WO2019114822A1 - 一种仿生手术器械及其控制方法 - Google Patents

一种仿生手术器械及其控制方法 Download PDF

Info

Publication number
WO2019114822A1
WO2019114822A1 PCT/CN2018/121216 CN2018121216W WO2019114822A1 WO 2019114822 A1 WO2019114822 A1 WO 2019114822A1 CN 2018121216 W CN2018121216 W CN 2018121216W WO 2019114822 A1 WO2019114822 A1 WO 2019114822A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical instrument
guide wire
hand
bionic
central
Prior art date
Application number
PCT/CN2018/121216
Other languages
English (en)
French (fr)
Inventor
杨波
王林辉
肖亮
孙颖浩
Original Assignee
中国人民解放军第二军医大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第二军医大学 filed Critical 中国人民解放军第二军医大学
Publication of WO2019114822A1 publication Critical patent/WO2019114822A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots

Definitions

  • the present invention relates to a surgical instrument, and more particularly to a biomimetic surgical instrument.
  • Minimally invasive surgery refers to a number of perforations in the body surface, through the small holes into the body cavity, such as the abdominal cavity, chest cavity, pelvic cavity, joint cavity, etc., under the supervision of the endoscope
  • the device is operated outside the patient's body, and the instrument is inserted into the working end of the patient's body cavity to excise the lesion in the cavity, or the organ is repaired, sutured, etc., and the endoscope and the instrument are taken out after the operation, and the suture surface is obtained.
  • the small hole can complete the entire operation.
  • the slender surgical instrument has severely limited operating angles and reduced tactile feedback, making it one of the biggest challenges of laparoscopic techniques.
  • a large number of dry (in vitro model operation training) and wet (live animal experiment) training are required to establish a more stable surgical experience curve to complete some simple laparoscopic surgery.
  • Beginners who want to complete relatively complex functional reconstruction such as laparoscopic radical prostatectomy and laparoscopic partial nephrectomy require a large number of clinical procedures before they can be competent.
  • One of the main reasons is that traditional laparoscopic instruments do not have the same "wrist" movement as a human hand, but only have three degrees of freedom. For routine surgical but complicated and delicate surgical operations such as suturing and tying, more experience must be used. To compensate for the inconvenience caused by equipment design defects.
  • multi-degree-of-freedom laparoscopic surgical instruments have been developed and applied. Because of the bendable end of the instrument, the traditional laparoscopic instruments are solved to some extent. The problem of limited operating angle.
  • the current multi-degree-of-freedom laparoscopic surgical instruments in the world are mostly in the form of "reverse operation", that is, the bending direction of the instrument is opposite to the actual operation direction of the surgeon, which poses a considerable challenge to the smooth operation of the doctor.
  • Patent Document 1 (CN101909526B) and Patent Document 2 (CN102076268A) disclose a surgical instrument including a proximal control handle and a distal tool interconnected by an elongate instrument shaft for accessing an anatomy a proximal movable member and a distal movable member respectively interconnecting the proximal control handle and the distal tool through the instrument shaft; a cable control device disposed between the movable member; located at the handle And an coupling member for controlling the distal tool by the movable member; and a coupling device for selectively engaging or disengaging the shaft portion of the instrument with the handle portion.
  • the handle has a distal receiver portion and a shaft connector on the proximal moving member is selectively engageable with and detachable from the receiver portion.
  • the surgical instrument can cause the distal tool to move by the operation of the control handle, and the proximal flexible member can be bent in any direction, thereby controlling the distal flexible member to bend in the same or opposite direction,
  • "forward operation” can be achieved, but 1) since the handle is constructed in a vertical pistol grip type and is substantially obtuse with the elongate instrument shaft, it is susceptible to space limitations during minimally invasive surgical procedures. , resulting in poor flexibility and accuracy; 2) bending of the distal bendable member requires actuation of the proximal bendable member, and bending of the proximal bendable member requires the surgeon to use the swing of the forearm or even the forearm The control is realized, so the ergonomics performance is poor.
  • Patent Document 3 discloses a surgical instrument including an elongated instrument shaft having a proximal end and a distal end; a distal functional portion; and a control handle disposed at the proximal end of the instrument shaft; the functional portion coupled to the distal end of the elongated instrument shaft by a distal moving element; the control A handle is coupled to the proximal end of the elongated instrument shaft by a proximal bendable element; an actuation device extends between the distal and proximal elements, whereby the control handle is relative to the thin Any deflection of the long instrument shaft causes the distal moving element to produce a corresponding bend to control the functional portion; wherein at least the proximal bendable member comprises an integrally slotted structure, the integrally slotted structure having A plurality of discs separated by slots.
  • the housing device uses a linear handle to achieve "forward operation” while reducing vertical space occupancy, which increases flexibility to a certain extent, but also reduces the comfort of the surgeon during operation.
  • the invention provides a bionic surgical instrument, comprising: a hand-held portion; a connecting mechanism; a device lever, the hand-held portion is rotatably or movably connected to the instrument shaft through a connecting mechanism, and the movement center point of the connecting mechanism is used as a vertex a first reference ray of the central axis of the portion that is collinear or parallel and in the first direction, with the center of motion of the connecting mechanism as a vertex, a second reference ray that is collinear or parallel with the central axis of the instrument shaft and in the second direction,
  • the angle between the first reference ray and the second reference ray is >0° and ⁇ 90°, wherein the first direction is the direction in which the connection end of the hand-held portion points to the free end of the hand-held portion, and the second direction is the vicinity of the instrument shaft The end points in the direction of the distal end of the instrument shaft.
  • the moving center point of the connecting mechanism is located in a space sandwiched by the first plane and the second plane, and the first plane is a parallel plane with a sectional plane of the operator's wrist as a reference plane and a proximal direction of 10 cm.
  • the two planes are parallel planes which are made with the sectional plane of the operator's wrist as the reference plane and 10 cm in the distal direction.
  • center of motion of the attachment mechanism is located in a space that surrounds the central axis that passes through the plane of the operator's wrist.
  • the connecting mechanism comprises a fixing portion and a rotating portion, wherein the rotating portion rotatably clamps the fixing portion, the fixing portion is fixedly connected with the proximal end of the instrument rod, and the rotating portion is fixedly connected with the connecting end of the hand portion.
  • the attachment mechanism includes a first bendable portion, the proximal end of the first bendable portion being fixedly coupled to the connection end of the handpiece portion, and the distal end of the first bendable portion being fixedly coupled to the proximal end of the instrument shaft.
  • a functional portion is further included, which is fixedly coupled to the distal end of the instrument shaft.
  • a second bendable portion is further included, the proximal end and the distal end of the second bendable portion being fixedly coupled to the distal end of the instrument shaft and the proximal end of the functional portion, respectively.
  • the hand-held portion controls the movement of the functional portion by mechanical transmission.
  • a transmission member is disposed in the instrument shaft for proportionally transmitting the control action of the hand portion to the functional portion.
  • the ratio is 0.1 to 5.
  • the transmission component includes one or more of a guide wire, a wire rope, a rigid rod, and a rigid tube.
  • the proximal end of the transmission component is fixedly coupled to the hand-held portion through the fixing portion, and the distal end of the transmission component is fixedly coupled to the proximal end of the functional portion through the second bendable portion.
  • a locking device is further included.
  • the transmission component When the locking device is in the unlocked state, the transmission component is not interlocked with the hand-held portion; when the locking device is in the locked state, the transmission component is interlocked with the hand-held portion.
  • the transmission component when the locking device is in the unlocked state, the transmission component is not interlocked with the locking device, and the locking device is interlocked with the rotating portion; when the locking device is in the locked state, the transmission component is interlocked with the locking device, and the locking device is interlocked with the rotating portion.
  • the fixing portion is a sphere
  • the rotating portion is a spherical shell.
  • the transmission component is a guide wire
  • the guide wire comprises an adjustment guide wire and a central guide wire
  • the hand-held portion controls the movement direction of the functional portion by adjusting the guide wire
  • the hand-held portion controls the movement state of the functional portion through the central guide wire
  • the moving direction includes a pitching motion, a yaw motion, or a combination of the two
  • the operating state includes a closed state and an open state.
  • the adjustment guide wire has an even number of strips which may be parallel to each other or two or two.
  • the initial angle of the hand portion is adjusted by performing a pitching motion, a yaw motion, or a combination of the two, and the handhold portion is tilted when the locking device is in the locked state. , yaw motion, or a combination of both, such that the functional portion has a corresponding pitch motion, yaw motion, or a combination of the two.
  • the locking device comprises: a disc body having a central hole and an adjusting hole corresponding to the central guide wire and the adjusting guide wire, the adjusting hole is wedge-shaped; and the rotating key passes through the first through hole provided on the spherical shell Fixedly connected with the disc body; the guide wire fastening device is fixed to the spherical shell, and the guide wire is adjusted to pass through the guide wire fastening device, wherein the guide wire is fastened along the first rotation direction, and the guide wire fastening device clamps the adjustment guide wire, The adjustment guide wire is interlocked with the disc body; the second guide shaft rotates the disc body opposite to the first rotation direction, and the guide wire fastening device releases the adjustment guide wire to interlock the adjustment guide wire with the disc body.
  • the locking device further includes a fastening strap for fastening the ball and the spherical shell.
  • the functional portion, the second bendable portion, and the instrument stem are sequentially rigidly connected.
  • the locking device comprises: a ball sleeve disposed between the ball body and the spherical shell, the inner circumferential surface of the ball sleeve is provided with a first groove, the first groove is circumferentially circumferential or notched; the fastening tape is When the fastening tape fastens the ball sleeve and the spherical shell, the ball sleeve is linked with the spherical shell; when the fastening sleeve releases the sleeve and the spherical shell, the spherical sleeve and the spherical shell are not linked; the pin has one end and the adjusting guide wire The proximal end is connected, the other end is engaged with the first groove, and is movable along the first groove, so that the adjusting guide wire is linked with the ball sleeve through the pin.
  • the outer surface of the sphere is spaced apart from the second groove, the extending direction of the second groove is different from the extending direction of the first groove, and the adjusting guide wire is located in the second groove after passing through the ball and can be along the second The groove slides.
  • the hand portion includes a handle and a center handle, and one end of the handle is hinged to the center handle.
  • the transmission component further comprises a side link and a central link, one end of the side link is hinged with the central link, the other end is connected with the handle, the central link is disposed in the central handle and can be moved along the central handle, the central link One end of the rod is connected to the central guide wire.
  • the transmission component further includes a central link disposed in the central handle and movable along the central handle, and having one end connected to the central guide wire, the central link is provided with a rack, and the end of the handle and the central handle are hinged. There are gears that work with the rack.
  • instrument shaft is a bent rod.
  • the invention also provides a bionic surgical instrument kit comprising: at least two surgical instruments, at least one of which is a bionic surgical instrument having a bent rod; a cannula for the surgical instrument to pass through such that a portion of the surgical instrument is located within the cannula .
  • the at least two surgical instruments comprise two biomimetic surgical instruments and one endoscope.
  • the present invention also provides a method of controlling the above-described bionic surgical instrument, comprising the steps of: unlocking such that the transmission member does not interlock with the hand-held portion; and locking so that the transmission member does not interlock with the hand-held portion.
  • the angle between the first reference ray and the second reference ray is adjusted to be >0° and ⁇ 90°.
  • the hand-held portion is manipulated for pitching motion, yaw motion, or a combination of the two such that the functional portion produces a pitching motion, a yaw motion, or a combination of the two in proportion to the hand-held portion.
  • the ratio is 0.1 to 5.
  • the bionic surgical instrument provided by the present invention improves the flexibility in operation while achieving "forward operation", thereby making it more in line with human body operating habits.
  • the operator only needs to act on the wrist during the operation, and the operation is more flexible than the existing surgical instruments that require a large arm to achieve control of the functional part.
  • FIG. 1 is a schematic view of a bionic surgical instrument according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a bionic surgical instrument according to another embodiment of the present invention.
  • Figure 3 is a partial schematic view of the second bendable portion
  • FIG. 4 is a schematic view 1 of a locking device 1 of a bionic surgical instrument according to another embodiment
  • FIG. 5 is a partial schematic view 1 of an unmounted locking device of a bionic surgical instrument according to another embodiment
  • FIG. 6 is a second schematic view of a locking device 1 of a bionic surgical instrument according to another embodiment
  • Figure 7 is a schematic view of the locking device 1;
  • FIG. 8 is a first schematic view of a partial transmission component 1 of a bionic surgical instrument according to another embodiment
  • FIG. 9 is a second schematic view of a partial transmission component 1 of a bionic surgical instrument according to another embodiment.
  • FIG. 10 is a schematic view of a transmission component 2 of a bionic surgical instrument according to another embodiment
  • FIG. 11 is a partial schematic view 2 of an unmounted locking device of a bionic surgical instrument according to another embodiment
  • FIG. 12 is a schematic view of a locking device 2 of a bionic surgical instrument according to another embodiment
  • Figure 13 is a schematic view of a bushing
  • Figure 14 is an enlarged view of a portion A of Figure 12;
  • Figure 15 is a schematic view of a sphere
  • Figure 16 is a schematic view of a pin
  • FIG. 17 is a schematic view of a bionic surgical instrument provided by other embodiments.
  • FIG. 18 is a schematic view of a bionic surgical instrument provided by other embodiments.
  • FIG. 19 is a schematic view of a bionic surgical instrument kit provided by the present invention.
  • 20 is a side elevational view of a sleeve of a bionic surgical instrument kit provided by the present invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the terms “upper”, “lower”, “left”, “right”, “top”, and “bottom” used in the following description are not to be construed as limiting the invention.
  • FIG. 1 is a schematic diagram of a bionic surgical instrument according to an embodiment of the present invention.
  • the present invention provides a bionic surgical instrument comprising a handpiece 100, a connection mechanism 200 and an instrument shaft 300.
