WO2019114692A1 - Separators, electrochemical devices comprising the separator, and methods for making the separator - Google Patents

Separators, electrochemical devices comprising the separator, and methods for making the separator Download PDF

Info

Publication number
WO2019114692A1
WO2019114692A1 PCT/CN2018/120282 CN2018120282W WO2019114692A1 WO 2019114692 A1 WO2019114692 A1 WO 2019114692A1 CN 2018120282 W CN2018120282 W CN 2018120282W WO 2019114692 A1 WO2019114692 A1 WO 2019114692A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
layer
porous substrate
resistant
Prior art date
Application number
PCT/CN2018/120282
Other languages
French (fr)
Inventor
Alex Cheng
Jinzhen BAO
Yongle Chen
Fangbo HE
Original Assignee
Shanghai Energy New Materials Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Energy New Materials Technology Co., Ltd. filed Critical Shanghai Energy New Materials Technology Co., Ltd.
Publication of WO2019114692A1 publication Critical patent/WO2019114692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to electrochemistry field, and especially relates to separators for electrochemical devices, electrochemical devices comprising the separator, and methods for making the separator.
  • a separator is a permeable membrane placed between a positive electrode and a negative electrode in an electrochemical device.
  • the main function of the separator is to keep the two electrodes apart so as to prevent electrical short circuits while also allow the transport of ionic charge carriers that are needed to close the circuit during the passage of current.
  • Separator is a critical component in an electrochemical device because its structure and properties can considerably affect the performances of the electrochemical device including, for example, energy density, rate capacity, cycle life, and safety.
  • a separator is generally formed by a polymeric microporous membrane.
  • polyolefin-based microporous membranes have been widely used as separators in lithium secondary batteries because of their favorable chemical stability and excellent mechanical strength. However, they may have poor adhesive property, so they could not form a strong contact interface with electrodes.
  • polyolefin usually has a low melting point, the polyolefin-based membranes may shrink at a high temperature, resulting in a volume change and direct contact of the positive electrode and the negative electrode.
  • Many efforts have been made to increase the adhesiveness, thermal stability, and air permeability of the polyolefin-based separators.
  • a common method to improve the thermal stability or heat-resistance of a polyolefin-based separator is to coat a porous base membrane with an inorganic material, e.g., alumina and boehmite.
  • the inorganic material-coated separators may have an improved thermal stability at 120°C , but may still shrink seriously at a higher temperature, such as 150°C .
  • the separator may be heavier than the conventional polyolefin-based separator, resulting in an increased surface density, and further resulting in a reduced energy density of the corresponding electrochemical device.
  • the inorganic coating layer usually has poor adhesion to the electrodes.
  • the interfaces between the inorganic material-coated separator and the electrodes may deform during charge-discharge cycles, which may shorten the life time of the electrochemical device.
  • Air permeability is expressed in terms of Gurley value, i.e., the time required for a specified amount of air to pass through a specified area of the separator under a specified pressure. Due to the limitations of the materials used and manufacturing process, it may be difficult to further reduce the Gurley value of the conventional polyolefin-based separator. This problem could be solved by employing other materials with high porosity, such as nonwoven fabrics. However, nonwoven fabrics cannot be directly used as separators in electrochemical devices due to their large pores that easily lead to short circuit of a battery.
  • the present disclosure provides a separator for an electrochemical device, comprising a nonwoven porous substrate and at least one heat-resistant layer comprising at least one heat-resistant polymer disposed on at least one side of the nonwoven porous substrate, wherein the separator has a breakdown temperature of 450 °C or above.
  • the present disclosure also provides an electrochemical device comprising a positive electrode, a negative electrode, and the separator disclosed herein, disposed between the positive electrode and the negative electrode.
  • the present disclosure further provides a method for making the separator disclosed herein, comprising: preparing a first slurry comprising at least one heat-resistant polymer and at least one first solvent; coating the first slurry on at least one side of a nonwoven porous substrate to form a wet heat-resistant layer; and removing the at least one first solvent from the wet heat-resistant layer to form a heat-resistant layer.
  • FIGS. 1 through 6 illustrate schematic diagrams of exemplary separators according to the embodiments of the present disclosure.
  • the separator disclosed herein has a laminated structure.
  • the “at least one heat-resistant layer” disclosed herein means the separator may comprise one or more heat-resistant layers. Each of the heat-resistant layers comprises at least one heat-resistant polymer.
  • the “at least one side” disclosed herein means the at least one heat-resistant layer is disposed on one side or both sides of the nonwoven porous substrate, and the heat-resistant layer can be in direct contact or not in direct contact with the nonwoven porous substrate.
  • the separator disclosed herein exhibits a breakdown temperature of, for example, 450°C or above, such as, ranging from 450°C to 600°C .
  • the breakdown temperature disclosed herein is a temperature at which the separator breaks and cannot keep the positive electrode and the negative electrode physically apart anymore.
  • the breakdown temperature is measured using a device TMA by thermomechanical analysis, in which the separator is mounted onto the device with the fixture therein, a constant force that is usually ranges from 0.01 to 0.05N and a linear temperature ramp are applied to the separator, wherein the temperature increases at 5°C/min.
  • the temperature at which the separator breaks is measured and recorded as the breakdown temperature.
  • the device TA Q400 was used to measure the breakdown temperature of the separator disclosed herein. Since the separator disclosed herein has a high breakdown temperature, the electrochemical device employing the separator can be safe at a high temperature environment, which is caused by, for example, overcharging.
  • the nonwoven porous substrate used here may have a better heat-resistance than a polyolefin-based substrate.
  • the nonwoven porous substrate comprises at least one nonwoven membrane.
  • the nonwoven porous substrate comprises two or more nonwoven membranes, the two or more nonwoven membranes stack up and form a laminated substrate.
  • the term “nonwoven membrane” means a flat sheet including a multitude of randomly distributed fibers that form a web structure therein.
  • the fibers generally can be bonded to each other or can be unbonded.
  • the fibers can be staple fibers (i.e., discontinuous fibers of no longer than 10 cm in length) or continuous fibers.
  • the fibers can comprise a single material or a multitude of materials, either as a combination of different fibers or as a combination of similar fibers each comprised of different materials.
  • Examples of the nonwoven membrane disclosed herein may exhibit dimensional stability, i.e., thermal shrinkage of less than 5%when heated to 100°C in about two hours.
  • the nonwoven membrane may have a thickness ranging, for example, from 0.5 to 50 ⁇ m, such as from 0.5 to 20 ⁇ m.
  • the nonwoven membrane may have a relatively large average pore size ranging, for example, from 0.1 to 20 ⁇ m, such as from 1 to 5 ⁇ m.
  • the nonwoven membrane may have a porosity ranging, for example, from 40%to 80%, such as from 50%to 70%.
  • the nonwoven membrane may have a Gurley value of, for example, not greater than 100 sec/100ml, such as ranging from 0 to 50 sec/100ml. Because the nonwoven membrane has excellent air permeability, it is easy for ions to pass through.
  • the non-woven membrane disclosed herein may be formed of at least one material chosen from polyethylene (PE) , high density polyethylene (HDPE) , polypropylene (PP) , polybutylene, polypentene, polymethylpentene (TPX) , polyethylene terephthalate (PET) , polyamide, polyimide (PI) , polyacrylonitrile (PAN) , polyester, polyacetal, polycarbonate, polyetherketone (PEK) , polyetheretherketone (PEEK) , polybutylene terephthalate (PBT) , polyethersulfone (PES) , polyphenylene oxide (PPO) , polyphenylene sulfide (PPS) , polyethylene naphthalene (PEN) , viscose fiber, cellulose fiber, and copolymers thereof.
  • PE polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • PP polybutylene
  • polypentene polymethylpenten
  • a nonwoven membrane formed of PET can be used as the nonwoven porous substrate.
  • the at least one nonwoven membrane disclosed herein can be prepared according to a method known in the art, such as electro-blowing, electro-spinning, or melt-blowing, or can be purchased directly in the market.
  • the nonwoven porous substrate may further comprise at least one coating layer formed on at least one surface of the at least one nonwoven membrane.
  • the thickness of the at least one coating layer may range, for example, from 1 to 5 ⁇ m.
  • the presence of the coating layer can improve the bonding strength between the nonwoven porous substrate and the at least one heat-resistant layer and can also improve the absorption of liquid electrolyte due to, for example, its porousness.
  • the heat-resistant layer may be formed by coating at least one surface of the nonwoven porous substrate with a coating slurry. During the coating process, at least part of the coating slurry may penetrate into some pores of the nonwoven porous substrate, so that the pore size of these pores of the nonwoven porous substrate may be narrowed down. In such a case, the direct contact of the positive electrode and the negative electrode caused by larges pores of the nonwoven porous substrate can be prevented.
  • the heat-resistant layer may have a pore structure allowing ions to pass from one surface side to the other surface side.
  • the average pore size of pores in the heat-resistant layer may range, for example, from 0.02 to 10 ⁇ m, such as from 0.1 to 5 ⁇ m.
  • the porosity of the heat-resistant layer may range, for example, from 20%to 80%, such as from 40%to 70%.
  • the heat-resistant layer on one side of the nonwoven porous substrate may have a thickness ranging, for example, from 1 to 5 ⁇ m, such as from 2 to 4 ⁇ m.
  • the at least one heat-resistant layer disclosed herein comprises at least one heat-resistant polymer.
  • the at least one heat-resistant polymer may have a melting temperature or a glass transition temperature of, for example, 450 °C or above, such as from 450 °C to 600 °C .
  • the at least one heat-resistant polymer examples include polyamide, polyimide (PI) , polyetherimide (PEI) , polysulfone, polybenzimidazole (PBI) , polyphenylene sulfide (PPS) , polyethersulfone (PES) , polyarylsulfone (PAS) , polyketone (PK) , polyetherketone (PEK) , polyetheretherketone (PEEK) , and polydiphenyl oxide (PDPO) .
  • PI polyimide
  • PEI polyetherimide
  • PBI polyphenylene sulfide
  • PES polyethersulfone
  • PAS polyarylsulfone
  • PK polyketone
  • PEK polyetherketone
  • PEEK polyetheretherketone
  • PDPO polydiphenyl oxide
  • aromatic polyamides i.e., aramids (e.g., para-aramid, meta-aramid)
  • aramids e.g., para-aramid, meta-aramid
  • a heat-resistant polymer having a low density may be used to produce a lightweight heat-resistant layer.
  • the lightweight heat-resistant layer can reduce the total weight of the separator disclosed herein and further increase the energy density of the electrochemical device comprising the separator.
  • the heat-resistant layer disclosed herein may have a surface density ranging, for example, from 0.5 to 4 g/m 2 , such as from 1 to 3.5 g/m 2 .
  • the heat-resistant layer may have a binding property, which means the heat-resistant layer is adhesive.
  • the heat-resistant layer comprise a heat-resistant polymer which is adhesive, such as polyimide (PI) .
  • the heat-resistant layer further comprises at least one adhesive material, e.g., polyvinylidene fluoride (PVDF) .
  • PVDF polyvinylidene fluoride
  • the at least one heat-resistant layer is a completely-coated layer, which means the entire area of the surface to-be-coated (e.g., the surface of the nonwoven porous substrate or the surface of an additional layer) is coated with the heat-resistant layer, and no uncoated area exists.
