WO2019114609A1 - 一种金属有机配合物及其在有机电子器件中的应用 - Google Patents

一种金属有机配合物及其在有机电子器件中的应用 Download PDF

Info

Publication number
WO2019114609A1
WO2019114609A1 PCT/CN2018/119620 CN2018119620W WO2019114609A1 WO 2019114609 A1 WO2019114609 A1 WO 2019114609A1 CN 2018119620 W CN2018119620 W CN 2018119620W WO 2019114609 A1 WO2019114609 A1 WO 2019114609A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkane
organic
same
branched
aromatic
Prior art date
Application number
PCT/CN2018/119620
Other languages
English (en)
French (fr)
Inventor
梁志明
黄宏
潘君友
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880069428.8A priority Critical patent/CN111278836B/zh
Publication of WO2019114609A1 publication Critical patent/WO2019114609A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel metal organic complex, including mixtures and compositions thereof, and their use in organic electronic devices, particularly in organic phosphorescent light emitting diodes.
  • the invention further relates to an organic electronic device comprising such a metal organic complex, in particular a light emitting diode, and its use in displays and illumination devices.
  • organic light-emitting diodes In flat panel display and lighting applications, organic light-emitting diodes (OLEDs) have the advantages of low cost, light weight, low operating voltage, high brightness, color adjustability, wide viewing angle, easy assembly to flexible substrates, and low energy consumption. Therefore, it has become the most promising display technology.
  • OLEDs organic light-emitting diodes
  • various systems based on fluorescent and phosphorescent materials have been developed.
  • An organic light-emitting diode using a fluorescent material has high reliability, but its internal electroluminescence quantum efficiency is limited to 25% under electric field excitation.
  • the branch ratio of the singlet excited state and the triplet excited state of the excitons is 1:3, an organic light emitting diode using a phosphorescent material can achieve an internal luminescence quantum efficiency of almost 100%.
  • the triplet excitation is effectively obtained by doping the center of the heavy metal, which improves the spin-orbital merging and thus the inter-system transition to the triplet state.
  • Metal ruthenium (III)-based complexes are a class of materials widely used in high-efficiency OLEDs with high efficiency and stability. Baldo et al. reported the use of fac-tris(2-phenylpyridine)ruthenium(III)[Ir(ppy)3] as a phosphorescent material, 4,4'-N,N'-dicarbazole-biphenyl (4 , 4'-N, N'-diarbazole-biphenyl) (CBP) is a high quantum efficiency OLED of matrix material (Appl. Phys. Lett. 1999, 75, 4).
  • a phosphorescent luminescent material is the sky blue complex bis[2-(4',6'-difluorophenyl)pyridine-N,C2]-pyridinium ruthenate (III) (FIrpic), which is doped to high The triplet energy matrix exhibits an extremely high photoluminescence quantum efficiency of approximately 60% in solution and almost 100% in solid film (Appl. Phys. Lett. 2001, 79, 2082).
  • ruthenium (III) systems based on 2-phenylpyridine and its derivatives have been used in large quantities for the preparation of OLEDs, phosphorescent luminescent materials containing other metal centers with these ligands have remained largely unexplored.
  • One way to improve the luminous efficiency of gold (III) complexes is to introduce strong ⁇ -donor ligands, such as the stable gold (III) aryl compounds first discovered and synthesized by Yam et al., even at room temperature.
  • ⁇ -donor ligands such as the stable gold (III) aryl compounds first discovered and synthesized by Yam et al., even at room temperature.
  • Another interesting donor is an alkynyl group.
  • the spin-rotation properties of gold (I) alkynyl complexes have been extensively studied, the chemistry of gold (III) alkynyl groups has been largely ignored, with one exception: 6-benzyl-2,2'-linked Synthesis of pyridine alkyne fund (III) compounds (J. Chem. Soc. Dalton Trans.
  • Yam et al. disclose the synthesis of a series of bis-cyclometalated acetylene fund (III) compounds using various strong ⁇ -donor alkynyl ligands, all of which exhibit in various media at room and low temperatures. Very strong luminescent properties (J. Am. Chem. Soc. 2007, 129, 4350). In addition, the external quantum efficiency of OLEDs prepared using these luminescent gold (III) compounds as phosphorescent dopant materials was 5.5%. These luminescent gold (III) compounds contain a tridentate ligand and at least one strong ⁇ -donor group coordinated to the gold (III) metal center. Since then, Yam et al.
  • the object of the present invention is to provide a metal organic complex luminescent material which is simple in synthesis, novel in structure and stable in stability, in particular, double teeth.
  • the chelating ligand replaces the conventional monodentate ligand to give a more stable gold (III) complex. More preferably, the molecular bond is shortened, the rigidity of the molecule is increased, and the non-radiative transition is reduced, resulting in higher luminous efficiency.
  • M is a metal atom selected from gold, platinum or palladium
  • L 1 may be the same or different at each occurrence, being a ligand comprising O ⁇ X, X being selected from O or N; preferentially selected from a bidentate chelate ligand, preferably a monoanionic bidentate chelate Ligand;
  • Ar 1 at each occurrence being an aromatic, heteroaromatic or non-aromatic ring system having 5 to 20 ring atoms, which may be substituted by one or more groups R 1 ,
  • the groups R 1 described may be the same or different when they occur multiple times;
  • Ar 2 at each occurrence being an aromatic, heteroaromatic or non-aromatic ring system having 5 to 20 ring atoms, which may be substituted by one or more groups R 2 ,
  • the groups R 2 described may be the same or different when they occur multiple times;
  • R 1 and R 2 are present multiple times, the same or different ones are hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 30 carbon atoms, a branched alkane, a linear alkene, a branched alkene or an alkane.
  • the transition metal complex can be used as a guest material of a light-emitting layer in a phosphorescent organic light-emitting diode device.
  • a polymer comprising a transition metal complex as described above as a repeating unit.
  • a mixture comprising a metal organic complex or polymer as described above and at least one other organic functional material.
  • the other organic functional material may be selected from the group consisting of hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), electron injecting materials (EIM), and electron blocking materials (EBM).
  • HIM hole injection materials
  • HTM hole transport materials
  • ETM electron transport materials
  • EIM electron injecting materials
  • EBM electron blocking materials
  • Hole blocking material HBM
  • luminescent material Emitter
  • Hoost host material
  • Dopant doping material
  • An organic electronic device comprising a metal organic complex or polymer according to the invention.
  • the organic electronic device can be selected from an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, and an organic spin.
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OEEC organic light emitting cell
  • OFET organic field effect transistor
  • organic light emitting field effect transistor an organic laser
  • organic spin organic spin.
  • Electronic devices, organic sensors and organic plasmon emitting diodes Organic Plasmon Emitting Diode.
  • the metal organic complex according to the present invention is used in an OLED, particularly as a light-emitting layer doping material, to provide high luminous efficiency and device lifetime.
  • the possible reasons for this are as follows.
  • the novel metal-organic complexes of this type replace the conventional monodentate ligand with a bidentate ligand. Since such ligands increase the rigidity of the molecule relative to the monodentate ligand, the entire complex has better chemical, optical, electrical, and thermal stability. At the same time, since the modification occurs on such an auxiliary ligand, the wavelength of the maximum peak of the luminescence caused by the main ligand is less affected, so that the saturated luminescent color can be retained.
  • the present invention provides a novel metal-organic complex, a corresponding mixture and composition, and an application in an organic electronic device.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the host material, the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • the present invention relates to an organometallic complex comprising at least one chemical formula (1):
  • M is a metal atom selected from gold, platinum or palladium.