  • the hand piece 100 is rotatably or movably coupled to the instrument shaft 300 by a coupling mechanism 200.
  • the bionic surgical instrument provided by the above embodiment of the present invention has the following features: a first reference ray R1 that is collinear or parallel with the central axis R of the hand-held portion 100 and along the first direction with the motion center point of the connection mechanism 200 as a vertex,
  • the angle between the first reference ray R1 and the second reference ray R2 is the second reference ray R2 collinear or parallel with the central axis of the instrument shaft 300 and the second reference ray R2 in the second direction with the motion center point of the connection mechanism 200 as the apex It is >0° and ⁇ 90°.
  • the central axis can be understood as: for a regular axisymmetric component, the middle line is the central axis; for the irregular non-axisymmetric component, the central axis passes through the center of gravity of the component, and the direction of the central axis extends parallel to the component Extend the direction.
  • the present application first defines the free end and the connecting end of the hand piece 100, as well as the proximal and distal ends of the components.
  • the free end of the hand piece 100 is an end that is not connected to the connection mechanism 200, and the connection end is an end that is connected to the connection mechanism 200.
  • the proximal end of each component is one end adjacent to the operator and the distal end is an end remote from the operator.
  • the present application defines the first direction as the direction in which the connector end of the handpiece 100 is directed toward the free end of the handpiece 100, and the second direction is the direction in which the proximal end of the instrument shaft 300 is directed toward the distal end of the instrument shaft 300.
  • the central axis of the hand-held portion 100 is a hand grasping the central axis of the portion of the hand-held portion 100 along its length.
  • the bionic surgical instrument provided in this embodiment has the above-mentioned connection position relationship between the hand-held portion 100 and the instrument shaft 300, so that when the operator holds the hand-held portion 100 for use, the wrist can be operated only when the arm is not moving.
  • the connecting portion 200 can be caused to rotate or sway with respect to the proximal end of the instrument shaft 300 by the connecting mechanism 200.
  • the center of motion of the connecting mechanism 200 is located in a space sandwiched by the first plane and the second plane.
  • the first plane is a parallel plane with a sectional plane of the operator's wrist as a reference plane, 10 cm in the proximal direction
  • the second plane is a reference plane with the operator's wrist as a reference plane, and is 10 cm in the distal direction.
  • Parallel plane As shown in Fig. 2, L ⁇ 10 cm. That is, when the operator grips the hand-held portion 100, the distance between the wrist and the center of motion of the connection mechanism 200 is relatively close, so that the operator can exert a control action on the hand-held portion 100 more flexibly.
  • the bionic surgical instrument further includes a functional portion 500 that is fixedly coupled to the distal end of the instrument shaft 300.
  • a second bendable portion 400 can also be included, the proximal and distal ends of the second bendable portion 400 being fixedly coupled to the distal end of the instrument shaft 300 and the proximal end of the functional portion 500, respectively.
  • the orientation of the hand-held portion 100 is not limited to the upper portion of the instrument shaft 300 shown in FIG. 2, and may be located at any position in the circumferential direction of the instrument shaft 300.
  • the center of motion of the attachment mechanism 200 is located in a space that surrounds the central axis that passes through the plane of the operator's wrist. Therefore, as long as the angle between the first reference ray R1 and the second reference ray R2 of the surgical instrument is ensured to be >0° and ⁇ 90°, the operator can be made only by the wrist without the arm being moved. The movement of the hand piece 100 relative to the instrument shaft 300 is caused to rotate or sway.
  • the "bendable portion” in the present application may also be referred to as “flexible member”, “flexible member”, “rotatable member”, or “flexible continuum” or the like. Terms such as these refer to the element being able to bend in a controlled manner and capable of bending in any direction without any singularities.
  • the second bendable portion 400 has a hollow structure, and its shape is a parallel line shape.
  • the shape may also be corrugated or other irregular shape.
  • the corrugations may be spiral corrugations, parallel corrugations or staggered corrugations.
  • the hand piece 100 controls the movement of the functional portion 500 by mechanical transmission.
  • the mechanical rotation mode is to transmit the control action of the hand-held portion 100 to the functional portion 500 through the transmission member 310 disposed in the instrument shaft 300.
  • the connecting mechanism 200 includes a fixing portion 210 and a rotating portion 220, and the rotating portion 220 rotatably holds the fixing portion 210.
  • the fixing portion 210 is fixedly coupled to the proximal end of the instrument shaft 300, and the rotating portion 220 is fixedly coupled to the connecting end of the hand portion 100.
  • the specific shape of the fixing portion 210 and the rotating portion 220 is not limited as long as the rotating portion 220 can rotatably hold the fixing portion 210.
  • the fixing portion 210 is integrally formed with the instrument shaft 300, and the rotating portion 220 is integrally formed with the hand portion 100.
  • the instrument shaft 300 can be rigid, or partially rigid, or flexible.
  • the proximal end of the transmission member 310 is fixedly coupled to the hand-held portion 100 through the fixing portion 210, and the distal end of the transmission member 310 passes through the second bendable portion 400 and the functional portion 500.
  • the proximal end is fixedly coupled to further transfer the control action of the hand piece 100 to the functional unit 500 in proportion.
  • the ratio is 0.1 to 5, that is, when the ratio is 0.1, the hand portion 100 is rotated by 1 unit angle, the functional portion 500 is rotated by 0.1 unit angle; when the ratio is 5, the hand portion 100 is rotated by 1 unit angle.
  • the function unit 500 is rotated by 5 unit angles.
  • the movement of the functional portion 500 includes a moving direction and a moving state
  • the moving direction includes a pitching motion, a yaw motion, or a combination of the two
  • the operating state includes a closed state and an open state.
  • the pitching motion may be an up-and-down motion that is strictly orthogonal to the yaw motion, or an up-and-down motion that is non-orthogonal to the yaw motion.
  • the handpiece 100 can also control the movement of the functional portion 500 by electrical transmission.
  • the surgical instrument further includes a locking device 320 .
  • the rotating portion 220 is provided with a first through hole 230 , and the locking device 320 is engaged with the rotating portion 220 through the first through hole 230 .
  • the locking device 320 is enabled to interlock with the rotating portion 220.
  • the locking device 320 can be moved circumferentially relative to the first through hole 230 to cause the locking device 320 to be in a locked state or an unlocked state.
  • the transmission member 310 When the locking device 320 is in the unlocked state, the transmission member 310 is not interlocked with the hand portion 100; when the locking device 320 is in the locked state, the transmission member 310 is interlocked with the hand portion 100.
  • the initial position of the hand-held portion 100 can be adjusted by placing the locking device 320 in the unlocked state. Since the transmission member 310 is not interlocked with the hand-held portion 100, the position of the rotating portion 220 relative to the fixed portion 210 is arbitrarily adjusted so that the transmission member 310 does not transmit the control action of the hand-held portion 100 to the functional portion during the adjustment of the hand-held portion 100. 500. Therefore, the initial position of the hand piece 100 is adjusted, and the closing operation of the functional portion 500 of the surgical instrument is not affected.
  • the transmission component 310 when the locking device 320 of the embodiment of the present invention is in the unlocked state, the transmission component 310 is not interlocked with the locking device 320, the locking device 320 is interlocked with the rotating portion 220; when the locking device 320 is in the locked state, the transmission component 310 is locked The device 320 is interlocked, and the locking device 320 is interlocked with the rotating portion 220.
  • the transmission component 310 when the locking device 320 is in the unlocked state, the transmission component 310 is interlocked with the locking device 320, the locking device 320 is not interlocked with the rotating portion 220; when the locking device 320 is in the locked state, the transmission component 310 is linked with the locking device 320.
  • the locking device 320 is interlocked with the rotating portion 220.
  • the linkage of two components can be understood as: one component moves while the other component moves synchronously; in the unlocked state, the linkage of the two components can be understood as: one component moves while driving the other The components move synchronously; or one of the components can move while the other component moves, but can not move synchronously.
  • the fact that the two components are not linked can be understood as: one of the components moves, and the other does not move synchronously.
  • the fixing portion 210 is a ball 211
  • the rotating portion 220 is a spherical shell 221
  • the ball 211 is fixedly connected to the proximal end of the instrument rod 300
  • the spherical shell 221 is fixedly connected with the connecting end of the handheld portion 100 .
  • the spherical shell 221 rotatably holds the sphere 211.
  • the center of motion of the link mechanism 200 is the center point of the sphere 211.
  • Rotatable means that the spherical shell 221 is movable around the center point of the sphere 211.
  • the transmission member 310 is a guide wire.
  • the transmission component 310 can also be a combination of one or more of a guidewire, a wireline, a rigid rod, a rigid tube.
  • the locking device 320 When the locking device 320 is in the locked state, the proximal end of the guide wire passes through the ball 211 and is fixed to the spherical shell 221 by the locking device 320, that is, the proximal end of the guide wire is fixed to the hand portion 100.
  • the guidewire includes an adjustment guidewire 311 and a central guidewire 312.
  • the hand-held portion 100 controls the movement direction of the functional portion 500 by adjusting the guide wire 311, and the hand-held portion 100 controls the motion state of the functional portion 500 through the center guide wire 312.
  • the adjusting guide wires 311 are even-numbered strips, preferably four in number, and are symmetrically arranged in the longitudinal direction of the instrument shaft 300 and parallel to each other.
  • the structural distribution of the guide wire 311 is adjusted such that, in the locked state, the operator can control the direction of motion of the functional portion 500, such as pitch motion, yaw motion, or a combination of both, by manipulating the hand portion 100.
  • the number of the central guide wires 312 is preferably one, which is located on the central axis of the longitudinal direction of the instrument shaft 300, and the operator can control the movement state of the functional portion 500, that is, the closed state and the open state, by manipulating the hand-held portion 100.
  • the locking device 320 includes a disk body 321, a rotary key 322, and a guide wire fastening device 323.
  • the disk body 321 is provided with a central hole 3212 and four adjustment holes 3211 corresponding to the central guide wire 312 and the adjustment guide wire 311.
  • the adjustment hole 3211 is wedge-shaped, and its aperture has an increasing or decreasing tendency.
  • the rotary key 322 is fixedly coupled to the disk body 321 through a first through hole 230 provided in the ball housing 221.
  • the guide wire fastening device 323 is fixed to the spherical housing 221, the guide wire 311 is passed through the guide wire fastening device 323, and the central guide wire 312 passes through the central hole 3212.
  • the guide wire fastening device 323 When the rotary key 322 is moved circumferentially relative to the first through hole 230, the guide wire fastening device 323 relatively slides within the adjustment hole 3211, thereby being subjected to the change in the radial dimension of the adjustment hole 3211, clamping or loosening the adjustment guide wire 311.
  • the guide wire fastening device 323 When the disk body 321 is rotated in the first rotational direction X, the guide wire fastening device 323 is located at the end of the adjustment hole 3211 having a smaller aperture, so that the guide wire fastening device 323 clamps the adjustment guide wire 311, and the locking device 320 is in the locked state.
  • the locked state when the operator manipulates the hand-held portion 100, the function portion 500 generates a corresponding pitching motion and a yaw motion to move the functional portion 500 to a preferred position of the active object, thereby enabling clamping and cutting. Such as surgery.
  • the wire guide fastening device 323 When the disk body 321 is rotated in the second rotation direction Y opposite to the first rotation direction X, the wire guide fastening device 323 is located at the end of the adjustment hole 3211 having a larger aperture to allow the wire guide fastening device 323 to loosen the adjustment guide wire. 311, the locking device 320 is in an unlocked state. In the unlocked state, when the operator manipulates the hand-held portion 100, the position of the hand-held portion 100 relative to the instrument shaft is changed, thereby realizing the adjustment of the initial angle of the hand-held portion 100, that is, between the first reference ray R1 and the second reference ray R2. The angle of the hand is such that the hand-held portion 100 is in a suitable position for the operator to operate.
  • the first step is to rotate the disk body 321 along the second rotation direction Y such that the wire guide fastening device 323 slides relative to the adjustment hole 3211 to the end of the larger aperture.
  • the guide wire 311 is adjusted to be in the released state; in the second step, the operator holds the hand-held portion 100 according to the position of the object to be operated by the surgical instrument, and performs tilting, yawing, etc., to adjust the operation to the operation.
  • the more comfortable angle is to adjust the initial angle of the hand piece 100.
  • the adjustment guide wire 311 is not interlocked with the hand-held portion 100, so that the direction of the functional portion 500 does not change; in the third step, the disk body 321 is rotated along the first rotation direction X, so that the guide wire fastening device 323 The relative adjustment hole 3211 is slid to the end with a smaller aperture. At this time, the guide wire 311 is adjusted to be in a clamped state, and the guide wire 311 is adjusted to interlock with the hand-held portion 100 to complete the adjustment of the initial angle.
  • the operator can transfer the control action of the hand-held portion 100 to the functional portion 500 through the guide wire.
  • the hand-held portion 100 drives the spherical shell 221 to move along the outer surface of the ball 211 due to the guide wire fastening device 323 and the spherical shell.
  • the 221 phase is fixed, the partial adjustment guide wire 311 is pulled, and the corresponding partial adjustment guide wire 311 is relaxed, so that the second bendable portion 400 is bent toward the tow side, that is, in the same direction as the hand-held portion 100 control action. Bending occurred.
  • the moving direction of the functional portion 500 coincides with the control action of the hand portion 100.
  • the hand-held portion 100 drives the spherical shell 221 to move upward along the outer surface of the spherical body 211, and at this time, the upper regulating guide wire 311 is relaxed, and the lower regulating guide wire 311 corresponding thereto is Traction is performed such that the second bendable portion 400 is bent toward the pulled side, that is, the second bendable portion 400 is bent downward.
  • the functional portion 500 generates a downward motion in the same direction as the wrist. vice versa.
  • the hand piece 100 includes a handle and a central handle 130 with one end of the handle hinged to the central handle 130.
  • the transmission component 310 further includes a side link 3101 and a central link 3103.
  • One end of the side link 3101 is hinged to the central link 3103, and the other end is connected to the handle.
  • the central link 3103 is disposed in the central handle 130. It is movable along the central handle 130, and one end of the central link 3103 is connected to the central guide wire 312. The closing and opening of the grip relative to the central handle 130 causes the central guidewire 312 to move with the movement of the central link 3103, thereby controlling the closed state and the open state of the functional portion 500.
