WO2019115552A1 - Systeme d'absorption de choc pour vehicule automobile - Google Patents

Systeme d'absorption de choc pour vehicule automobile Download PDF

Info

Publication number
WO2019115552A1
WO2019115552A1 PCT/EP2018/084408 EP2018084408W WO2019115552A1 WO 2019115552 A1 WO2019115552 A1 WO 2019115552A1 EP 2018084408 W EP2018084408 W EP 2018084408W WO 2019115552 A1 WO2019115552 A1 WO 2019115552A1
Authority
WO
WIPO (PCT)
Prior art keywords
spar
motor vehicle
towing
shock
absorber element
Prior art date
Application number
PCT/EP2018/084408
Other languages
English (en)
Inventor
Guy OGERET
Stéphane Ginja
Original Assignee
Compagnie Plastic Omnium
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Plastic Omnium filed Critical Compagnie Plastic Omnium
Priority to EP18822026.3A priority Critical patent/EP3724012A1/fr
Publication of WO2019115552A1 publication Critical patent/WO2019115552A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/48Traction couplings; Hitches; Draw-gear; Towing devices characterised by the mounting
    • B60D1/56Traction couplings; Hitches; Draw-gear; Towing devices characterised by the mounting securing to the vehicle bumper
    • B60D1/565Traction couplings; Hitches; Draw-gear; Towing devices characterised by the mounting securing to the vehicle bumper having an eyelet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type

