WO2019114012A1 - 一种应用于智慧城市的管道清理方法及智能机器人 - Google Patents

一种应用于智慧城市的管道清理方法及智能机器人 Download PDF

Info

Publication number
WO2019114012A1
WO2019114012A1 PCT/CN2017/117676 CN2017117676W WO2019114012A1 WO 2019114012 A1 WO2019114012 A1 WO 2019114012A1 CN 2017117676 W CN2017117676 W CN 2017117676W WO 2019114012 A1 WO2019114012 A1 WO 2019114012A1
Authority
WO
WIPO (PCT)
Prior art keywords
intelligent robot
blockage
pipeline
pipe
material type
Prior art date
Application number
PCT/CN2017/117676
Other languages
English (en)
French (fr)
Inventor
蔡任轩
Original Assignee
广州德科投资咨询有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州德科投资咨询有限公司 filed Critical 广州德科投资咨询有限公司
Publication of WO2019114012A1 publication Critical patent/WO2019114012A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/049Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes having self-contained propelling means for moving the cleaning devices along the pipes, i.e. self-propelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2209/00Details of machines or methods for cleaning hollow articles
    • B08B2209/02Details of apparatuses or methods for cleaning pipes or tubes
    • B08B2209/027Details of apparatuses or methods for cleaning pipes or tubes for cleaning the internal surfaces
    • B08B2209/04Details of apparatuses or methods for cleaning pipes or tubes for cleaning the internal surfaces using cleaning devices introduced into and moved along the pipes

Definitions

  • the invention relates to the technical field of smart cities, and particularly relates to a pipeline cleaning method and an intelligent robot applied to a smart city.
  • Pipeline cleaning is a very important job, both for municipal construction in smart cities and for personal family life. With the continuous development of related technologies in mechanical automation, people can already replace the people to do the pipeline cleaning work with the help of automated machinery.
  • the machinery used to clean the pipes is to clean the pipes by extracting the plugs in the pipes, and some machines are used to clean the pipes by reacting with the plugs.
  • the material of the blockage is relatively hard or large, the mechanical forcible removal of the blockage in the pipe will cause damage to the pipe itself; if the machine cleans the pipe by chemical reagents, some chemical reagents will not only react with the blockage, It also reacts with the pipeline and shortens the service life of the pipeline.
  • the embodiment of the invention discloses a pipeline cleaning method and an intelligent robot applied to a smart city, which can reduce damage to the pipeline and prolong the service life of the pipeline.
  • a first aspect of the embodiments of the present invention discloses a pipeline cleaning method applied to a smart city, where the method includes:
  • the intelligent robot detects the material type of the pipeline
  • the intelligent robot opens the traveling mechanism to walk in the pipeline; wherein the traveling mechanism includes at least three walking wheels, and each of the walking wheels is connected to the main body of the intelligent robot through a connecting arm to ensure the intelligence
  • the main body of the robot is always stably walking on the central axis of the pipe, and the grinding blades are disposed on the front and rear sides of each of the connecting arms;
  • the intelligent robot When the intelligent robot walks in the pipeline by the traveling mechanism, the intelligent robot controls the built-in laser sensor to perform blockage detection;
  • the smart robot detects a material type of the blockage
  • the intelligent robot controls the running mechanism to open a rotating walking mode to grind the blockage.
  • the second aspect of the embodiment of the present invention discloses an intelligent robot, including:
  • a first detecting unit configured to detect a material type of the pipeline
  • An opening unit for driving the walking mechanism to walk in the duct wherein the traveling mechanism comprises at least three walking wheels, and each of the walking wheels is connected to the main body of the intelligent robot through a connecting arm to ensure the The main body of the intelligent robot always walks stably on the central axis of the pipe, and the grinding blades are disposed on the front and rear sides of each of the connecting arms;
  • a first control unit configured to control a built-in laser sensor to perform blockage detection when the intelligent robot walks in the pipeline by using the traveling mechanism
  • the first detecting unit is further configured to control, by the first control unit, a built-in laser sensor After detecting a blockage in the detection of the blockage, detecting the material type of the blockage;
  • the first control unit is further configured to control the traveling mechanism after the first detecting unit detects that the material type of the pipeline belongs to a plastic pipe and the material type of the blockage belongs to a grindable blockage Turn the rotary walking mode to grind the blockage.
  • a third aspect of the embodiments of the present invention discloses an intelligent robot, including:
  • a processor coupled to the memory
  • the processor invokes the executable program code stored in the memory to execute a pipeline cleaning method applied to a smart city disclosed in the first aspect of the embodiments of the present invention.
  • a fourth aspect of the embodiments of the present invention discloses a computer readable storage medium storing a computer program, wherein the computer program causes a computer to execute a pipeline cleaning method applied to a smart city disclosed in the first aspect of the embodiments of the present invention.
  • a fifth aspect of an embodiment of the present invention discloses a computer program product, which, when run on a computer, causes the computer to perform the pipeline cleaning method disclosed in the first aspect for smart city.
  • the embodiment of the invention has the following beneficial effects:
  • the intelligent robot when the intelligent robot starts working, the intelligent robot firstly detects the material of the pipeline (such as plastic, iron, etc.) and opens the running mechanism (the running mechanism includes at least three walking wheels, and each walking wheel is connected by The arm is connected to the main body of the intelligent robot to ensure that the main body of the intelligent robot always walks stably on the central axis of the pipe, and the grinding blade is arranged on the front and rear sides of each connecting arm; the intelligent robot can detect the inside of the pipe during the walking process Whether there is a blockage, if present, the intelligent robot can detect the material of the blockage (such as plastic) and determine the cleaning plan according to the detected material of the pipe and the material of the blockage (for example, using a grinding blade to block the blockage) Grinding) Maximizes the protection of the pipeline while cleaning the pipeline.
  • the embodiment of the present invention can combine the material of the pipeline and the material of the blockage in the pipeline to minimize the damage to the pipeline and prolong the service life of the pipeline when cleaning the pipeline.
  • FIG. 1 is a schematic flow chart of a pipeline cleaning method applied to a smart city according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of another pipeline cleaning method applied to a smart city according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of another pipeline cleaning method applied to a smart city according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an intelligent robot disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another intelligent robot disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another intelligent robot disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a scenario of an intelligent robot working scene disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another intelligent robot disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a pipeline cleaning method and an intelligent robot applied to a smart city, which can reduce damage to the pipeline and prolong the service life of the pipeline. The details are described below separately.
  • FIG. 1 is a schematic flowchart diagram of a pipeline cleaning method applied to a smart city according to an embodiment of the present invention.
  • the pipeline cleaning method applied to the smart city as shown in FIG. 1 may include the following steps:
  • the intelligent robot detects the material type of the pipeline.
  • the material type of the pipeline may be galvanized pipe, copper pipe, stainless steel pipe, aluminum-plastic composite pipe, PVC (hard polyvinyl chloride) pipe, PE-X (cross-linked polyethylene) pipe, PE (poly Any one or more of the ethylene) tube, the PPR (random copolymerized polypropylene) tube, the PP-H (homopolypropylene) tube, and the PP-B (impact copolymerized polypropylene) tube are not used in the embodiment of the present invention. limited.
  • an inductive proximity sensor, a capacitive proximity sensor, a Hall proximity sensor, and a photoelectric sensor may be disposed in the intelligent robot to detect the material type of the pipeline.
  • any one or any two of the inductive proximity sensor, the capacitive proximity sensor, the Hall proximity sensor, and the photoelectric sensor may be disposed in the smart robot, which is not limited in the embodiment of the present invention.
  • the inductive proximity sensor works by the eddy current effect generated when the metal conductor is close to the magnetic field, and the inductive proximity sensor can detect the metal plug;
  • the capacitive proximity sensor includes a measuring head, which is a plate constituting the capacitor, and One plate is the outer casing of the switch.
  • the housing can be grounded or connected to the device.
  • the intelligent robot walks in the pipeline, as the distance between the object and the capacitive proximity sensor is shortened, the dielectric constant of the capacitor changes, so that the state of the circuit connected to the measuring head changes, thereby controlling the switching of the switch. Or disconnected.
  • Capacitive sensors detect metal blockages, insulated plastic plugs, glass plugs, and liquid and other material blockages; Hall proximity sensors are magnetic proximity sensors that feature no contact, low power, and long life. High response frequency.
  • the Hall proximity sensor works with the Hall effect, so it can detect the magnetic blockage; the photoelectric sensor works with the photoelectric effect, and the light-emitting device and the photoelectric device of the photoelectric sensor are disposed inside the same detection head in a preset direction.
  • photoelectric sensors can be used for the detection of objects of any material.
  • the intelligent robot approaches the obstruction with the reflective surface, the photoelectric device receives the reflected light and the output signal is fed back to the central processing unit of the intelligent robot. Therefore, step 101 can be performed by detecting the type of the material of the pipeline to select an optimal cleaning scheme for the material type of the pipeline to maximize the protection of the pipeline and extend the service life of the pipeline.