  • the handle includes a first handle 110 and a second handle 120 respectively located on the left and right sides of the central handle 130.
  • the combination of the three structures is of an arrow type.
  • the first handle 110 is hinged with the central handle 130, and the side link 3101 is connected with the first handle 110.
  • the transmission component 310 further includes a central pole sleeve 3104, a rotating shaft 3105, a rotating piece 3106, a driving rod 3107, a driving rod sleeve 3108, and an elastic member 3109.
  • the central link 3103 is located in the central rod sleeve 3104 and is fixedly coupled thereto.
  • the central link 3103 can drive the central rod sleeve 3104 to move along the length of the central handle 130.
  • One end of the rotating piece 3106 is fixed to the proximal end of the central rod sleeve, the other end is fixed to the driving rod sleeve 3108, and the rotating piece 3106 is rotatable about the rotating shaft 3105, so that the driving rod sleeve 3108 moves with the movement of the central rod sleeve 3104.
  • the driving rod sleeve 3108 and the elastic member 3109 are sleeved on the driving rod 3107 and can be moved along the driving rod 3107.
  • the proximal end of the driving rod 3107 is fixedly connected to the proximal end of the central handle 130.
  • One end of the elastic member 3109 is fixedly connected to the driving rod 3107, and the other end is fixedly connected to the driving rod sleeve 3108.
  • the resilient element 3109 can be a spring or other resiliently resilient element.
  • the driving rod sleeve 3108 is provided with a fourth recess 3110 that cooperates with the proximal end of the central guide wire 312.
  • the proximal end of the central guide wire 312 is fixedly connected to the driving rod sleeve 3108 through the fourth recess 3110.
  • the distal end of the central guidewire 312 is fixedly coupled to the functional portion 500.
  • the functional portion 500 is a forceps.
  • the functional portion 500 can also be various articulating tools, such as scissors, graspers, needle holders, etc., or non-hinged tools, such as cutting blades, probes, irrigators, catheters, and the like.
  • the hand portion 100 further controls the closing and opening states of the pliers through the transmission member 310.
  • the side link 3101 is closed relative to the center link 3103 to move the center link 3103 distally.
  • the rotation of the rotor 3106 about the rotation shaft 3105 causes the central guide wire 312 to move proximally along the belt rod 3107 along with the rod sleeve 3108.
  • the pliers are in a closed state and the spring is in a compressed state.
  • the compressed spring pushes the rod sleeve 3108 back to the initial position due to the restoring force, and the center guide wire 312 is relaxed.
  • the pliers are in an open state.
  • the transmission member 310 further includes a central link 3103' disposed within the central shank 130 and movable along the central shank 130.
  • the center link 3103' is provided with a rack 3111.
  • the handle includes a first grip 110 and a second grip 120.
  • the end 111 hinged to the central handle 130 is provided with a gear that cooperates with the rack 3111.
  • the end portion 111 is rotated, thereby driving the rack 3111 to move distally, and the central guide wire 312 is proximally Move, the pliers are closed.
  • Other cases are similar to the above implementations, and are not described herein again.
  • the locking device 320 may further include a fastening tape 324 for fastening the spherical shell 221 and the ball 211.
  • the hand portion 100 cannot perform a pitch motion, a yaw motion, or a combination of both.
  • the hand-held portion 100 can only perform the above-described clamping or releasing operation, thereby controlling the motion state of the functional portion 500, that is, the closed state and the open state.
  • the guide wire 311 is no longer displaced, and the functional portion 500, the second bendable portion 400, and the instrument shaft 300 are in turn rigidly connected.
  • the surgical instrument is a rigid instrument, and the functional portion 500 does not undergo a pitching motion or a yaw motion due to external disturbance or motion.
  • the ball 211 also includes a first extension 2211 and a second extension 2212.
  • the first extension 2211 is provided with a third recess 2213 which is circumferentially circumferential for receiving the fastening strip 324.
  • the third groove 2213 may be in other forms as long as the fastening tape 324 can be provided to facilitate the fastening of the spherical shell 221 and the ball 211.
  • the first extension 2211 of the spherical shell 221 is further provided with a plurality of notches 2214 spaced apart from each other. After the fastening tape 324 tightens the first extending portion 2211, the diameter of the first extending portion 2211 becomes smaller, and the spherical shell 221 and the spherical body 211 are fastened so that the spherical shell 221 and the spherical body 211 cannot be relatively displaced.
  • the surgical instrument is a rigid instrument, and the operator can only control the closed state and the open state of the functional portion 500 by the hand portion 100, and the functional portion 500 cannot be caused to cause pitch or yaw motion.
  • the second extension portion 2212 is provided with a driving rod sleeve 3108, a driving rod 3107, a rotating shaft 3105 and a spring.
  • the locking device 320 can also be in other forms.
  • the locking device 320' includes a ball sleeve 325, a fastening strip 324 and a pin 326.
  • the ball sleeve 325 is disposed between the ball 211 and the spherical shell 221 .
  • the inner peripheral surface of the ball sleeve 325 is provided with a first recess 327 which is circumferentially circumferential.
  • the first groove 327 may also be an incomplete one week.
  • the locking device 320 When the fastening band 324 fastens the ball sleeve 325 and the ball housing 221, the locking device 320 is in the locked state; when the fastening band 324 releases the ball sleeve 325 and the ball housing 221, the locking device 320 is in the unlocked state.
  • one end of the pin 326 is connected to the proximal end of the adjusting guide wire 311, the other end is engaged with the first groove 327, and is movable along the first groove 327 for adjustment.
  • the guide wire 311 is interlocked with the ball sleeve 325 by a pin 326.
  • the implementation of the engagement of the pin 326 with the first recess 327 is not limited.
  • the first recess 327 is provided with a convex portion 328 extending along the extending direction of the first recess 327, and the pin 326 is further One end is a concave portion, and the convex portion 328 is engaged with the concave portion.
  • the first recess 327 is provided with a recess extending along the extending direction of the first recess 327, and the other end of the pin 326 is a convex portion 328, and the convex portion 328 is engaged with the recess.
  • the outer surface of the spherical body 211 is spaced apart from the second groove 2111.
  • the extending direction of the second groove 2111 is different from the extending direction of the first groove 327.
  • the adjusting guide wire 311 is disposed in the second recess 2111 through the ball 211 and is slidable in the second recess 2111.
  • One end of the pin 326 connected to the adjustment guide wire 311 can be rotatably coupled to the adjustment guide wire 311 in the circumferential direction of the pin 326.
  • one end of the adjusting guide wire 311 and the pin 326 is formed in a spherical shape, and the pin 326 is rotatably inserted in the circumferential direction of the pin 326 at one end of the spherical regulating wire 311.
  • the first step is to loosen the fastening tape 324, the locking device is in an unlocked state, and the spherical shell 221 is not interlocked with the ball sleeve 325;
  • the second step according to the position of the object to be operated by the surgical instrument, the operator holds the hand-held portion 100, performs the pitching, yawing, and the like through the wrist, and the spherical shell 221 moves along the outer surface of the sleeve 325, thereby adjusting the hand-held portion 100.
  • the adjustment of the initial position of the hand piece 100 is completed to a position where the operator is more comfortable; in the third step, the ball sleeve 325 and the ball case 221 are fastened by the fastening band 324, the locking device is in a locked state, and the ball sleeve 325 and the ball case 221 are closed. Linkage.
  • the ball sleeve 325 can move synchronously with the spherical shell 221 while adjusting the guide wire 311 to interlock with the ball sleeve 325.
  • the movement of the adjustment guide wire 311 can be controlled by operating the hand-held portion 100, and then the control action of the hand-held portion 100 can be proportionally transmitted to the functional portion 500 of the surgical instrument by adjusting the guide wire 311, and the function portion 500 can be performed.
  • the corresponding surgical action can be performed.
  • one end of the guide wire connected to the pin 326 is spherical, and the pin 326 is rotatably inserted into one end of the spherical adjustment guide wire 311 along the circumferential direction of the pin 326. Then, when the locking device 320 is in the locked state, the hand-held portion 100 can be gripped, the handle ball sleeve 325 is rotated about the pin 326 by an arbitrary angle, and then the control function portion 500 performs corresponding actions.
  • the ball housing 221, the ball sleeve 325, and the adjusting guide wire 311 are linked together.
  • the adjustment guide wire 311 is moved in the second groove 2111 such that the partial adjustment guide wire 311 is pulled, and the portion of the adjustment guide wire 311 corresponding thereto is relaxed.
  • the adjustment guide wire 311 is crossed once in the instrument shaft 300 such that the functional portion 500 produces a pitch and a yaw proportional to the hand portion 100.
  • the adjustment guide wire 311 is driven to move upward along the second concave portion, and at this time, the upper proximal end adjustment guide wire 311 is pulled, and the corresponding lower proximal end is corresponding thereto.
  • the adjustment guide wire 311 is relaxed. Since the adjustment guide wire 311 is crossed once in the instrument shaft 300, the adjustment guide wire 311 of the upper proximal end corresponds to the adjustment guide wire 311 of the lower distal end connected to the functional portion 500, and the adjustment of the lower proximal end is performed.
  • the guide wire 311 corresponds to the adjustment guide wire 311 of the upper distal end connected to the functional portion 500.
  • the adjustment guide wire 311 of the lower distal end is pulled, and the adjustment guide wire 311 of the upper distal end is relaxed, so that the The two curved portions 400 are bent toward the side to be pulled, that is, the second curved portion 400 is bent downward. That is, the functional portion 500 generates a downward motion in the same direction as the wrist. vice versa.
  • the hand portion 100 can also be gripped, and the adjustment guide wire 311 is slid along the first groove 327 and the second groove, and then the control function portion 500 performs The corresponding action. That is, with the above structure, the surgical instrument can realize a multi-degree of freedom surgical operation, making it more comfortable and highly flexible.
  • the ball 211 further includes a first extension 2211, as in the previous embodiment.
  • the first extending portion 2211 is provided with a third recess 2213 for receiving the fastening strap 324, which will not be described herein.
  • the connecting mechanism 200 may also be the first bendable portion 600 instead of the ball 211 and the spherical shell 221, and the proximal end of the first bendable portion 600 is connected to the handheld portion 100.
  • the distal end of the first bendable portion 600 is fixedly coupled to the proximal end of the instrument shaft 300.
  • the first bendable portion 600 has a structure and function similar to those of the second bendable portion 400, and will not be described herein any further.
  • the center of motion of the connecting mechanism 200 is the center point of the central sectional plane of the first bendable portion 600, and the slidable means that the first curved portion 600 can surround the center point. motion.
  • the bionic surgical instrument provided by the present invention has two main advantages: 1) the control action and the instrument effect action are isomorphic, and have a bionic effect, that is, the function of the wrist on the function part 500 is reproduced, and Recurrence to the operation, thereby reducing the operator's learning time, reducing the difficulty of surgery; 2) operating only requires wrist actuation, and existing surgical tools that require a large arm to achieve control of the functional unit 500 In comparison, the use is comfortable, labor-saving, and limited by space.
  • the instrument lever 300 may be of a bent type in addition to the straight type.
  • the number of the bending segments may be determined according to the specific use environment, and is not limited herein.
  • the present invention also provides a bionic surgical instrument kit 10 for use in a single-hole minimally invasive surgery.
  • the biomimetic surgical instrument kit 10 includes at least two surgical instruments 11 and a sleeve 12, wherein at least one of the surgical instruments 11 is a biomimetic surgical instrument 11 having the above-described bent section, and the cannula is inserted through the surgical instrument 11 such that the surgical instrument 11 A part is located inside the casing.
  • the sleeve 12 is a flexible tube having a different axial diameter with a larger aperture at the proximal opening and the distal opening, which smoothly transitions from the proximal end of the sleeve 12 to the distal end of the sleeve 12 through the intermediate portion of the tapered diameter.
  • a second through hole is formed in the sleeve 12, and the instrument rod 300 of the surgical instrument 11 passes through the second through hole to be airtightly engaged with the sleeve 12.
  • the operator first passes the sleeve 12 through the skin of the subject, and then passes the functional portion 500 of the surgical instrument 11 through the second through hole on the sleeve 12, so that the instrument shaft 300 is not A portion of the bend is located within the sleeve 12 and is in airtight engagement therewith.
  • the number of the second through holes is three, and includes the first insertion holes 13 and the second insertion holes 14.
  • the first insertion hole 13 on the upper side can be used to insert the endoscope
  • the second insertion hole 14 on the lower side can be used to insert the biomimetic surgical instrument 11 having the bent section.
  • the number of bending segments is 2, including the first bending segment 15 and the second bending segment 16.
  • the first bending segments 15 of the two bionic surgical instruments 11 are respectively bent away from the central axis of the instrument shaft 300, so that the bionic surgical instrument 11 and the endoscope have a certain space between them to avoid mutual interference. .
  • the second bending sections 16 of the two biomimetic surgical instruments 11 are respectively bent toward the central axis of the instrument shaft 300 so that the functional portions 500 of the biomimetic surgical instruments 11 can be brought close to each other to facilitate the mutual engagement operation.
  • the biomimetic surgical instrument 11 can also be used in conjunction with any other minimally invasive instrument having a long rod shape, such as a conventional rigid minimally invasive instrument.
  • the conventional surgical instrument kit does not have a bent section because the instrument does not have a bent section. Therefore, in order to avoid parallel interference with each other, it is necessary to make a cross in the sleeve 12, so that the left-hand controlled instrument of the operator is located on the right side of the field of view. The right hand controlled instrument is located on the left side of the field of view. This "reverse operation” brings great inconvenience to the operator and is less suitable.
  • the bionic surgical instrument kit 10 provided by the embodiment provides a certain operation space for the distal ends of the two bionic surgical instruments 11 by the different bending directions of the two bionic surgical instruments 11 without cross setting. The operator can directly control each surgical instrument 11 through "forward operation", which greatly improves the applicability of the device.
  • the control method using the bionic surgical instrument in the above embodiment includes the following steps: unlocking, so that the transmission member 310 does not interlock with the hand portion 100. Locking causes the transmission member 310 to interlock with the handheld portion 100. Further, the method further comprises adjusting an angle between the first reference ray R1 and the second reference ray R2 to be >0° and ⁇ 90°. Further, the operating portion 100 is controlled to perform a pitching motion, a yaw motion, or a combination of the two, so that the functional portion 500 generates a corresponding motion proportional to the handheld portion 100. Preferably, the ratio ranges between 0.1 and 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Robotics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgical Instruments (AREA)