Definitions

  • the invention relates to the field of bumpers for a motor vehicle, more particularly shock absorption systems comprising a shock absorber element, which further comprise means for towing the vehicle.
  • Vehicle shock absorber elements intended to be placed between a transverse impact beam and longitudinal members which connect the assembly to the body of the vehicle are known in the state of the art. They may be present at the front and / or rear of the vehicle extending in the longitudinal direction of the vehicle. Such absorber elements absorb energy during a shock so as to limit the deformation of other components and vehicle repair costs.
  • the reduction of this distance is limited by the safety standards which require a satisfactory resistance of the barrier -bugs and surrounding parts.
  • One way to reduce the cantilever is to increase the effective length of the absorber element, ie the distance over which the absorber element deforms before reaching its incompressibility characterized by a sharp rise in effort.
  • compressibility refers to the ability of a body to compress as much as possible, that is to leave the incompressible residue as low as possible.
  • a metal absorber element can compress about 70% and has an incompressibility of about 30%. It is therefore sought to increase the compressibility of the absorber elements so that they can absorb as much energy as possible in case of impact in a reduced axial size. This axial size is therefore the total of the crushing stroke (during which the energy is absorbed), and the incompressible remaining at the end. In other words, we try to reduce the incompressible part of the absorber elements that does not participate in energy absorption.
  • the preferred mode for the axial deformation of such a composite tube during the compression phase under stress (shock) is delamination.
  • the fiber reinforcements shear in their thickness preferably over the entire length of the tube.
  • patent US4336868A discloses methods of manufacturing a composite tube and the performance of the matrix and reinforcements fiber in terms of ability to absorb energy (specific absorption energy). In this document is illustrated in particular the mode of delamination of the tube under an axial compression force.
  • the resin is reduced to dust and the various layers of reinforcements are delaminated in the direction of the impact (thus essentially "axial") and thus absorb energy.
  • the energy absorption system due to a shock comprises such an absorber element plastic material and / or composite, such as in patent US7300080 B2
  • a towing means such as a metal sleeve in which can be screwed a ring or tow hook, can prevent the absorber element to achieve such a low incompressibility.
  • Patent EP2248688 describes a towing system, in which the metal bushing is designed to separate from the spar by the presence of a weakened part on the metal bushing, as for example in the case of a small shock affecting the area of the transverse impact beam or absorber element.
  • a towing of the vehicle is then compromised.
  • transmission of forces between a towing hook and a vehicle spar is no longer performed, the mechanical strength of the elements transmitting the forces due to towing is not necessarily retained.
  • the manufacture and assembly of such a system is also complex, and the length of the metal sleeve weighs such a system.
  • An object of the invention is to overcome these disadvantages by providing a shock absorber system for a motor vehicle compact and reduced mass, improving the transmission of forces due to towing or stowage, allowing maximum compressibility in case shock, while allowing safe towing or stowage, even when a shock has affected the area of the transverse impact beam and / or the shock absorber element, and whose manufacture and assembly are simplified.
  • the invention particularly relates to a shock absorption system for a motor vehicle, the motor vehicle having at least one spar and a transverse impact beam, comprising
  • an absorber element able to irreversibly deform at least partially in response to a shock
  • the absorber element being made of a plastic and / or composite material, the absorber element being configured to be disposed between the shock beam; transverse and spar,
  • a connecting element comprising at least one wall having one end intended to be fixed to the impact beam, and another end intended to be fixed to the spar, which comprises a bearing face, the absorbing element being held in position; by the connecting element, the bearing face forming a stop for the absorber element,
  • the towing means comprising a one-piece mounting plate having an attachment bushing configured to mate with a removable towing member, the mounting plate being configured to be integral with the end to be attached to the spar and / or the spar.
  • such a system allows to place the towing means so as not to increase the size of the vehicle in the longitudinal direction.
  • the transmission of forces is not ensured via the transverse impact beam and / or via the absorber element.
  • the forces passing through the removable towing element for example a towing hook, are directly transmitted to the spar and thus to the structure of the vehicle. This improves the transmission of efforts.
  • the fixing sleeve of the removable towing element for example a hook, is firmly attached to the spar. Indeed, the forces transmitted from the removable towing element are directly transmitted to the vehicle structure.
  • such a system makes it possible to obtain maximum compressibility of the absorber element, the fixing sleeve not being in the compression zone of the absorber element.
  • the compressibility rate of the absorber element is not affected by an implantation of the fixing sleeve in the absorber element.
  • the elements of the system can have a form allowing easy manufacture, and the number of elements to be fixed is also reduced, which makes it possible to simplify the assembly and lighten the shock absorption system compared to a system of conventional shock absorption.
  • Towing includes towing and / or stowage or ditching.
  • stowage of a motor vehicle allows its transport for example on a trailer or a boat or in case of breakdown or parking annoying, which can be likened to towing.
  • the term "able to deform irreversibly” means delamination or fragmentation. Delamination is the property of a body to shear in its thickness longitudinally and fragmentation is the ability of a body to absorb energy by destruction. Delamination or fragmentation of the absorber element results in irreversible destruction of at least a large part of the absorber element so that it is no longer integral. In this way, the compressibility of the absorber element is substantially increased. The necessary length of the shock absorption system is then reduced, contributing to a reduction of the cantilever and a considerable lightening of the vehicle. Such an absorber element can achieve a compressibility of more than 90% (corresponding to an incompressible less than 10%) compared to an aluminum absorber element having a compressibility of about 70%.
  • shock absorption system may optionally include one or more of the following features:
  • the mounting plate is secured to the bearing face.
  • the mounting plate is integral with the connecting element. This reduces the number of parts to be assembled, and thus to further facilitate the assembly of the shock absorption system.
  • the mounting plate forms a spacer for the beam, to be fixed by fastening means to the spar, preferably the fastening means jointly fixing the connecting member to the spar.
  • the mounting plate reinforces the end of the spar, which facilitates in particular the transmission of towing forces.
  • the transfer of forces from the towing element removable to the vehicle structure is directly on the spar via the attachment means to the spar without passing through another intermediate piece.
  • the fastening means jointly fix the connecting element to the spar
  • the mounting plate forms a spacer avoiding the deformation of the spar during attachment of the connecting member to the spar by the fastening means.
  • the fastening means make it possible to position the mounting plate in the axis of the spar, thus making it possible to transfer the forces during towing on all the sides of the spar.
  • the mounting plate extends only behind the absorber element, seen in the longitudinal direction of the motor vehicle to the outside of the motor vehicle.
  • the mounting plate forms a stop for the support face.
  • the forces are also transmitted to the spar via the mounting plate.
  • the fixing sleeve is configured to extend in a hollow space of the spar.
  • the space requirement is minimal, a hollow space of the spar being generally little used or unused.
  • the absorber element is positioned inside the connecting element.
  • the presence of the connecting element thus makes it possible to maintain the position of the absorber element between the transverse impact beam and the spar.
  • the connecting element can also ensure the maintenance, retention, of the beam to the spar, particularly after the disintegration of at least a portion of the absorber element after an impact.
  • it does not participate or very little (less than 10%) in energy absorption and its axial length after an impact (called incompressible sound) is lower than that of the absorber element so that the The absorber element can be compressed to its maximum compressibility without being influenced by the connecting element, for example by virtue of the presence of an area of programmed mechanical weakness.
  • zone of programmed mechanical weakness means an area where the mechanical strength of the material is weakened so as to initiate and orient the folding of the mechanical part when it undergoes a force.
  • This zone of programmed weakness can for example be achieved by the partial absence of material, such as a decrease in the thickness or a hole, or by a local deformation of material, such as a fold.
  • the zone of weakness programmed may include at least one of the elements of the list next, or a combination of these elements: holes, recesses, notches, marked folds, a ripple, a boss, or changes in thickness or material.
  • the absorber element is a one-piece hollow body, preferably a tube having a section chosen from the following list: circular, rectangular, conical, hexagonal, evolutive. This facilitates assembly, and optimizes the energy absorption during an impact.
  • the invention also relates to a transverse impact beam for a motor vehicle comprising a shock absorption system as described above.
  • the wall of the passage opening may form a stop configured to limit a deformation of the towing element when the towing element is subjected to a stress, in particular a flexural stress .
  • a stress in particular a flexural stress .
  • the subject of the invention is then an impact module for a motor vehicle, comprising a transverse impact beam as described above and / or an impact absorption system as described above, the shock module comprising at least one element casting member selected from the group consisting of an aerodynamic system, a sensor support, a stiffening element, a bumper skin reinforcement. This makes assembly easier.
  • At least one molded element is overmolded on the transverse impact beam and / or on the shock absorption system. This makes it possible to integrate surrounding functions with the beam, while reducing the number of components and simplifying assembly and logistics.
  • the invention finally relates to a motor vehicle front block comprising a transverse impact beam as described above and / or a shock module as previously described.
  • FIG. 1 is a schematic sectional view of a first example of a shock beam comprising a shock absorption system according to the invention
  • FIG. 2 is a schematic sectional view of a second example of a shock beam comprising a shock absorption system according to the invention
  • FIG. 2bis is a schematic sectional view of a detail of a third example of a shock absorption system according to the invention.
  • FIG. 2b is a diagrammatic sectional view of a detail of a fourth example of a shock absorption system according to the invention.
  • FIG. 3 is a schematic perspective view of the first example of a shock beam comprising a shock absorption system according to the invention
  • FIG. 4 is a schematic perspective view of an example of a connecting element according to the invention.
  • FIG. 5 is a schematic perspective view of an example of an absorber element according to the invention.