  • the at least one heat-resistant layer on one side of the nonwoven porous substrate may have the same size as the nonwoven porous substrate.
  • the at least one heat-resistant layer is a partially-coated layer.
  • the term “partially-coated layer” means the layer comprises coated area (s) and uncoated area (s) that form a coating pattern. At least one of the coated area (s) and the uncoated area (s) may have a shape of dot, circle, triangle, square, diamond, rectangle, stripe, mesh, or an irregular shape.
  • the partially-coated layer may be formed by partially coating a surface to-be-coated (e.g., the surface of the nonwoven porous substrate or the surface of an additional layer) with a coating slurry, leaving at least one area uncoated.
  • the coated area (s) and the uncoated area (s) may form an alternating coating pattern.
  • the “alternating coating pattern” disclosed herein means a coating pattern in which the coated area (s) and the uncoated area (s) are distributed alternately in at least one direction within the plane of the partially-coated layer.
  • the “alternating coating pattern” disclosed herein can be regular or irregular.
  • the term “area (s) ” disclosed herein means one or more areas.
  • the heat-resistant layer may comprise a mesh-like coated area and a plurality of discontinuous uncoated areas.
  • discontinuous disclosed herein means at least two coated areas that are separated by an uncoated area or at least two uncoated areas that are separate by a coated area.
  • the partially-coated layer can provide more spaces and channels for liquid electrolyte, and also can reduce the overall weight of the separator disclosed herein.
  • the at least one heat-resistant layer is a partially-coated layer, its thickness depends on the thickness of the coated area (s) .
  • the separator disclosed herein has a laminated structure.
  • the separator disclosed herein may have a two-layer structure when only one surface of the nonwoven porous substrate is coated with the heat-resistant layer disclosed herein.
  • separator 10 comprises a nonwoven porous substrate 11 and a heat-resistant layer 13 formed on one surface of the nonwoven porous substrate 11.
  • the separator may have a three-layer structure when two heat-resistant layers are formed on two surfaces of the nonwoven porous substrate respectively.
  • separator 200 comprises a nonwoven porous substrate 21, a first heat-resistant layer 23 formed on one surface of the nonwoven porous substrate 21, and a second heat-resistant layer 24 formed on the other surface of the nonwoven porous substrate 21.
  • the first heat-resistant layer 23 and the second heat-resistant layer 24 may, for example, have the same composition, physical properties, and coating pattern (if both are partially coated) . In other embodiments, the first heat-resistant layer 23 and the second heat-resistant layer 24 may be different in at least one of the compositions, physical properties, and coating patterns.
  • the “physical properties” disclosed herein includes certain performance parameters for the membrane characterization, e.g., average pore size, porosity, air permeability, and thickness.
  • the separator disclosed herein may further comprise at least one adhesive layer.
  • the at least one adhesive layer can be formed on a surface of the nonwoven porous substrate, or, an outer surface of the heat-resistance layer such that the heat-resistant layer is disposed between the nonwoven porous substrate and the adhesive layer.
  • the at least one adhesive layer may be located at the outmost layer of the separator disclosed herein. In terms of “outmost layer, ” a separator has two outmost layers facing to the positive electrode and the negative electrode, respectively, in an electrochemical device.
  • the binding property of the adhesive layer can assist the assembling process because the relative movements between the separator and the electrodes can be reduced or avoided.
  • a good contact interface may be formed between the separator and the electrodes in the cell due to the adhesiveness of the adhesive layer. The good contact interface can reduce the internal resistance and increase the life cycle of the cell.
  • the at least one adhesive layer may comprise at least one organic material.
  • the at least one organic material may be adhesive.
  • the at least one organic material may be chosen, for example, from acrylic resin, methacrylic resin, polyolefin, aramid, polyimide (PI) , polyester, polyvinylidene fluoride (PVDF) , polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) , polyvinylidene fluoride-co-tetrafluoroethylene (PVDF-co-TFE) , and polytetrafluoroethylene (PTFE) .
  • the at least one adhesive layer may further comprise at least one inorganic material.
  • Various inorganic particles can be used as the at least one inorganic material, including, for example, oxides, hydroxides, sulfides, nitrides, carbides, carbonates, sulfates, phosphates, titanates, and the like, comprising at least one of metallic and semiconductor elements, such as Si, Al, Ca, Ti, B, Sn, Mg, Li, Co, Ni, Sr, Ce, Zr, Y, Pb, Zn, Ba, and La.
  • the at least one inorganic material examples include alumina (Al 2 O 3 ) , boehmite ( ⁇ -AlOOH) , silica (SiO 2 ) , zirconium dioxide (ZrO 2 ) , titanium oxide (TiO 2 ) , cerium oxide (CeO 2 ) , calcium oxide (CaO) , zinc oxide (ZnO) , magnesium oxide (MgO) , lithium nitride (Li 3 N) , calcium carbonate (CaCO 3 ) , barium sulfate (BaSO 4 ) , lithium phosphate (Li 3 PO 4 ) , lithium titanium phosphate (LTPO) , lithium aluminum titanium phosphate (LATP) , cerium titanate (CeTiO 3 ) , calcium titanate (CaTiO 3 ) , barium titanate (BaTiO 3 ) , and lithium lanthanum titanate (LLTO) .
  • the at least one adhesive layer comprises the at least one organic material and the at least one inorganic material in a weight ratio ranging, for example, from 2: 98 to 20: 80, such as from 5: 95 to 15: 85.
  • the at least one adhesive layer may be porous.
  • the porous structure can provide more spaces for the storage of a liquid electrolyte, and more channels for the flow of the liquid electrolyte, thereby improving the life cycle of the electrochemical device.
  • the pores in the adhesive layer may have an average pore size ranging, for example, from 0.02 to 10 ⁇ m, such as from 0.1 to 5 ⁇ m.
  • the adhesive layer may have a porosity ranging, for example, from 20%to 80%, such as from 40%to70%.
  • the at least one adhesive layer may be a completely-coated layer or a partially-coated layer.
  • the definitions of “completely-coated layer” and “partially-coated layer” have been discussed as set forth above.
  • the at least one adhesive layer comprises a mesh-like coated area and a plurality of discontinuous uncoated areas.
  • the partially-coated layer can provide more spaces and channels for the liquid electrolyte, and also can reduce the overall weight of the separator disclosed herein.
  • the at least one adhesive layer may have a thickness ranging, for example, from 1 to 5 ⁇ m, such as from 2 to 4 ⁇ m. When the at least one adhesive layer is a partially-coated layer, its thickness depends on the thickness of the coated area (s) .
  • Figures 3 through 6 illustrate some exemplary separators comprising at least one heat-resistant layer and at least one adhesive layer according to the embodiments of the present disclosure.
  • separator 30 comprises a three-layer structure formed by a nonwoven porous substrate 31, a heat-resistant layer 33 formed on one surface of the nonwoven porous substrate 31, and an adhesive layer 35 formed on the other surface of the nonwoven porous substrate 31.
  • separator 40 has a three-layer structure, in which a heat-resistant layer 43 is disposed between a nonwoven porous substrate 41 and an adhesive layer 45.
  • separator 50 comprises a nonwoven porous substrate 51, two heat-resistant layers 53 and 54, and an adhesive layer 55.
  • the two heat-resistant layers 53 and 54 are disposed on two surfaces of the nonwoven porous substrate 51, respectively.
  • the adhesive layer 55 is formed on an outer surface of the heat-resistant layer 53.
  • the two heat-resistant layers 53 and 54 have the same composition, physical properties and coating pattern. In other embodiments of the present disclosure, the two heat-resistant layers 53 and 54 may be different in at least one of the compositions, physical properties, and coating patterns.
  • separator 60 comprises a nonwoven porous substrate 61, two heat-resistant layers 63 and 64, and two adhesive layers 65 and 66.
  • the two heat-resistant layers 63 and 64 are formed on two surfaces of the nonwoven porous substrate 61, respectively.
  • the two adhesive layers 65 and 66 are formed on the outer surfaces of the two heat-resistant layers 63 and 64 on two sides of the nonwoven porous substrate 61, respectively.
  • the two heat-resistant layers 63 and 64 may have the same composition and physical properties, or may be different in at least one of the compositions and physical properties.
  • the two adhesive layers 65 and 66 may have the same composition, physical properties and coating patterns, or may be different in at least one of the compositions, physical properties, and coating patterns.
  • the separator disclosed herein comprises the at least one heat-resistant layer, it can have excellent thermal stability and mechanical strength at a high temperature.
  • the separator disclosed herein can also have good ion permeability and air permeability.
  • a good contact interface can be formed between the separator and one of the electrodes.
  • the separator disclosed herein can be lightweight, which can improve the energy density of the electrochemical device comprising the same.
  • the separator disclosed herein can have a wide range of applications and can be used for making high energy density and high power density batteries, e.g., automotive batteries, batteries for medical devices, and batteries for other large devices.
  • the present disclosure provides an electrochemical device comprising: a positive electrode, a negative electrode, and the separator disclosed herein, which is interposed between the positive electrode and the negative electrode.
  • An electrolyte may be further included in the electrochemical device of the present disclosure.
  • Such electrochemical devices include any devices in which electrochemical reactions occur.
  • the electrochemical device disclosed herein includes primary batteries, lithium secondary batteries, lead-acid batteries, sodium-sulfur batteries, fuel cells, solar cells and capacitors.
  • the electrochemical device disclosed herein is a lithium secondary battery, such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, a lithium-sulfur battery, and a lithium-air battery.
  • the electrochemical device disclosed herein can exhibit improved safety at a high temperature as discussed above.
  • the electrochemical devices of the present disclosure can also have an improved energy density as the separators disclosed herein can be lightweight.
  • the electrochemical device disclosed herein may be manufactured by a method known in the art.
  • a cell is formed by placing the separator of the present disclosure between a positive electrode and a negative electrode to obtain an electrode assembly and injecting a liquid electrolyte into the electrode assembly.
  • the electrode assembly may be formed by a process known in the art, such as a winding process or a lamination (stacking) and folding process.
  • the method for making the separator for an electrochemical device disclosed herein is a wet coating method, which, for example, comprises:
  • a mixture of the at least one heat-resistant polymer and the at least one first solvent may be stirred to obtain the first slurry.
  • the at least one heat-resistant polymer may be chosen, for example, from polyamide, PI, PEI, polysulfone, PBI, PPS, PES, PAS, PK, PEK, PEEK and PDPO.
  • the at least one heat-resistant polymer in the first slurry may have a weight percentage ranging, for example, from 1wt%to 50wt%, such as from 5wt%to 30wt%.
  • the at least one first solvent used in step (A) may have a solubility parameter similar to that of the at least one heat-resistant polymer used, and a low boiling point, because such solvent can facilitate uniform mixing and coating process and needs to be removed in the following step.
  • the at least one first solvent that may be used herein include N, N-dimethylformamide (DMF) , dimethylacetamide (DMAC) , N-methyl pyrrolidone (NMP) , dimethyl sulfoxide (DMSO) , acetone, diethyl ether, propyl ether, cyclohexane, tetrahydrofuran (THF) , and a mixture thereof.
  • At least one solubilizer may be added into the at least one first solvent.
  • the at least one solubilizer can be chosen, for example, from lithium chloride (LiCl) , calcium chloride (CaCl 2 ) and dodecylbenzene sulfonic acid (DBSA) .