Abstract

一种仿生手术器械,包括:手持部(100);连接机构(200);器械杆(300),手持部(100)通过连接机构(200)与器械杆(300)可转动或可挠动地连接,以连接机构(200)的运动中心点为顶点作与手持部(100)的中轴线共线或平行且沿第一方向的第一参考射线(R1),以连接机构(200)的运动中心点为顶点作与器械杆(300)的中轴线共线或平行且沿第二方向的第二参考射线(R2),第一参考射线(R1)与第二参考射线(R2)之间的夹角为>0°且≤90°,其中,第一方向为手持部(100)的连接端指向手持部(100)的自由端的方向,第二方向为器械杆(300)的近端指向器械杆(300)的远端的方向。仿生手术器械在实现"正向操作"的同时,提高了操作时灵活度,使其更加符合人体操作习惯。

Description

一种仿生手术器械及其控制方法 技术领域
本发明涉及一种手术器械,特别是涉及一种仿生手术器械。
背景技术
自1987年法国医生成功实施第一例腹腔镜胆囊切除术后,以腹腔镜手术为代表的微创外科手术经历30年的发展,已经形成了一门相对独立的学科。
微创外科手术是指在人体体表作若干穿孔,将内窥镜和操作器械通过上述小孔进入体腔内,如腹腔、胸腔、盆腔、关节腔等,由术者在内窥镜的监视下,通过手在病人体外操作器械,使器械伸入病人体腔内的工作端对腔内的病灶进行切除,或对器官进行修补、缝合等手术,术毕将内窥镜和器械取出,缝合体表的小孔即可完成整个手术。
微创外科与传统外科相比,以其手术创伤小,术中并发症少,术后疼痛减轻,住院时间短等优点,现已成为众多外科常见疾病的诊断治疗金标准。但由于其通常以3-5个2cm左右的穿孔作为介入通道,使得人手不再能直接接触到目标器官,而必须借助细长型的专用腹腔镜手术器械进行手术操作。
然而,细长型的手术器械使得操作角度严重受限且触觉反馈减弱,成为腹腔镜技术的最大挑战之一。对于一些初学者而言,需要进行大量的干式(体外模型操作训练)与湿式(活体动物实验)训练才能建立较稳定的手术经验曲线,以完成一些简单的腹腔镜手术。初学者若想完成例如腹腔镜下***癌根治术、腹腔镜下肾部分切除术等相对复杂的功能重建性手术,则需完成大量的临床手术操作之后才能够胜任。其中一个主要原因是传统腹腔镜器械没有人手一样的“腕式”运动,而只有3个自由度,针对缝合、打结这样的手术常规但复杂且精细的手术操作,则必须用更多的经验来弥补器械设计缺陷带来的操作不便。
随着单孔腹腔镜技术及经自然腔道内镜手术技术的出现,使得多自由度腹腔镜手术器械得到了开发与应用,因其器械头端可弯曲,一定程度上解决了传统腹腔镜器械操作角度受限的问题。但目前世界上现有的多自由度腹腔镜手术器械多为“反向操作”形式,即器械的弯曲方向与外科医生实际操作方向相反,对医生的顺利操作造成相当大的挑战。
例如,专利文献1(CN101909526B)及专利文献2(CN102076268A)公开了一种手 术器械,包括由长形器械轴互联的近端控制手柄和远端工具,所述长形器械轴用于通入解剖体内部;通过所述器械轴分别互联近端控制手柄和远端工具的近端可动构件和远端可动构件;设置在所述可动构件之间的线缆控制装置;位于所述手柄处并用于通过所述可动构件控制所述远端工具的致动构件;以及用于使所述器械的轴部分与所述手柄部分选择性地接合或脱离接合的耦联装置。所述手柄具有远端接收器部分,并且位于所述近端运动构件上的轴连接器能够选择性地与所述接收器部分接合和从所述接收器部分释放。
该手术器械虽然可通过对控制手柄的操作进而致使远端工具的动作,且近端可弯曲构件能在任意方向上弯曲,从而控制远端可弯曲构件在相同或相反的方向上弯曲,在一定程度上可实现“正向操作”,但是1)由于手柄的构造为竖直的***握把型,且其与长形器械轴大致成钝角,在微创手术操作过程中,容易受到空间的限制,导致灵活度、精确度较差;2)远端可弯曲构件的弯曲需要近端可弯曲构件对其致动,而近端可弯曲构件的弯曲需要外科医生利用手前臂甚至大臂的摆动来实现控制,故人机工效学表现较差。
为了解决***握把型手柄在手术过程中的空间限制问题,专利文献3(CN101495045A)公开了一种外科器械,包括具有近端和远端的细长器械轴;设置在所述器械轴的所述远端的功能部;和设置在所述器械轴的所述近端的控制手柄;所述功能部通过远侧运动元件耦联到所述细长器械轴的所述远端;所述控制手柄通过近侧可弯曲元件耦联到所述细长器械轴的所述近端;致动装置在所述远侧和近侧元件之间延伸,由此,所述控制手柄相对于所述细长器械轴的任何偏转均导致所述远侧运动元件产生相应弯曲,以便对所述功能部进行控制;其中,至少所述近侧可弯曲元件包括一体开槽结构,所述一体开槽结构具有由狭槽分隔开的多个圆盘。
该外壳器械在实现“正向操作”的同时,采用了直线型手柄,减少了竖直方向的空间占有,一定程度上提升了灵活度,但同时也降低了外科医生操作时的舒适度。
因此,对于微创外科手术器械而言,如何在实现手术器械“正向操作”的同时提高舒适度、灵活度及精准度,是本领域亟待解决的技术问题。
发明内容
为了解决上述问题,本发明的目的在于提供一种高灵活度的“正向操作”的仿生手术器械。
本发明提供了一种仿生手术器械,包括:手持部;连接机构;器械杆,手持部通过连接机构与器械杆可转动或可挠动地连接,以连接机构的运动中心点为顶点作与手持部的中 轴线共线或平行且沿第一方向的第一参考射线,以连接机构的运动中心点为顶点作与器械杆的中轴线共线或平行且沿第二方向的第二参考射线,第一参考射线与第二参考射线之间的夹角为>0°且≤90°,其中,第一方向为手持部的连接端指向手持部的自由端的方向,第二方向为器械杆的近端指向器械杆的远端的方向。
进一步地,连接机构的运动中心点位于第一平面和第二平面所夹的空间内,第一平面为以操作者手腕的截平面为参照面,向近端方向10厘米所作的平行平面,第二平面为以操作者手腕的截平面为参照面,向远端方向10厘米所作的平行平面。
进一步地,连接机构的运动中心点位于环绕穿过操作者手腕截平面的中轴线的空间内。
进一步地,连接机构包括固定部和转动部,转动部可转动地夹持固定部,固定部与器械杆的近端固定连接,转动部与手持部的连接端固定连接。
进一步地,连接机构包括第一可弯曲部,第一可弯曲部的近端与手持部的连接端固定连接,第一可弯曲部的远端与器械杆的近端固定连接。
进一步地,还包括功能部,与器械杆的远端固定连接。
进一步地,还包括第二可弯曲部,第二可弯曲部的近端和远端分别与器械杆的远端和功能部的近端固定连接。
进一步地,手持部通过机械传动方式控制功能部的运动。
进一步地,器械杆内设有传动部件,用于将手持部的控制动作按比例传递至功能部。
进一步地,比例为0.1~5。
进一步地,传动部件包括导丝、线绳、刚性杆、刚性管中的一个或多个。
进一步地,传动部件的近端穿过固定部与手持部固定连接,传动部件的远端穿过第二可弯曲部与功能部的近端固定连接。
进一步地,还包括锁定装置,锁定装置处于解锁状态时,传动部件不与手持部联动;锁定装置处于锁定状态时,传动部件与手持部联动。
进一步地,锁定装置处于解锁状态时,传动部件不与锁定装置联动,锁定装置与转动部联动;锁定装置处于锁定状态时,传动部件与锁定装置联动,锁定装置与转动部联动。
进一步地,固定部为球体,转动部为球壳。
进一步地,传动部件为导丝,导丝包括调节导丝和中央导丝,其中,手持部通过调节导丝控制功能部的运动方向,手持部通过中央导丝控制功能部的运动状态。
进一步地,运动方向包括俯仰运动、横摆运动、或两者结合,运行状态包括闭合状态和张开状态。
进一步地,调节导丝为偶数条可相互平行或两两交叉分布。
进一步地,当锁定装置处于解锁状态时,通过对手持部进行俯仰运动、横摆运动、或两者结合,调节手持部的初始角度;当锁定装置处于锁定状态时,通过对手持部进行俯仰运动、横摆运动、或两者结合,以使功能部发生相应的俯仰运动、横摆运动、或两者结合。
进一步地,锁定装置包括:盘体,上设有与中央导丝和调节导丝相对应的中央孔和调节孔,调节孔为楔形;旋转键,穿过设于球壳上的第一通孔与盘体固定连接;导丝紧固装置,与球壳固定,调节导丝穿过导丝紧固装置,其中,沿第一旋向旋转盘体,导丝紧固装置夹紧调节导丝,以使调节导丝与盘体联动;沿与第一旋向相反的第二旋向旋转盘体,导丝紧固装置松开调节导丝,以使调节导丝与盘体联动。
进一步地,锁定装置还包括紧固带,用于紧固球体和球壳。
进一步地,球体和球壳被紧固时,功能部、第二可弯曲部、和器械杆依次为刚性连接。
进一步地,锁定装置包括:球套,设置于球体和球壳之间,球套的内周面设有第一凹槽,第一凹槽沿周向环绕一周或者有缺口;紧固带,在紧固带将球套和球壳紧固时,球套与球壳联动;在紧固带将球套和球壳松开时,球套与球壳不联动;销钉,一端与调节导丝的近端连接,另一端与第一凹槽卡接,且可沿第一凹槽移动,以使调节导丝通过销钉与球套联动。其中,球体的外表面间隔设有多个第二凹槽,第二凹槽的延伸方向和第一凹槽的延伸方向不同,调节导丝穿过球体后位于第二凹槽且可沿第二凹槽滑动。
进一步地,手持部包括握柄和中央柄,握柄的一端与中央柄铰接。
进一步地,传动部件还包括侧连杆和中央连杆,侧连杆的一端与中央连杆铰接,另一端与握柄连接,中央连杆设于中央柄内并可沿中央柄移动,中央连杆的一端与中央导丝连接。
进一步地,传动部件还包括设于中央柄内并可沿中央柄移动,且一端与中央导丝连接的中央连杆,中央连杆上设有齿条,握柄与中央柄铰接的端部设有与齿条配合的齿轮。
进一步地,器械杆为弯折杆。
本发明还提供了一种仿生手术器械套件,包括:至少两个手术器械,其中至少一个为上述具有弯折杆的仿生手术器械;套管,供手术器械穿过使得手术器械的一部分位于套管内。
进一步地,至少两个手术器械包括两个仿生手术器械和一个内窥镜。
进一步地,两个仿生手术器械的弯折方向相异。
本发明还提供了一种上述仿生手术器械的控制方法,包括以下步骤:解锁,使得传动 部件不与手持部发生联动;锁定,使得传动部件不与手持部发生联动。
进一步地,调节第一参考射线与第二参考射线之间的夹角为>0°且≤90°。
进一步地,操控手持部作俯仰运动、横摆运动、或两者结合,使得功能部产生与手持部呈比例的俯仰运动、横摆运动、或两者结合。
进一步地,比例为0.1~5。
如上,本发明所提供的仿生手术器械通过在实现“正向操作”的同时,提高了操作时的灵活度,使其更加符合人体操作习惯。操作者在操作时只需手腕作动,与现有的需要大幅度手臂的作动才能实现对功能部的控制的手术器械相较,操作更为灵活。
为让本发明的上述内容能更明显易懂,特举优选实施例,并结合附图,作详细说明如下。
附图说明
下面将结合附图对本发明的具体实施方式作进一步详细说明。
图1为本发明一实施例提供的仿生手术器械示意图;
图2为本发明另一实施例提供的仿生手术器械示意图;
图3为第二可弯曲部的局部示意图;
图4为另一实施例提供的仿生手术器械的锁定装置一的示意图一;
图5为另一实施例提供的仿生手术器械的未安装锁定装置的局部示意图一;
图6为另一实施例提供的仿生手术器械的锁定装置一的示意图二;
图7为锁定装置一的示意图;
图8为另一实施例提供的仿生手术器械的局部传动部件一的示意图一;
图9为另一实施例提供的仿生手术器械的局部传动部件一的示意图二;
图10为另一实施例提供的仿生手术器械的传动部件二的示意图;
图11为另一实施例提供的仿生手术器械的未安装锁定装置的局部示意图二;
图12为另一实施例提供的仿生手术器械的锁定装置二的示意图;
图13为轴套的示意图;
图14为图12中A部分的放大图;
图15为球体的示意图;
图16为销钉的示意图;
图17为其它实施例提供的仿生手术器械示意图;
图18为其它实施例提供的仿生手术器械示意图;
图19为本发明提供的仿生手术器械套件示意图;
图20为本发明提供的仿生手术器械套件的套筒的侧视图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合优选实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。另外,在以下的说明中所使用的“上”、“下”、“左”、“右”、“顶”、“底”,不应理解为对本发明的限制。