  • FIG. 6 is a schematic perspective view of an example of a mounting plate according to the invention.
  • FIG. 7 is a schematic perspective view of another example of a mounting plate according to the invention.
  • orientation terms such as “longitudinal axis X”, “transverse axis Y”, “vertical axis Z”, “front”, “rear”,
  • the shock absorption system 1 comprises an absorber element 3 capable of irreversibly deforming at least partially in response to an impact, for example by delamination.
  • the absorber element 3 consists of a tube of plastic material and / or composite.
  • the absorber element 3 may comprise at least one layer of composite material having a plastic matrix and reinforcing elements.
  • the plastic matrix is for example a thermoplastic material, preferably chosen alone or in combination from the following materials: a polyamide, a polypropylene, a polyurethane.
  • the plastic matrix may alternatively be a thermosetting material, preferably chosen alone or in combination from the following materials: an epoxy, a polyester, a vinylester.
  • the reinforcing elements may be continuous fibers, preferably based on a material chosen alone or in combination from the following materials: carbon, glass, aramid.
  • the absorber element 3 is configured to be disposed between a transverse impact beam 5 and a longitudinal member 4 of the motor vehicle, for example substantially coaxially with the longitudinal axis X of the motor vehicle when the latter is disposed on a motor vehicle .
  • the absorber element 3 is a one-piece hollow body in the form of a circular tube. More generally, the absorber element 3 may be a hollow body, in particular a one-piece body, for example in the form of a tube having a circular, rectangular, conical, hexagonal or evolutive section.
  • the shock absorbing system 1 further comprises a connecting element 7.
  • the impact beam 5 and the connecting element 7 may be made of metal, such as for example aluminum or steel, and or of plastic and / or composite material.
  • the connecting element 7 connects the transverse impact beam 5 to the longitudinal member 4.
  • the connecting element 7 comprises for example a wall having an end 9 intended to be fixed to the transverse impact beam 5, for example by means of fixing means engaging in fixing holes 6 of the connecting element 7 such as screws or rivets.
  • Other fixing means are also possible, for example by bonding, welding, which do not necessarily require the presence of fixing holes 6 in the connecting element 7.
  • the connecting element further comprises a connecting part 10 and another end 11 intended to be fixed to the spar 4.
  • the connecting element 7 holds the absorber element 3 in position, the absorber element 3 being in this example positioned inside the connecting element 7.
  • the connecting portion 10 of the connecting element 7 may have orifices and / or marked folds, in particular to form a weakening zone.
  • This weakening zone makes it possible, for example, for the connecting element 7 to deform in a predetermined manner in the event of an impact, in particular so as not to influence the compressibility ratio of the absorber element 3.
  • the element of Link 7 advantageously has an incompressibility rate of less than 10% after an impact.
  • the end 11 of the connecting element 7 can be fixed to the spar 4 by means of fixing means engaging in the holes 12.
  • the connecting element 7 is fixed to the spar 4 by means of these fixing means.
  • the holes 12 are arranged laterally, and during assembly on the spar 4, these holes 12 are substantially aligned on holes on the side faces of the spar 4 to allow the passage of fastening means, such as screws.
  • the connecting element 7 may possibly form a spacer which makes it possible not to deform the end 11 when it is fastened to the spar 4, by means of fixing means engaging in the holes 12, and to promote the transmission of forces to the spar 4 in case of towing.
  • the connecting element 7 is fixed to the spar 4 via these fastening means.
  • the holes 12 are arranged laterally, and during assembly on the spar 4, these holes 12 are substantially aligned with holes made on the lateral faces of the spar 4 to allow the passage of the fastening means, such as screws.
  • the bending forces are limited on the towing element 17.
  • the end 11 of the connecting element 7 further comprises a plate forming a bearing face 14, on which abuts the absorber element 3 on the side of the spar 4.
  • the bearing face 14 thus forms a stop for the absorber element 3.
  • the shock absorption system finally comprises a towing means.
  • the towing means comprises a one-piece mounting plate 13 having an attachment bush 15 configured to mate with a removable towing member 17.
  • the towing element 17 can pass through the absorber element 3, in particular to allow a correct transmission of the forces due to towing to the vehicle structure.
  • the removable towing element 17 may for example be a towing hook, as illustrated in FIGS. 1, 2 and 3.
  • the fixing plate 13 and the removable towing element 17 may be made of metal, such as for example steel or aluminum.
  • the connecting element 7 can be made in one piece, such as an extruded aluminum profile. Alternatively, the connecting element 7 can be made by assembling several components, such as stamped or folded components assembled by welding).
  • the mounting plate 13 is integral with the connecting element 7 at the end end 11 of the connecting element 7 intended to be fixed to the spar 4, in particular it can be secured to the bearing face 14.
  • the fixing plate 13 is integral with the connecting element 7.
  • the fixing plate 13 can be welded to the connecting element 7, but the connecting element 7 can alternatively be overmoulded on the fixing plate 13.
  • the fixing plate 13 can also be made by machining, extrusion, additive manufacturing, made of steel, aluminum or composite material.
  • the fixing plate 13 extends only behind the absorber element 3, seen in the longitudinal direction X of the motor vehicle to the outside of the motor vehicle, that is to say -deside forward when the shock absorption system is intended to be placed at the front of the motor vehicle, or to the rear when the shock absorption system is intended to be placed at the rear of the vehicle, motor vehicle.
  • the end of the spar 4 can bear against a surface of the bearing face 14 of the end 11 of the connecting element 7 intended to be fixed to the spar 4, in particular a surface substantially perpendicular to the longitudinal axis X of the motor vehicle.
  • the fixing sleeve 15 extends in a hollow space of the spar 4, it can thus not interfere with the energy absorption function of the shock beam and the absorber element in case of impact.
  • the transverse impact beam 5 may comprise a through hole 19 for the towing element 17.
  • the wall of the through hole 19 may form a stop configured to limit a deformation of the towing member 17 when the towing member 17 is stressed, in particular a bending stress.
  • a contact zone between the towing element 17 and the wall of the through-hole 19 may exist in the event of deformation of the towing element 17.
  • the dimension of the through-hole 19 may be chosen close to the dimensions of the part of the towing element 17 intended to be inserted through the passage opening 19 in the direction of the fixing sleeve 15.
  • the contact zone between the towing element 17 and the wall of the passage opening 19 makes it possible to transfer part of the forces of the towing element 17 to the transverse impact beam 5, and thus limits the transmission of the unoriented forces in the longitudinal direction X of the motor vehicle to the fixing sleeve 15.
  • the absorption system 1 can be fixed on the transverse impact beam 5, for example prior to mounting on a motor vehicle to simplify the subsequent assembly on a motor vehicle.
  • the transverse impact beam 5 comprising such an absorption system 1 can then be transported and then assembled on the motor vehicle, in particular on a spar 4 of the motor vehicle, by means of fastening means by screwing.
  • a shock module may comprise a transverse impact beam 5, a shock absorbing system 1 and at least one molded element selected from the group comprising an aerodynamic system, a sensor support (s), an element lumbar stiffener for pedestrian impact protection, a skin reinforcement bumper.
  • a shock module may comprise a transverse impact beam 5, a shock absorption system 1, and integrally molded, an aerodynamic system, a sensor support (s), a low-side stiffening element and a bumper skin reinforcement. This reduces the number of different elements to assemble on the motor vehicle.
  • the aerodynamic system may comprise at least one element chosen from the group comprising a frame for controlled flaps, an air guide, an aerodynamic deflector (converging under body), a plastron.
  • This or these molded elements may be overmolded on the transverse impact beam 5 and / or on the shock absorption system 1.
  • a front block of a motor vehicle may comprise a transverse impact beam 5 comprising a shock absorption system 1, and / or may comprise a shock module of the aforementioned type.
  • the shock absorbing system 1 differs from that illustrated in FIG. 1 in that the fixing plate 13 is integral with both the bearing face 14 of the connecting element 7 and the spar 4.
  • the absorber element 3 presses on the bearing face 14 which is stiffened by the presence of the fixing plate 13 which is in contact with the plate forming support face 14 at the rear thereof.
  • the bearing face 14 forms a stop for the absorber element 3 and the fixing plate 13 forms a stop for the bearing face 14.
  • the shock absorbing system 1 differs from that illustrated in FIG. 2 in that the fixing plate 13 is fastened only to the beam 4.
  • the fixing plate 13 and the connecting element 7 then form separate parts.
  • the fixing plate 13 is a separate element from the connecting element 7.
  • the fixing plate then forms a spacer for the beam 4 intended to to be fixed to the spar 4, by means of fastening means engaging in the holes 21.
  • the fixing plate 13 is fixed to the spar 4 by means of these fixing means.
  • the holes 21 are arranged laterally, and during assembly on the spar 4, these holes 21 are substantially aligned with holes made on the lateral faces of the spar 4 to allow the passage fastening means, for example screws.
  • the fixing means can also be used to jointly fix the fixing plate 13 and the connecting element 7 to the spar 4.
  • the mounting plate forming a spacer for the spar 4, the deformation thereof is thus limited during assembly by means of the fastening means.
  • connecting element 7 from a plastic material and / or composite, for example when the fixing sleeve 13 is not integral with the connecting element 7.
  • This guide means may for example be a tube of plastic material, in particular whose thickness is sufficiently low not to influence the degree of compressibility of the absorber element 3 in case of impact. It is also possible to produce the guiding means in the form of an edge falling on the beam 5 at the orifice 19.
  • shock absorbing system 1 has notably been described as a shock absorption system capable of being disposed in the front of a vehicle, but such a shock absorption system may also be disposed of at the front. rear of a motor vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Vibration Dampers (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Système d'absorption de choc (1) pour véhicule automobile doté d'au moins un longeron (4) et d'une poutre de choc transversale (5), comportant - un élément absorbeur (3) déformable de manière irréversible au moins partiellement en réaction à un choc, constitué d'un matériau plastique et/ou composite, et configuré pour être disposé entre la poutre de choc transversale (5) et le longeron (4), - un élément de liaison (7) comprenant au moins une paroi ayant une extrémité (9) de fixation à la poutre de choc, et une autre extrémité (11) de fixation au longeron (4), laquelle comporte une face d'appui (14), l'élément absorbeur (3) étant maintenu en position par l'élément de liaison (7), en butée sur la face d'appui (14), - un moyen de remorquage du véhicule automobile, comprenant une platine de fixation (13) monopièce comportant une douille de fixation (15) configurée pour s'accoupler avec un élément de remorquage (17) amovible, la platine de fixation (13) étant configurée pour être solidaire de l'extrémité (11) destinée à être fixée au longeron (4) et/ou du longeron (4).