  • the intelligent robot opens the walking mechanism to walk in the pipeline; wherein the walking mechanism comprises at least three walking wheels, and each walking wheel connects the main body of the intelligent robot through the connecting arm to ensure the intelligent robot
  • the main body always runs stably on the central axis of the pipe, and each of the connecting arms is provided with a grinding blade on the front and rear sides.
  • the intelligent robot after detecting the material type of the pipeline in step 101, the intelligent robot can open the walking mechanism to walk in the pipeline.
  • the walking mechanism can ensure that the intelligent robot stably walks in the straight pipeline.
  • the traveling mechanism can control the stretching of the walking wheel to ensure that each walking wheel is fitted with the pipeline wall, so that the intelligent robot Smooth and smooth through the corners. Therefore, the execution step 102 can control the walking mechanism to be adaptive in the pipeline by the intelligent robot, reduce the damage probability of the intelligent robot, prolong the service life of the intelligent robot body, and improve the working efficiency of the intelligent robot.
  • the intelligent robot uses the walking mechanism to walk in the pipeline, the intelligent robot controls the built-in laser sensor to detect the blockage.
  • the intelligent robot can control the built-in laser sensor to detect the blockage when walking in the pipeline by the walking mechanism.
  • the intelligent robot can use any one or more of an infrared sensor, an ultrasonic sensor, and a grating sensor in addition to the use of the laser sensor to detect the blockage, which is not limited in the embodiment of the present invention.
  • the grating sensor is a contact type measurement, which has the characteristics of close distance and high precision; the ultrasonic sensor, the infrared sensor and the laser sensor are non-contact type measurement.
  • the step 103 can be performed by using a laser sensor in the intelligent robot to detect the blockage, and the laser sensor has the characteristics of high speed, high precision and high range, thereby improving the working efficiency and working effect of the intelligent robot.
  • the intelligent robot detects a blockage
  • the intelligent robot detects the material type of the blockage.
  • the intelligent robot controls the walking mechanism to turn on the rotary walking mode to grind a blockage.
  • the intelligent robot can control the walking mechanism to open the rotary walking mode.
  • the intelligent robot can control the running mechanism to open a rotating walking mode to grind a blockage, and the front and rear sides of each connecting arm are arranged. Grinding inserts do not damage the pipe wall during grinding operations. Therefore, step 105 can be performed to maximize the protection of the pipeline and extend the service life of the pipeline.
  • the intelligent robot can be applied to the municipal construction of a smart city, which can perform regular dredging work and quality supervision work for municipal water supply, rainwater drainage, and sewage drainage pipelines.
  • a smart city which can perform regular dredging work and quality supervision work for municipal water supply, rainwater drainage, and sewage drainage pipelines.
  • promptly clearing the municipal water supply pipeline can ensure the normal living water of the citizens
  • timely clearing the rainwater drainage and sewage drainage pipeline can indirectly reduce social contradictions, improve the city's happiness index, and enable the city to maintain a normal development rhythm.
  • the intelligent robot can clean the pipeline according to the material of the pipeline and the blockage, which can minimize the cleaning of the pipeline. Damage.
  • non-smart cities often need to interrupt the supply when conducting pipe dredging or inspection, which causes inconvenience to the public.
  • the intelligent robot can clean up or inspect such pipes such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting the supply, which can speed up the development of the city and improve the municipal staff. Work efficiency.
  • the intelligent robot can be applied to a personal family life in a smart city. It is not easy for the public to clean up the sewers in the home. Usually, citizens of non-smart cities can use tools to clean up, or resort to professional repair personnel to clean the sewers in the home. If the intelligent robot is applied to the personal family life of a smart city, the cleaning work can be automatically performed, and the intelligent robot can also establish a connection with the citizen's mobile terminal, and the citizen can view it on the mobile terminal establishing a connection with the intelligent robot.
  • the current working situation of the intelligent robot (the intelligent robot can be equipped with a camera, and the real-time image captured by the camera can also be transmitted to the mobile terminal), as well as the specific situation in the pipeline.
  • the public can also manually control the intelligent robot through the mobile terminal, so as to more thoroughly clean the pipeline and improve the working effect of the intelligent robot.
  • the intelligent robot can select the optimal cleaning scheme for the pipeline material type by detecting the pipeline material type, thereby maximally protecting the pipeline and extending the service life of the pipeline; the intelligent robot can also pass the intelligence.
  • the robot controls the walking mechanism to adapt to the pipeline, which reduces the damage probability of the intelligent robot, prolongs the service life of the intelligent robot body, and improves the working efficiency of the intelligent robot.
  • the intelligent robot can also be blocked by the laser sensor in the intelligent robot. Object detection, as well as the high speed and high range of the laser sensor, improve the working efficiency and working effect of the intelligent robot; the intelligent robot can also clean the pipeline according to the material of the pipeline and the blockage, which can minimize the cleaning time.
  • intelligent robots can also clean up or inspect such pipelines such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting supply, which can speed up the development of the city and improve the municipal staff.
  • the work efficiency; intelligent robots can also improve the user experience through the interaction of intelligent robots with citizens and mobile terminals. Therefore, implementing the method described in Figure 1 can reduce damage to the pipeline and extend the service life of the pipeline.
  • FIG. 2 is a schematic flowchart diagram of another pipeline cleaning method applied to a smart city according to an embodiment of the present invention.
  • the main body of the intelligent robot is provided with a suction device, and the suction device is connected to the solid-liquid separation device located outside the pipe through the first flexible conveying pipe, and the solid-liquid separation device passes through the second flexible conveying pipe and is located outside the pipe
  • the sewage recycling device is connected.
  • the pipeline cleaning method applied to the smart city as shown in FIG. 2 may include the following steps:
  • the intelligent robot receives an open signal sent by the mobile terminal.
  • the intelligent robot turns on the intelligent robot to make the intelligent robot start working, and turns on the camera of the intelligent robot and transmits the real-time image captured by the camera to the mobile terminal.
  • the smart robot after receiving the turn-on signal sent by the mobile terminal in step 201, the smart robot can turn on the smart robot to make the smart robot start working.
  • the intelligent robot After the intelligent robot transmits the real-time image to the mobile terminal, the intelligent robot detects the material type of the pipeline.
  • the intelligent robot can detect the material type of the pipeline.
  • the pipeline cleaning method applied to the smart city includes steps 204 to 206.
  • steps 204 to 206 refer to the detailed description of steps 102 to 104 in the first embodiment. The embodiment will not be described again.
  • the intelligent robot controls the walking mechanism to open a rotating walking mode to grind a blockage to form a certain The residue of the blockage.
  • the intelligent robot controls the main body of the intelligent robot to extend the saw gear in the forward direction, and starts the saw gear to rotate to clear a blockage. A substance that forms a residue of a blockage.
  • the intelligent robot can control the main body of the intelligent robot to extend the saw gear in the forward direction. And start the saw gear to rotate to clear a blockage. Among them, the saw gear does not damage the walking wheel and the connecting arm of the intelligent robot during operation. Therefore, step 105 can achieve the purpose of thoroughly cleaning the pipeline while protecting the pipeline to the greatest extent.
  • the intelligent robot controls the suction device to extract the residue and dirt of a blockage in the pipeline, and delivers the dirt to the solid-liquid separation device through the first flexible conveying pipe.
  • step 207 the intelligent robot controls the walking mechanism to open the rotating walking mode to grind a blockage to form a residue of the blockage, or step 208 controls the body of the intelligent robot to extend the sawtooth in the forward direction.
  • the intelligent robot controls the suction device to extract the residue of a blockage in the pipe and transport it through the first flexible pipe.
  • step 209 can be performed to discharge the residue and dirt of the blockage by the suction device, thereby avoiding the problem of backlog of residue and dirt in the pipe.
  • the intelligent robot controls the solid-liquid separation device to separate the waste liquid and the solid in the residue dirt, and controls the sewage recycling device to recover the waste liquid in the residue dirt to obtain a usable liquid.
  • the intelligent robot can control the separation of the solid-liquid separation device.
  • the waste liquid and solid in the residue and the sewage recycling device are controlled to recover the waste liquid in the residue to obtain a usable liquid. Therefore, the step 210 can achieve the purpose of energy saving and environmental protection by recycling the waste liquid in the residue.
  • the intelligent robot detects whether there is at least one blockage in the pipeline. If yes, step 206 is performed, and if no, step 212 is performed.
  • the intelligent robot sends a prompt signal indicating that the cleaning work has been completed to the mobile terminal.
  • the intelligent robot can select the optimal cleaning scheme for the pipeline material type by detecting the pipeline material type, thereby maximally protecting the pipeline and extending the service life of the pipeline; the intelligent robot can also pass the intelligence.