  • L 1 may be the same or different at each occurrence, being a ligand comprising O ⁇ X, X being selected from O or N; preferentially selected from a bidentate chelate ligand, preferably a monoanionic bidentate chelate Ligand;
  • Ar 1 at each occurrence being an aromatic, heteroaromatic or non-aromatic ring system having 5 to 20 ring atoms, which may be substituted by one or more groups R 1 ,
  • the groups R 1 described may be the same or different when they occur multiple times;
  • Ar 2 at each occurrence being an aromatic, heteroaromatic or non-aromatic ring system having 5 to 20 ring atoms, which may be substituted by one or more groups R 2 ,
  • the groups R 2 described may be the same or different when they occur multiple times;
  • R 1 and R 2 are present multiple times, the same or different ones are hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 30 carbon atoms, a branched alkane, a linear alkene, a branched alkene or an alkane.
  • the organometallic complex of formula (1) wherein Ar 1 is selected from unsubstituted or substituted has from 5 to 20 ring atoms, preferably from 5 to 18 ring atoms, most It is preferably an aromatic ring or a heteroaromatic ring of 5 to 12 ring atoms.
  • the organometallic complex of formula (1) wherein Ar 2 is selected from unsubstituted or substituted has from 5 to 20 ring atoms, preferably from 5 to 18 ring atoms, more It is preferably a heteroaromatic ring of 5 to 14 ring atoms, preferably 5 to 12 ring atoms, containing at least one ring hetero atom N.
  • An aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic group refers to a hydrocarbon group (containing a hetero atom) comprising at least one heteroaromatic ring, including a monocyclic group and a polycyclic ring system. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzofluorene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, anthracene Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • Ar 1 or Ar 2 is selected from a non-aromatic ring system having from 5 to 20 ring atoms that is unsubstituted or substituted with R.
  • One possible benefit of this embodiment is that the triplet energy level of the metal complex can be increased to facilitate the acquisition of green or blue light emitters.
  • non-aromatic ring systems contain from 1 to 10, preferably from 1 to 6 carbon atoms in the ring system, and include not only saturated but also partially unsaturated cyclic systems which may be unsubstituted or grouped R is mono- or polysubstituted, the groups R may be the same or different in each occurrence, and may also comprise one or more heteroatoms, preferably Si, N, P, O, S and/or Ge, particularly preferably selected From Si, N, P, O and/or S. These may, for example, be cyclohexyl- or piperidine-like systems or ring-like octadiene ring systems. The term also applies to fused non-aromatic ring systems.
  • R may be selected from (1) a C1-C10 alkyl group, and particularly preferably a group: methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec.
  • Attached to an aromatic or heteroaromatic ring particularly preferably refers to the following groups Benzene, naphthalene, anthracene, phthalocyanine, dihydroanthracene, fluorene, fluorene, fluoranthene, butyl, pentane, benzopyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzene And thiophene, isobenzothiophene, thiopurine, pyrrole, hydrazine, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, benzo -6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, oxazole, imidazole, benzimidazole,
  • aromatic and heteroaromatic ring systems are considered to be especially in addition to the above-mentioned aryl and heteroaryl groups, but also to biphenylene, benzene terphenyl, anthracene, spirobifluorene, dihydrogen. Phenanthrene, tetrahydroanthracene and cis or trans fluorene.
  • the organometallic complex having the general chemical formula (1), wherein Ar 1 -Ar 2 may be selected from one of the following formulae:
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 respectively represent CR 3 or N;
  • R 3 , R 4 , R 5 are selected from H, D, or a linear alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or a branch having 3 to 20 C atoms
  • a chain or cyclic alkyl, alkoxy or thioalkoxy group is either a silyl group, or a substituted keto group having from 1 to 20 C atoms, or from 2 to 20 C
  • Ar 1 , Ar 2 in the chemical formula (1) may be selected from one of the following structural groups, wherein H on the ring may be optionally substituted:
  • transition metal complex according to the present invention wherein Ar 1 in the formula (1) is selected from the following formula:
  • M is a metal atom selected from gold, platinum or palladium, with gold being particularly preferred.
  • Z 1-18 When Z 1-18 occurs multiple times, the same or different, it contains one or more carbons, or nitrogen, or oxygen, or silicon, or boron, sulfur or phosphorus atoms.
  • R 3-5 is a hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 20 carbon atoms, a branched alkane, a linear olefin, a branched olefin, an alkane ether.
  • transition metal complex according to the present invention wherein Ar 2 in the formula (1) is selected from the following formula:
  • #1 represents a bond to any position of Ar 1 in the chemical formula (1).
  • M is a metal atom selected from gold, platinum or palladium, with gold being particularly preferred.
  • Z 19-36 when multiple occurrences, the same or different, contains one or more carbons, or nitrogen, or oxygen, or silicon, or boron, sulfur or phosphorus atoms.
  • R 6-8 is a hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 20 carbon atoms, a branched alkane, a linear olefin, a branched olefin, an alkane ether.
  • an atom which forms a coordinate bond with the metal center M at least one of which is a carbon atom, and particularly preferably two of them are It is a carbon atom.
  • the organometallic complex according to the invention is selected from one of the following formulae:
  • Y When Y occurs multiple times, the same or different, contains one or more carbons, or nitrogen, or oxygen, or silicon, or boron, sulfur or phosphorus atoms.
  • R 16-20 at each occurrence, the same or different, may be a hydrogen or a halogen or a halogen atom or a substituted or unsubstituted linear alkane, a branched alkane or a linear olefin having 1 to 20 carbon atoms.
  • L 1 in the chemical formula (1) is a ligand containing O ⁇ X having the following general formula wherein X is preferably selected from O or N:
  • L 2 is a monoanionic bidentate
  • the chelating ligand is preferably selected from the following structures:
  • R 9-13 is the same or different when it is present multiple times, or is a hydrogen or a halogen atom or a linear alkane having 1 to 20 carbon atoms, a branched alkane, a linear olefin, a branched olefin, An alkane ether, aromatic, heteroaromatic or non-aromatic ring system.
  • R is hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 20 carbon atoms, a branched alkane, an alkane ether, an alkane aromatic ring system, an alkane heteroaromatic or an alkane non-aromatic ring system.
  • L 1 in formula (1) is preferentially selected from the following structures:
  • M is a metal atom and represents gold, platinum or palladium, with gold being particularly preferred.
  • R 14-15 is a hydrogen or a halogen or a halogen atom or a linear alkane having 1 to 20 carbon atoms, a branched alkane, a linear olefin, a branched olefin, an alkane ether.
  • the metal element M is selected from any one of gold (Au), palladium (Pd) and platinum (Pt).
  • the metallic element M is Au.
  • Au is particularly preferably used as the central metal M of the above metal organic complex. This is because helium is chemically stable and has a significant heavy atomic effect resulting in high luminous efficiency.
  • R 21 -R 30 in the metal complexes (Au-1) to (Au-216), when multiple occurrences, the same or different, are hydrogen or a halogen or a halogen atom or have 1 to 30 carbon atoms.
  • the metal-organic complex according to the invention is a luminescent material having an emission wavelength between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm. between.
  • the luminescence referred to herein means photoluminescence or electroluminescence.
  • the metal-organic complex according to the present invention has a photoluminescence efficiency of ⁇ 30%, preferably ⁇ 40%, more preferably ⁇ 50%, most preferably ⁇ 60%.
  • the metal organic complex according to the present invention may also be a non-luminescent material.
  • the invention further relates to a high polymer wherein at least one repeating unit comprises a structure as shown in formula (I).
  • the high polymer is a non-conjugated high polymer wherein the structural unit as shown in formula (I) is on the side chain.
