120度毎に合計3本配置してもよい。但し、管体12の保持力を確保するためには、弾性体30は、3本以上設けることが好ましい。 The holding mechanism may be configured separately from the covering layer 20. For example, as shown to FIG. 4A, you may arrange | position the resin-made elastic bodies 30 formed in rod shape (for example, column shape) between the coating layer 20 and the tubular body 12. FIG. The elastic bodies 30 are extended along the axial direction of the covering layer 20, and a plurality of elastic bodies 30 are arranged at intervals along the circumferential direction of the covering layer 20. In the present embodiment, a total of four are arranged at approximately every 90 degrees along the circumferential direction, but any number can be arranged. For example, a total of three may be disposed approximately every 120 degrees. However, in order to secure the holding power of the tubular body 12, it is preferable to provide three or more elastic bodies 30.
 弾性体30は、管体12の外周面12Aと被覆層20の谷部24の内側壁24Aとの間で、狭持されている。これにより、管体12が被覆層20の内部に保持される。 The elastic body 30 is sandwiched between the outer peripheral surface 12A of the tubular body 12 and the inner side wall 24A of the valley portion 24 of the covering layer 20. Thereby, the tubular body 12 is held inside the covering layer 20.
 弾性体30を構成する樹脂としては、例えば、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、及びエチレンプロピレンジエンゴム、シリコーンゴム並びにこれらの樹脂の混合物が挙げられるが、その中でもシリコーンゴムが好ましい。あるいは、被覆層20の軸方向に沿って伸縮可能なスプリングコイル等を用いてもよい。なお、本実施形態においては、弾性体30は、エチレンプロピレンジエンゴムを用いたゴムチューブとされている。 Examples of the resin constituting the elastic body 30 include polyurethane, polystyrene, polyethylene, polypropylene, ethylene propylene diene rubber, silicone rubber and mixtures of these resins, and among them, silicone rubber is preferable. Alternatively, a spring coil or the like that can extend and contract along the axial direction of the covering layer 20 may be used. In the present embodiment, the elastic body 30 is a rubber tube using ethylene propylene diene rubber.
 弾性体30を用いた複合管によると、被覆層20と管体12との間に、棒状の弾性体30が、被覆層20の軸方向に沿って延設されている。このため、被覆層20を伸縮させようとした場合に、例えば図10に示す中間層14を被覆層20と管体12との間に設置した比較例と比べて、被覆層20と弾性体30との間に発生する摩擦力が小さい。このため、図4Bに示すように、被覆層20を伸縮しやすい。 According to the composite tube using the elastic body 30, the rod-like elastic body 30 is extended along the axial direction of the covering layer 20 between the covering layer 20 and the tubular body 12. Therefore, when it is intended to expand and contract the covering layer 20, for example, the covering layer 20 and the elastic body 30 are compared with the comparative example in which the intermediate layer 14 shown in FIG. 10 is disposed between the covering layer 20 and the tubular body 12. The friction force generated between the two is small. For this reason, as shown to FIG. 4B, it is easy to expand-contract the coating layer 20. As shown in FIG.
 なお、弾性体30が被覆層20の谷部24の内側壁24Aに固定されている場合などは、図4Cに示すように、被覆層20の伸縮に伴って弾性体30も弾性変形する場合がある。このような場合においても、図10の比較例と比べて、弾性体30と管体12との間に発生する摩擦力が小さいため、被覆層20を伸縮しやすい。 In the case where the elastic body 30 is fixed to the inner side wall 24A of the valley portion 24 of the covering layer 20, as shown in FIG. 4C, the elastic body 30 may be elastically deformed along with the expansion and contraction of the covering layer 20. is there. Even in such a case, since the frictional force generated between the elastic body 30 and the tubular body 12 is small as compared with the comparative example of FIG. 10, the covering layer 20 is easily expanded and contracted.
 また、図9Aに示すように、被覆層20と管体12との間に、波状に形成された樹脂製の弾性体40を配置してもよい。弾性体40は、被覆層20の軸方向に沿って延設され、周方向に振幅を備えて波状に形成されている。また、弾性体40は、被覆層20の周方向に沿って間隔を開けて複数配置されている。本実施形態においては、周方向に沿って略90度毎に合計4本配置されている。なお、弾性体40を構成する樹脂は、弾性体30を構成する樹脂と同様の物を用いることができる。 Moreover, as shown to FIG. 9A, you may arrange | position the resin-made elastic bodies 40 formed in the wavelike form between the coating layer 20 and the pipe body 12. FIG. The elastic body 40 is extended along the axial direction of the covering layer 20, and is formed in a wave shape with amplitude in the circumferential direction. Further, a plurality of elastic bodies 40 are disposed at intervals along the circumferential direction of the covering layer 20. In the present embodiment, a total of four are disposed at approximately every 90 degrees along the circumferential direction. In addition, as resin which comprises the elastic body 40, the thing similar to resin which comprises the elastic body 30 can be used.
 弾性体40を備えた複合管によると、被覆層20を伸縮させようとした場合に、例えば図10に示す中間層14を被覆層20と管体12との間に設置した比較例と比べて、被覆層20と弾性体40との間に発生する摩擦力が小さい。このため、図9Bに示すように、被覆層20を伸縮しやすい。 According to the composite tube provided with the elastic body 40, for example, when it is intended to extend and contract the covering layer 20, as compared with the comparative example in which the intermediate layer 14 shown in FIG. 10 is disposed between the covering layer 20 and the tubular body 12. The frictional force generated between the covering layer 20 and the elastic body 40 is small. For this reason, as shown to FIG. 9B, it is easy to expand-contract the coating layer 20. As shown in FIG.
 また、図9Cに示すように、被覆層20の伸縮に伴って弾性体40も弾性変形する場合がある。このような場合においても、図10の比較例と比べて、弾性体40と管体12との間に発生する摩擦力が小さいため、被覆層20を伸縮しやすい。さらに、弾性体40自体が、軸方向に波の間隔を狭める形で変形できるため、被覆層20がさらに変形し易い。 Further, as shown in FIG. 9C, the elastic body 40 may be elastically deformed as the covering layer 20 expands and contracts. Even in such a case, since the frictional force generated between the elastic body 40 and the tubular body 12 is small as compared with the comparative example of FIG. 10, the covering layer 20 is easily expanded and contracted. Furthermore, since the elastic body 40 itself can be deformed in such a manner as to narrow the distance of waves in the axial direction, the covering layer 20 is further easily deformed.
 2017年12月13日に出願された日本国特許出願2017-238862号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2017-238862 filed on Dec. 13, 2017 is incorporated herein by reference in its entirety. All documents, patent applications and technical standards described herein are as specific and individually as individual documents, patent applications and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (4)