  • the weight ratio of the at least one heat-resistant polymer to the solubilizer may be controlled, ranging, for example, from 100: 1 to 100: 10, such as from 100: 5 to 100: 10.
  • step (B) in order to coat the first slurry on at least one surface of the nonwoven porous substrate, any method known in the art may be used, such as dip coating, die coating, roll coating, comma coating and combinations thereof.
  • the two surfaces can be coated concurrently or one by one.
  • the at least one surface of the nonwoven porous substrate may be completely coated with the first slurry to form a completely-coated layer, or may be partially coated with the first slurry to form a partially-coated layer.
  • the at least one first solvent can be removed from the wet heat-resistant layer through a method known in the art, such as a thermal evaporation, a vacuum evaporation, a phase inversion process, or combinations thereof.
  • the at least one first solvent may be removed through a thermal evaporation.
  • the coated nonwoven porous substrate may be placed in an oven having a temperature, for example, ranging from 70°C to 90°C , such as 80°C , so as to evaporate the at least one first solvent.
  • the at least one first solvent may be removed through a combination of thermal evaporation and vacuum evaporation.
  • the coated nonwoven porous substrate may be placed in a vacuum oven having a temperature, for example, ranging from 50°C to 80°C , such as 80°C , and a vacuum degree ranging from 0 to 95 kPa, so as to evaporate the at least one first solvent.
  • Phase inversion process is an alternative method to remove the at least one first solvent, which may be initiated by immersing the coated nonwoven porous substrate in a poor solvent or non-solvent of the at least one heat-resistant polymer, such as water (e.g., deionized water) , alcohols (e.g., ethanol) , or combinations thereof.
  • the poor solvent or non-solvent polymer-polymer self-interactions are preferred, and the polymer coils may contract and eventually precipitate.
  • the poor solvent or non-solvent can precipitate the at least one heat-resistant polymer from the first slurry, thereby forming a heat-resistant layer on the at least one surface of the nonwoven porous substrate.
  • the coated nonwoven porous substrate may be immersed in water, so that the at least one first solvent can be transferred into water. Residues of the at least one first solvent and/or the poor solvent may be removed by any method known in the art, for example, heating or vacuum drying. As a result, a dry heat-resistant layer can form on at least one surface of the nonwoven porous substrate.
  • the method for making the separator of the present disclosure may further comprise:
  • the at least one organic material and the at least one second solvent may be mixed and stirred to obtain the second slurry.
  • the at least one organic material may be chosen, for example, from acrylic resin, methacrylic resin, polyolefin, polyamide, PI, polyester, PVDF, PVDF-co-HFP, PVDF-co-TFE, and PTFE.
  • the at least one organic material in the second slurry may have a weight percentage ranging, for example, from 1wt%to 60wt%, such as from 10wt%to 50wt%.
  • the at least one second solvent that may be used herein include DMF, DMAC, NMP, DMSO, acetone, diethyl ether, propyl ether, cyclohexane, THF, and a mixture thereof.
  • step (E) similar to step (B) , any method known in the art may be used to coat the second slurry on at least one surface of the heat-resistant layer and the nonwoven porous substrate to form a wet adhesive layer, such as dip coating, die coating, roll coating, comma coating and combinations thereof. It can be complete coating or partial coating.
  • step (F) similar to step (C) , the at least one second solvent can be removed from the wet adhesive layer through a method known in the art, such as a thermal evaporation, a vacuum evaporation, a phase inversion process, or combinations thereof.
  • a method known in the art such as a thermal evaporation, a vacuum evaporation, a phase inversion process, or combinations thereof.
  • the same method for removing the at least one first solvent from the wet heat-resistant layer may be used to remove the at least one second solvent from the wet adhesive layer.
  • the second slurry may further comprise at least one inorganic material. Examples of the at least one inorganic material are discussed above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing para-aramid was formed on one surface of the single-layer PET nonwoven membrane to obtain a separator.
  • the heat-resistant layer had a thickness of 3 ⁇ m and a surface density of 2.9 g/m 2 .
  • a single-layer polyamide nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 10 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing para-aramid was formed on one surface of the single-layer polyamide nonwoven membrane to obtain a separator.
  • the heat-resistant layer had a thickness of 3 ⁇ m and a surface density of 2.9 g/m 2 .
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing meta-aramid was formed on one surface of the single-layer PET nonwoven membrane to obtain a separator.
  • the heat-resistant layer had a thickness of 3 ⁇ m and a surface density of 2.6 g/m 2 .
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing meta-aramid having a thickness of 2 ⁇ m was formed on one surface of the single-layer PET nonwoven membrane.
  • An adhesive layer containing PVDF having a thickness of 2 ⁇ m was formed on the outer surface of the heat-resistant layer, such that the heat-resistant layer was disposed between the nonwoven porous substrate and the adhesive layer.
  • a separator was thus obtained.
  • the heat-resistant layer and the adhesive layer together had a surface density of 2.9 g/m 2 .
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing meta-aramid was formed on both surfaces of the single-layer PET nonwoven membrane to obtain a separator.
  • the heat-resistant layers on both surfaces of the single-layer PET nonwoven membrane had an aggregated thickness of 4 ⁇ m and a surface density of 4.0 g/m 2 .
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a nonwoven porous substrate.
  • a heat-resistant layer containing meta-aramid and PVDF having an aggregated thickness of 4 ⁇ m was formed on both surfaces of the single-layer PET nonwoven membrane. A separator was thus obtained.
  • the heat-resistant layer containing meta-aramid and PVDF had a surface density of 2.9 g/m 2 .
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PE membrane having a thickness of 16 ⁇ m and an air permeability of 238 s/100ml was used as a porous substrate.
  • An inorganic layer containing alumina having a thickness of 3 ⁇ m was formed on one surface of the single-layer PE membrane to obtain a separator.
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PP membrane having a thickness of 16 ⁇ m and an air permeability of 252 s/100ml was used as a porous substrate.
  • An inorganic layer containing alumina having a thickness of 3 ⁇ m was formed on one surface of the single-layer PP membrane to obtain a separator.
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer PET nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 0 s/100ml was used as a porous substrate.
  • An inorganic layer containing alumina having a thickness of 3 ⁇ m was formed on one surface of the single-layer PET nonwoven membrane to obtain a separator.
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a single-layer polyamide nonwoven membrane having a thickness of 16 ⁇ m and an air permeability of 10 s/100ml was used as a porous substrate.
  • An inorganic layer containing boehmite having a thickness of 3 ⁇ m was formed on one surface of the single-layer polyamide nonwoven membrane to obtain a separator.
  • Example 2 The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
  • a Malvern Thickness Tester was used to measure the thickness at five points of a sample having a flat surface. An average value was calculated.
  • the air permeability of the separator was measured using a Digital Oken Type Air-Permeability Tester, Model: EG01-55-1 MR, Asahi Seiko Co., Ltd. The time was set as 5s and the value was set as 500.
  • a separator having a flat surface was cut into five samples, each of which has dimension of 40mm ⁇ 60mm. The five samples were weighed. For each sample, the surface density was calculated by:
  • M is the weight of the sample (mg)
  • S is the area of the sample (cm 2 ) .
  • the length direction of the separator roll was defined as the machine direction (MD)
  • the width direction of the separator roll was defined as the transverse direction (TD)
  • MD machine direction
  • TD transverse direction
  • For each separator, five samples, each of which has dimension of 100mm ⁇ 100mm, were prepared. An 80mm ⁇ 80mm square was marked at the center of each sample. The distance of two opposite borders of the square was recorded as T0. T0 80mm. The five samples were placed in an oven having a temperature of 150°C for 1 hour. The distance of the two opposite borders along MD was measured as T1. The distance of the two opposite borders along TD was measured as T2.
  • thermal shrinkage of TD was calculated by: (T0-T1) /T0 ⁇ 100%.
  • Thermal shrinkage of MD was calculated by: (T0-T2) /T0 ⁇ 100%.
  • the Average thermal shrinkage values of TD and MD were calculated and recorded, respectively.
  • Capacity Retention Rate (%) (capacity after 500 cycles of charge and discharge /capacity before the Cycle Performance Test) ⁇ 100%.
  • the lithium-ion battery was fully charged (4.2V) and then discharged at different rates: 1C, 2C, 5C and 10C. For each rate of 2C, 5C, and 10C, a ratio of the discharge capacity to the discharge capacity at 1C was calculated.
  • Table 1 summarizes the test results of the separators and the lithium-ion batteries prepared in Examples 1-5 and Comparative Examples 1 to 4.
  • Comparative Examples 1 and 2 the conventional polyolefin-based membrane, i.e., PE membrane and PP membrane, respectively, was used as the porous substrate for the separator.
  • An inorganic coating containing alumina was formed on the surface of the PE or PP membrane.
  • the separators prepared in Comparative Examples 1 and 2 had high surface densities (i.e., 15.2 g/m 2 and 15.9 g/m 2 ) , poor air permeability (i.e., 279 s/100ml and 285 s/100ml) , and high thermal shrinkage percentages both at MD and TD (i.e., >10) .
  • Comparative Examples 3 and 4 a nonwoven membrane was used as the porous substrate, and an inorganic coating layer containing alumina and boehmite respectively was formed on the surface of the nonwoven membrane.
  • the separators prepared in Comparative Examples 3 and 4 had good air permeability and low thermal shrinkage percentages because of the usage of nonwoven porous substrate.
  • the lithium-ion batteries prepared in Comparative Examples 3 and 4 had good capacity retention rate of discharge at 5C. They got on fire in the Nail Test, but it was not as serious as the ones prepared in Comparative Examples 1 and 2.
  • the separators prepared in Comparative Examples 3 and 4 had high surface densities, so they could not contribute to the energy density improvement of the lithium-ion batteries.
  • the lithium-ion batteries prepared in Comparative Examples 3 and 4 had lower capacity retention rates after 500 cycles of charge and discharge than that of the lithium-ion batteries prepared in Examples 1 to 6.
  • Example 1 a heat-resistant layer containing para-aramid was formed on one surface of the nonwoven porous substrate.
  • a heat-resistant layer containing meta-aramid was formed on one surface of the nonwoven porous substrate.
  • the separators prepared in Examples 1-3 had lower surface densities and better air permeability compared with that of the separators prepared in Comparative Examples 1 to 4, as well as excellent thermal shrinkage performance.
  • the lithium-ion batteries prepared in Examples 1-3 exhibited high capacity retention rates both at 5C discharge and 500 cycles test, and did not get on fire during the Nail Test.
  • Example 4 a separator having a nonwoven porous substrate, a heat-resistant layer containing meta-aramid, and an adhesive layer containing PVDF was prepared. As the bonding strength between the separator and electrodes of the lithium-ion battery was enhanced because of the presence of the adhesive layer, the lithium-ion battery prepared in Example 4 had a higher capacity retention rate after 500 cycles of charge and discharge than that of the lithium-ion batteries prepared in other Examples or Comparative Examples.
  • Example 5 a heat-resistant layer containing meta-aramid or mixture of meta-aramid and PVDF was formed on both surfaces of the nonwoven porous substrate.
  • the separators prepared in Examples 5 and 6 had relatively low surface density, decent air permeability, and excellent thermal shrinkage property.
  • the lithium-ion batteries prepared in Example 5 had improved rate performance, cycle performance and safety.