  • the high polymer is a conjugated high polymer.
  • the method for synthesizing the high polymer is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the polymer according to the invention has a glass transition temperature (Tg) ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, more preferably ⁇ 160 ° C, optimal. It is ⁇ 180 °C.
  • the polymer according to the present invention preferably has a molecular weight distribution (PDI) in the range of from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, still more preferably 1 ⁇ 2 is most preferably 1 to 1.5.
  • PDI molecular weight distribution
  • the weight average molecular weight (Mw) of the high polymer according to the present invention preferably ranges from 10,000 to 1,000,000; more preferably from 50,000 to 500,000; more preferably from 100,000 to 40. More preferably, it is 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the invention further relates to a mixture comprising at least one metal organic complex or polymer according to the invention, and at least one other organic functional material.
  • the organic functional materials include holes (also called holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), and electron blocking materials (EBM). ), an organic host material (Host), a singlet illuminant (fluorescent illuminant), a triplet illuminant (phosphorescent illuminant), particularly a luminescent organic metal complex, and a doping material (Dopant).
  • organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire contents of which are hereby incorporated by reference.
  • the organic functional material may be a small molecule and a high polymer material.
  • the metal organic complex is present in the mixture according to the invention in an amount of from 0.01 to 30% by weight, preferably from 0.5 to 20% by weight, more preferably from 2 to 15% by weight, most preferably from 5 to 15wt%.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a triplet matrix material.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and another triplet emitter.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet matrix material the triplet emitter and the TADF material (but is not limited thereto).
  • Triplet Host Material (Triplet Host):
  • the example of the triplet host material is not particularly limited, and any metal complex or organic compound may be used as the host as long as its triplet energy level is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as a triplet host include, but are not limited to, the following general structure:
  • M3 is a metal
  • (Y 3 -Y 4 ) is a two-dentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S;
  • L is an ancillary ligand;
  • m3 is an integer The value is from 1 to the maximum coordination number of the metal; in a preferred embodiment, the metal complex that can be used as the triplet host has the following form:
  • (O-N) is a two-tooth ligand in which the metal is coordinated to the O and N atoms, and m3 is an integer having a value from 1 to the maximum coordination number of the metal;
  • M3 is optional for Ir and Pt.
  • Examples of the organic compound which can be used as the host of the triplet state are selected from compounds containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenylbenzene, benzindene; compounds containing an aromatic heterocyclic group such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, oxazole, dibenzoxazole, carbazole, pyridinium, pyrrole dipyridine, Pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine , oxadiazin
  • each Ar may be further substituted, and the substituent may be hydrogen, hydrazine, cyano, halogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl. base.
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • R 2 -R 7 have the same meaning as R 1
  • X 9 is selected from CR 1 R 2 or NR 1
  • Y is selected from CR 1 R 2 or NR 1 or O or S.
  • R 1 , n 2 , X 1 -X 8 and Ar 1 to Ar 3 have the same meanings as described above.
  • triplet host materials examples include:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondarily ⁇ Est ⁇ 0.25 eV, more preferably ⁇ Est ⁇ 0.20 eV, and most preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials are listed in the table below:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd, Au or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from a transition metal element or a lanthanide or actinide element, particularly preferably Ir, Pt, Au;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; L' may be the same or different at each occurrence, and is a bidentate chelate auxiliary ligand, preferably Is a monoanionic bidentate chelate ligand; q1 can be 0, 1, 2 or 3, preferably 2 or 3; q2 can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • the metal organic complex according to the invention is used in an evaporated OLED device.
  • the metal organic complex according to the invention has a molecular weight of ⁇ 1100 g/mol, preferably ⁇ 1000 g/mol, very preferably ⁇ 950 g/mol, most preferably ⁇ 900 g/mol.
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the metal organic complex according to the invention has a molecular weight of ⁇ 800 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol.
  • the metal-organic complex according to the invention has a solubility in toluene of > 3 mg/ml, preferably > 4 mg/ml, more preferably > 6 mg/ml, most preferably > 8 mg/ml at 25 °C. .
  • the invention further relates to a composition or printing ink comprising a metal organic complex or polymer as described above or a mixture comprising the same, and at least one organic solvent.
  • the invention further provides a film comprising a metal organic complex or polymer according to the invention prepared from a solution.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink according to the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; It is in the range of 25dyne/cm to 33dyne/cm.
  • the ink according to the present invention has a viscosity at an operating temperature or 25 ° C in the range of about 1 cps to 100 cps; preferably in the range of 1 cps to 50 cps; more preferably in the range of 1.5 cps to 20 cps; Good is in the range of 4.0cps to 20cps.
  • the composition so formulated will be suitable for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink containing the metal organic complex or polymer according to the present invention can facilitate the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the composition according to the invention comprises a functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably. It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the
  • solvents suitable for the present invention are, but are not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethyl Naphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethyl Benzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, two Hexylbenzene, di
  • the at least one solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2, 5 -hexanedione, 2,6,8-trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene Dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether , tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like.
  • an aliphatic ketone for example, 2-nonan
  • the printing ink further comprises another organic solvent.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine , toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1, 1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrogen Naphthalene, decalin, hydrazine and/or mixtures thereof.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, spray printing (Nozzle printing), slit type extrusion coating, and the like.
  • Preferred are ink jet printing, slit type extrusion coating, jet printing and gravure printing.
  • the solution or suspension may additionally contain one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of an organometallic complex or polymer as described above in an organic electronic device.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLEDs.
  • the organometallic complex is preferably used in the luminescent layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one organometallic complex or polymer as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein the functional layer contains at least one organometallic complex or polymer as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OFET organic field effect transistor
  • OLED organic light emitting field effect transistor
  • organic Lasers organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • the organic electronic device is an electroluminescent device, particularly preferably an OLED comprising a substrate, an anode, at least one luminescent layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor chip or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-naphthal
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL). Materials suitable for use in these functional layers are described above.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer comprises an organometallic complex or polymer according to the invention, and the light-emitting layer can be vacuum evaporated or solution processed. Prepared.
  • the light-emitting device has an emission wavelength between 300 and 1000 nm, preferably between 350 and 900 nm, most preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the energy level of the metal organic complex can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly
  • HOMO(eV) ((HOMO(Gaussian) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • Tetrachloroauric acid (10 g, 1 eq) was placed in a dry 500 ml two-necked flask, dissolved in 200 ml of acetonitrile, and then intermediate A (10 g, 1.02 eq) was added, and the reaction was allowed to react at 80 ° C for one day. The white precipitate was filtered, washed with acetonitrile and dichloromethane to afford pale white intermediate B (yield 31%).
  • 2,8-Dimethyl-4,6-nonanedione (0.5 g, 2 eq) and sodium carbonate (0.18 g, 5 eq) were placed in a dry 250 ml bottle and dissolved in a minimum of ethanol. Then, after adding 50 ml of chloroform, Intermediate B (1 g, 1 eq) was added, and the reaction temperature was raised to 50 ° C and stirred for one day. Then, the reaction solution was spun dry, dissolved in chloroform, and the solid which could not be completely dissolved was filtered off. Methanol was added to the filtrate to precipitate, which was filtered to give a white solid (yield: 40%).
  • Tetrachloroauric acid (10 g, 1 eq) was placed in a dry 500 ml two-necked flask, dissolved in 200 ml of acetonitrile, and then intermediate D (11.3 g, 1.02 eq) was added, and the reaction was allowed to react at 80 ° C for one day. The white precipitate was filtered and washed with acetonitrile and dichloromethane to afford pale white intermediate E (yield 28%).