  • the robot controls the walking mechanism to adapt to the pipeline, which reduces the damage probability of the intelligent robot, prolongs the service life of the intelligent robot body, and improves the working efficiency of the intelligent robot.
  • the intelligent robot can also be blocked by the laser sensor in the intelligent robot. Object detection, as well as the high speed and high range of the laser sensor, improve the working efficiency and working effect of the intelligent robot; the intelligent robot can also clean the pipeline according to the material of the pipeline and the blockage, which can minimize the cleaning time.
  • intelligent robots can also clean up or inspect such pipelines such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting supply, which can speed up the development of the city and improve the municipal staff.
  • the work efficiency; the intelligent robot can also improve the user experience through the interaction of the intelligent robot with the citizen and the mobile terminal; the intelligent robot can also belong to the metal pipe based on the material type of the pipe and the material type of the blockage belongs to the grindable blockage, The maximum degree of protection of the pipeline is achieved, and the purpose of thoroughly cleaning the pipeline is achieved; the intelligent robot can also discharge the residue and dirt of the plugged material through the suction device, thereby avoiding the backlog of residual dirt in the pipeline; It can achieve the goal of energy saving and environmental protection by recycling the waste liquid in the residue. Therefore, implementing the method described in FIG. 2 can further reduce damage to the pipeline and extend the service life of the pipeline.
  • FIG. 3 is a schematic flowchart diagram of another pipeline cleaning method applied to a smart city according to an embodiment of the present invention.
  • the main body of the intelligent robot is provided with a high-speed jet mechanism, a suction device and a high-speed jet mechanism, and the suction device is connected to the solid-liquid separation device located outside the pipeline through the first flexible conveying pipe, and the solid-liquid separation device passes through The two flexible ducts are connected to a sewage recycling device located outside the duct.
  • the pipeline cleaning method applied to the smart city as shown in FIG. 3 may include the following steps:
  • the pipeline cleaning method applied to the smart city includes steps 301 to 310.
  • steps 301 to 310 refer to the detailed description of steps 201 to 210 in the first embodiment. The embodiment will not be described again.
  • step 306 the intelligent robot detects whether there is at least one blockage in the pipeline. If yes, step 306 is performed, and if no, step 312 is performed.
  • the intelligent robot performs ultrasonic flaw detection on the pipeline wall of the pipeline to obtain the propagation distance of the ultrasonic wave in the pipeline wall and the amplitude of the reflected wave of the ultrasonic wave.
  • the intelligent robot uses the propagation distance as the abscissa and the waveform of the reflected wave of the ultrasonic wave by using the amplitude of the reflected wave as the ordinate.
  • the intelligent robot analyzes the waveform diagram based on the deep learning algorithm to obtain the health report of the pipeline; wherein if the pipeline has a damaged location, the health report includes the damaged location of the pipeline wall of the pipeline and the type of damage.
  • the intelligent robot reports the health level and the prompt signal indicating that the cleaning work has been completed to the mobile terminal.
  • the health degree report can reflect the current health condition of the pipeline. If the pipeline is damaged or aged, the user can also report replacement or quick repair of the pipeline based on the health level. Therefore, step 315 can be performed to improve the health of the pipeline. The situation is timely feedback to the user in the form of a health report, improving people's quality of life and improving the efficiency of people replacing or repairing the pipeline.
  • the pipeline cleaning method applied to the smart city may further include the following steps:
  • the intelligent robot selects a pre-stored chemical that does not damage the metal pipe and dissolves the blockage to clean a blockage; if the material type of the pipe It belongs to the plastic pipe and the material type of a blockage is a dissolvable blockage.
  • the intelligent robot selects a pre-stored chemical agent that does not damage the plastic pipe and dissolves a blockage to clean a blockage;
  • the intelligent robot controls the high-speed jet mechanism to flush a blockage.
  • the implementation of the optional embodiment enables a thorough cleaning of the pipeline based on the protection of the pipeline wall by a combination analysis of the material of the pipeline and the material of the plug.
  • the intelligent robot when the intelligent robot is applied to the personal family life of the smart city, the intelligent robot can record the cleaning of the sewer of the household, and if the sewer is blocked, the residual food is often left.
  • the suggestion information can be pushed to the mobile terminal that has established the connection (for example, the suggestion information can be used to advise the user not to pour the food into the sewer pipe).
  • the intelligent robot can also monitor the health of the pipeline. If the intelligent robot detects the aging or cracking of the pipeline, it can directly report the problem report to the mobile terminal and recommend pipe replacement.
  • the implementation of the other optional embodiment can long-lasting protection of the pipeline, monitoring the pipeline, avoiding the rapid aging problem and the damage problem caused by the long-term non-cleaning of the pipeline, and can effectively save the city capital. source.
  • the intelligent robot can not only perform ultrasonic flaw detection on the pipeline, but also can measure the thickness of the pipeline wall by ultrasonic waves.
  • the intelligent robot can use the grid measurement method, The continuous measurement method, the accurate measurement method, and the 30 mm multi-point measurement method are not limited in the embodiment of the present invention.
  • the intelligent robot can also upload the measured wall thickness and the image of the inner wall of the tube captured by the camera to the server, and receive the thickness of the wall combined with the wall of the tube, the image of the inner wall of the tube captured by the camera, and the big data to determine the service life of the pipeline.
  • the intelligent robot can also send prompt information for identifying the service life of the pipeline to the mobile terminal (for example, the user of the mobile terminal can be a citizen or a municipal construction manager).
  • the implementation of the further optional embodiment can prevent the safety hazard by detecting the service life of the pipeline by measuring the thickness of the pipeline and timely reporting the service life of the pipeline.
  • the intelligent robot may be provided with a drainage mechanism, in addition to the high-speed jet mechanism, the suction device, the high-speed jet mechanism, the solid-liquid separation device connection, and the sewage recycling device.
  • Acceleration mechanism, sewage mechanism, waterproof body, power line group can adopt the inclined surface drainage when the condition in the pipeline is complicated; the acceleration mechanism can sweep out the mixture of the plug residue and the liquid at a high speed, can realize the fully automated cleaning of the blockage and avoid the backlog of the blockage; the sewage disposal mechanism can The high-speed rotating and closed mechanism is connected to the pipeline; the power line group can provide energy for the intelligent robot.
  • the implementation of the further optional embodiment can improve the working mechanism of the intelligent robot by setting a richer mechanism, and improve the working efficiency and working effect of the intelligent robot.
  • the intelligent robot can select the optimal cleaning scheme for the pipeline material type by detecting the pipeline material type, thereby maximally protecting the pipeline and extending the service life of the pipeline; the intelligent robot can also pass the intelligence.
  • the robot controls the walking mechanism to adapt to the pipeline, which reduces the damage probability of the intelligent robot, prolongs the service life of the intelligent robot body, and improves the working efficiency of the intelligent robot.
  • the intelligent robot can also be blocked by the laser sensor in the intelligent robot. Object detection, as well as the high speed and high range of the laser sensor, improve the working efficiency and working effect of the intelligent robot; the intelligent robot can also clean the pipeline according to the material of the pipeline and the blockage, which can minimize the cleaning time.
  • intelligent robots can also clean up or inspect such pipelines such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting supply, which can speed up the development of the city and improve the municipal staff.
  • the work efficiency; the intelligent robot can also improve the user experience through the interaction of the intelligent robot with the citizen and the mobile terminal; the intelligent robot can also belong to the metal pipe based on the material type of the pipe and the material type of the blockage belongs to the grindable blockage, The maximum degree of protection of the pipeline is achieved, and the purpose of thoroughly cleaning the pipeline is achieved; the intelligent robot can also discharge the residue and dirt of the plugged material through the suction device, thereby avoiding the backlog of residual dirt in the pipeline; The energy-saving and environmental protection can be achieved by recycling the waste liquid in the residue; the intelligent robot can also improve the quality of life and improve people's replacement by timely reporting the health of the pipeline to the user in the form of health report.
  • intelligent robots can also long-lasting protection of pipelines, monitoring pipelines, avoiding rapid aging problems and damage caused by long-term non-cleaning of pipelines, and can effectively save urban resources; intelligent robots can also pass through the pipeline Wall thickness measurement method detection tube
  • the service life can be, and timely reporting safety hazards prevention service life of the pipeline, but also to improve the working mechanism of intelligent robots by setting a richer organization, improve the efficiency and effectiveness of intelligent robots. Therefore, implementing the method described in FIG. 3 can further reduce damage to the pipeline and prolong the service life of the pipeline.
  • FIG. 4 is a schematic structural diagram of an intelligent robot disclosed in an embodiment of the present invention. As shown in FIG. 4, the intelligent robot may include:
  • the first detecting unit 401 is configured to detect a material type of the pipeline.
  • the triggering opening unit 402 is started.