图1为本发明一实施例提供的仿生手术器械示意图。如图1所示,本发明提供了一种仿生手术器械,包括手持部100、连接机构200和器械杆300。手持部100是通过连接机构200与器械杆300可转动或可挠动地连接。
本发明的上述实施例提供的仿生手术器械具有以下特点:以连接机构200的运动中心点为顶点作与手持部100的中轴线R共线或平行且沿第一方向的第一参考射线R1,以连接机构200的运动中心点为顶点作与器械杆300的中轴线共线或平行且沿第二方向的第二参考射线R2,第一参考射线R1与第二参考射线R2之间的夹角为>0°且≤90°。
其中,中轴线可以理解为:对于规则的轴对称部件,其中间线为中轴线;对于不规则的非轴对称部件,中轴线穿过该部件的重心,且中轴线的延伸方向平行于部件的延伸方向。
为了清楚地定义第一方向和第二方向,本申请首先定义手持部100的自由端和连接端,以及各部件的近端和远端。手持部100的自由端为不与连接机构200连接的一端,其连接端为与连接机构200连接的一端。各部件的近端为靠近操作者的一端,其远端为远离操作者的一端。由此,本申请将第一方向定义为手持部100的连接端指向手持部100的自由端 的方向,第二方向为器械杆300的近端指向器械杆300的远端的方向。此外,手持部100的中轴线为手掌握持手持部100部分的沿其长度方向的中轴线。
为更清楚地理解连接机构200的运动中心点、可转动以及可挠动,将在下面结合具体的连接机构200的结构作进一步定义。
本实施例提供的仿生手术器械,因手持部100与器械杆300具有上述的连接位置关系,使得操作者握持手持部100对其进行使用时,可在手臂不动的情况下,仅手腕动作,便可通过所述连接机构200使得手持部100相对所述器械杆300的近端产生转动或挠动。
进一步地,连接机构200的运动中心点位于第一平面和第二平面所夹的空间内。其中,第一平面为以操作者手腕的截平面为参照面,向近端方向10厘米所作的平行平面,第二平面为以操作者手腕的截平面为参照面,向远端方向10厘米所作的平行平面。如图2所示,L≤10厘米。也就是说,当操作者握持手持部100时,其手腕与连接机构200的运动中心点之间距离较近,从而使得操作者对手持部100施加控制动作更为灵活。
图2为本发明另一实施例提供的仿生手术器械示意图。如图2所示,仿生手术器械还包括功能部500,其与器械杆300的远端固定连接。进一步地,还可以包括第二可弯曲部400,第二可弯曲部400的近端和远端分别与器械杆300的远端和功能部500的近端固定连接。
需要说明的是,手持部100的方位不仅限于图2中所示的器械杆300的上方,其可以位于器械杆300周向的任意位置。换言之,连接机构200的运动中心点位于环绕穿过操作者手腕截平面的中轴线的空间内。因此,只要保证该手术器械的第一参考射线R1与第二参考射线R2之间的夹角为>0°且≤90°,即可实现操作者在手臂不动的情况下,仅通过手腕作动,以使手持部100相对器械杆300产生转动或挠动。
还需要说明的是,在本申请中的“可弯曲部”还可以被称为“可弯曲构件”、“挠性构件”、“可回转构件”、或“挠性连续体”等。诸如此类术语指的是该元件能够以可控方式弯曲,且能在任意方向弯曲而不会有任意奇点。
其中,如图3所示,第二可弯曲部400具有镂空结构,其形状为平行线条状。在其它实施例中,形状还可以是波纹状或其他不规则形状。波纹状可以是螺旋波纹、平行波纹或交错波纹。
在本实施例中,手持部100是通过机械传动方式控制功能部500的运动。请参考图4并结合图2所示,机械转动方式是通过设置于器械杆300内的传动部件310,进而将手持部100的控制动作传递给功能部500。其中,连接机构200包括固定部210和转动部220, 转动部220可转动地夹持固定部210。固定部210与器械杆300的近端固定连接,转动部220与手持部100的连接端固定连接。固定部210和转动部220的具体形状不做限制,只要转动部220能够可转动地夹持固定部210即可。优选地,固定部210与器械杆300一体成型,转动部220与手持部100一体成型。器械杆300可以是刚性、或部分刚性、或挠性。
继续参考图4并结合图2、图3所示,传动部件310的近端穿过固定部210与手持部100固定连接,传动部件310的远端穿过第二可弯曲部400与功能部500的近端固定连接,进而实现将手持部100的控制动作按比例传递至功能部500。优选地,该比例为0.1~5,即当该比例为0.1时,手持部100转动1单位角度,所述功能部500转动0.1单位角度;当该比例为5时,手持部100转动1单位角度,所述功能部500转动5单位角度。其中,功能部500的运动包括运动方向和运动状态,运动方向包括俯仰运动、横摆运动、或两者结合,运行状态包括闭合状态和张开状态。俯仰运动可以是与横摆运动严格正交的上下运动,也可以是与横摆运动非正交的上下运动。在其它实施例中,手持部100还可通过电传动方式控制功能部500的运动。
请继续参考图4并结合图5所示,该手术器械还包括锁定装置320,转动部220上设有第一通孔230,锁定装置320通过第一通孔230与转动部220相卡接,使得锁定装置320能够随转动部220联动。同时,锁定装置320能够相对所述第一通孔230作周向移动,以使锁定装置320处于锁定状态或解锁状态。
当锁定装置320处于解锁状态时,传动部件310不与手持部100联动;当锁定装置320处于锁定状态时,传动部件310与所述手持部100联动。这样设置后,当操作者握持手持部100,手持部100的初始位置使操作者感到不舒适时,可以通过将锁定装置320处于解锁状态从而对手持部100的初始位置进行调节。由于传动部件310不与手持部100联动,这样任意调节转动部220相对固定部210的位置,以使手持部100在调节过程中,传动部件310不会将手持部100的控制动作传递至功能部500。从而,在调节手持部100的初始位置的同时,还不会影响手术器械的功能部500的张闭动作。
需说明的是,本发明实施例的锁定装置320处于解锁状态时,传动部件310不与锁定装置320联动,锁定装置320与转动部220联动;锁定装置320处于锁定状态时,传动部件310与锁定装置320联动,锁定装置320与转动部220联动。或者,也可以设置为,锁定装置320处于解锁状态时,传动部件310与锁定装置320联动,锁定装置320与转动部220不联动;锁定装置320处于锁定状态时,传动部件310与锁定装置320联动,锁定装置320与转动部220联动。其中,锁定状态下,两个部件联动可以理解为:其中一个部件 运动的同时会带动另一个部件同步运动;解锁状态下,两个部件联动可以理解为:其中一个部件运动的同时会带动另一个部件同步运动;或者,其中一个部件运动的同时可以带动另一个部件运动,但可以不同步运动。解锁状态下,两个部件不联动可以理解为:其中一个部件运动,另一个部件不随之同步运动。
请参考图6并结合图5所示,固定部210为球体211,转动部220为球壳221,球体211与器械杆300的近端固定连接,球壳221与手持部100的连接端固定连接,球壳221可转动地夹持球体211。值得说明的是,在该实施例中,连接机构200的运动中心点为球体211的中心点。可转动指的是球壳221可绕着该球体211的中心点运动。
在本实施例中,传动部件310为导丝。在其它实施例中,传动部件310还可以是导丝、线绳、刚性杆、刚性管中的一个或多个的组合。当锁定装置320处于锁定状态时,导丝的近端穿过球体211后通过锁定装置320与球壳221固定,即导丝的近端与手持部100固定。进一步地,导丝包括调节导丝311和中央导丝312。手持部100通过调节导丝311控制功能部500的运动方向,手持部100通过中央导丝312控制功能部500的运动状态。
其中,调节导丝311为偶数条,优选地,数量为4条,沿器械杆300的长度方向呈两两对称且相互平行分布。调节导丝311的该结构分布,使得在锁定状态时,操作者能够通过操控手持部100,控制功能部500的运动方向,例如俯仰运动、横摆运动、或两者结合的多自由度运动。中央导丝312的数量较佳地为1条,位于器械杆300的长度方向的中轴线上,操作者能够通过操控手持部100,控制功能部500的运动状态,即闭合状态和张开状态。
请参考图7并结合图11所示,锁定装置320包括盘体321、旋转键322和导丝紧固装置323。盘体321上设有与中央导丝312和调节导丝311相对应的1个中央孔3212和4个调节孔3211。调节孔3211为楔形,其孔径成递增或递减趋势。旋转键322穿过设于球壳221上的第一通孔230与盘体321固定连接。导丝紧固装置323与球壳221固定,调节导丝311穿过导丝紧固装置323,中央导丝312穿过中央孔3212。当旋转键322相对第一通孔230周向移动时,导丝紧固装置323在调节孔3211内相对滑动,从而受调节孔3211的径向尺寸变化,夹紧或松开调节导丝311。
当沿第一旋向X旋转盘体321,导丝紧固装置323位于调节孔3211的孔径较小的一端,以使导丝紧固装置323夹紧调节导丝311,锁定装置320处于锁定状态。在该锁定状态下,当操作者操控手持部100时,功能部500会发生相应的俯仰运动、横摆运动,以使功能部500运动至作用对象的较佳位置,从而可进行夹持、切割等手术动作。当沿与第一旋向X 相反的第二旋向Y旋转盘体321,导丝紧固装置323位于调节孔3211的孔径较大的一端,以使导丝紧固装置323松开调节导丝311,锁定装置320处于解锁状态。在该解锁状态下,当操作者操控手持部100时,手持部100相对器械杆的位置发生改变,从而实现手持部100初始角度的调节,即第一参考射线R1与第二参考射线R2之间的夹角,以使手持部100位于适合位置,便于操作者操作。
具体地,当操作者想要调节手持部100的初始角度时,第一步,沿第二旋向Y旋转盘体321,使得导丝紧固装置323相对调节孔3211滑动至孔径较大的一端,此时调节导丝311处于松开状态;第二步,操作者根据手术器械想要作用的对象位置,进而握持手持部100,对其进行俯仰、横摆等操作,将其调节至操作者较为舒服的角度,即调节手持部100的初始角度。在该过程中,调节导丝311不与手持部100联动,故功能部500的方向不会发生任何改变;第三步,沿第一旋向X旋转盘体321,使得导丝紧固装置323相对调节孔3211滑动至孔径较小的一端,此时调节导丝311处于夹紧状态,调节导丝311与手持部100联动,完成初始角度的调节。
请参考图6,在初始角度设定后,操作者通过导丝可将手持部100的控制动作按比例传递至功能部500。具体地,当操作者握持手持部100,进行手腕的俯仰、横摆等控制动作时,手持部100会带动球壳221沿球体211的外表面移动,因导丝紧固装置323与球壳221相固定,部分调节导丝311被牵引,与其相对应的部分调节导丝311被放松,使得第二可弯曲部400朝向被牵引一侧发生弯曲,即朝向与手持部100控制动作相同的方向发生弯曲。也就是说,功能部500的运动方向与手持部100的控制动作相一致。例如,当手腕进行下俯的控制动作时,手持部100带动球壳221沿球体211的外表面向上运动,此时上侧调节导丝311被放松,与其相对应的下侧调节导丝311被牵引,以使第二可弯曲部400朝向被牵引一侧发生弯曲,即第二可弯曲部400向下弯曲。功能部500发生与手腕同方向的下俯运动。反之亦然。
进一步地,功能部500的闭合状态和张开状态是通过操作者对手持部100的夹合和放开动作所控制的。手持部100包括握柄和中央柄130,握柄的一端与中央柄130铰接。
请参考图8,传动部件310还包括侧连杆3101和中央连杆3103,侧连杆3101的一端与中央连杆3103铰接,另一端与握柄连接,中央连杆3103设于中央柄130内并可沿中央柄130移动,中央连杆3103的一端与中央导丝312连接。握柄相对中央柄130的闭合和张开,使得中央导丝312随中央连杆3103的移动而移动,从而控制功能部500的闭合状态和张开状态。