Abstract

Disclosed are a separator for an electrochemical device, comprising a nonwoven porous substrate and at least one heat-resistant layer disposed on at least one side of the nonwoven porous substrate, comprising at least one heat-resistant polymer, wherein the separator has a breakdown temperature of 450℃ or above; as well as an electrochemical device including the separator and a method for making the separator.

Description

SEPARATORS, ELECTROCHEMICAL DEVICES COMPRISING THE SEPARATOR, AND METHODS FOR MAKING THE SEPARATOR
CROSS REFERENCE TO RELATED APPLICATION
The present application claims the benefit of priority to Chinese Application No. 201711319921.4, filed on December 12, 2017, the content of which is incorporated by reference.
TECHNICAL FIELD
The present disclosure relates to electrochemistry field, and especially relates to separators for electrochemical devices, electrochemical devices comprising the separator, and methods for making the separator.
BACKGROUND
A separator is a permeable membrane placed between a positive electrode and a negative electrode in an electrochemical device. The main function of the separator is to keep the two electrodes apart so as to prevent electrical short circuits while also allow the transport of ionic charge carriers that are needed to close the circuit during the passage of current. Separator is a critical component in an electrochemical device because its structure and properties can considerably affect the performances of the electrochemical device including, for example, energy density, rate capacity, cycle life, and safety.
A separator is generally formed by a polymeric microporous membrane. For example, polyolefin-based microporous membranes have been widely used as separators in lithium secondary batteries because of their favorable chemical stability and excellent mechanical strength. However, they may have poor adhesive property, so they could not form a strong contact interface with electrodes. As polyolefin usually has a low melting point, the polyolefin-based membranes may shrink at a high temperature, resulting in a volume change and direct contact of the positive  electrode and the negative electrode. Many efforts have been made to increase the adhesiveness, thermal stability, and air permeability of the polyolefin-based separators.
A common method to improve the thermal stability or heat-resistance of a polyolefin-based separator is to coat a porous base membrane with an inorganic material, e.g., alumina and boehmite. The inorganic material-coated separators may have an improved thermal stability at 120℃ , but may still shrink seriously at a higher temperature, such as 150℃ . Further, with the presence of an inorganic coating layer, the separator may be heavier than the conventional polyolefin-based separator, resulting in an increased surface density, and further resulting in a reduced energy density of the corresponding electrochemical device. In addition, the inorganic coating layer usually has poor adhesion to the electrodes. Thus, the interfaces between the inorganic material-coated separator and the electrodes may deform during charge-discharge cycles, which may shorten the life time of the electrochemical device.
Further, batteries with high-rate capacity often require separators with good air permeability. Air permeability is expressed in terms of Gurley value, i.e., the time required for a specified amount of air to pass through a specified area of the separator under a specified pressure. Due to the limitations of the materials used and manufacturing process, it may be difficult to further reduce the Gurley value of the conventional polyolefin-based separator. This problem could be solved by employing other materials with high porosity, such as nonwoven fabrics. However, nonwoven fabrics cannot be directly used as separators in electrochemical devices due to their large pores that easily lead to short circuit of a battery.
Therefore, lightweight separators with improved properties, such as high heat-resistance, high adhesiveness, and excellent air permeability, are still needed for various electrochemical devices.
SUMMARY OF THE INVENTION
The present disclosure provides a separator for an electrochemical device, comprising a nonwoven porous substrate and at least one heat-resistant layer comprising at least one heat-resistant polymer disposed on at least one side of the nonwoven porous substrate, wherein the separator has a breakdown temperature of 450 ℃ or above.
The present disclosure also provides an electrochemical device comprising a positive electrode, a negative electrode, and the separator disclosed herein, disposed between the positive electrode and the negative electrode.
The present disclosure further provides a method for making the separator disclosed herein, comprising: preparing a first slurry comprising at least one heat-resistant polymer and at least one first solvent; coating the first slurry on at least one side of a nonwoven porous substrate to form a wet heat-resistant layer; and removing the at least one first solvent from the wet heat-resistant layer to form a heat-resistant layer.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1 through 6 illustrate schematic diagrams of exemplary separators according to the embodiments of the present disclosure.
DETAILED DESCRIPTION
The present disclosure provides some exemplary embodiments of the separator for an electrochemical device. In one embodiment of the separator, at least one heat-resistant layer, which comprises at least one heat-resistant polymer, is formed on at least one side of a nonwoven porous substrate. Thus the separator disclosed herein has a laminated structure. The “at least one heat-resistant layer” disclosed herein means the separator may comprise one or more heat-resistant layers. Each of the heat-resistant layers comprises at least one heat-resistant polymer. The “at least one side” disclosed herein means the at least one heat-resistant layer is disposed on one side or both sides of  the nonwoven porous substrate, and the heat-resistant layer can be in direct contact or not in direct contact with the nonwoven porous substrate. The separator disclosed herein exhibits a breakdown temperature of, for example, 450℃ or above, such as, ranging from 450℃ to 600℃ . The breakdown temperature disclosed herein is a temperature at which the separator breaks and cannot keep the positive electrode and the negative electrode physically apart anymore. The breakdown temperature is measured using a device TMA by thermomechanical analysis, in which the separator is mounted onto the device with the fixture therein, a constant force that is usually ranges from 0.01 to 0.05N and a linear temperature ramp are applied to the separator, wherein the temperature increases at 5℃/min. The temperature at which the separator breaks is measured and recorded as the breakdown temperature. In the present disclosure, the device TA Q400 was used to measure the breakdown temperature of the separator disclosed herein. Since the separator disclosed herein has a high breakdown temperature, the electrochemical device employing the separator can be safe at a high temperature environment, which is caused by, for example, overcharging.
The nonwoven porous substrate used here may have a better heat-resistance than a polyolefin-based substrate. In some embodiments of the separator disclosed herein, the nonwoven porous substrate comprises at least one nonwoven membrane. When the nonwoven porous substrate comprises two or more nonwoven membranes, the two or more nonwoven membranes stack up and form a laminated substrate. The term “nonwoven membrane” means a flat sheet including a multitude of randomly distributed fibers that form a web structure therein. The fibers generally can be bonded to each other or can be unbonded. The fibers can be staple fibers (i.e., discontinuous fibers of no longer than 10 cm in length) or continuous fibers. The fibers can comprise a single material or a multitude of materials, either as a combination of different fibers or as a combination of similar fibers each comprised of different materials. Examples of the nonwoven membrane  disclosed herein may exhibit dimensional stability, i.e., thermal shrinkage of less than 5%when heated to 100℃ in about two hours. The nonwoven membrane may have a thickness ranging, for example, from 0.5 to 50 μm, such as from 0.5 to 20 μm. The nonwoven membrane may have a relatively large average pore size ranging, for example, from 0.1 to 20 μm, such as from 1 to 5 μm. The nonwoven membrane may have a porosity ranging, for example, from 40%to 80%, such as from 50%to 70%. Furthermore, the nonwoven membrane may have a Gurley value of, for example, not greater than 100 sec/100ml, such as ranging from 0 to 50 sec/100ml. Because the nonwoven membrane has excellent air permeability, it is easy for ions to pass through. The non-woven membrane disclosed herein may be formed of at least one material chosen from polyethylene (PE) , high density polyethylene (HDPE) , polypropylene (PP) , polybutylene, polypentene, polymethylpentene (TPX) , polyethylene terephthalate (PET) , polyamide, polyimide (PI) , polyacrylonitrile (PAN) , polyester, polyacetal, polycarbonate, polyetherketone (PEK) , polyetheretherketone (PEEK) , polybutylene terephthalate (PBT) , polyethersulfone (PES) , polyphenylene oxide (PPO) , polyphenylene sulfide (PPS) , polyethylene naphthalene (PEN) , viscose fiber, cellulose fiber, and copolymers thereof. For example, a nonwoven membrane formed of PET can be used as the nonwoven porous substrate. The at least one nonwoven membrane disclosed herein can be prepared according to a method known in the art, such as electro-blowing, electro-spinning, or melt-blowing, or can be purchased directly in the market.
The nonwoven porous substrate may further comprise at least one coating layer formed on at least one surface of the at least one nonwoven membrane. The thickness of the at least one coating layer may range, for example, from 1 to 5 μm. The presence of the coating layer can improve the bonding strength between the nonwoven porous substrate and the at least one heat-resistant layer and can also improve the absorption of liquid electrolyte due to, for example, its porousness.
One side or both sides of the nonwoven porous substrate may be coated with the heat-resistant layer. With the presence of the heat-resistant layer, the separator disclosed herein can have improved thermal stability and reduced thermal shrinkage at a high temperature. The heat-resistant layer may be formed by coating at least one surface of the nonwoven porous substrate with a coating slurry. During the coating process, at least part of the coating slurry may penetrate into some pores of the nonwoven porous substrate, so that the pore size of these pores of the nonwoven porous substrate may be narrowed down. In such a case, the direct contact of the positive electrode and the negative electrode caused by larges pores of the nonwoven porous substrate can be prevented.