  • the material type of the pipeline may be galvanized pipe, copper pipe, stainless steel pipe, aluminum-plastic composite pipe, PVC (hard polyvinyl chloride) pipe, PE-X (cross-linked polyethylene) pipe, PE (poly Any one or more of the ethylene) tube, the PPR (random copolymerized polypropylene) tube, the PP-H (homopolypropylene) tube, and the PP-B (impact copolymerized polypropylene) tube are not used in the embodiment of the present invention. limited.
  • the first detecting unit 401 may be provided with an inductive proximity sensor (not shown in FIG. 5), a capacitive proximity sensor (not shown in FIG. 5), and a Hall proximity sensor (not shown in FIG. 5). Draw) and photosensors (not shown in Figure 5) to detect the material type of the pipe.
  • any one or any two of the inductive proximity sensor, the capacitive proximity sensor, the Hall proximity sensor, and the photoelectric sensor may be disposed in the first detecting unit 401, which is not limited in the embodiment of the present invention. .
  • the inductive proximity sensor works by the eddy current effect generated when the metal conductor is close to the magnetic field, and the inductive proximity sensor can detect the metal plug;
  • the capacitive proximity sensor includes a measuring head, which is a plate constituting the capacitor, and One plate is the outer casing of the switch.
  • the casing can be grounded or connected to the device.
  • Capacitive sensors detect metal blockages, insulated plastic plugs, glass plugs, and liquid and other material blockages; Hall proximity sensors are magnetic proximity sensors that feature no contact, low power, and long life. High response frequency.
  • the Hall proximity sensor works with the Hall effect, so it can detect the magnetic blockage;
  • the photoelectric sensor works with the photoelectric effect, and the light-emitting device and the photoelectric device of the photoelectric sensor are disposed inside the same detection head in a preset direction.
  • photoelectric sensors can be used for the detection of objects of any material.
  • the intelligent robot approaches the obstruction with the reflective surface, the photoelectric device receives the reflected light and the output signal is fed back to the central processing unit of the intelligent robot. Therefore, the execution of the first detecting unit 401 can select an optimal cleaning scheme for the material type of the pipeline by detecting the material type of the pipeline, thereby maximally protecting the pipeline and extending the service life of the pipeline.
  • the opening unit 402 is configured to open the walking mechanism to walk in the pipeline; wherein the traveling mechanism comprises at least three walking wheels, and each walking wheel is connected to the main body of the intelligent robot through the connecting arm to ensure that the main body of the intelligent robot is always at the center of the pipeline Stable walking on the shaft, grinding blades are provided on the front and rear sides of each connecting arm.
  • the first control unit 403 is triggered to start.
  • the walking mechanism can ensure that the intelligent robot stably walks in the straight pipeline.
  • the traveling mechanism can control the stretching of the walking wheel to ensure that each walking wheel is fitted with the pipeline wall, so that the intelligent robot Smooth and smooth through the corners. Therefore, the execution opening unit 402 can control the walking mechanism to be adaptive in the pipeline by the intelligent robot, reduce the damage probability of the intelligent robot, prolong the service life of the intelligent robot body, and improve the working efficiency of the intelligent robot.
  • the first control unit 403 is configured to control the built-in laser sensor to detect the blockage when the intelligent robot walks in the pipeline by using the walking mechanism.
  • the first control The unit 403 can control the built-in laser sensor to detect the blockage when walking in the pipe by the running mechanism, and trigger the first detecting unit 401 to start.
  • the first control unit 403 can detect an obstruction by using a laser sensor, and can also pass an infrared sensor (not shown in FIG. 5), an ultrasonic sensor (not shown in FIG. 5), and a grating sensor (not shown in FIG. 5). Any one or more of the embodiments of the present invention are not limited.
  • the grating sensor is a contact type measurement, which has the characteristics of close distance and high precision; the ultrasonic sensor, the infrared sensor and the laser sensor are non-contact type measurement.
  • the first control unit 403 can perform the detection of the blockage by the laser sensor in the intelligent robot, and the high speed and high range of the laser sensor, thereby improving the working efficiency and working effect of the intelligent robot.
  • the first detecting unit 401 is further configured to detect a material type of a certain blockage after the first control unit 403 controls the built-in laser sensor to detect a blockage when the blockage is detected.
  • the first control unit 403 is triggered to start.
  • the first control unit 403 is further configured to: after the first detecting unit 401 detects that the material type of the pipeline belongs to the plastic pipe and the material type of the blockage belongs to the grindable blockage, control the running mechanism to open the rotating walking mode to grind Some blockage.
  • the first control unit 403 can control the walking.
  • the mechanism turns on the rotary walking mode to grind a blockage.
  • the intelligent robot can control the running mechanism to open a rotating walking mode to grind a blockage, and the front and rear sides of each connecting arm are arranged. Grinding inserts do not damage the pipe wall during grinding operations. Therefore, the execution of the first control unit 403 can maximize the protection of the pipeline and extend the service life of the pipeline.
  • the intelligent robot can be applied to the municipal construction of a smart city, which can perform regular dredging work and quality supervision work for municipal water supply, rainwater drainage, and sewage drainage pipelines.
  • a smart city which can perform regular dredging work and quality supervision work for municipal water supply, rainwater drainage, and sewage drainage pipelines.
  • promptly clearing the municipal water supply pipeline can ensure the normal living water of the citizens
  • timely clearing the rainwater drainage and sewage drainage pipeline can indirectly reduce social contradictions, improve the city's happiness index, and enable the city to maintain a normal development rhythm.
  • the intelligent robot can clean the pipeline according to the material of the pipeline and the blockage, which can minimize the cleaning of the pipeline. Damage.
  • non-smart cities often need to interrupt the supply when conducting pipe dredging or inspection, which causes inconvenience to the public.
  • the intelligent robot can clean up or inspect such pipes such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting the supply, which can speed up the development of the city and improve the municipal staff. Work efficiency.
  • the intelligent robot can be applied to a personal family life in a smart city. It is not easy for the public to clean up the sewers in the home. Usually, citizens of non-smart cities can use tools to clean up, or resort to professional repair personnel to clean the sewers in the home. If the intelligent robot is applied to the personal family life of a smart city, the cleaning work can be automatically performed, and the intelligent robot can also establish a connection with the citizen's mobile terminal, and the citizen can view it on the mobile terminal establishing a connection with the intelligent robot.
  • the current working situation of the intelligent robot (the intelligent robot can be equipped with a camera, and the real-time image captured by the camera can also be transmitted to the mobile terminal), as well as the specific situation in the pipeline.
  • the public can also manually control the intelligent robot through the mobile terminal, so that More thorough cleaning of the pipeline improves the working effect of the intelligent robot.
  • the first detecting unit 401 can select an optimal cleaning solution for the material type of the pipeline by detecting the material type of the pipeline, thereby maximally protecting the pipeline and extending the service life of the pipeline;
  • the unit 402 can control the walking mechanism to adapt to the walking mechanism in the pipeline, reduce the damage probability of the intelligent robot, prolong the service life of the intelligent robot body, and improve the working efficiency of the intelligent robot;
  • the first control unit 403 can pass the intelligence
  • the laser sensor in the robot performs the detection of the blockage, and the laser sensor has the characteristics of high speed, high precision and high range, which improves the working efficiency and working effect of the intelligent robot; the first control unit 403 can also be targeted according to the material of the pipe and the blockage.
  • the cleaning can minimize the damage to the pipeline during cleaning; the intelligent robot can clean up or inspect such pipelines such as heat pipes and gas pipes on the basis of reducing personnel costs and without interrupting the supply, which can accelerate the development of the city. Progress, mention The work efficiency of high-city staff; intelligent robots can also improve the user experience through the interaction of intelligent robots with citizens and mobile terminals. Therefore, implementing the intelligent robot described in FIG. 4 can reduce damage to the pipeline and prolong the service life of the pipeline.
  • FIG. 5 is a schematic structural diagram of another intelligent robot disclosed in an embodiment of the present invention.
  • the intelligent robot shown in FIG. 5 is optimized by the intelligent robot shown in FIG. 4.
  • the main body of the intelligent robot shown in FIG. 5 is provided with a suction device (not shown in FIG. 5), and the suction device passes through the first flexible conveying pipe and is located outside the pipe.
  • the solid-liquid separation device (not shown in Fig. 5) is connected, and the solid-liquid separation device is connected to a sewage recycling device (not shown in Fig. 5) located outside the pipe through the second flexible transfer pipe.
  • the intelligent robot shown in FIG. 5 may further include:
  • the second control unit 404 is configured to control the main body of the intelligent robot to extend the sawtooth in the forward direction after the first detecting unit 401 detects that the material type of the pipe belongs to the metal pipe and the material type of the blockage belongs to the grindable blockage wheel.
  • the trigger activation unit 405 is activated.