Description

SYSTEME D'ABSORPTION DE CHOC POUR VEHICULE AUTOMOBILE
L’invention concerne le domaine des pare-chocs pour véhicule automobile, plus particulièrement des systèmes d’absorption de choc comprenant un élément absorbeur de choc, lesquels comportent en outre un moyen de remorquage du véhicule.
On connaît dans l’état de la technique des éléments absorbeurs de choc pour véhicule destinés à être placés entre une poutre de choc transversale et des longerons qui relient l’ensemble au corps du véhicule. Ils peuvent être présents à l’avant et/ou à l’arrière du véhicule en s’étendant dans la direction longitudinale du véhicule. De tels éléments absorbeurs permettent d’absorber l’énergie lors d’un choc de manière à limiter la déformation d’autres composants et les coûts de réparation du véhicule.
De nos jours, les constructeurs automobiles cherchent à réduire de plus en plus la consommation en énergie des véhicules automobiles, notamment en diminuant le poids de celles-ci. Dans cette optique, ils cherchent à réduire le taux d’encombrement des pare-chocs, en particulier celui de la poutre de choc transversale et des éléments absorbeurs dans la direction longitudinale. A l’avant du véhicule, une réduction de 50 mm de la distance entre l’avant de la poutre et l’arrière des absorbeurs, induit un allègement du véhicule d’environ 5 kg. Cette réduction de distance, induit une réduction du porte-à-faux véhicule, ce qui permet aussi des libertés de style de véhicules, notamment par des pare-chocs plus verticaux et des capots plus courts.
Cependant, la réduction de cette distance (entre l’avant de la poutre de choc transversale et l’arrière des éléments absorbeurs), et donc du porte-à-faux, est limitée par les normes de sécurité qui exigent une résistance satisfaisante du pare-chocs et des pièces environnantes. Une façon de réduire le porte-à-faux est d’augmenter la longueur efficace de l’élément absorbeur, c’est à dire la distance sur laquelle l’élément absorbeur se déforme avant d’atteindre son incompressibilité caractérisée en une forte montée en effort. Dans le cadre de cette invention, la compressibilité s’entend de la faculté d’un corps à se comprimer au maximum, c’est-à-dire à laisser un résidu incompressible le plus faible possible.
A titre d’exemple, un élément absorbeur métallique peut se comprimer sur environ 70% et possède une incompressibilité d’environ 30%. On cherche donc à augmenter la compressibilité des éléments absorbeurs pour qu’ils puissent absorber le plus d’énergie possible en cas d’impact dans un encombrement axial réduit. Cet encombrement axial est donc le total de la course d’écrasement (pendant laquelle l’énergie est absorbée), et l’incompressible restant à la fin. Autrement dit, on cherche à réduire la partie incompressible des éléments absorbeurs qui ne participe pas à l’absorption d’énergie.
On connaît également des systèmes d’absorption d’énergie basés sur la compression axiale d’un tube composite. Classiquement ce tube est composé d’une résine constituant la matrice du composite et des fibres.
Le mode préconisé pour la déformation axiale d’un tel tube composite durant la phase de compression sous un effort (choc) est la délamination. Lors d’une telle délamination, les renforts fibrés se cisaillent dans leur épaisseur de préférence sur toute la longueur du tube.
En particulier, le brevet US4336868A décrit des procédés de fabrication d’un tube composite ainsi que la performance des matrices et des renforts fibrés en termes de capacité à absorber l’énergie (énergie d’absorption spécifique). Dans ce document est notamment illustré le mode de délamination du tube sous un effort de compression axiale.
Classiquement, la résine est réduite en poussière et les différentes couches de renforts sont délaminées dans la direction de l’impact (donc essentiellement « axiale ») et absorbent ainsi de l’énergie.
Avec un tel mode de délaminage, on peut espérer un résidu incompressible d’environ 5%. Cette réduction de l’incompressible induit une augmentation de la longueur efficace de l’élément absorbeur et donc un potentiel d’absorption d’énergie plus important pour un tarage en effort identique.
Cependant, lorsque le système d’absorption d’énergie due à un choc comprend un tel élément absorbeur en matériau plastique et/ou composite, comme par exemple dans le brevet US7300080 B2, la présence d’un moyen de remorquage, comme une douille métallique dans laquelle peut être vissé un anneau ou crochet de remorquage, peut empêcher l’élément absorbeur d’atteindre une si faible incompressibilité.
Un autre brevet US6893063 B2 décrit le placement d’une douille métallique de remorquage dans la poutre de choc transversale. Cependant, la déformation de la poutre de choc transversale peut alors être affectée par la présence d’un tel système de remorquage en son sein. En outre, la transmission des efforts dus au remorquage et/ou à l’arrimage s’effectue depuis la douille de remorquage vers un longeron en passant par un élément absorbeur de choc, ce qui peut poser problème. En effet, un élément absorbeur de choc en matériau plastique et/ou composite peut être moins résistant aux efforts de traction ou à la fatigue qu’un élément absorbeur de choc en métal.
Le brevet EP2248688 décrit un système de remorquage, dans lequel la douille métallique est prévue pour se désolidariser du longeron par la présence d’une partie affaiblie sur la douille métallique, comme par exemple dans le cas d’un petit choc affectant la zone de la poutre de choc transversale ou de l’élément absorbeur. Cependant dans ce cas, un remorquage du véhicule est alors compromis, la transmission des efforts entre un crochet de remorquage et un longeron du véhicule n’étant plus réalisée, la tenue mécanique des éléments transmettant les efforts dus au remorquage n’étant pas nécessairement conservée. La fabrication et l’assemblage d’un tel système est en outre complexe, et la longueur de la douille métallique alourdit un tel système.
Un but de l’invention est de remédier à ces inconvénients en fournissant un système d’absorption de choc pour véhicule automobile à encombrement et masse réduits, améliorant la transmission des efforts dus au remorquage ou à l’arrimage, permettant une compressibilité maximale en cas de choc, tout en permettant un remorquage ou un arrimage sécurisé, même lorsqu’un choc a affecté la zone de la poutre de choc transversale et/ou de l’élément absorbeur de choc, et dont la fabrication et l’assemblage sont simplifiés. Ainsi, l’invention a notamment pour objet un système d'absorption de choc pour véhicule automobile, le véhicule automobile étant doté d'au moins un longeron et d'une poutre de choc transversale, comportant
- un élément absorbeur apte à se déformer de manière irréversible au moins partiellement en réaction à un choc, l'élément absorbeur étant constitué d'un matériau plastique et/ou composite, l'élément absorbeur étant configuré pour être disposé entre la poutre de choc transversale et le longeron,
- un élément de liaison comprenant au moins une paroi ayant une extrémité destinée à être fixée à la poutre de choc, et une autre extrémité destinée à être fixée au longeron, laquelle comporte une face d’appui, l'élément absorbeur étant maintenu en position par l'élément de liaison, la face d’appui formant une butée pour l’élément absorbeur,
- un moyen de remorquage du véhicule automobile,
le moyen de remorquage comprenant une platine de fixation monopièce comportant une douille de fixation configurée pour s'accoupler avec un élément de remorquage amovible, la platine de fixation étant configurée pour être solidaire de l’extrémité destinée à être fixée au longeron et/ou du longeron.
Ainsi, un tel système permet de placer le moyen de remorquage de manière à ne pas augmenter l’encombrement du véhicule en direction longitudinale. La transmission des efforts n’est pas assurée via la poutre de choc transversale et/ou via l’élément absorbeur. Les efforts transitant par l’élément de remorquage amovible, par exemple un crochet de remorquage, sont directement transmis au longeron et donc à la structure du véhicule. Cela améliore la transmission des efforts. La douille de fixation de l’élément de remorquage amovible, par exemple un crochet, est fixée de façon robuste au longeron. En effet, les efforts transmis depuis l’élément de remorquage amovible sont directement transmis à la structure du véhicule. De plus, un tel système permet d’obtenir une compressibilité maximale de l’élément absorbeur, la douille de fixation ne se trouvant pas dans la zone de compression de l’élément absorbeur. En effet, le taux de compressibilité de l'élément absorbeur n'est pas affecté par une implantation de la douille de fixation dans l’élément absorbeur. Les éléments du système peuvent avoir une forme permettant une fabrication aisée, et le nombre d’éléments à fixer est également réduit, cela permettant de simplifier l’assemblage et d’alléger le système d’absorption de choc par rapport à un système d’absorption de choc conventionnel.
Par « remorquage », il faut notamment comprendre remorquage et/ou arrimage, ou encore sortie de fossé. Ainsi l’arrimage d’un véhicule automobile permet son transport par exemple sur une remorque ou un bateau ou encore en cas de panne ou de stationnement gênant, ce qui peut être assimilé à un remorquage.
On entend par exemple par « apte à se déformer de manière irréversible », le délaminage ou la fragmentation. Le délaminage est la propriété d’un corps à se cisailler dans son épaisseur longitudinalement et la fragmentation est la capacité d’un corps à absorber de l’énergie par destruction. Le délaminage ou la fragmentation de l’élément absorbeur conduit à une destruction irréversible d’au moins une grande partie de l’élément absorbeur de sorte qu’il ne soit plus d’un seul tenant. De cette manière, la compressibilité de l’élément absorbeur est augmentée de manière conséquente. La longueur nécessaire du système d’absorption de choc est alors réduite, contribuant à une réduction du porte-à-faux et un allègement considérable du véhicule. Un tel élément absorbeur peut atteindre une compressibilité de plus de 90% (correspondant à un incompressible inférieur à 10%) comparé à un élément absorbeur en aluminium ayant une compressibilité d’environ 70%.
Le système d'absorption de choc selon l’invention peut optionnellement comprendre une ou plusieurs des caractéristiques suivantes :
- la platine de fixation est solidaire de la face d’appui.
- la platine de fixation est venue de matière avec l'élément de liaison. Cela permet de diminuer le nombre de pièces à assembler, et ainsi de faciliter davantage l’assemblage du système d’absorption de choc.