请继续参考图8,握柄包括第一握柄110和第二握柄120,分别位于中央柄130的左右两侧,三者组合的结构呈箭头型。其中,第一握柄110与中央柄130铰接,侧连杆3101与第一握柄110连接。请再结合图9所示,传动部件310还包括中央杆套3104、转轴3105、转片3106、带动杆3107、带动杆套3108、和弹性元件3109。中央连杆3103位于中央杆套3104内并与其固定连接,中央连杆3103可带动中央杆套3104在中央柄130内沿其长度方向移动。转片3106的一端与中央杆套的近端相固定,另一端与带动杆套3108相固定,转片3106可绕转轴3105转动,进而使得带动杆套3108随中央杆套3104的移动而移动。
其中,带动杆套3108和弹性元件3109套设于带动杆3107上,并可沿带动杆3107移动。带动杆3107的近端与中央柄130的近端固定连接,弹性元件3109的一端与带动杆3107固定连接,另一端与带动杆套3108固定连接。弹性元件3109可以是弹簧或其它具有弹性恢复力的元件。如图9所示,带动杆套3108设有与中央导丝312的近端相配合的第四凹槽3110,中央导丝312的近端通过第四凹槽3110与带动杆套3108固定连接,中央导丝312的远端与功能部500固定连接。
在该实施例中,功能部500为钳子。在其它实施例中,功能部500还可以是各种铰接工具,例如剪刀、抓紧器、持针器等,也可以是非铰接工具,例如切割刀片、探针、冲洗器、导管等。
请继续参考图8和图9,进一步说明手持部100通过传动部件310控制钳子的闭合和张开状态。当操作者对第一握柄110相对中央柄130作夹紧动作时,侧连杆3101相对中央连杆3103闭合,以使中央连杆3103向远端移动。通过转片3106绕转轴3105转动,中央导丝312随带动杆套3108一起沿带动杆3107向近端移动。此时,钳子处于闭合状态,弹簧处于被压缩状态。当操作者松开对第一握柄110的作用力时,被压缩的弹簧因恢复力推动带动杆套3108恢复到初始位置,中央导丝312被放松。此时,钳子处于张开状态。
请参考图10,在其它实施例中,传动部件310还包括设于中央柄130内并可沿中央柄130移动的中央连杆3103’。中央连杆3103’上设有齿条3111,握柄包括第一握柄110和第二握柄120,其与中央柄130铰接的端部111设有与齿条3111配合的齿轮。当操作者对第一握柄110、第二握柄120相对中央柄130作夹紧动作时,以使端部111发生转动,进而带动齿条3111向远端移动,中央导丝312向近端移动,钳子处于闭合状态。其它情况与上述实施相似,在此不再赘述。
请参照图6并结合图11所示,在上述实施例中,锁定装置320还可以包括紧固带324,用于紧固球壳221和球体211。当球体211和球壳221被紧固时,手持部100无法进行俯 仰运动、横摆运动、或两者结合。手持部100仅可进行上述夹紧或松开动作,进而控制功能部500的运动状态,即闭合状态和张开状态。换言之,调节导丝311不再发生任何位移,功能部500、第二可弯曲部400、和器械杆300依次为刚性连接。此时,手术器械为刚性器械,功能部500不会因受到外界的扰动或动作而发生俯仰运动或横摆运动。
球体211还包括第一延伸部2211和第二延伸部2212。第一延伸部2211上设有第三凹槽2213,其沿周向环绕一周,用于容纳紧固带324。在其它实施例中,第三凹槽2213也可以是其它形式,只要能提供紧固带324放置空间,便于紧固球壳221和球体211即可。
球壳221的第一延伸部2211上还设置有多个相互间隔的缺口2214。在紧固带324收紧第一延伸部2211后,第一延伸部2211的孔径变小,紧固球壳221和球体211,以使球壳221与球体211无法相对位移。此时,该手术器械为刚性器械,操作者仅能通过手持部100控制功能部500的闭合状态和张开状态,无法使得功能部500产生俯仰或横摆运动。在紧固带324放松第一延伸部2211后,第一延伸部2211的孔径变大,球壳221与球体211可相对位移。第二延伸部2212内设有带动杆套3108、带动杆3107、转轴3105和弹簧。
在其它实施中,锁定装置320还可以是其它形式。请参考图12并结合图11所示,锁定装置320’包括球套325、紧固带324和销钉326。其中,球套325设置于球体211和球壳221之间。如图13所示,球套325的内周面设有第一凹槽327,第一凹槽327沿周向环绕一周。在其它实施例中,第一凹槽327也可以是不完整的一周。紧固带324将球套325和球壳221紧固时,锁定装置320处于锁定状态;在紧固带324将球套325和球壳221松开时,锁定装置320处于解锁状态。
请继续参考图12并结合图14所示,销钉326的一端与调节导丝311的近端连接,另一端与第一凹槽327卡接,且可沿第一凹槽327移动,以使调节导丝311通过销钉326与球套325联动。销钉326与第一凹槽327的卡接的实现方式不做限制,本实施例中,第一凹槽327内设有沿第一凹槽327的延伸方向延伸的凸部328,销钉326的另一端为凹部,凸部328与凹部卡接。在其它实施例中,第一凹槽327内设有沿第一凹槽327的延伸方向延伸的凹部,销钉326的另一端为凸部328,凸部328与凹部卡接。
请继续参考图12并结合图15所示,球体211的外表面间隔设有多个第二凹槽2111,第二凹槽2111的延伸方向和第一凹槽327的延伸方向不同。调节导丝311穿过球体211后设于第二凹槽2111内,并能够在第二凹槽2111内滑动。销钉326与调节导丝311连接的一端能够沿销钉326的周向与调节导丝311转动连接。其中,参考图16,调节导丝311与销钉326连接的一端为球状,销钉326沿销钉326的周向可转动地插设于呈球状的调节 导丝311的一端。
这样设置后,继续参考图12,当操作者想要调节手持部100的初始位置时,第一步,将紧固带324松绑,锁定装置处于解锁状态,球壳221与球套325不联动;第二步,根据手术器械想要作用的对象位置,操作者握持手持部100,通过手腕进行俯仰、横摆等操作,球壳221沿球套325的外表面移动,进而将手持部100调节至操作者较为舒服的位置,完成手持部100初始位置的调节;第三步,通过紧固带324将球套325和球壳221紧固,锁定装置处于锁定状态,球套325与球壳221联动。球套325能够随球壳221同步运动,同时调节导丝311与球套325联动。在该状态下,通过操作手持部100便可以控制调节导丝311的运动,继而可以通过调节导丝311将手持部100的控制动作按比例传递至手术器械的功能部500,通过功能部500进行相应的手术动作。
需说明的是,本实施例中,由于导丝与销钉326连接的一端为球状,且销钉326沿销钉326的周向可转动地插设于呈球状的调节导丝311的一端。那么,在锁定装置320处于锁定状态时,可以握持手持部100,操控球套325绕销钉326转动任意角度,继而控制功能部500进行相应的动作。
具体而言,当操作者握持手持部100,通过手腕进行俯仰、横摆等操作,带动球壳221、球套325和调节导丝311三者一同发生联动动作。调节导丝311在第二凹槽2111中移动,使得部分调节导丝311被牵引,与其相对应的部分调节导丝311被放松。调节导丝311在器械杆300内进行一次交叉,以使功能部500产生与手持部100呈比例的俯仰、横摆。例如,当对手持部100进行下俯的控制动作时,带动调节导丝311沿第二凹糟向上运动,此时上侧近端的调节导丝311被牵引,与其相对应的下侧近端的调节导丝311被放松。因调节导丝311在器械杆300内进行一次两两交叉,故上侧近端的调节导丝311对应于与功能部500相连的下侧远端的调节导丝311,下侧近端的调节导丝311对应于与功能部500相连的上侧远端的调节导丝311,因此,下侧远端的调节导丝311被牵引,上侧远端的调节导丝311被放松,以使第二弯曲部400朝向被牵引的一侧发生弯曲,即第二弯曲部400向下弯曲。也就是说,功能部500发生与手腕同方向的下俯运动。反之亦然。
另外,由于设置了第一凹槽327和第二凹槽2111,同样可以握持手持部100,操控调节导丝311沿着第一凹槽327和第二凹槽滑动,继而控制功能部500进行相应的动作。也即,通过上述结构,手术器械可以实现多自由度的手术操作,使得更为舒适,且灵活度较高。
继续参考图12,与上实施例相同,球体211还包括第一延伸部2211。第一延伸部2211 设有第三凹槽2213,用于容纳紧固带324,此处不再赘述。
在上述实施例中,请参考图17,连接机构200还可以是第一可弯曲部600,而不再是球体211和球壳221,第一可弯曲部600的近端与手持部100的连接端固定连接,第一可弯曲部600的远端与器械杆300的近端固定连接。第一可弯曲部600具有与第二可弯曲部400相类似的结构和功能,此处也不再赘述。值得说明的是,在该实施例中,连接机构200的运动中心点为第一可弯曲部600的中央截平面的中心点,可挠动指的是第一弯曲部600可绕着该中心点运动。
值得注意的是,本发明提供的仿生手术器械具有两个主要优点:1)控制动作与器械效应动作实现同构,具有仿生学效果,即功能部500上复现手腕的动作,且为“正向操作”的复现,进而减少操作者学习时间,减低手术难度;2)操作时只需手腕作动,与现有的需要大幅度手臂的作动才能实现对功能部500进行控制的手术器械相较,使用舒适、省力、且受空间限制小。
在上述实施例中,请参考图18,器械杆300除了是直线型外,还可以是弯折型。其中,弯折段的数量可视具体使用环境而定,在此不作限制。
请参考图19,本发明还提供了一种仿生手术器械套件10,主要用于单孔的微创外科手术。该仿生手术器械套件10包括至少两个手术器械11和套筒12,其中,手术器械11至少一个为具有上述弯折段的仿生手术器械11,套管供手术器械11穿过使得手术器械11的一部分位于套管内。
套筒12为轴向直径不一的柔性管,其近端开口和远端开口的孔径较大,通过孔径渐变的中间段平滑地从套筒12的近端过渡到套筒12的远端。套筒12上设有第二通孔,手术器械11的器械杆300穿过第二通孔,与套筒12气密性配合。具体地,在手术使用时,操作者首先将套筒12穿过作用对象的皮肤,进而将手术器械11的功能部500穿过位于套筒12上的第二通孔,使得器械杆300的非弯折段的一部分位于套筒12内,且与其气密性配合。
请参考图20,在本实施例中,第二通孔的数量为3个,包括第一***孔13和第二***孔14。其中,位于上侧的第一***孔13可以用于***内窥镜,位于下侧的第二***孔14可以用于***具有弯折段的仿生手术器械11。请结合图29所示,弯折段数量为2,包括第一弯折段15和第二弯折段16。两个仿生手术器械11的第一弯折段15分别朝远离器械杆300中轴线的方向弯折,以使仿生手术器械11和内窥镜两两之间具有一定的空间,避免相互间的干涉。两个仿生手术器械11的第二弯折段16分别朝靠近器械杆300中轴线的 方向弯折,以使仿生手术器械11的功能部500能相互靠近,便于相互间的配合操作。在其它实施例中,仿生手术器械11还可以和其它任何具有长杆状的微创器械相配合使用,例如传统的刚性微创器械。
需要说明的是,传统的手术器械套件因器械不具有弯折段,因此为避免相互间的平行干扰,需要在套筒12内作一次交叉,导致操作者左手控制的器械位于视野的右侧,右手控制的器械位于视野的左侧。这种“反向操作”给操作者带来了较大的不便,适用性较差。而本实施例提供的仿生手术器械套件10,通过两个仿生手术器械11相异的弯折方向,使得两个仿生手术器械11的远端具有一定操作空间,而无需进行交叉设置。操作者可以直接通过“正向操作”控制各手术器械11,大大提高了器械的适用性。
使用上述实施例中的仿生手术器械的控制方法,包括以下步骤:解锁,使得传动部件310不与手持部100发生联动。锁定,使得所述传动部件310与所述手持部100发生联动。进一步地,还包括调节第一参考射线R1与第二参考射线R2之间的夹角为>0°且≤90°。进一步地,还包括操控手持部100作俯仰运动、横摆运动、或两者结合,使得所述功能部500产生与所述手持部100呈比例的相应的运动。优选地,比例范围在0.1~5之间。
综上,本发明提供的上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (34)