  • the second control unit 404 can control the main body of the intelligent robot to extend in the forward direction. Saw the gears and start the saw gear to rotate to clear a blockage. Among them, the saw gear does not damage the walking wheel and the connecting arm of the intelligent robot during operation. Therefore, the execution of the second control unit 404 can achieve the purpose of thoroughly cleaning the pipeline while protecting the pipeline to the greatest extent.
  • the starting unit 405 is configured to start the saw gear to rotate to clean a blockage to form a residue of a blockage.
  • the third control unit 406 is triggered to start.
  • the third control unit 406 is configured to control the residue dirt of a blockage in the suction pipe to be sucked into the solid-liquid separation device through the first flexible pipe.
  • the fourth control unit 407 is triggered. start up.
  • the third control unit 406 is triggered to start.
  • the third control unit 406 controls the suction device to extract the residue of the blockage in the pipe. And delivered to the solid-liquid separation device through the first flexible conveying pipe. Therefore, the execution of the third control unit 406 can discharge the residue and dirt of the blockage by the suction device, thereby avoiding the problem of backlog of the residue and dirt in the pipe.
  • the fourth control unit 407 is configured to control the solid liquid separation device to separate the waste liquid and the solid in the residue dirt, and control the sewage recycling device to recover the waste liquid in the residue dirt to obtain a usable liquid.
  • the fourth control unit 407 may The solid-liquid separation device is controlled to separate the waste liquid and solids in the residue dirt, and the sewage recycling device is controlled to recover the waste liquid in the residue dirt to obtain a usable liquid. Therefore, the execution of the fourth control unit 407 can achieve the purpose of energy saving and environmental protection by recycling the waste liquid in the residue.
  • the receiving unit 408 is configured to receive an open signal sent by the mobile terminal before the first detecting unit 401 detects the material type of the pipeline.
  • the triggering on unit 402 is started.
  • the opening unit 402 is further configured to turn on the intelligent robot to make the intelligent robot start working, and turn on the camera of the intelligent robot and transmit the real-time image captured by the camera to the mobile terminal.
  • the first detecting unit 401 is triggered to be activated.
  • the second detecting unit 409 is configured to control the sewage recycling device to recover the waste liquid in the residue in the fourth control unit 407, and after obtaining the usable liquid, detect whether there is at least one blockage in the pipe.
  • the first sending unit 410 is triggered to be started.
  • the first sending unit 410 is configured to send, after the second detecting unit 409 detects that there is no at least one jam in the pipeline, send a prompt signal indicating that the cleaning work has been completed to the mobile terminal.
  • the second control unit 404 can belong to the metal pipe based on the material type of the pipe and the material type of the blockage belongs to the grindable blockage, and the pipe is protected to the greatest extent.
  • the purpose of thoroughly cleaning the pipeline is achieved;
  • the third control unit 406 can discharge the residual dirt of the plugging device by the suction device, thereby avoiding the backlog of the residual dirt in the pipeline;
  • the fourth control unit 407 can pass the residue
  • the recycling of waste liquid has achieved the goal of energy saving and environmental protection. Therefore, implementing the intelligent robot described in FIG. 5 can further reduce damage to the pipeline and prolong the service life of the pipeline.
  • FIG. 6 is a schematic structural diagram of still another intelligent robot disclosed in an embodiment of the present invention.
  • the intelligent robot shown in FIG. 6 is optimized by the intelligent robot shown in FIG. 5.
  • the main body of the intelligent robot shown in FIG. 6 is further provided with a high-speed jet mechanism (not shown in FIG. 6).
  • the intelligent robot shown in FIG. 6 may further include:
  • the selecting unit 411 is configured to: when the first detecting unit 401 detects that the material type of the pipe belongs to the metal pipe and the material type of the blockage belongs to the dissolvable blockage, the pre-stored chemical agent that does not damage the metal pipe and dissolves the blockage is selected. A blockage is cleaned to form a residue of a blockage.
  • the third control unit 406 is triggered to start.
  • the selecting unit 411 is further configured to: when the first detecting unit 401 detects that the material type of the pipeline belongs to the plastic pipe and the material type of the blockage belongs to the dissolvable blockage, the pre-existing chemistry that does not damage the plastic pipe and dissolves the blockage is selected.
  • the reagent cleans up a blockage to form a residue of a blockage.
  • the third control unit 406 is triggered to start.
  • the fifth control unit 412 is configured to control the high-speed jet mechanism to flush a blockage when the material type of the blockage device detects that the material type of the blockage belongs to the flushable blockage, thereby forming a residue and dirt of the blockage.
  • the third control unit 406 is triggered to start.
  • the ultrasonic testing unit 413 is configured to: after the second detecting unit 409 detects that there is no at least one blockage in the pipeline, and before the first sending unit 410 sends a prompt signal indicating that the cleaning work has been completed to the mobile terminal, The wall of the pipe is ultrasonically inspected to obtain the propagation distance of the ultrasonic wave in the pipe wall and the amplitude of the reflected wave of the ultrasonic wave.
  • the trigger drawing unit 414 is activated.
  • the drawing unit 414 is configured to map the propagation distance as the abscissa and the waveform of the reflected wave of the ultrasonic wave by using the amplitude of the reflected wave as the ordinate.
  • the trigger analysis unit 415 is activated.
  • the analyzing unit 415 is configured to analyze the waveform diagram based on the deep learning algorithm to obtain a health report of the pipeline; wherein, if the pipeline has a damaged portion, the health degree report includes the damaged position of the pipeline wall of the pipeline and the type of damage.
  • the second sending unit 416 is triggered to be started.
  • the second sending unit 416 is configured to send the health level report to the mobile terminal.
  • the first sending unit 410 is triggered to be started.
  • the health degree report can reflect the current health condition of the pipeline. If the pipeline has a problem of damage or aging, the user can also report replacement or quick repair of the pipeline based on the health level, so the execution of the second sending unit 416 can pass The health of the pipeline is timely fed back to the user in the form of a health report, improving people's quality of life and improving the efficiency of people replacing or repairing the pipeline.
  • the first sending unit 410 is specifically configured to send, after the second sending unit 416 sends the health level report to the mobile terminal, a prompt signal indicating that the cleaning work has been completed to the mobile terminal.
  • the pipeline cleaning method applied to the smart city may further include the following steps:
  • the intelligent robot selects a pre-stored chemical agent that does not damage the metal pipe and dissolves a blockage. If the material type of the pipeline belongs to a plastic pipe and the material type of a blockage is a dissolvable blockage, the intelligent robot selects a pre-stored chemical agent that does not damage the plastic pipe and dissolves a blockage to clean a blockage;
  • the intelligent robot controls the high-speed jet mechanism to flush a blockage.
  • the implementation of the optional embodiment enables a thorough cleaning of the pipeline based on the protection of the pipeline wall by a combination analysis of the material of the pipeline and the material of the plug.
  • the intelligent robot when the intelligent robot is applied to the personal family life of the smart city, the intelligent robot can record the cleaning of the sewer of the household, and if the sewer is blocked, the residual food is often left.
  • the suggestion information can be pushed to the mobile terminal that has established the connection (for example, the suggestion information can be used to advise the user not to pour the food into the sewer pipe).
  • the intelligent robot can also monitor the health of the pipeline. If the intelligent robot detects the aging or cracking of the pipeline, it can directly report the problem report to the mobile terminal and recommend pipe replacement.
  • the implementation of the other optional embodiment can long-lasting protection of the pipeline, monitoring the pipeline, avoiding the rapid aging problem and the damage problem caused by the long-term non-cleaning of the pipeline, and can effectively save urban resources.
  • the intelligent robot can not only perform ultrasonic flaw detection on the pipeline, but also can measure the thickness of the pipeline wall by ultrasonic waves.
  • the intelligent robot can use the grid measurement method, The continuous measurement method, the accurate measurement method, and the 30 mm multi-point measurement method are not limited in the embodiment of the present invention.
  • the intelligent robot can also upload the measured wall thickness and the image of the inner wall of the tube captured by the camera to the server, and receive the thickness of the wall combined with the wall of the tube, the image of the inner wall of the tube captured by the camera, and the big data to determine the service life of the pipeline.
  • the intelligent robot can also send prompt information for identifying the service life of the pipeline to the mobile terminal (for example, the user of the mobile terminal can be a citizen or a municipal construction manager).
  • the implementation of the further optional embodiment can prevent the safety hazard by detecting the service life of the pipeline by measuring the thickness of the pipeline and timely reporting the service life of the pipeline.
  • the intelligent robot may be provided with a drainage mechanism in addition to the high-speed jet mechanism, the suction device, the high-speed jet mechanism, the solid-liquid separation device connection, and the sewage recycling device.
  • Figure 6 is not shown), acceleration mechanism (not shown in Figure 6), sewage mechanism (not shown in Figure 6), waterproof body (not shown in Figure 6), power line group (not shown in Figure 6 Draw).