- la platine de fixation forme une entretoise pour le longeron, destinée à être fixée par des moyens de fixation au longeron, de préférence les moyens de fixation fixant conjointement l'élément de liaison au longeron. Ainsi, la platine de fixation permet de renforcer l’extrémité du longeron, ce qui facilite notamment la transmission des efforts de remorquage. En effet, le transfert des efforts depuis l'élément de remorquage amovible vers la structure du véhicule se fait directement sur le longeron via les moyens de fixation au longeron, sans passer par une autre pièce intermédiaire. Avantageusement, lorsque les moyens de fixation fixent conjointement l’élément de liaison au longeron, la platine de fixation forme une entretoise évitant la déformation du longeron lors de la fixation de l’élément de liaison au longeron par les moyens de fixation. Les moyens de fixation permettent en particulier de positionner la platine de fixation dans l’axe du longeron, permettant ainsi de reporter les efforts lors du remorquage sur toutes les faces du longeron.
- la platine de fixation s'étend uniquement derrière l'élément absorbeur, vus dans la direction longitudinale du véhicule automobile vers l'extérieur du véhicule automobile.
De cette manière, la compressibilité de l’élément absorbeur n’est en aucune manière affectée par un élément nécessaire pour réaliser la fonction de remorquage.
- la platine de fixation forme une butée pour la face d’appui. Ainsi, en cas de choc, les efforts sont également transmis au longeron via la platine de fixation.
- la douille de fixation est configurée pour s'étendre dans un espace creux du longeron. Ainsi, l’encombrement est minimal, un espace creux du longeron étant général peu utilisé, voire inutilisé.
- l’élément absorbeur est positionné à l’intérieur de l’élément de liaison. La présence de l’élément de liaison permet ainsi d’assurer le maintien en position de l’élément absorbeur entre la poutre de choc transversale et le longeron. Par exemple, l’élément de liaison peut également assurer le maintien, la rétention, de la poutre au longeron, en particulier après la désintégration d’au moins une partie de l’élément absorbeur après un impact. De préférence, il ne participe pas ou très peu (moins de 10%) à l’absorption d’énergie et sa longueur axiale après un choc (appelée son incompressible) est plus faible que celle de l’élément absorbeur de sorte que l’élément absorbeur peut se comprimer jusqu’à sa compressibilité maximale sans être influencé par l’élément de liaison, par exemple grâce à la présence d’une zone de faiblesse mécanique programmée. Cela permet à l’élément de liaison d’initier le mode de compression de l’élément absorbeur en cas de choc, par exemple en se pliant au niveau de la zone de faiblesse mécanique programmée, et de suivre le mouvement de compression de l’élément absorbeur. On entend par « zone de faiblesse mécanique programmée » une zone où la résistance mécanique du matériau est affaiblie de manière à initier et orienter le pliage de la pièce mécanique lorsque celle-ci subit un effort. Cette zone de faiblesse programmée peut par exemple être réalisée par l’absence partielle de matière, comme une diminution de l’épaisseur ou un trou, ou bien par une déformation locale de matière, comme une pliure. Plus généralement, la zone de faiblesse programmée peut comprendre au moins un des éléments de la liste suivante, soit une combinaison de ces éléments : des trous, des évidements, des entailles, des plis marqués, une ondulation, un bossage, ou encore des changements d’épaisseur ou de matériau.
- l’élément absorbeur est un corps creux monopièce, de préférence un tube ayant une section choisie parmi la liste suivante : circulaire, rectangulaire, conique, hexagonale, évolutive. Cela permet de faciliter l’assemblage, et permet d’optimiser l’absorption d’énergie lors d’un choc.
L’invention a également pour objet une poutre de choc transversale pour véhicule automobile comprenant un système d’absorption de choc tel que décrit précédemment.
La poutre de choc transversale selon l’invention peut optionnellement comprendre les caractéristiques suivantes :
- elle comprend un orifice de passage pour l'élément de remorquage ;
- de plus, et de façon optionnelle, la paroi de l'orifice de passage peut former une butée configurée pour limiter une déformation de l'élément de remorquage lorsque l'élément de remorquage est soumis à une contrainte, en particulier une contrainte en flexion. Ainsi, lorsque la charge est exercée avec un angle par rapport à l’axe longitudinal du véhicule, l’élément de remorquage amovible s’appuie sur la poutre de choc et une partie des efforts est reportée sur la poutre de choc. Cela permet, en plus de faciliter la mise en place de l’élément de remorquage amovible, de limiter sa déformation.
L’invention a ensuite pour objet un module de choc pour véhicule automobile, comprenant une poutre de choc transversale telle que décrite précédemment et/ou un système d'absorption de choc tel que décrit précédemment, le module de choc comprenant au moins un élément venu de moulage choisi dans le groupe comprenant un système aérodynamique, un support de capteur, un élément raidisseur, un renfort de peau de pare-chocs. Cela permet de faciliter l’assemblage.
Le module de choc selon l’invention peut optionnellement comprendre la caractéristique suivante :
- au moins un élément venu de moulage est surmoulé sur la poutre de choc transversale et/ou sur le système d’absorption de choc. Cela permet d’intégrer des fonctions environnantes à la poutre, tout en réduisant le nombre de composants et en simplifiant l’assemblage et la logistique.
L’invention a enfin pour objet un bloc avant de véhicule automobile comprenant une poutre de choc transversale telle que décrite précédemment et/ou un module de choc tel que décrit précédemment.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins dans lesquels :
- la figure 1 est une vue schématique en coupe d’un premier exemple d’une poutre de choc comportant un système d’absorption de choc selon l’invention ;
- la figure 2 est une vue schématique en coupe d’un second exemple de poutre de choc comportant un système d’absorption de choc selon l’invention ;
- la figure 2bis est une vue schématique en coupe d’un détail d’un troisième exemple d’un système d’absorption de choc selon l’invention ;
- la figure 2ter est une vue schématique en coupe d’un détail d’un quatrième exemple d’un système d’absorption de choc selon l’invention ;
- la figure 3 est une vue schématique en perspective du premier exemple de poutre de choc comportant un système d’absorption de choc selon l’invention;
- la figure 4 est une vue schématique en perspective d’un exemple d’un élément de liaison conforme à l’invention ;
- la figure 5 est une vue schématique en perspective d’un exemple d’un élément absorbeur conforme à l’invention ;
- la figure 6 est une vue schématique en perspective d’un exemple d’une platine de fixation conforme à l’invention ;
- la figure 7 est une vue schématique en perspective d’un autre exemple d’une platine de fixation conforme à l’invention.
Dans ce qui va suivre, il peut être fait référence à des termes d'orientation, tels que « axe longitudinal X », « axe transversal Y », « axe vertical Z », « avant », « arrière »,
« au-dessus », « supérieure », « en dessous », « inférieure » etc. Ces termes s'entendent par référence à l'orientation usuelle des véhicules automobiles.
Comme illustré sur les figures 1 et 3, le système d’absorption de choc 1 selon l’invention comprend un élément absorbeur 3 apte à se déformer de manière irréversible au moins partiellement en réaction à un choc, par exemple par délaminage. L’élément absorbeur 3 est constitué d’un tube en matériau plastique et/ou composite. Ainsi, l’élément absorbeur 3 peut comprendre au moins une couche de matériau composite ayant une matrice en matière plastique et des éléments de renfort.
La matrice en matière plastique est par exemple un matériau thermoplastique, de préférence choisi seul ou en combinaison parmi les matériaux suivants : un polyamide, un polypropylène, un polyuréthane. La matrice en matière plastique peut alternativement être un matériau thermodurcissable, de préférence choisi seul ou en combinaison parmi les matériaux suivants : un époxy, un polyester, un vinylester.
Les éléments de renfort peuvent être des fibres continues, de préférence à base d’un matériau choisi seul ou en combinaison parmi les matériaux suivants : carbone, verre, aramide.
L’élément absorbeur 3 est configuré pour être disposé entre une poutre de choc transversale 5 et un longeron 4 du véhicule automobile, par exemple de manière sensiblement coaxiale à l’axe longitudinal X du véhicule automobile lorsque celui-ci est disposé sur un véhicule automobile.
Dans l’exemple illustré sur les figures, en particulier sur la figure 5, l’élément absorbeur 3 est un corps creux monopièce sous forme de tube circulaire. Plus généralement, l’élément absorbeur 3 peut être un corps creux, en particulier monopièce, par exemple sous forme de tube ayant une section circulaire, rectangulaire, conique, hexagonale ou évolutive.
Le système d’absorption de choc 1 comprend en outre un élément de liaison 7. La poutre de choc 5 et l’élément de liaison 7 peuvent être réalisés en métal, comme par exemple de l’aluminium ou de l’acier, et/ou en matériau plastique et/ou composite.
L’élément de liaison 7 relie la poutre de choc transversale 5 au longeron 4. Ainsi, l’élément de liaison 7 comprend par exemple une paroi ayant une extrémité 9 destinée à être fixée à la poutre de choc transversale 5, par exemple par des moyens de fixation s’engageant dans des trous de fixation 6 de l’élément de liaison 7 comme des vis ou des rivets. D’autres moyens de fixation sont également possibles, par exemple par collage, soudage, lesquels ne nécessitent ainsi pas forcément la présence de trous de fixation 6 dans l’élément de liaison 7.
L’élément de liaison comprend en outre une partie de liaison 10 et une autre extrémité 11 destinée à être fixée au longeron 4. L’élément de liaison 7 maintient en position l’élément absorbeur 3, l’élément absorbeur 3 étant dans cet exemple positionné à l’intérieur de l’élément de liaison 7. Comme illustré sur les figures 3 et 4, la partie de liaison 10 de l’élément de liaison 7 peut comporter des orifices et/ou des plis marqués, en particulier pour former une zone d’affaiblissement. Cette zone d’affaiblissement permet par exemple à l’élément de liaison 7 de se déformer d’une manière prédéterminée en cas de choc, notamment pour ne pas influencer le taux de compressibilité de l’élément absorbeur 3. Ainsi, l’élément de liaison 7 a avantageusement un taux d’incompressibilité de moins de 10% après un choc.