  1. 一种仿生手术器械,其特征在于,包括:
    手持部;
    连接机构;
    器械杆,所述手持部通过所述连接机构与所述器械杆可转动或可挠动地连接,
    以所述连接机构的运动中心点为顶点作与所述手持部的中轴线共线或平行且沿第一方向的第一参考射线,以所述连接机构的运动中心点为顶点作与所述器械杆的中轴线共线或平行且沿第二方向的第二参考射线,所述第一参考射线与所述第二参考射线之间的夹角为>0°且≤90°,
    其中,所述第一方向为所述手持部的连接端指向所述手持部的自由端的方向,所述第二方向为所述器械杆的近端指向所述器械杆的远端的方向。
  2. 根据权利要求1所述的仿生手术器械,其特征在于,所述连接机构的运动中心点位于第一平面和第二平面所夹的空间内,所述第一平面为以操作者手腕的截平面为参照面,向近端方向10厘米所作的平行平面,所述第二平面为以操作者手腕的截平面为参照面,向远端方向10厘米所作的平行平面。
  3. 根据权利要求2所述的仿生手术器械,其特征在于,所述连接机构的运动中心点位于环绕穿过操作者手腕截平面的中轴线的空间内。
  4. 根据权利要求1所述的仿生手术器械,其特征在于,所述连接机构包括固定部和转动部,所述转动部可转动地夹持所述固定部,所述固定部与所述器械杆的近端固定连接,所述转动部与所述手持部的连接端固定连接。
  5. 根据权利要求1所述的仿生手术器械,其特征在于,所述连接机构包括第一可弯曲部,所述第一可弯曲部的近端与所述手持部的连接端固定连接,所述第一可弯曲部的远端与所述器械杆的近端固定连接。
  6. 根据权利要求4所述的仿生手术器械,其特征在于,还包括功能部,与所述器械杆的远端固定连接。
  7. 根据权利要求6所述的仿生手术器械,其特征在于,还包括第二可弯曲部,所述第二可弯曲部的近端和远端分别与所述器械杆的远端和所述功能部的近端固定连接。
  8. 根据权利要求7所述的仿生手术器械,其特征在于,所述手持部通过机械传动方式控制所述功能部的运动。
  9. 根据权利要求8所述的仿生手术器械,其特征在于,所述器械杆内设有传动部件,用于将所述手持部的控制动作按比例传递至所述功能部。
  10. 根据权利要求9所述的仿生手术器械,其特征在于,所述比例为0.1~5。
  11. 根据权利要求9所述的仿生手术器械,其特征在于,所述传动部件包括导丝、线绳、刚性杆、刚性管中的一个或多个。
  12. 根据权利要求11所述的仿生手术器械,其特征在于,所述传动部件的近端穿过所述固定部与所述手持部固定连接,所述传动部件的远端穿过所述第二可弯曲部与所述功能部的近端固定连接。
  13. 根据权利要求12所述的仿生手术器械,其特征在于,还包括锁定装置,所述锁定装置处于解锁状态时,所述传动部件不与所述手持部联动;所述锁定装置处于锁定状态时,所述传动部件与所述手持部联动。
  14. 根据权利要求13所述的仿生手术器械,其特征在于,所述锁定装置处于解锁状态时,所述传动部件不与所述锁定装置联动,所述锁定装置与所述转动部联动;所述锁定装置处于锁定状态时,所述传动部件与所述锁定装置联动,所述锁定装置与所述转动部联动。
  15. 根据权利要求14所述的仿生手术器械,其特征在于,所述固定部为球体,所述转动部为球壳。
  16. 根据权利要求15所述的仿生手术器械,其特征在于,所述传动部件为导丝,所述 导丝包括调节导丝和中央导丝,其中,所述手持部通过所述调节导丝控制所述功能部的运动方向,所述手持部通过所述中央导丝控制所述功能部的运动状态。
  17. 根据权利要求16所述的仿生手术器械,其特征在于,所述运动方向包括俯仰运动、横摆运动、或两者结合,所述运动状态包括闭合状态和张开状态。
  18. 根据权利要求16所述的仿生手术器械,其特征在于,所述调节导丝为偶数条,相互平行或两两交叉分布。
  19. 根据权利要求17所述的仿生手术器械,其特征在于,当所述锁定装置处于解锁状态时,通过对所述手持部进行俯仰运动、横摆运动、或两者结合,调节所述手持部的初始角度;当所述锁定装置处于锁定状态时,通过对所述手持部进行俯仰运动、横摆运动、或两者结合,以使所述功能部发生相应的俯仰运动、横摆运动、或两者结合。
  20. 根据权利要求19所述的仿生手术器械,其特征在于,所述锁定装置包括:
    盘体,上设有与所述中央导丝和所述调节导丝相对应的中央孔和调节孔,所述调节孔为楔形;
    旋转键,穿过设于所述球壳上的第一通孔,并与所述盘体固定连接;
    导丝紧固装置,与所述球壳固定,所述调节导丝穿过所述导丝紧固装置,
    其中,沿第一旋向旋转所述盘体,所述导丝紧固装置夹紧所述调节导丝,以使所述调节导丝与所述盘体联动;沿与所述第一旋向相反的第二旋向旋转所述盘体,所述导丝紧固装置松开所述调节导丝,以使所述调节导丝与所述盘体联动。
  21. 根据权利要求20所述的仿生手术器械,其特征在于,所述锁定装置还包括紧固带,用于紧固所述球体和所述球壳。
  22. 根据权利要求21所述的仿生手术器械,其特征在于,所述球体和所述球壳被紧固时,所述功能部、所述第二可弯曲部、和所述器械杆依次为刚性连接。
  23. 根据权利要求19所述的仿生手术器械,其特征在于,所述锁定装置包括:
    球套,设置于所述球体和所述球壳之间,所述球套的内周面设有第一凹槽,所述第一凹槽沿周向环绕一周或者有缺口;
    紧固带,在所述紧固带将所述球套和所述球壳紧固时,所述球套与所述球壳联动;在所述紧固带将所述球套和所述球壳松开时,所述球套与所述球壳不联动;
    销钉,一端与所述调节导丝的近端连接,另一端与所述第一凹槽卡接,且可沿所述第一凹槽移动,以使所述调节导丝通过所述销钉与所述球套联动。
    其中,所述球体的外表面间隔设有多个第二凹槽,所述第二凹槽的延伸方向和所述第一凹槽的延伸方向不同,所述调节导丝穿过所述球体后位于所述第二凹槽且可沿所述第二凹槽滑动。
  24. 根据权利要求22或23所述的仿生手术器械,其特征在于,所述手持部包括握柄和中央柄,所述握柄的一端与所述中央柄铰接。
  25. 根据权利要求24所述的仿生手术器械,其特征在于,所述传动部件还包括侧连杆和中央连杆,所述侧连杆的一端与所述中央连杆铰接,另一端与所述握柄连接,所述中央连杆设于所述中央柄内并可沿所述中央柄移动,所述中央连杆的一端与所述中央导丝连接。
  26. 根据权利要求24所述的仿生手术器械,其特征在于,所述传动部件还包括设于所述中央柄内并可沿所述中央柄移动,且一端与所述中央导丝连接的中央连杆,所述中央连杆上设有齿条,所述握柄与所述中央柄铰接的端部设有与所述齿条配合的齿轮。
  27. 根据权利要求24所述的仿生手术器械,其特征在于,所述器械杆为弯折杆。
  28. 一种仿生手术器械套件,其特征在于,包括:
    至少两个手术器械,其中至少一个为权利要求27所述的仿生手术器械;
    套管,供所述手术器械穿过使得手术器械的一部分位于所述套管内。
  29. 根据权利要求28所述的仿生手术器械套件,其特征在于,至少两个所述手术器械包括两个所述仿生手术器械和一个内窥镜。
  30. 根据权利要求29所述的仿生手术器械套件,其特征在于,两个所述仿生手术器械的弯折方向相异。
  31. 一种权利要求22或23所述的仿生手术器械的控制方法,其特征在于,包括以下步骤:
    解锁,使得所述传动部件不与所述手持部发生联动;
    锁定,使得所述传动部件与所述手持部发生联动。
  32. 根据权利要求31所述的控制方法,其特征在于,调节所述第一参考射线与所述第二参考射线之间的夹角为>0°且≤90°。
  33. 根据权利要求32所述的控制方法,其特征在于,操控所述手持部作俯仰运动、横摆运动、或两者结合,使得所述功能部产生与所述手持部呈比例的俯仰运动、横摆运动、或两者结合。
  34. 根据权利要求33所述的控制方法,其特征在于,所述比例为0.1~5。
PCT/CN2018/121216 2017-12-15 2018-12-14 一种仿生手术器械及其控制方法 WO2019114822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711352868.8A CN109925060A (zh) 2017-12-15 2017-12-15 一种仿生手术器械及其控制方法
CN201711352868.8 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019114822A1 true WO2019114822A1 (zh) 2019-06-20