  • the drainage mechanism can adopt the inclined surface drainage when the condition in the pipeline is complicated; the acceleration mechanism can sweep out the mixture of the plug residue and the liquid at a high speed, can realize the fully automated cleaning of the blockage and avoid the backlog of the blockage; the sewage disposal mechanism can The high-speed rotating and closed mechanism is connected to the pipeline; the power line group can provide energy for the intelligent robot.
  • the implementation of the further optional embodiment can improve the working mechanism of the intelligent robot by setting a richer mechanism, and improve the working efficiency and working effect of the intelligent robot.
  • the second sending unit 416 can improve the quality of life of people by improving the quality of life of the pipeline by promptly feeding back the health of the pipeline to the user in the form of health report, and improving the work of replacing or repairing the pipeline.
  • Efficiency intelligent robots can also long-lasting protection of pipelines, monitoring pipelines, avoiding rapid aging and damage caused by long-term non-cleaning of pipelines, and effectively saving urban resources; intelligent robots can also detect wall thickness by method
  • the service life of the pipeline and the life of the pipeline can be reported in time to prevent safety hazards. It is also possible to improve the working mechanism of the intelligent robot by setting a richer mechanism to improve the working efficiency and working effect of the intelligent robot. So, implement Figure 6
  • the described intelligent robot can further reduce damage to the pipeline and extend the service life of the pipeline.
  • FIG. 7 is a schematic diagram of a scene of an intelligent robot working scene disclosed in the embodiment of the present invention.
  • the intelligent robot includes a main body of the intelligent robot, and the main body may have a suction device, a high-speed jet mechanism and a laser sensor; the intelligent robot further includes a running mechanism, the walking mechanism includes three walking wheels, and each walking The wheel is connected to the main body of the intelligent robot through the connecting arm to ensure that the main body of the intelligent robot always runs stably on the central axis of the pipe, and the grinding blade is arranged on the front and rear sides of each connecting arm; it should be noted that, in FIG.
  • the traveling mechanism may further include three or more walking wheels, as long as all the traveling wheels included in the traveling mechanism are connected to the main body of the intelligent robot, so as to ensure that the main body of the intelligent robot always walks stably on the central axis of the pipe, which is not correct in the embodiment of the present invention.
  • the number of the walking wheels is specifically limited; the intelligent robot further includes a first flexible conveying pipe, a second flexible conveying pipe, a solid-liquid separating device, and a sewage recycling device, wherein the suction device in the main body passes the first soft conveying
  • the tube is connected to the solid-liquid separation device, and the solid-liquid separation device passes through the second flexible conveying pipe and the sewage Processing means coupled.
  • the intelligent robot described in FIG. 7 can ensure that the intelligent robot can stably walk on the central axis of the pipeline through the walking wheel connected with the main body, and can also select the type of the pipeline material to select the material type of the pipeline.
  • the optimal cleaning scheme maximizes the protection of the pipeline and prolongs the service life of the pipeline.
  • it can control the movement mechanism in the pipeline through the intelligent robot, which reduces the damage probability of the intelligent robot and prolongs the service life of the intelligent robot body.
  • the level improves the working efficiency of the intelligent robot.
  • it can also detect the blockage by the laser sensor in the intelligent robot, and the high speed and high range of the laser sensor, improve the working efficiency and working effect of the intelligent robot.
  • Blockage at the most While protecting the pipeline to a large extent, it can achieve the purpose of thoroughly cleaning the pipeline. In addition, it can discharge the residue and dirt of the plugged material through the suction device, thereby avoiding the backlog of the residue and dirt in the pipeline. It can achieve the goal of energy saving and environmental protection by recycling the waste liquid in the residue and dirt. In addition, it can also detect the service life of the pipeline by measuring the thickness of the pipe wall and timely report the service life of the pipeline to prevent safety hazards. It is also possible to improve the working mechanism of the intelligent robot by setting a richer mechanism to improve the working efficiency and working effect of the intelligent robot.
  • FIG. 8 is a schematic structural diagram of still another intelligent robot disclosed in an embodiment of the present invention.
  • the intelligent robot can be the intelligent robot described in FIG. 7.
  • the main body of the intelligent robot may include: in addition to the suction device, the high-speed jet mechanism, and the laser sensor, the following:
  • a memory 801 storing executable program code
  • processor 802 coupled to the memory 801;
  • the processor 802 calls the executable program code stored in the memory 801 for performing the following operations:
  • the corresponding sensor may be an inductive proximity sensor, a capacitive proximity sensor, a Hall proximity sensor, and a photoelectric sensor;
  • the walking mechanism is driven to walk in the pipeline; wherein the traveling mechanism comprises at least three walking wheels, and each walking wheel is connected to the main body of the intelligent robot through the connecting arm to ensure that the main body of the intelligent robot always walks stably on the central axis of the pipeline, Grinding blades are arranged on the front and rear sides of the connecting arms;
  • the corresponding sensor When a blockage is detected, the corresponding sensor is driven to detect the material type of the blockage;
  • the running mechanism controls the running mechanism to open the rotary walking mode to grind a blockage.
  • processor 802 is further configured to perform the following operations:
  • the main body of the intelligent robot is driven to extend the saw gear in the forward direction;
  • the solid-liquid separation device is driven to separate the waste liquid and the solid in the residue and the waste water recycling device is driven to recover the waste liquid in the residue to obtain a usable liquid.
  • the processor 702 Before driving the corresponding sensor to detect the material type of the pipeline, correspondingly, the processor 702 is also used to perform the following operations:
  • the processor 802 is further configured to perform the following operations:
  • a prompt signal indicating that the cleaning work has been completed is sent to the mobile terminal.
  • a high-speed jet mechanism is disposed on the main body of the intelligent robot.
  • the processor 802 is further configured to perform the following operations:
  • the drive storage device (not shown in Figure 8) outputs a pre-stored chemical that does not damage the metal pipe and dissolves a blockage.
  • the blockage is cleaned; if the material type of the pipe belongs to the plastic pipe and the material type of the blockage is a dissolvable blockage, the pre-stored chemical agent that drives the storage device does not damage the plastic pipe and dissolves a blockage to clean a blockage ;
  • the material type of a blockage is a flushable blockage, drive a high-speed jet mechanism to flush a blockage.
  • the processor 802 is further configured to perform the following operations after the driving laser sensor detects that there is no at least one blockage in the pipeline and sends a prompt signal indicating that the cleaning work has been completed to the mobile terminal:
  • the driving ultrasonic flaw detection device analyzes the waveform diagram based on the deep learning algorithm to obtain a health report of the pipeline; wherein, if the pipeline has a damaged portion, the health degree report includes the damaged position of the pipeline wall of the pipeline and the type of damage;
  • the health level report is sent to the mobile terminal and sends a prompt signal indicating that the cleaning work has been completed to the mobile terminal.