  • Acetylacetone (0.27 g, 2 eq) and sodium carbonate (0.18 g, 5 eq) were placed in a dry 250 ml bottle and dissolved in a minimum of ethanol. Then, after adding 50 ml of chloroform, Intermediate E (1.13 g, 1 eq) was added, and the reaction temperature was raised to 50 ° C and stirred for one day. Then, the reaction solution was spun dry, dissolved in chloroform, and the solid which could not be completely dissolved was filtered off. Methanol was added to the filtrate to precipitate, which was filtered to give a white solid (yield: 24%).
  • Tetrachloroauric acid (10 g, 1 eq) was placed in a dry 500 ml two-necked flask, dissolved in 200 ml of acetonitrile, and then intermediate G (12.6 g, 1.02 eq) was added, and the reaction was allowed to react at 80 ° C for one day. The white precipitate was filtered, washed with acetonitrile and dichloromethane to afford pale white intermediate H (yield 28%).
  • Acetylacetone (0.27 g, 2 eq) and sodium carbonate (0.18 g, 5 eq) were placed in a dry 250 ml bottle and dissolved in a minimum of ethanol. Then, after adding 50 ml of chloroform, Intermediate H (1.26 g, 1 eq) was added, and the reaction temperature was raised to 50 ° C and stirred for one day. Then, the reaction solution was spun dry, dissolved in chloroform, and the solid which could not be completely dissolved was filtered off. Methanol was added to the filtrate to precipitate, which was filtered to give white solid (yield 15%).
  • ITO/NPD 60 nm/10% (Au-1, or Au-3, or Au-6, or c-Au-1): mCP (45 nm) / TPBi (35 nm) / LiF (1 nm) / Al ( The preparation steps of the 150 nm)/cathode OLED device are as follows:
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • HTL 60 nm
  • EML 45 nm
  • ETL 35 nm
  • hot evaporation in high vacuum (1 ⁇ 10 -6 mbar, mbar);
  • cathode LiF / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage luminance (JVL) characteristics of OLED devices are characterized by characterization devices while recording important parameters such as efficiency and external quantum efficiency.
  • the maximum external quantum efficiencies of the OLED devices Au-1, Au-3, Au-6 and c-Au-1 were determined to be 6.5%, 5.8%, 5.7% and 3.1%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种新型有机金属配合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及包含有按照本发明的金属有机配合物的有机电子器件,特别是有机发光二极管,及其在显示及照明技术中的应用。通过器件结构优化,改变金属配合物在基质中的浓度,可达到最佳的器件性能,便于实现高效高亮度高稳定的OLED器件,对全彩显示和照明应用提供了较好的材料选项。

Description

一种金属有机配合物及其在有机电子器件中的应用
本申请要求于2017年12月14日提交中国专利局、申请号为201711342792.0发明名称为“一种金属有机配合物及其在有机电子器件中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种新型金属有机配合物,包含其的混合物和组合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及一种包含有此类金属有机配合物的有机电子器件,特别是发光二极管,及其在显示器及照明装置中的应用。
背景技术
在平板显示器和照明应用中,有机发光二极管(OLEDs)具有低成本、轻重量、低工作电压、高亮度、颜色可调性、宽视角、易装配到挠性基底上以及低能量消耗的优势,因而成为最有发展潜力的显示技术。为了提高有机发光二极管的发光效率,各种基于荧光和磷光发光材料体系已被开发出来。使用荧光材料的有机发光二极管,具有较高可靠性,但在电场激发下其内部电致发光量子效率被限制为25%。与此相反,因为激子的单重激发态和三重激发态的分支比为1:3,使用磷光材料的有机发光二极管几乎可以取得100%的内部发光量子效率。对于小分子OLED来说,通过掺杂重金属中心来有效地获取三重态激发,这提高了自旋轨道偶合并由此系间窜越到三重态。
基于金属铱(III)的配合物是广泛用于高效率OLEDs的一类材料,具有较高的效率和稳定性。Baldo等人报道了使用fac-三(2-苯基吡啶)铱(III)[Ir(ppy)3]作为磷光发光材料,4,4‘-N,N‘-二咔唑-联苯(4,4‘-N,N‘-diarbazole-biphenyl)(CBP)为基质材料的高量子效率的OLED(Appl.Phys.Lett.1999,75,4)。磷光发光材料的另一实例是天蓝色配合物双[2-(4‘,6‘-二氟苯基)吡啶-N,C2]-吡甲酸铱(III)(FIrpic),其掺杂到高三重态能量基质中时表现出在大约溶液中60%和在固体膜中几乎100%的极高光致发光量子效率(Appl.Phys.Lett.2001,79,2082)。尽管基于2-苯基吡啶及其衍生物的铱(III)体系已经大量用于制备OLEDs,但含有带有这些配体的其它金属中心的磷光发光材料的仍基本未经仍未充分研究。
尽管对磷光发光材料,特别是具有重金属中心的金属配合物的兴趣与日俱增,大多数努力仍集中于使用铱(III)、铂(II)、铜(I)和镣(II)。其它金属中心极少被关注。不同于已知表现出高效发旋旋旋光性质的等电子铂(II)配位化合物,发光的金(III)配合物的实例极少报道,这可能源自金(III)金属中心所具有的低能量d-d配位场(LF)的存在和金(III)金属中心的亲电性。一种提高金(III)配合物的发光效率的方式是引入强σ-给体配体,如Yam等人最早发现并合成的稳定的金(III)芳基化合物,甚至在室温下也表现出令人感兴趣的光致发旋旋旋光性质(J.Chem.Soc.,Dalton Trans.1993,1001)。另一令人感兴趣的给体是炔基。尽管已经大量研究了金(I)炔基配合物的发旋旋旋光性质,但金(III)炔基的化学基本上被忽略了,除了一个例外:6-芐基-2,2‘-联吡啶的炔基金(III)化合物的合成(J.Chem.Soc.Dalton Trans.1999,2823),但其发旋旋旋光性能仍未经研究过。Yam等人公开了使用各种强σ-给体炔基配体的一系列双-环金属化炔基金(III)化合物的合成,其中所有化合物在各种介质中在室温和低温下都表现出很强的发光特性(J.Am.Chem.Soc.2007,129,4350)。此外,用这些发光的金(III)化合物作为磷光掺杂剂材料制备的OLEDs外部量子效率达5.5%。这些发光金(III)化合物含有一个三齿配体和至少一个配位到金(III)金属中心上的强σ-给体基团。此后,Yam等人相继报道了金属化炔基金(III)配合物的一类新型磷光材料(J.Am.Chem.Soc.2010,132, 14273)。经过优化的蒸镀型OLED达到11.5%的EQE和37.4cd A-1的电流效率。这表明炔基金(III)配合物是有希望的发光材料。但是该类化合物的稳定性尚需提高。
为了提高金(III)配合物的稳定性,一种方案是把单齿的炔基类配体改变,用单阴离子双齿螯合配体取代。但此类配合物还没有得到开发。
发明内容
鉴于上述现有技术的不足,需要改善金属有机配合物材料的稳定性,本发明的目的在于提供一类合成简单、结构新颖和稳定性较好的金属有机配合物发光材料,特别是用双齿螯合配体取代以往的单齿配体,得到更稳定的金(III)配合物。更佳的是,由于缩短了分子键,增加了分子的刚性,减少了非辐射跃迁,使发光效率更高。
本发明提供的技术方案如下:一种过渡金属配合物,有如化学式(1)所示的结构通式:
Figure PCTCN2018119620-appb-000001
化学式(1)
其中使用的符号与标记具有以下含义:
M是金属原子,选自金、铂或钯;
L 1每次出现时可以是相同或不同,是一个包含有O^X的配体,X选自O或N;优先地选于双齿螯合配体,最好是单阴离子双齿螯合配体;
Ar 1在每次出现时,相同或不同的是,为具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们可以被一个或多个基团R 1取代,所述的基团R 1在多次出现时可以是相同或不同;
Ar 2在每次出现时,相同或不同的是,为具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们可以被一个或多个基团R 2取代,所述的基团R 2在多次出现时可以是相同或不同;
R 1,R 2在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-30个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