The heat-resistant layer may have a pore structure allowing ions to pass from one surface side to the other surface side. The average pore size of pores in the heat-resistant layer may range, for example, from 0.02 to 10 μm, such as from 0.1 to 5 μm. The porosity of the heat-resistant layer may range, for example, from 20%to 80%, such as from 40%to 70%. In some embodiments, the heat-resistant layer on one side of the nonwoven porous substrate may have a thickness ranging, for example, from 1 to 5 μm, such as from 2 to 4 μm.
The at least one heat-resistant layer disclosed herein comprises at least one heat-resistant polymer. The at least one heat-resistant polymer may have a melting temperature or a glass transition temperature of, for example, 450 ℃ or above, such as from 450 ℃ to 600 ℃ . Examples of the at least one heat-resistant polymer include polyamide, polyimide (PI) , polyetherimide (PEI) , polysulfone, polybenzimidazole (PBI) , polyphenylene sulfide (PPS) , polyethersulfone (PES) , polyarylsulfone (PAS) , polyketone (PK) , polyetherketone (PEK) , polyetheretherketone (PEEK) , and polydiphenyl oxide (PDPO) . For example, aromatic polyamides, i.e., aramids (e.g., para-aramid, meta-aramid) , can be used as the at least one heat-resistant polymer because of their high mechanical strength, good heat and flame resistance, and great dimensional stability. In some  embodiments, a heat-resistant polymer having a low density may be used to produce a lightweight heat-resistant layer. The lightweight heat-resistant layer can reduce the total weight of the separator disclosed herein and further increase the energy density of the electrochemical device comprising the separator. In some embodiments, the heat-resistant layer disclosed herein may have a surface density ranging, for example, from 0.5 to 4 g/m 2, such as from 1 to 3.5 g/m 2.
The heat-resistant layer may have a binding property, which means the heat-resistant layer is adhesive. In one embodiment, the heat-resistant layer comprise a heat-resistant polymer which is adhesive, such as polyimide (PI) . In another embodiment, the heat-resistant layer further comprises at least one adhesive material, e.g., polyvinylidene fluoride (PVDF) . In the case that the heat-resistant layer is adhesive, when the separator disclosed herein contacts with an electrode, an even and uniform interface may be formed between the heat-resistant layer of the separator and the electrode, which can improve the life cycle of the corresponding electrochemical device.
In one embodiment of the present disclosure, the at least one heat-resistant layer is a completely-coated layer, which means the entire area of the surface to-be-coated (e.g., the surface of the nonwoven porous substrate or the surface of an additional layer) is coated with the heat-resistant layer, and no uncoated area exists. In such a case, the at least one heat-resistant layer on one side of the nonwoven porous substrate may have the same size as the nonwoven porous substrate.
In some other embodiments, the at least one heat-resistant layer is a partially-coated layer. The term “partially-coated layer” means the layer comprises coated area (s) and uncoated area (s) that form a coating pattern. At least one of the coated area (s) and the uncoated area (s) may have a shape of dot, circle, triangle, square, diamond, rectangle, stripe, mesh, or an irregular shape. The partially-coated layer may be formed by partially coating a surface to-be-coated (e.g., the surface of the nonwoven porous substrate or the surface of an additional layer) with a coating slurry, leaving at least one area uncoated. The coated area (s) and the uncoated area (s) may form an  alternating coating pattern. The “alternating coating pattern” disclosed herein means a coating pattern in which the coated area (s) and the uncoated area (s) are distributed alternately in at least one direction within the plane of the partially-coated layer. The “alternating coating pattern” disclosed herein can be regular or irregular. In addition, the term “area (s) ” disclosed herein means one or more areas. For example, the heat-resistant layer may comprise a mesh-like coated area and a plurality of discontinuous uncoated areas. The term “discontinuous” disclosed herein means at least two coated areas that are separated by an uncoated area or at least two uncoated areas that are separate by a coated area. The partially-coated layer can provide more spaces and channels for liquid electrolyte, and also can reduce the overall weight of the separator disclosed herein. When the at least one heat-resistant layer is a partially-coated layer, its thickness depends on the thickness of the coated area (s) .
The separator disclosed herein has a laminated structure. In one embodiment, the separator disclosed herein may have a two-layer structure when only one surface of the nonwoven porous substrate is coated with the heat-resistant layer disclosed herein. For example, as shown in Figure 1, separator 10 comprises a nonwoven porous substrate 11 and a heat-resistant layer 13 formed on one surface of the nonwoven porous substrate 11. In another embodiment, the separator may have a three-layer structure when two heat-resistant layers are formed on two surfaces of the nonwoven porous substrate respectively. For example, as shown in Figure 2, separator 200 comprises a nonwoven porous substrate 21, a first heat-resistant layer 23 formed on one surface of the nonwoven porous substrate 21, and a second heat-resistant layer 24 formed on the other surface of the nonwoven porous substrate 21. The first heat-resistant layer 23 and the second heat-resistant layer 24 may, for example, have the same composition, physical properties, and coating pattern (if both are partially coated) . In other embodiments, the first heat-resistant layer 23 and the second heat-resistant layer 24 may be different in at least one of the compositions, physical properties, and  coating patterns. The “physical properties” disclosed herein includes certain performance parameters for the membrane characterization, e.g., average pore size, porosity, air permeability, and thickness.
The separator disclosed herein may further comprise at least one adhesive layer. In some embodiments, the at least one adhesive layer can be formed on a surface of the nonwoven porous substrate, or, an outer surface of the heat-resistance layer such that the heat-resistant layer is disposed between the nonwoven porous substrate and the adhesive layer. In some embodiments, the at least one adhesive layer may be located at the outmost layer of the separator disclosed herein. In terms of “outmost layer, ” a separator has two outmost layers facing to the positive electrode and the negative electrode, respectively, in an electrochemical device. With the adhesive layer being the outmost layer, when the separator disclosed herein is used for manufacturing a cell, the binding property of the adhesive layer can assist the assembling process because the relative movements between the separator and the electrodes can be reduced or avoided. In addition, a good contact interface may be formed between the separator and the electrodes in the cell due to the adhesiveness of the adhesive layer. The good contact interface can reduce the internal resistance and increase the life cycle of the cell.
The at least one adhesive layer may comprise at least one organic material. The at least one organic material may be adhesive. The at least one organic material may be chosen, for example, from acrylic resin, methacrylic resin, polyolefin, aramid, polyimide (PI) , polyester, polyvinylidene fluoride (PVDF) , polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) , polyvinylidene fluoride-co-tetrafluoroethylene (PVDF-co-TFE) , and polytetrafluoroethylene (PTFE) .
In some embodiments, the at least one adhesive layer may further comprise at least one inorganic material. Various inorganic particles can be used as the at least one inorganic material, including, for example, oxides, hydroxides, sulfides, nitrides, carbides, carbonates, sulfates,  phosphates, titanates, and the like, comprising at least one of metallic and semiconductor elements, such as Si, Al, Ca, Ti, B, Sn, Mg, Li, Co, Ni, Sr, Ce, Zr, Y, Pb, Zn, Ba, and La. Examples of the at least one inorganic material include alumina (Al 2O 3) , boehmite (γ-AlOOH) , silica (SiO 2) , zirconium dioxide (ZrO 2) , titanium oxide (TiO 2) , cerium oxide (CeO 2) , calcium oxide (CaO) , zinc oxide (ZnO) , magnesium oxide (MgO) , lithium nitride (Li 3N) , calcium carbonate (CaCO 3) , barium sulfate (BaSO 4) , lithium phosphate (Li 3PO 4) , lithium titanium phosphate (LTPO) , lithium aluminum titanium phosphate (LATP) , cerium titanate (CeTiO 3) , calcium titanate (CaTiO 3) , barium titanate (BaTiO 3) , and lithium lanthanum titanate (LLTO) . In addition, the at least one inorganic material disclosed herein may have an average particle size ranging, for example, from 0.1 to 20 μm, such as from 0.1 to 10 μm.
In some embodiments, the at least one adhesive layer comprises the at least one organic material and the at least one inorganic material in a weight ratio ranging, for example, from 2: 98 to 20: 80, such as from 5: 95 to 15: 85.
In some embodiments, the at least one adhesive layer may be porous. The porous structure can provide more spaces for the storage of a liquid electrolyte, and more channels for the flow of the liquid electrolyte, thereby improving the life cycle of the electrochemical device. The pores in the adhesive layer may have an average pore size ranging, for example, from 0.02 to 10 μm, such as from 0.1 to 5 μm. The adhesive layer may have a porosity ranging, for example, from 20%to 80%, such as from 40%to70%.
The at least one adhesive layer may be a completely-coated layer or a partially-coated layer. The definitions of “completely-coated layer” and “partially-coated layer” have been discussed as set forth above. In one embodiment, the at least one adhesive layer comprises a mesh-like coated area and a plurality of discontinuous uncoated areas. The partially-coated layer can  provide more spaces and channels for the liquid electrolyte, and also can reduce the overall weight of the separator disclosed herein.
The at least one adhesive layer may have a thickness ranging, for example, from 1 to 5 μm, such as from 2 to 4 μm. When the at least one adhesive layer is a partially-coated layer, its thickness depends on the thickness of the coated area (s) .
Figures 3 through 6 illustrate some exemplary separators comprising at least one heat-resistant layer and at least one adhesive layer according to the embodiments of the present disclosure.