  • the embodiment of the invention discloses a computer readable storage medium, which stores a computer program, wherein the computer program causes the computer to execute any of the pipeline cleaning methods applied to the smart city of FIGS. 1 to 3.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Cleaning In General (AREA)
  • Manipulator (AREA)

Abstract

一种应用于智慧城市的管道清理方法及智能机器人,包括:当智能机器人开始工作时,智能机器人首先会检测所在管道的材质并开启行走机构(行走机构包括至少三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片);智能机器人在行走的过程中可以检测管道内是否存在堵塞物,如果存在,智能机器人可以检测该堵塞物的材质(例如塑料)并根据检测到的上述管道的材质和上述堵塞物的材质确定出清理方案(例如使用磨削刀片对堵塞物进行磨削),在对管道进行清理的同时最大程度的保护管道。能够减少对管道的损伤,延长管道的使用寿命。

Description

一种应用于智慧城市的管道清理方法及智能机器人 技术领域
本发明涉及智慧城市技术领域,具体涉及一种应用于智慧城市的管道清理方法及智能机器人。
背景技术
不管对于智慧城市的市政建设还是对于个人的家庭生活,管道清理都是一项非常重要的工作。随着机械自动化的相关技术不断发展,人们已经可以借助自动化机械代替人们去做管道清理的工作。
通常,人们使用的用于清理管道的机械有的是通过抽取管道中堵塞物的方法来清理管道的,而有的机械是通过化学试剂与堵塞物反应来清理管道的。但是,如果堵塞物的材质较为坚硬或者体积较大,机械强行抽取管道中的堵塞物则会对管道本身造成损伤;如果机械通过化学试剂清理管道,有的化学试剂不仅会与堵塞物发生反应,也会与管道发生反应,会缩短管道的使用寿命。
发明内容
本发明实施例公开了一种应用于智慧城市的管道清理方法及智能机器人,能够减少对管道的损伤,延长管道的使用寿命。
本发明实施例第一方面公开了一种应用于智慧城市的管道清理方法,所述方法包括:
智能机器人检测所述管道的材质类型;
所述智能机器人开启行走机构在所述管道中行走;其中,所述行走机构包括至少三个行走轮,且每个所述行走轮通过连接臂连接所述智能机器人的主体,以保证所述智能机器人的主体始终在所述管道的中心轴上稳定行走,每个所述连接臂的前后两侧均设置有磨削刀片;
在所述智能机器人利用所述行走机构在所述管道中行走时,所述智能机器人控制内置的激光传感器进行堵塞物检测;
当所述智能机器人检测到某堵塞物时,所述智能机器人检测所述某堵塞物的材质类型;
如果所述管道的材质类型属于塑料管道且所述某堵塞物的材质类型属于可磨削堵塞物,所述智能机器人控制所述行走机构开启旋转行走模式,以磨削所述某堵塞物。
本发明实施例第二方面公开了一种智能机器人,包括:
第一检测单元,用于检测管道的材质类型;
开启单元,用于开启行走机构在所述管道中行走;其中,所述行走机构包括至少三个行走轮,且每个所述行走轮通过连接臂连接所述智能机器人的主体,以保证所述智能机器人的主体始终在所述管道的中心轴上稳定行走,每个所述连接臂的前后两侧均设置有磨削刀片;
第一控制单元,用于在所述智能机器人利用所述行走机构在所述管道中行走时,控制内置的激光传感器进行堵塞物检测;
所述第一检测单元,还用于在所述第一控制单元控制内置的激光传感器进行 堵塞物检测时检测到某堵塞物之后,检测所述某堵塞物的材质类型;
所述第一控制单元,还用于在所述第一检测单元检测出所述管道的材质类型属于塑料管道且所述某堵塞物的材质类型属于可磨削堵塞物之后,控制所述行走机构开启旋转行走模式,以磨削所述某堵塞物。
本发明实施例第三方面公开了一种智能机器人,包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明实施例第一方面公开的应用于智慧城市的管道清理方法。
本发明实施例第四方面公开了一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序使得计算机执行本发明实施例第一方面公开的应用于智慧城市的管道清理方法。
本发明实施例第五方面公开了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面公开的应用于智慧城市的管道清理方法。
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中,当智能机器人开始工作时,智能机器人首先会检测所在管道的材质(例如塑料、铁等)并开启行走机构(行走机构包括至少三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片);智能机器人在行走的过程中可以检测管道内是否存在堵塞物,如果存在,智能机器人可以检测该堵塞物的材质(例如塑料)并根据检测到的上述管道的材质和上述堵塞物的材质确定出清理方案(例如使用磨削刀片对堵塞物进行磨削),在对管道进行清理的同时最大程度的保护管道。综上所述,实施本发明实施例,能够结合管道的材质和管道中堵塞物的材质,在对管道进行清理时最大程度的减少对管道的损伤,延长管道的使用寿命。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种应用于智慧城市的管道清理方法的流程示意图;
图2是本发明实施例公开的另一种应用于智慧城市的管道清理方法的流程示意图;
图3是本发明实施例公开的又一种应用于智慧城市的管道清理方法的流程示意图;
图4是本发明实施例公开的一种智能机器人的结构示意图;
图5是本发明实施例公开的另一种智能机器人的结构示意图;
图6是本发明实施例公开的又一种智能机器人的结构示意图;
图7是本发明实施例公开的一种智能机器人工作场景的场景示意图;
图8是本发明实施例公开的又一种智能机器人的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种应用于智慧城市的管道清理方法及智能机器人,能够减少对管道的损伤,延长管道的使用寿命。以下分别进行详细说明。
实施例一
请参阅图1,图1是本发明实施例公开的一种应用于智慧城市的管道清理方法的流程示意图。如图1所示该应用于智慧城市的管道清理方法可以包括以下步骤:
101、智能机器人检测管道的材质类型。
本发明实施例中,管道的材质类型可以是镀锌管、铜管、不锈钢管、铝塑复合管、PVC(硬聚氯乙烯)管、PE-X(交联聚乙烯)管、PE(聚乙烯)管、PPR(无规共聚聚丙烯)管、PP-H(均聚聚丙烯)管以及PP-B(耐冲击共聚聚丙烯)管中的任意一种或多种,本发明实施例不作限定。
本发明实施例中,智能机器人中可以设置有电感式接近传感器、电容式接近传感器、霍尔接近传感器以及光电传感器,以检测管道的材质类型。作为一种可选的设置方式,智能机器人中可以设置电感式接近传感器、电容式接近传感器、霍尔接近传感器以及光电传感器中的任意一种或任意两种,本发明实施例不作限定。其中,电感式接近传感器利用金属导体靠近磁场时产生的涡流效应工作,该电感式接近传感器能够检测金属堵塞物;电容式接近传感器中包括测量头,该测量头是构成电容器的一个极板,另一个极板是开关的外壳。在智能机器人进行测量工作时,该外壳可以接地也可以连接设备。当智能机器人在管道中行走时,随着物体与电容式接近传感器的距离缩短,电容的介电常数会发生变化,以至于与测量头相连的电路状态发生变化,由此可以控制开关的接通或断开。电容式传感器能够检测金属堵塞物、绝缘的塑料堵塞物、玻璃材质堵塞物以及液体和其他材质堵塞物;霍尔接近传感器是一种磁性接近传感器,具有无触点、低功耗、寿命长、响应频率高等特点。霍尔接近传感器利用霍尔效应工作,故能够检测磁性堵塞物;光电传感器利用光电效应进行工作,光电传感器的发光器件与光电器按预设方向设置在同一个检测头内部。通常,光电传感器能够用于任何材质物体的检测。当智能机器人接近有反光面的堵塞物时,光电器件接收到反射光后即输出信号反馈至智能机器人的中央处理器。所以,执行步骤101能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命。
102、智能机器人开启行走机构在管道中行走;其中,行走机构包括至少三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人 的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片。
本发明实施例中,在步骤101检测到管道的材质类型之后,智能机器人可以开启行走机构在管道中行走。其中,该行走机构可以保证智能机器人在平直管道中稳定行走,当行走至管道的弯道处,行走机构可以控制行走轮伸缩,以保证每个行走轮均与管道壁贴合,使得智能机器人平稳且顺利的通过弯道。所以,执行步骤102能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率。
103、在智能机器人利用行走机构在管道中行走时,智能机器人控制内置的激光传感器进行堵塞物检测。
本发明实施例中,在步骤102开启行走机构在管道中行走之后,智能机器人可以利用行走机构在管道中行走时,控制内置的激光传感器进行堵塞物检测。其中,智能机器人除了使用激光传感器检测堵塞物之外,还可以通过红外传感器、超声波传感器以及光栅传感器中的任意一种或多种,本发明实施例不作限定。其中,光栅传感器为接触型测量,具有距离近、精度高的特点;超声波传感器、红外传感器以及激光传感器均为非接触型测量。执行步骤103能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果。
104、当智能机器人检测到某堵塞物时,智能机器人检测某堵塞物的材质类型。
105、如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物,智能机器人控制行走机构开启旋转行走模式,以磨削某堵塞物。
本发明实施例中,在步骤104检测某堵塞物的材质类型之后且管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物,智能机器人可以控制行走机构开启旋转行走模式,以磨削某堵塞物。其中,由于该管道的材质类型为硬度不高的塑料管道,为了对塑料管道进行保护,智能机器人可以采用控制行走机构开启旋转行走模式磨削某堵塞物,每个连接臂的前后两侧设置的磨削刀片在进行磨削工作时不会对管壁造成损伤。所以,执行步骤105能够最大程度的对管道进行保护,延长管道的使用寿命。
作为一种可选的实施方式,该智能机器人可以应用于智慧城市的市政建设,该智能机器人可以针对市政给水、雨水排水以及污水排水的管道进行定时疏通工作以及质量监督工作。例如,及时疏通市政自来水管道能够保证市民的正常生活用水,及时疏通雨水排水以及污水排水管道能够间接减少社会矛盾,提高城市的幸福指数,还能够使城市保持正常的发展节奏。
市政给水、雨水排水以及污水排水对于管道的使用寿命要求较高,该智能机器人在进行管道清理时,能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤。
另外,针对市政的热力管道和燃气管道等此类管道,非智慧城市在进行管道疏通或检查时,通常需要中断供给,以至于给市民带来诸多不便。若智能机器人应用于智慧城市,该智能机器人能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率。