所述的过渡金属配合物,可用于磷光有机发光二极管器件中作为发光层客体材料。
一种聚合物,包含一个如上所述的过渡金属配合物为重复单元。
一种混合物,包含一种如上所述的金属有机配合物或聚合物及至少另一种的有机功能材料。所述的另一种的有机功能材料可选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)或掺杂材料(Dopant)。
一种有机电子器件,其中包含一种按照本发明的金属有机配合物或聚合物。
所述的有机电子器件可选于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
有益效果:按照本发明的金属有机配合物用于OLED中,特别是作为发光层掺杂材料,能提供较高的发光效率和器件寿命。其可能的原因如下,该类结构新颖的金属有机配合物以双齿配体取代传统的单齿配体。由于这类配体相对于单齿配体,增加了分子的刚性,因 而更使得整个配合物具有更好的化学、光、电、热稳定性。同时由于修饰发生在此类辅助配体上,从而对主配体引起的发光最大峰的波长影响较低,因此可保留了饱和的发光颜色。
具体实施方式
本发明提供一种新型金属有机配合物,相应的混合物和组合物,以及在有机电子器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
本发明涉及一种包括至少一个化学式(1)所示的有机金属配合物:
Figure PCTCN2018119620-appb-000002
化学式(1)
其中使用的符号与标记具有以下含义:
M是金属原子,选自金、铂或钯。
L 1每次出现时可以是相同或不同,是一个包含有O^X的配体,X选自O或N;优先地选于双齿螯合配体,最好是单阴离子双齿螯合配体;
Ar 1在每次出现时,相同或不同的是,为具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们可以被一个或多个基团R 1取代,所述的基团R 1在多次出现时可以是相同或不同;
Ar 2在每次出现时,相同或不同的是,为具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们可以被一个或多个基团R 2取代,所述的基团R 2在多次出现时可以是相同或不同;
R 1,R 2在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-30个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
在某些优先的实施例中,按照化学式(1)的有机金属配合物,其中Ar 1选自未被取代或取代的具有5~20个环原子,较好是5~18个环原子,最好是5~12个环原子的芳族环或杂芳族环。
在另一些优先的实施例中,按照化学式(1)的有机金属配合物,其中Ar 2选自未被取代或取代的具有5~20个环原子,较好是5~18个环原子,更好是5~14个环原子,最好是5~12个环原子的至少包含一个环杂原子N的杂芳族环。
芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环***。杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环***。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共享,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10% 的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
具体地,芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、***、咪唑、恶唑、恶二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异恶唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在某些实施例中,Ar 1或Ar 2选自一个包含一个未被取代或是被R取代的具有5~20个环原子的非芳香族环系。这个实施例的一个可能的好处是可以提高金属配合物的三线态能级,从而便于获得绿光或蓝光发光体。
对于本发明的目的,非芳香族环系在环系中包含1-10优选1-6个碳原子,且不仅包括饱和而且包括部分不饱和的环状体系,它们可以未被取代或被基团R单或多取代,所述基团R在每一次出现中可以相同或者不同,并且还可以包含一个或多个杂原子,优选Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。这些例如可以是类环己基或类哌啶体系,也可以是类环辛二烯环状体系。该术语同样适用于稠合的非芳香环系。
R可选于,(1)C1~C10烷基,特别优选是指如下的基团:甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、2-甲基丁基、正戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟甲基、2,2,2-三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基和辛炔基;(2)C1~C10烷氧基,特别优选的是指甲氧基,乙氧基,正丙氧基,异丙氧基,正丁氧基,异丁氧基,仲丁氧基,叔丁氧基或者2-甲基丁氧基;(3)C2到C10芳基或杂芳基,取决于用途其可以是一价或二价的,在每一情况下也可以被上述提及的基团R 10取代并可以通过任何希望的位置与芳香族或杂芳香环连接,特别优选的是指以下的基团:苯、萘、蒽、嵌二萘、二氢芘、屈、茈、萤蒽、丁省、戊省、苯并芘、呋喃、苯并呋喃、异苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、吩噻嗪、吩恶嗪、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑、菲并咪唑、吡啶并咪唑、吡嗪并咪唑、喹喔啉并咪唑、恶唑、苯并恶唑、萘并恶唑、蒽并恶唑、菲并恶唑、异恶唑、1,2-噻唑、1,3-噻唑、苯并噻唑、哒嗪、苯并哒嗪、嘧啶、苯并嘧啶、喹喔啉、吡嗪、二氮蒽、1,5-二氮杂萘、氮咔唑、苯并咔啉、菲咯啉、1,2,3-***、1,2,4-***、苯并***、1,2,3-恶二唑、1,2,4-恶二唑、1,2,5-恶二唑、1,3,4-恶二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三嗪、1,2,4-三嗪、1,2,3-三嗪、四唑。1,2,4,5-四嗪、1,2,3,4-四嗪、1,2,3,5-四嗪、嘌呤、蝶啶、中氮茚和苯并噻二唑。用于本发明的目的,芳香和杂芳族环系认为特别是除上述提及的芳基和杂芳基之外,还指亚联苯基、亚三联苯、芴、螺二芴、二氢菲、四氢芘和顺式或者反式茚并芴。
在一个较为优先的实施方案中,所述的具有通化学式(1)的有机金属配合物,其中的Ar 1-Ar 2至少有一个包含环原子大于6的芳香族、杂芳香族基团。
在一个优先的实施方案中,所述的具有通化学式(1)的有机金属配合物,其中的Ar 1-Ar 2可以选自如下通式中的一个:
Figure PCTCN2018119620-appb-000003
其中,
A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8分别独立表示CR 3或N;
Y 1选自CR 4R 5、SiR 4R 5、NR 3、C(=O)、S或O;
R 3、R 4、R 5选自H、D、或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R 3,R 4,R 5可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环。
在一个更加优选的实施例中,化学式(1)中的Ar 1,Ar 2可选自如下结构基团中的一种,其中环上的H可以被任意取代:
Figure PCTCN2018119620-appb-000004
在一个较为优先的实施例中,按照本发明的过渡金属配合物,其中化学式(1)中的Ar 1选自以下通式:
Figure PCTCN2018119620-appb-000005
Figure PCTCN2018119620-appb-000006
其中,#2表示与化学式(1)中的Ar 2的任一位置键合。M是金属原子,选自金、铂或钯,特别优先的是金。
Z 1-18在多次出现时,相同或不同的是,包含一个或多个碳、或氮、或氧、或硅、或硼、硫或磷原子。
R 3-5在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
在另一个较为优先的实施例中,按照本发明所述的过渡金属配合物,其中化学式(1)中的Ar 2选自以下通式:
Figure PCTCN2018119620-appb-000007
Figure PCTCN2018119620-appb-000008
其中,#1表示与化学式(1)中的Ar 1的任一位置键合。M是金属原子,选自金、铂或钯,特别优先的是金。
Z 19-36在多次出现时,相同或不同的是,包含一个或多个碳、或氮、或氧、或硅、或硼、硫或磷原子。
R 6-8在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
具体地,在一个较为优先的实施例中,化学式(1)中的Ar 1,Ar 2中跟金属中心M成配位键的原子,至少其中一个是碳原子,特别优先是的其中两个都是碳原子。
在某些更为优先的实施方案中,按照本发明的有机金属配合物,选自如下通式中的一个:
Figure PCTCN2018119620-appb-000009
Figure PCTCN2018119620-appb-000010
Figure PCTCN2018119620-appb-000011
其中,L 2与权利要求1至6所述的L 1定义相同;
Y在多次出现时,相同或不同的是,包含一个或多个碳、或氮、或氧、或硅、或硼、硫或磷原子。
R 16-20在每次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-20个碳原子的可以取代或未被取代的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
按照本发明所述的过渡金属配合物,化学式(1)中的L 1是一个包含有O^X的配体,具有如下的一般式,其中X优先选自O或N:
Figure PCTCN2018119620-appb-000012
在一个较为优先的实施例中,按照本发明所述的过渡金属配合物,化学式(1)中的L 1和化学式(A-1)至(A-36)中的L 2是单阴离子双齿螯合配体,优先地选自以下结构:
Figure PCTCN2018119620-appb-000013
其中,R 9-13在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