Family

ID=66819947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121216 WO2019114822A1 (zh) 2017-12-15 2018-12-14 一种仿生手术器械及其控制方法

Country Status (2)

Country Link
CN (1) CN109925060A (zh)
WO (1) WO2019114822A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027811A1 (en) * 2007-08-23 2009-02-25 Tyco Healthcare Group LP Endoscopic surgical devices
CN104093370A (zh) * 2011-11-23 2014-10-08 利思梅德株式会社 手术用器械
CN104688346A (zh) * 2013-12-04 2015-06-10 柯惠Lp公司 双方向的关节式运动手用器械
WO2016052784A1 (ko) * 2014-10-02 2016-04-07 주식회사 리브스메드 수술용 인스트루먼트
CN106102551A (zh) * 2014-03-31 2016-11-09 人类拓展有限公司 可转向的医疗装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895056A (en) * 1959-09-17 1962-04-26 John Percival Beeston Improvements in couplings for pipes and conduits
SU418117A1 (ru) * 1970-11-03 1976-06-25 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт По Осушению Месторождений Полезных Ископаемых,Специальным Горным Работам, Рудничной Геологии И Маркшейдерскому Делу Шарнирное соединение труб
JP2000300668A (ja) * 1999-04-26 2000-10-31 Takeshi Takachi メカニカルロック機構およびその機構を用いたインジェクタヘッド
US7025775B2 (en) * 2003-05-15 2006-04-11 Applied Medical Resources Corporation Surgical instrument with removable shaft apparatus and method
US7147650B2 (en) * 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7842028B2 (en) * 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
US8409175B2 (en) * 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
US8992422B2 (en) * 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
AU2007201204B2 (en) * 2006-03-23 2012-07-12 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US20090171147A1 (en) * 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
KR101056204B1 (ko) * 2008-06-27 2011-08-11 정창욱 최소 침습 수술 도구
US8801752B2 (en) * 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US8827134B2 (en) * 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8623028B2 (en) * 2009-09-23 2014-01-07 Intuitive Surgical Operations, Inc. Surgical port feature
EP2470089B1 (en) * 2009-11-13 2018-08-01 Intuitive Surgical Operations, Inc. Curved cannula and robotic manipulator
ES2387255T3 (es) * 2010-04-14 2012-09-19 Tuebingen Scientific Medical Gmbh Instrumento quirúrgico con cabeza de instrumento elásticamente movible
WO2012071473A2 (en) * 2010-11-24 2012-05-31 Mount Sinai School Of Medicine Magnetic based device for retrieving a misplaced article
CN203630502U (zh) * 2013-11-14 2014-06-04 杭州海康威视数字技术股份有限公司 一种摄像机三轴调节支架
JP6205294B2 (ja) * 2014-02-28 2017-09-27 オリンパス株式会社 医療器具、医療システム及び医療器具の作動方法
CN104352264B (zh) * 2014-10-20 2017-11-21 上海理工大学 一种多自由度腹腔镜手术器械
US10172609B2 (en) * 2015-10-21 2019-01-08 Ethicon Llc Suturing instrument with locking articulation knob
CN208725874U (zh) * 2017-12-15 2019-04-12 中国人民解放军第二军医大学 一种仿生手术器械和仿生手术器械套件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027811A1 (en) * 2007-08-23 2009-02-25 Tyco Healthcare Group LP Endoscopic surgical devices
CN104093370A (zh) * 2011-11-23 2014-10-08 利思梅德株式会社 手术用器械
CN104688346A (zh) * 2013-12-04 2015-06-10 柯惠Lp公司 双方向的关节式运动手用器械
CN106102551A (zh) * 2014-03-31 2016-11-09 人类拓展有限公司 可转向的医疗装置
WO2016052784A1 (ko) * 2014-10-02 2016-04-07 주식회사 리브스메드 수술용 인스트루먼트

Also Published As

Publication number Publication date
CN109925060A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
US10188372B2 (en) Surgical instrument guide device
US8409175B2 (en) Surgical instrument guide device
KR101098199B1 (ko) 외과 수술용 기구
JP5090441B2 (ja) 外科用器具
WO2019105350A1 (zh) 蛇形手术器械
US9221179B2 (en) Articulating mechanism
US8409245B2 (en) Surgical instrument
US9474540B2 (en) Laparoscopic device with compound angulation
US7648519B2 (en) Surgical instrument
US20100249497A1 (en) Surgical instrument
KR101075294B1 (ko) 최소 침습 수술 기구
US20080255420A1 (en) Surgical instrument
WO2011070846A1 (ja) 医療用マニピュレータ
US20110238108A1 (en) Surgical instrument
JP2004154164A (ja) 多自由度型処置具
WO2019114823A1 (zh) 一种仿生手术器械
KR20130023311A (ko) 굽은 샤프트를 갖는 최소 침습 수술 기구
CN208725874U (zh) 一种仿生手术器械和仿生手术器械套件
CN217772455U (zh) 联动手术器械
CN208598524U (zh) 一种仿生手术器械
WO2019114822A1 (zh) 一种仿生手术器械及其控制方法
KR20120081913A (ko) 최소 침습 수술 기구
CN109925009A (zh) 用于手术器械的调节装置及手术器械
CN208693339U (zh) 用于手术器械的调节装置及手术器械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889543

Country of ref document: EP

Kind code of ref document: A1