  1.  管状の管体と、
     管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて軸方向に伸縮可能な蛇腹状とされた、樹脂材料で構成された被覆層と、
     前記被覆層の周方向又は軸方向の何れか一方に沿って延設され、他方に沿って間隔を空けて複数配置され、前記管体を前記被覆層の内部に保持する保持機構と、
     を有する複合管。
    With a tubular tube,
    An annular ridge which is tubular and covers the outer periphery of the tube and which is convex radially outward and an annular valley which is concave outward in the radial direction are alternately formed in the axial direction of the tube. An axially expandable bellows-like covering layer made of a resin material,
    A holding mechanism extending along either one of the circumferential direction or the axial direction of the covering layer and arranged at intervals along the other to hold the tubular body inside the covering layer;
    Composite tube with.
  2.  前記保持機構は、前記谷部が径方向内側へ突出した縮径部である、請求項1に記載の複合管。 The composite pipe according to claim 1, wherein the holding mechanism is a reduced diameter portion in which the valley portion protrudes radially inward.
  3.  前記保持機構は、前記谷部と前記管体との間に軸方向に沿って配置された弾性体である、請求項1に記載の複合管。 The composite tube according to claim 1, wherein the holding mechanism is an elastic body disposed along the axial direction between the valley and the tube.
  4.  前記弾性体は、前記被覆層の周方向に振幅を持つ波状に形成されている、請求項3に記載の複合管。 The composite tube according to claim 3, wherein the elastic body is formed in a wave shape having an amplitude in a circumferential direction of the covering layer.
PCT/JP2018/045767 2017-12-13 2018-12-12 Composite pipe WO2019117220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238862A JP6945430B2 (en) 2017-12-13 2017-12-13 Composite pipe
JP2017-238862 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019117220A1 true WO2019117220A1 (en) 2019-06-20