V在多次出现时,可相同或不同的选自具有1-2个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚或O、S、S=O、SO 2、N(R)、B(R)、Si(R) 2、Ge(R) 2、P(R)、P(=O)R、P(R) 3、Sn(R) 2、C(R) 2、C=O、C=S、C=Se、C=N(R) 2或C=C(R) 2。且R为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、烷烃醚、烷烃芳香环系、烷烃杂芳香族或者烷烃非芳香族环系。
在一个特别优选的实施例中,化学式(1)中的L 1优先地选自以下结构:
Figure PCTCN2018119620-appb-000014
其中,M是金属原子,代表金、铂或钯,特别优先的是金。
R 14-15在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
按照本发明的有机金属配合物,金属元素M选自金(Au)、钯(Pd)和铂(Pt)中的任一个。
在一个特别优选的实施例中,金属元素M是Au。
从重原子效应来看,特别优选的将Au用作上述金属有机配合物的中心金属M。这是因为铱是化学稳定的,且具有显着的重原子效应会得到高的发光效率。
下面给出合适的按照本发明的金属有机配合物的具体例子,但是不限于:
Figure PCTCN2018119620-appb-000015
Figure PCTCN2018119620-appb-000016
Figure PCTCN2018119620-appb-000017
Figure PCTCN2018119620-appb-000018
Figure PCTCN2018119620-appb-000019
Figure PCTCN2018119620-appb-000020
Figure PCTCN2018119620-appb-000021
Figure PCTCN2018119620-appb-000022
Figure PCTCN2018119620-appb-000023
其中金属配合物(Au-1)至(Au-216)中的R 21-R 30在多次出现时,相同或不同的是,为氢或氘或卤素原子或具有1-30个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
在一个特别优选的实施例中,按照本发明的金属有机配合物是发光材料,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。这里指的发光是指光致发光或电致发光。在某些优选的实施例中,按照本发明的金属有机配合物,其光致发光效率≥30%,较优是≥40%,更优是≥50%,最优是≥60%。
在某些实施例中,按照本发明的金属有机配合物也可以是不发光材料。
本发明还涉及一种高聚物,其中至少有一个重复单元包含有如化学式(I)所示的结构。在某些实施例中,所述的高聚物是非共轭高聚物,其中如化学式(I)所示的结构单元在侧链上。在另一个优先的实施例中,所述的高聚物是共轭高聚物。
在一个优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优先的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优先的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优先的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还涉及一种混合物,包含至少一种按照本发明的金属有机配合物或高聚物,及至少另一种的有机功能材料。所述的有机功能材料,包括空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)、单重态发光体(荧光发光体)、三重态发光体(磷光发光体),特别是发光有机金属络合物,及掺杂材料(Dopant)。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
在某些实施例中,按照本发明的混合物中,金属有机配合物的含量为0.01至30wt%,较好的是0.5至20wt%,更好的是2至15wt%,最好的是5至15wt%。
在一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种三重态基质材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和另一种的三重态发光体。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种热激活延迟荧光发光材料(TADF)。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和一种热激活延迟荧光发光材料(TADF)。
下面对三重态基质材料,三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能级比发光体,特别是三重态发光体或磷光发光体更高,可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2018119620-appb-000024
M3是一金属;(Y 3-Y 4)是一两齿配体,Y 3和Y 4独立地选自C,N,O,P,和S;L是一个辅助配体;m3是一整数,其值从1到此金属的最大配位数;在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2018119620-appb-000025
(O-N)是一两齿配体,其中金属与O和N原子配位,m3是一整数,其值从1到此金属的最大配位数;
在某一个实施方案中,M3可选于Ir和Pt.
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基苯、苯并芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、二苯并咔唑,吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、***类、恶唑、噻唑、恶二唑、恶***、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、氘、氰基、卤素、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施方案中,三重态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2018119620-appb-000026
R 2-R 7的含义同R 1,X 9选于CR1R2或NR1,Y选自CR 1R 2或NR 1或O或S。R 1,n 2,X 1-X 8,Ar 1~Ar 3的含义同上所述。
在下面的表中列出合适的三重态主体材料的例子但不局限于:
Figure PCTCN2018119620-appb-000027
Figure PCTCN2018119620-appb-000028
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.25eV,更好是ΔEst<0.20eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599, Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2018119620-appb-000029
Figure PCTCN2018119620-appb-000030
3.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018119620-appb-000031
其中M是一金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au;
Ar 1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q1可以是0,1,2或3,优先地是2或3;q2可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219A1,US 20090061681A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681A1,US 20090061681A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018119620-appb-000032
Figure PCTCN2018119620-appb-000033
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在一个优选的实施方案中,按照本发明的金属有机配合物用于蒸镀性OLED器件。用于这个目的,按照本发明的金属有机配合物,其分子量≤1100g/mol,优选≤1000g/mol,很优选≤950g/mol,最优选≤900g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的金属有机配合物,其分子量≥800g/mol,优选≥900g/mol,很优选≥1000g/mol,最优选≥1100g/mol。
在另一些实施例中,按照本发明的金属有机配合物,在25℃时,在甲苯中的溶解度≥3mg/ml,优选≥4mg/ml,更优选≥6mg/ml,最优选≥8mg/ml。
本发明进一步涉及一种组合物或印刷油墨,其中,包含一种如上所述的金属有机配合物或高聚物或者包含其的混合物,以及至少一种有机溶剂。
本发明进一步提供一种从溶液中制备包含有按照本发明的金属有机配合物或高聚物的薄膜。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将适合于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种的有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二恶烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本***、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二***、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二***、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子,包含(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包含(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,喷印刷(Nozzle printing),狭缝型挤压式涂布等。首选的是喷墨印刷,狭缝型挤压式涂布,喷印刷及凹版印刷。溶液或悬浮液可以另外包含一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述有机金属配合物,本发明还提供一种如上所述的有机金属配合物或高聚物在有机电子器件的应用。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述有机金属配合物用于OLED器件的发光层中。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的有机金属配合物或高聚物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的有机金属配合物或高聚物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个特别优选的实施例中,所述的有机电子器件是电致发光器件,特别优选的是OLED,其中包含一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体芯片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包含一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、 Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在前面有描述。