In Figure 3, separator 30 comprises a three-layer structure formed by a nonwoven porous substrate 31, a heat-resistant layer 33 formed on one surface of the nonwoven porous substrate 31, and an adhesive layer 35 formed on the other surface of the nonwoven porous substrate 31.
In Figure 4, separator 40 has a three-layer structure, in which a heat-resistant layer 43 is disposed between a nonwoven porous substrate 41 and an adhesive layer 45.
In Figure 5, separator 50 comprises a nonwoven porous substrate 51, two heat- resistant layers  53 and 54, and an adhesive layer 55. The two heat- resistant layers  53 and 54 are disposed on two surfaces of the nonwoven porous substrate 51, respectively. The adhesive layer 55 is formed on an outer surface of the heat-resistant layer 53. The two heat- resistant layers  53 and 54 have the same composition, physical properties and coating pattern. In other embodiments of the present disclosure, the two heat- resistant layers  53 and 54 may be different in at least one of the compositions, physical properties, and coating patterns.
In Figure 6, separator 60 comprises a nonwoven porous substrate 61, two heat- resistant layers  63 and 64, and two  adhesive layers  65 and 66. The two heat- resistant layers  63 and 64 are formed on two surfaces of the nonwoven porous substrate 61, respectively. The two  adhesive  layers  65 and 66 are formed on the outer surfaces of the two heat- resistant layers  63 and 64 on two sides of the nonwoven porous substrate 61, respectively. The two heat- resistant layers  63 and 64 may have the same composition and physical properties, or may be different in at least one of the compositions and physical properties. Similarly, the two  adhesive layers  65 and 66 may have the same composition, physical properties and coating patterns, or may be different in at least one of the compositions, physical properties, and coating patterns.
As discussed above, since the separator disclosed herein comprises the at least one heat-resistant layer, it can have excellent thermal stability and mechanical strength at a high temperature. The separator disclosed herein can also have good ion permeability and air permeability. When the at least one adhesive layer is included in the separator, a good contact interface can be formed between the separator and one of the electrodes. Further, the separator disclosed herein can be lightweight, which can improve the energy density of the electrochemical device comprising the same. The separator disclosed herein can have a wide range of applications and can be used for making high energy density and high power density batteries, e.g., automotive batteries, batteries for medical devices, and batteries for other large devices.
Further, the present disclosure provides an electrochemical device comprising: a positive electrode, a negative electrode, and the separator disclosed herein, which is interposed between the positive electrode and the negative electrode. An electrolyte may be further included in the electrochemical device of the present disclosure. Such electrochemical devices include any devices in which electrochemical reactions occur. For example, the electrochemical device disclosed herein includes primary batteries, lithium secondary batteries, lead-acid batteries, sodium-sulfur batteries, fuel cells, solar cells and capacitors. In some embodiments, the electrochemical device disclosed herein is a lithium secondary battery, such as a lithium metal secondary battery, a lithium  ion secondary battery, a lithium polymer secondary battery, a lithium-sulfur battery, and a lithium-air battery.
With the separator of the present disclosure inside, the electrochemical device disclosed herein can exhibit improved safety at a high temperature as discussed above. The electrochemical devices of the present disclosure can also have an improved energy density as the separators disclosed herein can be lightweight.
The electrochemical device disclosed herein may be manufactured by a method known in the art. In one embodiment, a cell is formed by placing the separator of the present disclosure between a positive electrode and a negative electrode to obtain an electrode assembly and injecting a liquid electrolyte into the electrode assembly. The electrode assembly may be formed by a process known in the art, such as a winding process or a lamination (stacking) and folding process.
Further disclosed herein are some exemplary embodiments of the method for making the separator for an electrochemical device disclosed herein. In one embodiment, it is a wet coating method, which, for example, comprises:
(A) preparing a first slurry comprising at least one heat-resistant polymer and at least one first solvent;
(B) coating the first slurry on at least one surface of a nonwoven porous substrate to form a wet heat-resistant layer; and
(C) removing the at least one first solvent from the wet heat-resistant layer to form a heat-resistant layer.
In step (A) , a mixture of the at least one heat-resistant polymer and the at least one first solvent may be stirred to obtain the first slurry. As discussed above, the at least one heat-resistant polymer may be chosen, for example, from polyamide, PI, PEI, polysulfone, PBI, PPS, PES, PAS, PK, PEK, PEEK and PDPO. In some embodiments, the at least one heat-resistant  polymer in the first slurry may have a weight percentage ranging, for example, from 1wt%to 50wt%, such as from 5wt%to 30wt%. The at least one first solvent used in step (A) may have a solubility parameter similar to that of the at least one heat-resistant polymer used, and a low boiling point, because such solvent can facilitate uniform mixing and coating process and needs to be removed in the following step. Examples of the at least one first solvent that may be used herein include N, N-dimethylformamide (DMF) , dimethylacetamide (DMAC) , N-methyl pyrrolidone (NMP) , dimethyl sulfoxide (DMSO) , acetone, diethyl ether, propyl ether, cyclohexane, tetrahydrofuran (THF) , and a mixture thereof.
In some embodiments, to improve the solubility of the at least one heat-resistant polymer in the at least one first solvent, at least one solubilizer may be added into the at least one first solvent. The at least one solubilizer can be chosen, for example, from lithium chloride (LiCl) , calcium chloride (CaCl 2) and dodecylbenzene sulfonic acid (DBSA) . The weight ratio of the at least one heat-resistant polymer to the solubilizer may be controlled, ranging, for example, from 100: 1 to 100: 10, such as from 100: 5 to 100: 10.
In step (B) , in order to coat the first slurry on at least one surface of the nonwoven porous substrate, any method known in the art may be used, such as dip coating, die coating, roll coating, comma coating and combinations thereof. When the first slurry is coated onto both surfaces of the nonwoven porous substrate, the two surfaces can be coated concurrently or one by one. Additionally, the at least one surface of the nonwoven porous substrate may be completely coated with the first slurry to form a completely-coated layer, or may be partially coated with the first slurry to form a partially-coated layer.
In step (C) , the at least one first solvent can be removed from the wet heat-resistant layer through a method known in the art, such as a thermal evaporation, a vacuum evaporation, a phase inversion process, or combinations thereof. In some embodiments, the at least one first  solvent may be removed through a thermal evaporation. For example, the coated nonwoven porous substrate may be placed in an oven having a temperature, for example, ranging from 70℃ to 90℃ , such as 80℃ , so as to evaporate the at least one first solvent. In some other embodiments, the at least one first solvent may be removed through a combination of thermal evaporation and vacuum evaporation. For example, the coated nonwoven porous substrate may be placed in a vacuum oven having a temperature, for example, ranging from 50℃ to 80℃ , such as 80℃ , and a vacuum degree ranging from 0 to 95 kPa, so as to evaporate the at least one first solvent. Phase inversion process is an alternative method to remove the at least one first solvent, which may be initiated by immersing the coated nonwoven porous substrate in a poor solvent or non-solvent of the at least one heat-resistant polymer, such as water (e.g., deionized water) , alcohols (e.g., ethanol) , or combinations thereof. In the poor solvent or non-solvent, polymer-polymer self-interactions are preferred, and the polymer coils may contract and eventually precipitate. The poor solvent or non-solvent can precipitate the at least one heat-resistant polymer from the first slurry, thereby forming a heat-resistant layer on the at least one surface of the nonwoven porous substrate. In an example, the coated nonwoven porous substrate may be immersed in water, so that the at least one first solvent can be transferred into water. Residues of the at least one first solvent and/or the poor solvent may be removed by any method known in the art, for example, heating or vacuum drying. As a result, a dry heat-resistant layer can form on at least one surface of the nonwoven porous substrate.
In some embodiments, the method for making the separator of the present disclosure may further comprise:
(D) preparing a second slurry comprising at least one organic material and at least one second solvent;
(E) coating the second slurry on at least one surface of the heat-resistant layer and the nonwoven porous substrate to form a wet adhesive layer; and
(F) removing the at least one second solvent from the wet adhesive layer to form an adhesive layer.
In step (D) , to prepare the second slurry, the at least one organic material and the at least one second solvent may be mixed and stirred to obtain the second slurry. As discussed above, the at least one organic material may be chosen, for example, from acrylic resin, methacrylic resin, polyolefin, polyamide, PI, polyester, PVDF, PVDF-co-HFP, PVDF-co-TFE, and PTFE. In some embodiments, the at least one organic material in the second slurry may have a weight percentage ranging, for example, from 1wt%to 60wt%, such as from 10wt%to 50wt%. Examples of the at least one second solvent that may be used herein include DMF, DMAC, NMP, DMSO, acetone, diethyl ether, propyl ether, cyclohexane, THF, and a mixture thereof.
In step (E) , similar to step (B) , any method known in the art may be used to coat the second slurry on at least one surface of the heat-resistant layer and the nonwoven porous substrate to form a wet adhesive layer, such as dip coating, die coating, roll coating, comma coating and combinations thereof. It can be complete coating or partial coating.
In step (F) , similar to step (C) , the at least one second solvent can be removed from the wet adhesive layer through a method known in the art, such as a thermal evaporation, a vacuum evaporation, a phase inversion process, or combinations thereof. The same method for removing the at least one first solvent from the wet heat-resistant layer may be used to remove the at least one second solvent from the wet adhesive layer.