Comme illustré sur la figure 1 , l’extrémité 11 de l’élément de liaison 7 peut être fixée au longeron 4 par le biais de moyens de fixation s’engageant dans les trous 12. Ainsi, l’élément de liaison 7 est fixé au longeron 4 par l’intermédiaire de ces moyens de fixation. Dans l’exemple illustré sur la figure 1 , les trous 12 sont disposés latéralement, et lors de l’assemblage sur le longeron 4, ces trous 12 sont sensiblement alignés sur des trous pratiqués sur les faces latérales du longeron 4 pour permettre le passage des moyens de fixation, comme par exemple des vis. Comme illustré notamment sur la figure 3, l’élément de liaison 7 peut éventuellement former une entretoise qui permet de ne pas déformer l’extrémité 11 lors de sa fixation au longeron 4, par le biais de moyens de fixation s’engageant dans les trous 12, et de favoriser la transmission des efforts au longeron 4 en cas de remorquage. Ainsi, l’élément de liaison 7 est fixé au longeron 4 par l’intermédiaire de ces moyens de fixation. Dans les exemples illustrés sur les figures 1 , 3 et 4, les trous 12 sont disposés latéralement, et lors de l’assemblage sur le longeron 4, ces trous 12 sont sensiblement alignés sur des trous pratiqués sur les faces latérales du longeron 4 pour permettre le passage des moyens de fixation, comme par exemple des vis. On limite les efforts en flexion sur l’élément de remorquage 17.
L’extrémité 11 de l’élément de liaison 7 comporte en outre une plaque formant face d’appui 14, sur laquelle vient en appui l’élément absorbeur 3 du côté du longeron 4. La face d’appui 14 forme ainsi une butée pour l’élément absorbeur 3.
Le système d’absorption de chocs comprend enfin un moyen de remorquage. Le moyen de remorquage comprend une platine de fixation 13 monopièce comportant une douille de fixation 15 configurée pour s'accoupler avec un élément de remorquage 17 amovible. Lorsque l’élément absorbeur 3 est un corps creux, l’élément de remorquage 17 peut passer à travers l’élément absorbeur 3, notamment pour permettre une transmission correcte des efforts dus au remorquage à la structure du véhicule. L’élément de remorquage 17 amovible peut par exemple être un crochet de remorquage, comme illustré sur les figures 1 , 2 et 3. La platine de fixation 13 et l’élément de remorquage 17 amovible peuvent être réalisés en métal, comme par exemple de l’acier ou de l’aluminium. L'élément de liaison 7 peut être réalisé en une seule pièce, comme par exemple un profilé aluminium extrudé. Alternativement, l’élément de liaison 7 peut être réalisé par assemblage de plusieurs composants, comme par exemple des composants emboutis ou pliés assemblés par soudage). La platine de fixation 13 est solidaire de l'élément de liaison 7 du côté de l’extrémité 11 de l’élément de liaison 7 destinée à être fixée au longeron 4, en particulier elle peut être solidaire de la face d’appui 14. Par exemple, la platine de fixation 13 est venue de matière avec l’élément de liaison 7. Ainsi, la platine de fixation 13 peut être soudée à l’élément de liaison 7, mais l’élément de liaison 7 peut alternativement être surmoulé sur la platine de fixation 13. La platine de fixation 13 peut en outre être réalisée par usinage, extrusion, fabrication additive, en matériau acier, aluminium ou composite.
Dans l’exemple illustré sur les figures 1 et 3, la platine de fixation 13 s’étend uniquement derrière l’élément absorbeur 3, vus dans la direction longitudinale X du véhicule automobile vers l’extérieur du véhicule automobile, c’est-à-dire vers l’avant lorsque le système d’absorption de choc est destiné à être placé à l’avant du véhicule automobile, ou vers l’arrière lorsque le système d’absorption de choc est destiné à être placé à l’arrière du véhicule automobile. L’extrémité du longeron 4 peut prendre appui contre une surface de la face d’appui 14 de l’extrémité 11 de l’élément de liaison 7 destinée à être fixée au longeron 4, en particulier une surface sensiblement perpendiculaire à l’axe longitudinal X du véhicule automobile. La douille de fixation 15 s’étend dans un espace creux du longeron 4, elle ne peut ainsi interférer avec la fonction d’absorption d’énergie de la poutre de choc et de l’élément absorbeur en cas de choc.
Comme illustré sur les figures 1 , 2 et 3, la poutre de choc transversale 5 peut comprendre un orifice de passage 19 pour l'élément de remorquage 17. La paroi de l'orifice de passage 19 peut former une butée configurée pour limiter une déformation de l'élément de remorquage 17 lorsque l'élément de remorquage 17 est soumis à une contrainte, en particulier une contrainte en flexion. En effet, une zone de contact entre l’élément de remorquage 17 et la paroi de l’orifice de passage 19 peut exister en cas de déformation de l’élément de remorquage 17. Ainsi, la dimension de l’orifice de passage 19 peut être choisie proche des dimensions de la partie de l’élément de remorquage 17 destinée à être insérée à travers l’orifice de passage 19 en direction de la douille de fixation 15. Dans ce cas, la zone de contact entre l’élément de remorquage 17 et la paroi de l’orifice de passage 19 permet de transférer une partie des efforts de l’élément de remorquage 17 à la poutre de choc transversale 5, et limite ainsi la transmission les efforts non orientés dans la direction longitudinale X du véhicule automobile à la douille de fixation 15.
Le système d’absorption 1 peut être fixé sur la poutre de choc transversale 5, par exemple préalablement au montage sur un véhicule automobile pour simplifier l’assemblage ultérieur sur un véhicule automobile. La poutre de choc transversale 5 comportant un tel système d’absorption 1 peut ensuite être transportée puis assemblée sur le véhicule automobile, en particulier sur un longeron 4 du véhicule automobile, par l’intermédiaire de moyens de fixation par vissage.
Un module de choc peut comporter une poutre de choc transversale 5, un système d’absorption de choc 1 ainsi qu’au moins un élément venu de moulage choisi dans le groupe comprenant un système aérodynamique, un support de capteur(s), un élément raidisseur de voie basse pour la protection des chocs piéton, un renfort de peau de pare-chocs. En particulier, un module de choc peut comporter une poutre de choc transversale 5, un système d’absorption de choc 1 , et venus de moulage, un système aérodynamique, un support de capteur(s), un élément raidisseur de voie basse et un renfort de peau de pare-chocs. Cela permet de diminuer le nombre d’éléments différents à assembler sur le véhicule automobile. Le système aérodynamique peut comporter au moins un élément choisi dans le groupe comprenant un cadre pour volets pilotés, un guide d'air, un déflecteur aérodynamique (convergent sous caisse), un plastron.
Ce ou ces éléments venus de moulage peuvent être surmoulés sur la poutre de choc transversale 5 et/ou sur le système d’absorption de choc 1.
Un bloc avant de véhicule automobile peut comprendre une poutre de choc transversale 5 comportant un système d’absorption de choc 1 , et/ou peut comprendre un module de choc du type précité.
Dans l’exemple illustré sur les figures 2 et 2ter, le système d’absorption de choc 1 se distingue de celui illustré sur la figure 1 en ce que la platine de fixation 13 est solidaire à la fois de la face d’appui 14 de l'élément de liaison 7 et du longeron 4.
Avantageusement, dans l’exemple illustré sur la figure 2ter, en cas de choc, l’élément absorbeur 3 appuie sur la face d’appui 14 qui est rigidifiée par la présence de la platine de fixation 13 qui se trouve en contact avec la plaque formant face d’appui 14, à l’arrière de celle-ci. Ainsi, la face d’appui 14 forme une butée pour l’élément absorbeur 3 et la platine de fixation 13 forme une butée pour la face d’appui 14.
Dans l’exemple illustré sur la figure 2bis, le système d’absorption de choc 1 se distingue de celui illustré sur la figure 2 en ce que la platine de fixation 13 est fixée uniquement sur le longeron 4. La platine de fixation 13 et l’élément de liaison 7 forment alors des pièces séparées.
De manière similaire, dans les exemples illustrés sur les figures 6 et 7, la platine de fixation 13 est un élément séparé de l’élément de liaison 7. Dans ces exemples, la platine de fixation forme alors une entretoise pour le longeron 4 destinée à être fixée au longeron 4, par le biais de moyens de fixation s’engageant dans les trous 21. Ainsi, la platine de fixation 13 est fixée au longeron 4 par l’intermédiaire de ces moyens de fixation. Dans les exemples illustrés sur les figures 6 et 7, les trous 21 sont disposés latéralement, et lors de l’assemblage sur le longeron 4, ces trous 21 sont sensiblement alignés sur des trous pratiqués sur les faces latérales du longeron 4 pour permettre le passage des moyens de fixation, comme par exemple des vis.
Les moyens de fixation peuvent en outre être utilisés pour fixer conjointement la platine de fixation 13 et l’élément de liaison 7 au longeron 4. La platine de fixation formant une entretoise pour le longeron 4, la déformation de celui-ci est ainsi limitée lors de l’assemblage par le biais des moyens de fixation.
L'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier.
Il est par exemple possible de réaliser l’élément de liaison 7 à partir d’un matériau plastique et/ou composite, par exemple lorsque la douille de fixation 13 n’est pas venue de matière avec l’élément de liaison 7.
II est également possible de disposer un moyen de guidage de l’élément de remorquage 17 amovible entre la poutre de choc transversale 5 et l’extrémité 11 de l’élément de liaison 7 destinée à être fixée sur le longeron 4. Ce moyen de guidage peut par exemple être un tube en matériau plastique, en particulier dont l’épaisseur est suffisamment faible pour ne pas influencer le taux de compressibilité de l’élément absorbeur 3 en cas de choc. Il est également possible de réaliser le moyen de guidage sous la forme d’un bord tombé sur la poutre 5 au niveau de l’orifice 19.
Enfin, le système d’absorption de choc 1 a notamment été décrit comme un système d’absorption de choc apte à être disposé à l’avant d’un véhicule, mais un tel système d’absorption de choc peut également être disposé à l’arrière d’un véhicule automobile.
Références :
I : système d’absorption de choc
3 : élément absorbeur
4 : longeron
5 : poutre de choc transversale
6 : trou de fixation de l’élément de liaison 7 du côté de la poutre 5
7 : élément de liaison
9 : extrémité de l’élément de liaison 7 du côté de la poutre 5 10 : partie de liaison
I I : extrémité de l’élément de liaison 7 du côté du longeron 4
12 : trou de fixation de l’élément de liaison 7 du côté du longeron 4
13 : platine de fixation
14 : face d’appui
15 : douille de fixation
17 : élément de remorquage
19 : orifice de passage
21 : trou de la platine de fixation 13