Family

ID=66820373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045767 WO2019117220A1 (en) 2017-12-13 2018-12-12 Composite pipe

Country Status (3)

Country Link
JP (1) JP6945430B2 (en)
TW (1) TWI770326B (en)
WO (1) WO2019117220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425578B2 (en) 2019-10-16 2024-01-31 株式会社ブリヂストン composite pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274926B2 (en) * 2019-04-23 2023-05-17 株式会社ブリヂストン Composite pipe and method for manufacturing composite pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281328A (en) * 1990-03-30 1991-12-12 Sekisui Chem Co Ltd Manufacture of composite pipe
JP2002039446A (en) * 2000-07-18 2002-02-06 Inaba Denki Sangyo Co Ltd Fluid transport pipe with protective pipe and method of manufacturing the same
JP2003251686A (en) * 2001-12-25 2003-09-09 Toshikawa Plastic:Kk Apparatus and method for molding annular body
JP2004322583A (en) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk Corrugated tube production method and the corrugated tube produced thereby
JP2006194430A (en) * 2004-12-17 2006-07-27 Kanaflex Corporation Pressure hose
JP2013231490A (en) * 2012-05-01 2013-11-14 Bridgestone Corp Composite pipe, and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067075B2 (en) * 2004-01-27 2011-11-29 Ube Industries, Inc. Multilayer tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281328A (en) * 1990-03-30 1991-12-12 Sekisui Chem Co Ltd Manufacture of composite pipe
JP2002039446A (en) * 2000-07-18 2002-02-06 Inaba Denki Sangyo Co Ltd Fluid transport pipe with protective pipe and method of manufacturing the same
JP2003251686A (en) * 2001-12-25 2003-09-09 Toshikawa Plastic:Kk Apparatus and method for molding annular body
JP2004322583A (en) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk Corrugated tube production method and the corrugated tube produced thereby
JP2006194430A (en) * 2004-12-17 2006-07-27 Kanaflex Corporation Pressure hose
JP2013231490A (en) * 2012-05-01 2013-11-14 Bridgestone Corp Composite pipe, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425578B2 (en) 2019-10-16 2024-01-31 株式会社ブリヂストン composite pipe

Also Published As

Publication number Publication date
TW201937098A (en) 2019-09-16
JP2019105319A (en) 2019-06-27
JP6945430B2 (en) 2021-10-06
TWI770326B (en) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2019117220A1 (en) Composite pipe
JP5775541B2 (en) Compound pipe
JP6636271B2 (en) Composite pipe
US9394962B2 (en) Dust cover
JP6439058B2 (en) Corrugated plastic tube for wrapping electrical wires
JP2009024750A (en) Flexible hose with built-in tube
JP6714368B2 (en) Dust cover
JP7274934B2 (en) Composite pipe
JP6428284B2 (en) Wire harness wiring structure
JP6207310B2 (en) Dust cover
JP2006220169A (en) Pipe vibration absorbing clamp and its manufacturing method
JP2019105328A (en) Composite tube
JP2020193691A (en) Composite tube and cladding tube
JP7264732B2 (en) Cladding pipes and composite pipes
JP6427686B2 (en) Double hose
JP7425578B2 (en) composite pipe
JP5770648B2 (en) Flexible hose
JP7355330B2 (en) Pipe rehabilitation components
JP7274940B2 (en) piping structure
JP7458193B2 (en) Composite pipe and composite pipe connection structure
JP6449049B2 (en) Flexible hose for cable sheath
JP2015075174A (en) Hot/cold water pipeline
JP7462226B2 (en) Pipe rehabilitation materials
JP7290252B2 (en) Pipe rehabilitation member
JP7372631B2 (en) lining material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887767

Country of ref document: EP

Kind code of ref document: A1