In some embodiments, the second slurry may further comprise at least one inorganic material. Examples of the at least one inorganic material are discussed above.
References are now made in detail to the following examples. It is to be understood that the following examples are illustrative and the present disclosure is not limited thereto. In the  following Examples 1-6 and Comparative Examples 1-4, separators and lithium-ion batteries comprising the separator according to the present disclosure were prepared.
Example 1
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing para-aramid was formed on one surface of the single-layer PET nonwoven membrane to obtain a separator. The heat-resistant layer had a thickness of 3 μm and a surface density of 2.9 g/m 2.
A lithium-ion battery was prepared by placing the separator prepared above between a positive electrode (lithium cobaltate) and a negative electrode (graphite) , winding, and injecting an electrolyte (1.0 mol/L LiPF6, solvent: EC: DEC (wt%) =6: 4) .
Example 2
A single-layer polyamide nonwoven membrane having a thickness of 16 μm and an air permeability of 10 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing para-aramid was formed on one surface of the single-layer polyamide nonwoven membrane to obtain a separator. The heat-resistant layer had a thickness of 3 μm and a surface density of 2.9 g/m 2.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Example 3
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing meta-aramid was formed on one surface of the single-layer PET nonwoven membrane to  obtain a separator. The heat-resistant layer had a thickness of 3 μm and a surface density of 2.6 g/m 2.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Example 4
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing meta-aramid having a thickness of 2 μm was formed on one surface of the single-layer PET nonwoven membrane. An adhesive layer containing PVDF having a thickness of 2 μm was formed on the outer surface of the heat-resistant layer, such that the heat-resistant layer was disposed between the nonwoven porous substrate and the adhesive layer. A separator was thus obtained. The heat-resistant layer and the adhesive layer together had a surface density of 2.9 g/m 2.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Example 5
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing meta-aramid was formed on both surfaces of the single-layer PET nonwoven membrane to obtain a separator. The heat-resistant layers on both surfaces of the single-layer PET nonwoven membrane had an aggregated thickness of 4 μm and a surface density of 4.0 g/m 2.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Example 6
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a nonwoven porous substrate. A heat-resistant layer containing meta-aramid and PVDF having an aggregated thickness of 4 μm was formed on both surfaces of the single-layer PET nonwoven membrane. A separator was thus obtained. The heat-resistant layer containing meta-aramid and PVDF had a surface density of 2.9 g/m 2.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Comparative Example 1
A single-layer PE membrane having a thickness of 16 μm and an air permeability of 238 s/100ml was used as a porous substrate. An inorganic layer containing alumina having a thickness of 3 μm was formed on one surface of the single-layer PE membrane to obtain a separator.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Comparative Example 2
A single-layer PP membrane having a thickness of 16 μm and an air permeability of 252 s/100ml was used as a porous substrate. An inorganic layer containing alumina having a thickness of 3 μm was formed on one surface of the single-layer PP membrane to obtain a separator.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Comparative Example 3
A single-layer PET nonwoven membrane having a thickness of 16 μm and an air permeability of 0 s/100ml was used as a porous substrate. An inorganic layer containing alumina having a thickness of 3 μm was formed on one surface of the single-layer PET nonwoven membrane to obtain a separator.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
Comparative Example 4
A single-layer polyamide nonwoven membrane having a thickness of 16 μm and an air permeability of 10 s/100ml was used as a porous substrate. An inorganic layer containing boehmite having a thickness of 3 μm was formed on one surface of the single-layer polyamide nonwoven membrane to obtain a separator.
The same procedures as set forth above in Example 1 were used to prepare a lithium-ion battery using the separator prepared above.
The following tests were conducted for the resulting separators in Examples 1-6 and Comparative Examples 1-4:
Test 1 Thickness of Separator
A Malvern Thickness Tester was used to measure the thickness at five points of a sample having a flat surface. An average value was calculated.
Test 2 Air Permeability of Separator
The air permeability of the separator was measured using a Digital Oken Type Air-Permeability Tester, Model: EG01-55-1 MR, Asahi Seiko Co., Ltd. The time was set as 5s and the value was set as 500.
Test 3 Surface Density of Separator
A separator having a flat surface was cut into five samples, each of which has dimension of 40mm×60mm. The five samples were weighed. For each sample, the surface density was calculated by:
Surface density (g/m 2) = M/S×10,
wherein M is the weight of the sample (mg) , S is the area of the sample (cm 2) . An average value of the surface density for the five samples was calculated.
Test 4 Thermal Shrinkage of Separator
The length direction of the separator roll was defined as the machine direction (MD) , and the width direction of the separator roll was defined as the transverse direction (TD) . For each separator, five samples, each of which has dimension of 100mm×100mm, were prepared. An 80mm×80mm square was marked at the center of each sample. The distance of two opposite borders of the square was recorded as T0. T0 = 80mm. The five samples were placed in an oven having a temperature of 150℃ for 1 hour. The distance of the two opposite borders along MD was measured as T1. The distance of the two opposite borders along TD was measured as T2. For each sample, thermal shrinkage of TD was calculated by: (T0-T1) /T0×100%. Thermal shrinkage of MD was calculated by: (T0-T2) /T0×100%. The Average thermal shrinkage values of TD and MD were calculated and recorded, respectively.
Test 5 Cycle Performance of Lithium-ion Battery at Room Temperature
At room temperature, 500 cycles of charge and discharge at 1C were performed on the lithium-ion battery. The Capacity Retention Rate of the lithium-ion battery was calculated using the following formula:
Capacity Retention Rate (%) = (capacity after 500 cycles of charge and discharge /capacity before the Cycle Performance Test) ×100%.
Test 6 Rate Discharge Performance of Lithium-ion Battery
The lithium-ion battery was fully charged (4.2V) and then discharged at different rates: 1C, 2C, 5C and 10C. For each rate of 2C, 5C, and 10C, a ratio of the discharge capacity to the discharge capacity at 1C was calculated.
Test 7 Nail Test of Lithium-ion Battery
From top front of the lithium ion battery, a steel nail having a diameter of 3 mm was pierced into the lithium ion battery at a speed of 50 mm/sand stayed for 10 minutes. The tested lithium ion battery was observed with naked eyes to check if it is on fire, smoking, or exploded.
Table 1 summarizes the test results of the separators and the lithium-ion batteries prepared in Examples 1-5 and Comparative Examples 1 to 4.
Table 1. Testing Results
Figure PCTCN2018120282-appb-000001
In Comparative Examples 1 and 2, the conventional polyolefin-based membrane, i.e., PE membrane and PP membrane, respectively, was used as the porous substrate for the separator. An inorganic coating containing alumina was formed on the surface of the PE or PP membrane. As shown in Table 1, the separators prepared in Comparative Examples 1 and 2 had high surface densities (i.e., 15.2 g/m 2 and 15.9 g/m 2) , poor air permeability (i.e., 279 s/100ml and 285 s/100ml) , and high thermal shrinkage percentages both at MD and TD (i.e., >10) .
In Comparative Examples 3 and 4, a nonwoven membrane was used as the porous substrate, and an inorganic coating layer containing alumina and boehmite respectively was formed on the surface of the nonwoven membrane. As shown in Table 1, the separators prepared in  Comparative Examples 3 and 4 had good air permeability and low thermal shrinkage percentages because of the usage of nonwoven porous substrate. The lithium-ion batteries prepared in Comparative Examples 3 and 4 had good capacity retention rate of discharge at 5C. They got on fire in the Nail Test, but it was not as serious as the ones prepared in Comparative Examples 1 and 2. However, the separators prepared in Comparative Examples 3 and 4 had high surface densities, so they could not contribute to the energy density improvement of the lithium-ion batteries. In addition, the lithium-ion batteries prepared in Comparative Examples 3 and 4 had lower capacity retention rates after 500 cycles of charge and discharge than that of the lithium-ion batteries prepared in Examples 1 to 6.
In Examples 1 and 2, a heat-resistant layer containing para-aramid was formed on one surface of the nonwoven porous substrate. In Example 3, a heat-resistant layer containing meta-aramid was formed on one surface of the nonwoven porous substrate. The separators prepared in Examples 1-3 had lower surface densities and better air permeability compared with that of the separators prepared in Comparative Examples 1 to 4, as well as excellent thermal shrinkage performance. The lithium-ion batteries prepared in Examples 1-3 exhibited high capacity retention rates both at 5C discharge and 500 cycles test, and did not get on fire during the Nail Test.
In Example 4, a separator having a nonwoven porous substrate, a heat-resistant layer containing meta-aramid, and an adhesive layer containing PVDF was prepared. As the bonding strength between the separator and electrodes of the lithium-ion battery was enhanced because of the presence of the adhesive layer, the lithium-ion battery prepared in Example 4 had a higher capacity retention rate after 500 cycles of charge and discharge than that of the lithium-ion batteries prepared in other Examples or Comparative Examples.
In Examples 5 and 6, a heat-resistant layer containing meta-aramid or mixture of meta-aramid and PVDF was formed on both surfaces of the nonwoven porous substrate. The  separators prepared in Examples 5 and 6 had relatively low surface density, decent air permeability, and excellent thermal shrinkage property. The lithium-ion batteries prepared in Example 5 had improved rate performance, cycle performance and safety.