Claims

Revendications
1. Système d'absorption de choc (1 ) pour véhicule automobile, le véhicule automobile étant doté d'au moins un longeron (4) et d'une poutre de choc transversale (5), comportant
- un élément absorbeur (3) apte à se déformer de manière irréversible au moins partiellement en réaction à un choc, l'élément absorbeur (3) étant constitué d'un matériau plastique et/ou composite, l'élément absorbeur (3) étant configuré pour être disposé entre la poutre de choc transversale (5) et le longeron (4),
- un élément de liaison (7) comprenant au moins une paroi ayant une extrémité (9) destinée à être fixée à la poutre de choc, et une autre extrémité (11 ) destinée à être fixée au longeron (4), laquelle comporte une face d’appui (14), l'élément absorbeur (3) étant maintenu en position par l'élément de liaison (7), la face d’appui (14) formant une butée pour l’élément absorbeur (3),
- un moyen de remorquage du véhicule automobile,
le moyen de remorquage comprenant une platine de fixation (13) monopièce comportant une douille de fixation (15) configurée pour s'accoupler avec un élément de remorquage (17) amovible, la platine de fixation (13) étant configurée pour être solidaire de l’extrémité (11 ) destinée à être fixée au longeron (4) et/ou du longeron (4), l’élément absorbeur (3) étant un corps creux monopièce.
2. Système d'absorption de choc (1 ) selon la revendication 1 , dans lequel la platine de fixation (13) est solidaire de la face d’appui (14).
3. Système d'absorption de choc (1 ) selon la revendication 1 ou 2, dans lequel la platine de fixation (13) est venue de matière avec l'élément de liaison (7).
4. Système d'absorption de choc (1 ) selon la revendication 1 ou 2, dans lequel la platine de fixation (13) forme une entretoise pour le longeron (4), destinée à être fixée par des moyens de fixation au longeron (4), de préférence les moyens de fixation fixant conjointement l'élément de liaison (7) au longeron (4).
5. Système d'absorption de choc (1 ) selon la revendication précédente, dans lequel la platine de fixation (13) s'étend uniquement derrière l’élément absorbeur (3), vus dans la direction longitudinale du véhicule automobile vers l'extérieur du véhicule automobile.
6. Système d'absorption de choc (1 ) selon l’une quelconque des revendications 1 , 2, 4 et 5, dans lequel la platine de fixation (13) forme une butée pour la face d’appui (14).
7. Système d'absorption de choc (1 ) selon l’une quelconque des revendications précédentes, dans lequel la douille de fixation (15) est configurée pour s'étendre dans un espace creux du longeron (4).
8. Système d'absorption de choc (1 ) selon l’une quelconque des revendications précédentes, dans lequel l’élément absorbeur (3) est positionné à l’intérieur de l’élément de liaison (7).
9. Système d'absorption de choc (1 ) pour véhicule automobile selon l’une quelconque des revendications précédentes, dans lequel l’élément absorbeur (3) est un tube ayant une section choisie parmi la liste suivante : circulaire, rectangulaire, conique, hexagonale, évolutive.
10. Poutre de choc transversale (5) pour véhicule automobile comprenant un système d'absorption de choc (1 ) selon l’une quelconque des revendications précédentes.
11. Poutre de choc transversale (5) selon la revendication précédente, laquelle comprend un orifice de passage (19) pour l'élément de remorquage (17), la paroi de l'orifice de passage (19) formant une butée configurée pour limiter une déformation de l'élément de remorquage (17) lorsque l'élément de remorquage (17) est soumis à une contrainte, en particulier une contrainte en flexion.
12. Module de choc pour véhicule automobile comprenant une poutre de choc transversale (5) selon l’une quelconque des revendications 10 et 11 et/ou un système d'absorption de choc (1 ) selon l’une quelconque des revendications 1 à 9, lequel comprend au moins un élément venu de moulage choisi dans le groupe comprenant un système aérodynamique, un support de capteur, un élément raidisseur, un renfort de peau de pare-chocs.
13. Module de choc selon la revendication précédente, dans lequel ledit au moins un élément venu de moulage est surmoulé sur la poutre de choc transversale (5) et/ou sur le système d’absorption de choc (1 ).
14. Bloc avant de véhicule automobile comprenant une poutre de choc transversale (5) selon l’une quelconque des revendications 10 et 11 et/ou un module de choc selon l’une quelconque des revendications 12 et 13.
PCT/EP2018/084408 2017-12-11 2018-12-11 Systeme d'absorption de choc pour vehicule automobile WO2019115552A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18822026.3A EP3724012A1 (fr) 2017-12-11 2018-12-11 Systeme d'absorption de choc pour vehicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761879A FR3074750B1 (fr) 2017-12-11 2017-12-11 Systeme d'absorption de choc pour vehicule automobile
FR1761879 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019115552A1 true WO2019115552A1 (fr) 2019-06-20