在一个优选的实施例中,按照本发明的发光器件中,其发光层包含一种按照本发明的有机金属配合物或高聚物,所述的发光层可通过真空蒸镀或溶液加工的方法制备而成。
按照本发明的发光器件,其发光波长在300到1000nm之间,优选在350到900nm之间,最优选在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.金属有机配合物及其能量结构
Figure PCTCN2018119620-appb-000034
金属有机配合物的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Hartree-Fock/Default Spin/LanL2MB”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/gen geom=connectivity pseudo=lanl2”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(Gaussian)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(Gaussian)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表一所示:
表一
Figure PCTCN2018119620-appb-000035
2.金属有机配合物的合成
合成实施实例1:合成配合物Au-1:
Figure PCTCN2018119620-appb-000036
合成中间体A:
在一个干燥的1000ml双口瓶里放置2,2'-双溴双苯(20g,1eq),抽真空充氮气循环三次,然后加入无水***(600ml)溶解,把温度降至77K后加入正丁基锂(54ml,2eq),然后在室温的情况下搅拌2小时。然后把二丁基二氯化锡(19.6g,1.01eq)溶解在60ml的***后,用针筒加入至反应中。室温搅拌一天,加入水然后分液。把***层旋干后过柱纯化得到浅白色中间体A(产率50%)。
Figure PCTCN2018119620-appb-000037
合成中间体B:
在一个干燥的500ml双口瓶里放置四氯金酸(10g,1eq),加入200ml的乙腈溶解,然后加入中间体A(10g,1.02eq),把反应在80℃反应一天。把白色沉殿物过滤后以乙腈和二氯甲烷洗涤得浅白色中间体B(产率31%)。
Figure PCTCN2018119620-appb-000038
合成Au-1:
在一个干燥的250ml瓶中放置2,8-二甲基-4,6-壬二酮(0.5g,2eq)和碳酸钠(0.18g,5eq)和并以最少分量的乙醇溶解。然后加入50ml的氯仿后,加入中间体B(1g,1eq),把反应温度提高至50℃搅拌一天。然后旋干反应液,以氯仿溶解后,把不能完全溶解的固体过滤掉。把甲醇加入滤液中沉淀析出,过滤后得白色固体Au-1(产率40%)。
合成实施实例2:合成配合物Au-3:
Figure PCTCN2018119620-appb-000039
合成中间体C:
在一个干燥的1000ml双口瓶里放置1,2-二溴苯(20g,1eq)、2,3-二溴萘(24.2g,1eq)、联硼酸频那醇酯(21.5g,1eq)、Pd(ddpf)Cl 2(6.2g,0.1eq)和磷酸钾(90g,5eq),然后加入二氧六环(500ml),加热反应至80℃搅拌一天。然后把反应液旋干后以水和二氯甲烷分液,取有机相旋干,过柱子提纯得到黄褐色中间体C(产率13%)。
Figure PCTCN2018119620-appb-000040
合成中间体D:
在一个干燥的1000ml双口瓶里放置中间体C(23.2g,1eq),抽真空充氮气循环三次,然后加入无水***(600ml)溶解,把温度降至77K后加入正丁基锂(54ml,2eq),然后在室温的情况下搅拌2小时。然后把二丁基二氯化锡(19.6g,1.01eq)溶解在60ml的***后,用针筒加入至反应中。室温搅拌一天,加入水然后分液。把***层旋干后过柱纯化得到浅白色中间体D(产率59%)。
Figure PCTCN2018119620-appb-000041
合成中间体E:
在一个干燥的500ml双口瓶里放置四氯金酸(10g,1eq),加入200ml的乙腈溶解,然后加入中间体D(11.3g,1.02eq),把反应在80℃反应一天。把白色沉殿物过滤后以乙腈和二氯甲烷洗涤得浅白色中间体E(产率28%)。
Figure PCTCN2018119620-appb-000042
合成Au-3:
在一个干燥的250ml瓶中放置乙酰丙酮(0.27g,2eq)和碳酸钠(0.18g,5eq)和并以最少分量的乙醇溶解。然后加入50ml的氯仿后,加入中间体E(1.13g,1eq),把反应温度提高至50℃搅拌一天。然后旋干反应液,以氯仿溶解后,把不能完全溶解的固体过滤掉。把甲醇加入滤液中沉淀析出,过滤后得白色固体Au-3(产率24%)。
合成实施实例3:合成配合物Au-6:
Figure PCTCN2018119620-appb-000043
合成中间体F:
在一个干燥的1000ml双口瓶里放置2,3-二溴萘(48.4g,2eq)、联硼酸频那醇酯(21.5g,1eq)、Pd(ddpf)Cl 2(6.2g,0.1eq)和磷酸钾(90g,5eq),然后加入二氧六环(500ml),加热反应至80℃搅拌一天。然后把反应液旋干后以水和二氯甲烷分液,取有机相旋干,过柱子提纯得到黄褐色中间体F(产率19%)。
Figure PCTCN2018119620-appb-000044
合成中间体G:
在一个干燥的1000ml双口瓶里放置中间体F(26.4g,1eq),抽真空充氮气循环三次,然后加入无水***(600ml)溶解,把温度降至77K后加入正丁基锂(54ml,2eq),然后在室温的情况下搅拌2小时。然后把二丁基二氯化锡(19.6g,1.01eq)溶解在60ml的***后,用针筒加入至反应中。室温搅拌一天,加入水然后分液。把***层旋干后过柱纯化得到浅白色中间体G(产率70%)。
Figure PCTCN2018119620-appb-000045
合成中间体H:
在一个干燥的500ml双口瓶里放置四氯金酸(10g,1eq),加入200ml的乙腈溶解,然后加入中间体G(12.6g,1.02eq),把反应在80℃反应一天。把白色沉殿物过滤后以乙腈和二氯甲烷洗涤得浅白色中间体H(产率28%)。
Figure PCTCN2018119620-appb-000046
合成Au-6:
在一个干燥的250ml瓶中放置乙酰丙酮(0.27g,2eq)和碳酸钠(0.18g,5eq)和并以最少分量的乙醇溶解。然后加入50ml的氯仿后,加入中间体H(1.26g,1eq),把反应温度提高至50℃搅拌一天。然后旋干反应液,以氯仿溶解后,把不能完全溶解的固体过滤掉。把甲醇加入滤液中沉淀析出,过滤后得白色固体Au-6(产率15%)。
合成实施实例4:合成配合物c-Au-1
Figure PCTCN2018119620-appb-000047
合成c-Au-1:
在一个干燥的250ml瓶中放置2,8-二甲基-4,6-壬二酮(0.27g,2eq)和碳酸钠(0.18g,5eq)和并以最少分量的乙醇溶解。然后加入50ml的氯仿后,加入中间体B(1g,1eq),把反应温度提高至50℃搅拌一天。然后旋干反应液,以氯仿溶解后,把不能完全溶解的固体过滤掉。把甲醇加入滤液中沉淀析出,过滤后得白色固体c-Au-1(产率53%)。
3.OLED器件的制备和表征:
具有ITO/NPD(60nm)/10%(Au-1,或Au-3,或Au-6,或c-Au-1):mCP(45nm)/TPBi(35nm)/LiF(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HTL(60nm),EML(45nm),ETL(35nm):在高真空(1×10 -6毫巴,mbar)中热蒸镀而成;
c、阴极:LiF/Al(1nm/150nm)在高真空(1×10 -6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
OLED器件的电流电压亮度(JVL)特性通过表征设备来表征,同时记录重要的参数如效率及外部量子效率。经检测,OLED器件Au-1,Au-3,Au-6和c-Au-1的最大外部量子效率分别为6.5%,5.8%,5.7%和3.1%。
进一步的优化,如器件结构的优化,HTM,ETM及主体材料的组合优化,将进一步提高器件的性能,特别是效率,驱动电压及寿命。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,本发明的应用不限于上述的举例,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种过渡金属配合物,其具有如化学式(1)所示的结构通式:
    Figure PCTCN2018119620-appb-100001
    化学式(1)
    其中使用的符号与标记具有以下含义:
    M是金属原子,其选自金、铂或钯;
    L 1每次出现时为相同或不同的包含有O^X的配体,X选自O或N;
    Ar 1每次出现时为相同或不同的具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们被一个或多个基团R 1取代,所述基团R 1在多次出现时为相同或不同;
    Ar 2每次出现时为相同或不同的具有5-20个环原子的芳香族、杂芳香族或者非芳香族环系,它们被一个或多个基团R 2取代,所述基团R 2在多次出现时可以相同或不同;
    R 1,R 2多次出现时为相同或不同的氢或氘或卤素原子或具有1-30个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
  2. 根据权利要求1所述的过渡金属配合物,其中所述化学式(1)中的Ar 1选自以下通式:
    Figure PCTCN2018119620-appb-100002
    Figure PCTCN2018119620-appb-100003
    其中,#2表示与化学式(1)中的Ar 2的任一位置键合,M是金属原子,其选自金、铂或钯,