Claims (20)

  1. A separator for an electrochemical device, comprising:
    a nonwoven porous substrate; and
    at least one heat-resistant layer disposed on at least one side of the nonwoven porous substrate, comprising at least one heat-resistant polymer,
    wherein the separator has a breakdown temperature of 450℃ or above.
  2. The separator according to claim 1, wherein the nonwoven porous substrate comprises at least one nonwoven membrane.
  3. The separator according to claim 1, wherein the nonwoven porous substrate comprises at least one material chosen from polyethylene, high density polyethylene, polypropylene, polybutylene, polypentene, polymethylpentene, polyethylene terephthalate, polyamide, polyimide, polyacrylonitrile, polyester, polyacetal, polycarbonate, polyetherketone, polyetheretherketone, polybutylene terephthalate, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, viscose fiber, cellulose fiber, and copolymers thereof.
  4. The separator according to claim 1, wherein the heat-resistant layer has a thickness ranging from 1 to 5 μm.
  5. The separator according to claim 1, wherein the heat-resistant layer has a surface density ranging from 0.5 g/m 2 to 4 g/m 2.
  6. The separator according to claim 1, wherein the at least one heat-resistant polymer is chosen from polyamide, polyimide, polyetherimide, polysulfone, polybenzimidazole, polyphenylene sulfide, polyethersulfone, polyarylsulfone, polyketone, polyetherketone, polyetheretherketone and polydiphenyl oxide.
  7. The separator according to claim 1, wherein the at least one heat-resistant polymer is para-aramid or meta-aramid.
  8. The separator according to claim 1, wherein the at least one heat-resistant layer is a completely-coated layer or a partially-coated layer.
  9. The separator according to claim 1, wherein the at least one heat-resistant layer is a partially-coated layer comprising a mesh-like coated area and discontinuous uncoated areas.
  10. The separator according to claim 1, wherein the separator further comprises:
    at least one adhesive layer being the outmost layer of the separator, comprising at least one organic material.
  11. The separator according to claim 10, wherein the at least one organic material is chosen from acrylic resin, methacrylic resin, polyolefin, aramid, polyimide, polyester, polyvinylidene fluoride, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-tetrafluoroethylene, and polytetrafluoroethylene.
  12. The separator according to claim 10, wherein the at least one adhesive layer further comprises at least one inorganic material.
  13. The separator according to claim 12, wherein the at least one inorganic material is chosen from alumina, boehmite, silica, titanium oxide, cerium oxide, calcium oxide, zinc oxide, magnesium oxide, lithium nitride, calcium carbonate, barium sulfate, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, cerium titanate, calcium titanate, barium titanate and lithium lanthanum titanate.
  14. The separator according to claim 12, wherein the at least one adhesive layer comprises the at least one organic material and the at least one inorganic material in a weight ratio ranging from 2: 98 to 20: 80.
  15. An electrochemical device comprising a positive electrode, a negative electrode, and a separator according to claim 1 disposed between the positive electrode and the negative electrode.
  16. A method for making a separator for an electrochemical device according to claim 1, comprising:
    preparing a first slurry comprising at least one heat-resistant polymer and at least one first solvent;
    coating the first slurry on at least one surface of a nonwoven porous substrate to form a wet heat-resistant layer; and
    removing the first solvent from the wet heat-resistant layer to form a heat-resistant layer.
  17. The method according to claim 16, wherein the at least one heat-resistant polymer is chosen from polyamide, polyimide, polyetherimide, polysulfone, polybenzimidazole, polyphenylene sulfide, polyethersulfone, polyarylsulfone, polyketone, polyetherketone, polyetheretherketone and polydiphenyl oxide.
  18. The method according to claim 16, wherein the first solvent is chosen from N, N-dimethylformamide, dimethylacetamide, N-methyl pyrrolidone, dimethyl sulfoxide, acetone, diethyl ether, propyl ether, cyclohexane and tetrahydrofuran.
  19. The method according to claim 16, further comprising:
    preparing a second slurry comprising at least one organic material and at least one second solvent;
    coating the second slurry on at least one surface of the heat-resistant layer and the nonwoven porous substrate to form a wet adhesive layer; and
    removing the at least one second solvent from the wet adhesive layer to form an adhesive layer.
  20. The method according to claim 19, wherein the second slurry further comprises at least one inorganic material.
PCT/CN2018/120282 2017-12-12 2018-12-11 Separators, electrochemical devices comprising the separator, and methods for making the separator WO2019114692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711319921.4A CN108123089A (en) 2017-12-12 2017-12-12 Isolation film and electrochemical appliance
CN201711319921.4 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019114692A1 true WO2019114692A1 (en) 2019-06-20

Family

ID=62228939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120282 WO2019114692A1 (en) 2017-12-12 2018-12-11 Separators, electrochemical devices comprising the separator, and methods for making the separator

Country Status (2)

Country Link
CN (1) CN108123089A (en)
WO (1) WO2019114692A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315456A (en) * 2023-05-08 2023-06-23 合肥长阳新能源科技有限公司 Five-layer co-extrusion lithium battery microporous diaphragm and preparation method thereof
EP4047738A4 (en) * 2019-12-17 2023-07-12 LG Energy Solution, Ltd. Cylindrical battery and method for manufacturing cylindrical battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123089A (en) * 2017-12-12 2018-06-05 上海恩捷新材料科技股份有限公司 Isolation film and electrochemical appliance
CN109004155A (en) * 2018-07-26 2018-12-14 江西省通瑞新能源科技发展有限公司 A kind of preparation method of aramid fiber composite diaphragm for lithium battery
WO2020066108A1 (en) * 2018-09-25 2020-04-02 パナソニックIpマネジメント株式会社 Separator and nonaqueous electrolyte secondary battery
CN109546057A (en) * 2018-12-03 2019-03-29 河北金力新能源科技股份有限公司 A kind of preparation method of glass fibre non-woven aramid fiber coated separator
CN110429227B (en) * 2019-07-03 2022-03-25 莱州联友金浩新型材料有限公司 Preparation method of fiber type lithium ion battery diaphragm
CN110620205B (en) * 2019-10-08 2022-08-12 山东精恒科技有限公司 Preparation method of para-aramid/PP non-woven fabric lithium ion battery diaphragm
CN111900311A (en) * 2020-03-30 2020-11-06 明基材料(芜湖)有限公司 Isolating membrane and manufacturing method thereof
CN112103508B (en) * 2020-10-29 2021-08-10 天能集团(河南)能源科技有限公司 Lead-acid battery negative lead paste resistant to quick charging and high-rate discharging and preparation process thereof
CN112290165A (en) * 2020-11-05 2021-01-29 青岛蓝科途膜材料有限公司 Lithium ion battery diaphragm, preparation method and lithium ion battery
CN112635914B (en) * 2020-12-21 2022-07-22 中材锂膜有限公司 Lithium ion battery diaphragm with heat resistance and high mechanical strength and preparation method thereof
CN114597584B (en) * 2022-03-24 2024-02-06 河北金力新能源科技股份有限公司 Lithium ion battery diaphragm with charging protection function and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393976A (en) * 2007-09-19 2009-03-25 比亚迪股份有限公司 Battery separator, fabrication method thereof
CN103053046A (en) * 2010-08-02 2013-04-17 赛尔格有限责任公司 Ultra high melt temperature microporous high temperature battery separators and related methods
CN103682217A (en) * 2013-12-13 2014-03-26 中科院广州化学有限公司 High-temperature resistant non-woven composite membrane for power lithium-ion battery and preparation method for high-temperature resistant non-woven composite membrane
CN104051691A (en) * 2014-06-06 2014-09-17 中国第一汽车股份有限公司 Preparation method of polydopamine-based modified composite polymer diaphragm
US20140322586A1 (en) * 2012-11-30 2014-10-30 Lg Chem, Ltd. Separator for secondary battery comprising dual porous coating layer of inorganic particles with different surface characteristics, secondary battery comprising the same, and method of manufacturing the separator
CN108123089A (en) * 2017-12-12 2018-06-05 上海恩捷新材料科技股份有限公司 Isolation film and electrochemical appliance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497245B2 (en) * 2012-03-09 2014-05-21 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP6094542B2 (en) * 2014-07-29 2017-03-15 住友化学株式会社 Porous membrane
CN105552284B (en) * 2015-12-22 2018-11-06 沧州明珠隔膜科技有限公司 A kind of composite coating lithium ion battery separator and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393976A (en) * 2007-09-19 2009-03-25 比亚迪股份有限公司 Battery separator, fabrication method thereof
CN103053046A (en) * 2010-08-02 2013-04-17 赛尔格有限责任公司 Ultra high melt temperature microporous high temperature battery separators and related methods
US20140322586A1 (en) * 2012-11-30 2014-10-30 Lg Chem, Ltd. Separator for secondary battery comprising dual porous coating layer of inorganic particles with different surface characteristics, secondary battery comprising the same, and method of manufacturing the separator
CN103682217A (en) * 2013-12-13 2014-03-26 中科院广州化学有限公司 High-temperature resistant non-woven composite membrane for power lithium-ion battery and preparation method for high-temperature resistant non-woven composite membrane
CN104051691A (en) * 2014-06-06 2014-09-17 中国第一汽车股份有限公司 Preparation method of polydopamine-based modified composite polymer diaphragm
CN108123089A (en) * 2017-12-12 2018-06-05 上海恩捷新材料科技股份有限公司 Isolation film and electrochemical appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047738A4 (en) * 2019-12-17 2023-07-12 LG Energy Solution, Ltd. Cylindrical battery and method for manufacturing cylindrical battery
CN116315456A (en) * 2023-05-08 2023-06-23 合肥长阳新能源科技有限公司 Five-layer co-extrusion lithium battery microporous diaphragm and preparation method thereof
CN116315456B (en) * 2023-05-08 2023-08-01 合肥长阳新能源科技有限公司 Five-layer co-extrusion lithium battery microporous diaphragm and preparation method thereof

Also Published As

Publication number Publication date
CN108123089A (en) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2019114692A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11411281B2 (en) Multi-layered composite functional separator for lithium-ion battery
JP6208663B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
US11158905B2 (en) Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor
JP5717723B2 (en) Production and use of ceramic composites based on polymer carrier films
JP7072639B2 (en) Separation membrane for electrochemical devices including a low resistance coating layer and its manufacturing method
CN111052450B (en) Separator for electrochemical device and method of manufacturing the same
WO2019157695A1 (en) Separator and preparation method therefor and electrochemical device comprising separator
KR102311624B1 (en) Separator with adhesive layer for lithium secondary battery
WO2019072146A1 (en) Methods for preparing coating slurries, separators, electrochemical devices and products thereof
WO2019034143A1 (en) Separators and electrochemical devices comprising the separator
KR102308942B1 (en) Separator and electrochemical device containing the same
WO2019192475A1 (en) Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor
US20200266406A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
KR101470696B1 (en) Manufacturing method of separator of lithium secondary battery and the separator manufactured thereby and the lithium secondary battery having the separator
KR20210147995A (en) A separator for a electrochemical device and a electrochemical device comprising the same
CN112514151B (en) Separator, electrochemical device comprising the same, and method of manufacturing the same
TWI568062B (en) Secondary battery with improved life characteristics
KR102654789B1 (en) Separator for secondary battery and electrochemical device using the same
US10637028B2 (en) Separator and electrochemical device comprising same
KR20220062856A (en) Electrode assembly, method for preparing thereof, and electrochemical device comprising the electrode assembly
KR102651679B1 (en) Separator for secondary battery and electrochemical device using the same
KR101480499B1 (en) Separator for electrochemical device, method of preparing the same, and electrochemical device including the same
WO2019096225A1 (en) Coating slurries, separators, and methods for making the coating slurries and the separators thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887536

Country of ref document: EP

Kind code of ref document: A1