Family

ID=61750296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084408 WO2019115552A1 (fr) 2017-12-11 2018-12-11 Systeme d'absorption de choc pour vehicule automobile

Country Status (3)

Country Link
EP (1) EP3724012A1 (fr)
FR (1) FR3074750B1 (fr)
WO (1) WO2019115552A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112168B3 (de) 2020-05-06 2021-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schürzenanordnung für einen Stoßfänger
FR3116491A1 (fr) * 2020-11-26 2022-05-27 Valeo Systemes Thermiques Dispositif absorbeur d’énergie.
DE102022117602A1 (de) 2022-07-14 2024-01-25 Benteler Automobiltechnik Gmbh Stoßfängeranordnung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3126935A1 (fr) 2021-09-14 2023-03-17 Psa Automobiles Sa Traverse de pare-chocs présentant des affaiblissements autour d’une douille d’arrimage.

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336868A (en) 1978-05-10 1982-06-29 Textron, Inc. Composite fibrous tube energy absorber
EP0055364A1 (fr) * 1980-12-30 1982-07-07 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Composant de protection contre une collision
JP2002053066A (ja) * 2000-08-10 2002-02-19 Fuji Heavy Ind Ltd 車両用牽引フックの取付構造
FR2842152A1 (fr) * 2002-07-15 2004-01-16 Peugeot Citroen Automobiles Sa Armature de pare-chocs avec elements absorbeur de chocs perfectionne
US6893063B2 (en) 2002-05-11 2005-05-17 Wagon Automotive (Uk) Limited Vehicle bumper assemblies and associated towing assemblies
US7300080B2 (en) 2005-05-13 2007-11-27 Alcan Technology & Management Ltd. Bumper system
JP2009292175A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp 牽引フック取付構造
EP2248688A1 (fr) 2009-05-07 2010-11-10 Rehau AG & Co Dispositif de remorquage
JP2012192833A (ja) * 2011-03-16 2012-10-11 Kobe Steel Ltd 脱着式牽引フックの取付構造
WO2012140930A1 (fr) * 2011-04-14 2012-10-18 豊田鉄工株式会社 Structure de fixation de crochet et module de fixation de crochet pour véhicule
CN105034724A (zh) * 2015-08-11 2015-11-11 奇瑞汽车股份有限公司 一种汽车拖钩牵引装置
FR3021921A1 (fr) * 2014-06-09 2015-12-11 Plastic Omnium Cie Insert metallique pour moyen de remorquage de vehicule

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336868A (en) 1978-05-10 1982-06-29 Textron, Inc. Composite fibrous tube energy absorber
EP0055364A1 (fr) * 1980-12-30 1982-07-07 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Composant de protection contre une collision
JP2002053066A (ja) * 2000-08-10 2002-02-19 Fuji Heavy Ind Ltd 車両用牽引フックの取付構造
US6893063B2 (en) 2002-05-11 2005-05-17 Wagon Automotive (Uk) Limited Vehicle bumper assemblies and associated towing assemblies
FR2842152A1 (fr) * 2002-07-15 2004-01-16 Peugeot Citroen Automobiles Sa Armature de pare-chocs avec elements absorbeur de chocs perfectionne
US7300080B2 (en) 2005-05-13 2007-11-27 Alcan Technology & Management Ltd. Bumper system
JP2009292175A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp 牽引フック取付構造
EP2248688A1 (fr) 2009-05-07 2010-11-10 Rehau AG & Co Dispositif de remorquage
JP2012192833A (ja) * 2011-03-16 2012-10-11 Kobe Steel Ltd 脱着式牽引フックの取付構造
WO2012140930A1 (fr) * 2011-04-14 2012-10-18 豊田鉄工株式会社 Structure de fixation de crochet et module de fixation de crochet pour véhicule
FR3021921A1 (fr) * 2014-06-09 2015-12-11 Plastic Omnium Cie Insert metallique pour moyen de remorquage de vehicule
CN105034724A (zh) * 2015-08-11 2015-11-11 奇瑞汽车股份有限公司 一种汽车拖钩牵引装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112168B3 (de) 2020-05-06 2021-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schürzenanordnung für einen Stoßfänger
FR3116491A1 (fr) * 2020-11-26 2022-05-27 Valeo Systemes Thermiques Dispositif absorbeur d’énergie.
WO2022111896A1 (fr) * 2020-11-26 2022-06-02 Valeo Systemes Thermiques Dispositif absorbeur d'energie
DE102022117602A1 (de) 2022-07-14 2024-01-25 Benteler Automobiltechnik Gmbh Stoßfängeranordnung

Also Published As

Publication number Publication date
FR3074750A1 (fr) 2019-06-14
FR3074750B1 (fr) 2020-07-10
EP3724012A1 (fr) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2019115552A1 (fr) Systeme d'absorption de choc pour vehicule automobile
EP1426242B1 (fr) Coque de poutre de pare-chocs comportant une doublure de coque et un renfort
EP3558758B1 (fr) Absorbeur de choc pour véhicule automobile et poutre de chocs comportant cet absorbeur de choc
EP2596255B1 (fr) Aéronef comprenant une bielle comportant une partie en matériau composite
EP3562714B1 (fr) Système d'absorption de choc pour véhicule automobile
EP3024714A1 (fr) Montant latéral pour caisse de véhicule automobile perfectionné
EP3164317A1 (fr) Traverse transversale de renfort améliorée a rupture programmée
FR2842152A1 (fr) Armature de pare-chocs avec elements absorbeur de chocs perfectionne
EP3844050A1 (fr) Vehicule comprenant un dispositif d'absorption pour choc frontal a faible recouvrement
EP3245107B1 (fr) Élément absorbeur d'énergie pour pare-chocs automobile
EP3277543B1 (fr) Structure de véhicule allégée comportant deux voies d'efforts et véhicule comportant une telle structure
FR2903070A1 (fr) Piece de structure obtenue par raboutage pour vehicule automobile
EP3670221B1 (fr) Sous-ensemble de véhicule automobile comprenent une doublure de hayon et un élément d'inferfaçage d'une zone serrure du hayon
EP2210799B1 (fr) Ensemble de carénage sous moteur pour une structure avant d'un véhicule automobile
EP3154842B1 (fr) Partie avant de la structure d'un vehicule automobile
EP2767458B1 (fr) Plancher arrière de charge pour véhicule automobile, comportant un longeronnet renforcé
FR3047455A1 (fr) Vehicule avec glissiere de renfort en cas de choc frontal avant a faible chevauchement
EP3245108B1 (fr) Élément absorbeur d'énergie pour pare-chocs automobile
EP3027448B1 (fr) Bloc avant pour un véhicule automobile
EP3003832B1 (fr) Partie avant de la structure d'un vehicule automobile
FR3120833A1 (fr) Absorbeur de chocs hybride en matière plastique à armature métallique.
EP3661814A1 (fr) Ensemble pare-chocs pour vehicule automobile
EP3023306A1 (fr) Ensemble de pare-chocs comprenant une âme formée de deux demi-âmes et une coque formée de deux demi-coques
FR2971462A1 (fr) Structure de sieges arriere d'un vehicule.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018822026

Country of ref document: EP

Effective date: 20200713