    Z 1-18多次出现时为相同或不同,并包含一个或多个碳、或氧、或氮、或硅、或硼、或硫或磷原子,
    R 3-5多次出现时为相同或不同的氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
  3. 根据权利要求1至2中任一项所述的过渡金属配合物,其中所述化学式(1)中的Ar 2选自以下通式:
    Figure PCTCN2018119620-appb-100004
    Figure PCTCN2018119620-appb-100005
    其中,#1表示与化学式(1)中的Ar 1的任一位置键合,M是金属原子,其选自金、铂或钯,
    Z 19-36多次出现时为相同或不同,并至少包含一个或多个碳、或氮、或氧、或硅、或硼、或硫或磷原子,
    R 6-8多次出现时为相同或不同的氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
  4. 根据权利要求1至3中任一项所述的过渡金属配合物,其中所述化学式(1)中的L 1是单阴离子双齿螯合配体,其选自以下结构:
    Figure PCTCN2018119620-appb-100006
    其中,R 9-13多次出现时为相同或不同的氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系,
    V多次出现时为相同或不同,并选自具有1-2个碳原子的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚或O、S、S=O、SO 2、N(R)、B(R)、Si(R) 2、Ge(R) 2、P(R)、P(=O)R、P(R) 3、Sn(R) 2、C(R) 2、C=O、C=S、C=Se、C=N(R) 2或C=C(R) 2,且R为氢或氘或卤素原子或具有1-20个碳原子的直链烷烃、支链烷烃、烷烃醚、烷烃芳香环系、烷烃杂芳香族或者烷烃非芳香族环系。
  5. 根据权利要求1至4中任一项所述的过渡金属配合物,其中所述化学式(1)中的Ar 1、Ar 2中与金属中心M成配位键的原子中的至少一个是碳原子。
  6. 根据权利要求1至5中任一项所述的过渡金属配合物,其具有化学通式(A-1)至(A-36)之一所示的结构:
    Figure PCTCN2018119620-appb-100007
    Figure PCTCN2018119620-appb-100008
    L 2与权利要求1至6所述的L 1定义相同;
    Y多次出现时为相同或不同,并至少包含一个或多个碳、或氮、或氧、或硅、或硼、或硫或磷原子,
    R 16-20每次出现时为相同或不同的氢或氘或卤素原子或具有1-20个碳原子的可以取代或未被取代的直链烷烃、支链烷烃、直链烯烃、支链烯烃、烷烃醚、芳香族、杂芳香族或者非芳香族环系。
  7. 根据权利要求1至6中任一项所述的过渡金属配合物,其选自如下结构:
    Figure PCTCN2018119620-appb-100009
  8. 一种聚合物,其包含至少一个如权利要求1至7中任一项所述的过渡金属配合物作为重复单元。
  9. 一种混合物,其包括如权利要求1至7中任一项所述的过渡金属配合物或权利要求8中所述的聚合物,及至少一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体、主体材料、掺杂材料。
  10. 一种根据权利要求1至7中任一项所述的过渡金属配合物或权利要求8中所述的聚合物在有机电子器件中的应用。
  11. 一种有机电子器件,其包含如权利要求1至7中任一项所述的过渡金属配合物或权利要求8中所述的聚合物。
  12. 根据权利要求11所述的有机电子器件,其特征在于,所述有机电子器件可选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管。
PCT/CN2018/119620 2017-12-14 2018-12-06 一种金属有机配合物及其在有机电子器件中的应用 WO2019114609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069428.8A CN111278836B (zh) 2017-12-14 2018-12-06 一种金属有机配合物及其在有机电子器件中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711342792 2017-12-14
CN201711342792.0 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019114609A1 true WO2019114609A1 (zh) 2019-06-20

Family

ID=66819965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119620 WO2019114609A1 (zh) 2017-12-14 2018-12-06 一种金属有机配合物及其在有机电子器件中的应用

Country Status (2)

Country Link
CN (1) CN111278836B (zh)
WO (1) WO2019114609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698501A (zh) * 2018-12-17 2020-01-17 广州华睿光电材料有限公司 一种过渡金属配合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165610A1 (en) * 2015-04-13 2016-10-20 The University Of Hong Kong Gold complexes for oled applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165610A1 (en) * 2015-04-13 2016-10-20 The University Of Hong Kong Gold complexes for oled applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAN, KAAITUNG ET AL.: "Strongly Luminescent Cyclometalated Gold(III) Complexes Supported by Bidentate Ligands Displaying Intermolecular Interactions and Tunable Emission Energy.", CHEMISTRY - AN ASIAN JOURNAL, vol. 12, no. 16, 6 June 2017 (2017-06-06), pages 2104 - 2120, XP055617225, DOI: 10.1002/asia.201700686 *
USON, R. ET AL.: "Synthesis and Reactivity of Dibenzometallole Complexes of Gold (III) and Platinum (II)", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 198, no. 1, 31 December 1980 (1980-12-31), pages 105 - 112, XP055617229, DOI: 10.1016/S0022-328X(00)84669-0 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698501A (zh) * 2018-12-17 2020-01-17 广州华睿光电材料有限公司 一种过渡金属配合物及其应用
CN110698501B (zh) * 2018-12-17 2022-10-04 广州华睿光电材料有限公司 一种过渡金属配合物及其应用

Also Published As

Publication number Publication date
CN111278836A (zh) 2020-06-12
CN111278836B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN109790460B (zh) 含硼有机化合物及应用、有机混合物、有机电子器件
CN111278838B (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
CN109608504B (zh) 有机金属配合物、聚合物、混合物、组合物和有机电子器件
WO2019114668A1 (zh) 一种过渡金属配合物材料及其在电子器件的应用
CN109638171B (zh) 有机混合物、高聚物、组合物及其用途
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
CN110981895B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN108137558B (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN111247658B (zh) 过渡金属配合物、聚合物、混合物、组合物及其应用
WO2018108109A1 (zh) 过渡金属配合物及其应用、混合物、有机电子器件
CN111039987A (zh) 有机过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2018108110A1 (zh) 金属有机配合物及其应用、混合物、有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
CN111087414A (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2017118262A1 (zh) 有机化合物及其应用
CN111087413B (zh) 一种过渡金属配合物及其有机电子器件
WO2018095379A1 (zh) 金属有机配合物、高聚物、组合物及有机电子器件
CN113004336B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN113045606B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN112979712B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN111278836B (zh) 一种金属有机配合物及其在有机电子器件中的应用
CN113286801B (zh) 含膦氧基团的过渡金属配合物、聚合物及其混合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889189

Country of ref document: EP

Kind code of ref document: A1