作为另一种可选的实施方式,该智能机器人可以应用于智慧城市的个人家庭生活。对于市民来说清理家庭中的下水管道不是易事,通常,非智慧城市的市民可以借助工具进行清理,或者求助于专业修理人员对家庭中的下水管道进行清理。若该智能机器人应用于智慧城市的个人家庭生活中,则能够自动进行清理工作,并且,智能机器人还可以与市民的移动终端建立连接,市民可以通过在与智能机器人建立连接的移动终端上检视到当前智能机器人的工作情况(智能机器人上可以设置有摄像头,也可以将摄像头拍摄的实时图像传输至移动终端),以及管道中的具体情况。市民也可以通过移动终端对智能机器人进行手动控制,以便对管道进行更彻底的清理,提高了智能机器人的工作效果。
可见,实施该另一种可选的实施方式,能够通过智能机器人与市民和移动终端的交互改善了用户体验。
可见,实施图1所描述的方法,智能机器人能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命;智能机器人还能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率;智能机器人还能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果;智能机器人还能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤;智能机器人还能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率;智能机器人还能够通过智能机器人与市民和移动终端的交互改善了用户体验。所以,实施图1所描述的方法能够减少对管道的损伤,延长管道的使用寿命。
实施例二
请参阅图2,图2是本发明实施例公开的另一种应用于智慧城市的管道清理方法的流程示意图。其中,智能机器人的主体上设置有吸污装置,吸污装置通过第一软性输送管与位于管道外部的固液分离装置连接,固液分离装置通过第二软性输送管与位于管道外部的污水循环利用装置连接。如图2所示该应用于智慧城市的管道清理方法可以包括以下步骤:
201、智能机器人接收由移动终端发送的开启信号。
202、智能机器人开启智能机器人使得智能机器人开始工作,并开启智能机器人的摄像头并将摄像头拍摄的实时图像传输至移动终端。
本发明实施例中,在步骤201接收到由移动终端发送的开启信号之后,智能机器人可以开启智能机器人使得智能机器人开始工作。
203、在智能机器人将实时图像传输至移动终端之后,智能机器人检测管道的材质类型。
本发明实施例中,在步骤202开启智能机器人的摄像头并将摄像头拍摄的实时图像传输至移动终端之后,智能机器人可以检测管道的材质类型。
在本发明实施例中,该应用于智慧城市的管道清理方法包括步骤204~步骤206,针对步骤204~步骤206的描述,请参照实施例一中针对步骤102~步骤104的详细描述,本发明实施例不再赘述。
207、如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物,智能机器人控制行走机构开启旋转行走模式,以磨削某堵塞物,形成某 堵塞物的残渣污物。
208、如果管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,智能机器人控制智能机器人的主体向前行方向伸出锯齿轮,并启动锯齿轮进行转动以清理某堵塞物,形成某堵塞物的残渣污物。
本发明实施例中,由于该管道的材质类型为硬度较高的金属管道,为了对塑料管道进行保护且达到清理彻底的目的,智能机器人可以控制智能机器人的主体向前行方向伸出锯齿轮,并启动锯齿轮进行转动以清理某堵塞物。其中,锯齿轮在工作时不会对智能机器人的行走轮以及连接臂造成损伤。所以,执行步骤105能够在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的。
209、智能机器人控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置。
本发明实施例中,在步骤207智能机器人控制行走机构开启旋转行走模式,以磨削某堵塞物形成某堵塞物的残渣污物之后,或者步骤208控制智能机器人的主体向前行方向伸出锯齿轮,并启动锯齿轮进行转动以清理某堵塞物形成某堵塞物的残渣污物之后,智能机器人控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置。所以,执行步骤209能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题。
210、智能机器人控制固液分离装置分离残渣污物中的废液和固体,并控制污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体。
本发明实施例中,在步骤209控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置之后,智能机器人可以控制固液分离装置分离残渣污物中的废液和固体,并控制污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体。所以,执行步骤210能够通过对残渣污物中废液的回收,达到了节能环保的目的。
211、智能机器人检测管道中是否存在至少一处堵塞,如果是,执行步骤206,如果否,执行步骤212。
212、智能机器人发送用于表示清理工作已完成的提示信号至移动终端。
可见,实施图2所描述的方法,智能机器人能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命;智能机器人还能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率;智能机器人还能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果;智能机器人还能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤;智能机器人还能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率;智能机器人还能够通过智能机器人与市民和移动终端的交互改善了用户体验;智能机器人还能够基于管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的;智能机器人还能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题;智能机器人还能够通过对残渣污物中废液的回收,达到了节能环保的目的。所以,实施图2所描述的方法能够进一步地减少对管道的损伤,延长管道的使用寿命。
实施例三
请参阅图3,图3是本发明实施例公开的又一种应用于智慧城市的管道清理方法的流程示意图。其中,所述智能机器人的主体上设置有高速射流机构、吸污装置以及高速射流机构,吸污装置通过第一软性输送管与位于管道外部的固液分离装置连接,固液分离装置通过第二软性输送管与位于管道外部的污水循环利用装置连接。如图3所示该应用于智慧城市的管道清理方法可以包括以下步骤:
在本发明实施例中,该应用于智慧城市的管道清理方法包括步骤301~步骤310,针对步骤301~步骤310的描述,请参照实施例一中针对步骤201~步骤210的详细描述,本发明实施例不再赘述。
311、智能机器人检测管道中是否存在至少一处堵塞,如果是,执行步骤306,如果否,执行步骤312。
312、智能机器人对管道的管道壁进行超声波探伤,得到超声波在管道壁中的传播距离和超声波的反射波的幅值。
313、智能机器人将传播距离作为横坐标,以及将反射波的幅值作为纵坐标绘制超声波的反射波的波形图。
314、智能机器人基于深度学习算法对波形图进行分析,得出管道的健康程度报告;其中,如果管道存在破损处,健康程度报告包括管道的管道壁破损位置、破损类型。
315、智能机器人将健康程度报告以及用于表示清理工作已完成的提示信号至移动终端。
本发明实施例中,健康程度报告能够反映管道的目前健康状况,如果管道存在破损或老化的问题,用户也能基于健康程度报告更换或快速修复管道,所以,执行步骤315能够通过将管道的健康情况以健康程度报告的形式及时反馈给用户,改善人们的生活质量,提高了人们更换或修复管道的工作效率。
作为一种可选的实施方式,该应用于智慧城市的管道清理方法,还可以包括以下步骤:
如果管道的材质类型属于金属管道且某堵塞物的材质类型属于可溶解堵塞物,智能机器人选用不损伤金属管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理;如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可溶解堵塞物,智能机器人选用不损伤塑料管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理;
如果某堵塞物的材质类型属于可冲刷堵塞物,智能机器人控制高速射流机构对某堵塞物进行冲刷。
可见,实施该可选的实施方式,能够通过对管道材质和堵塞物材质的结合分析,有针对性的对管道进行基于保护管道壁的彻底清理。
作为另一种可选的实施方式,智能机器人在应用于智能城市的个人家庭生活时,该智能机器人可以记录对该家庭的下水管道清理情况,如果下水管道堵塞原因常为残留食物,该智能机器人可以推送建议信息至已建立连接的移动终端(例如,建议信息可以用于建议用户勿将饭菜倒入下水管道)。该智能机器人还可以监测管道的健康状况,如果智能机器人检测出管道老化或开裂问题,可以直接反馈问题报告至移动终端并建议进行管道更换。
可见,实施该另一种可选的实施方式能够长效持久的保护管道、监测管道,避免管道因长期不清理而导致的快速老化问题、破损问题,能够有效节省城市资 源。
作为又一种可选的实施方式,智能机器人不仅能够对管道进行超声波探伤,还能够通过超声波对管道的管道壁进行测厚,对于测厚方法的选择,该智能机器人可以使用网格测量法、连续测量法、精确测量法以及30mm多点测量法中的任意一种,本发明实施例不作限定。智能机器人还可以将测量到的管壁厚度、摄像头拍摄到的管内壁图像上传至服务器,并接收由数据库结合管壁厚度、摄像头拍摄到的管内壁图像以及大数据确定出管道的可使用寿命,该智能机器人还可以发送用于标识管道的可使用寿命的提示信息至移动终端(例如,移动终端的使用者可以是市民也可以是市政建设的管理人员)。
可见,实施该又一种可选的实施方式,能够通过对管壁测厚方法检测管道的可使用寿命,以及及时上报管道的使用寿命预防安全隐患。
作为又一种可选的实施方式,该智能机器人中除了已设置的高速射流机构、吸污装置、高速射流机构、固液分离装置连接、污水循环利用装置之外,还可以设置有引流机构、加速机构、排污机构、防水机身、动力线组。其中,引流机构能够在管道内情况复杂时,采用倾斜面引流;加速机构能够将堵塞物残渣与液体的混合物高速甩出,能够实现全自动化的清理堵塞物,避免堵塞物积压;排污机构能够在高速旋转且封闭的机构中通入管道;动力线组能够为智能机器人提供能源。
可见,实施该又一种可选的实施方式,能够通过设置更丰富的机构完善智能机器人的工作机制,提高智能机器人的工作效率和工作效果。
可见,实施图3所描述的方法,智能机器人能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命;智能机器人还能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率;智能机器人还能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果;智能机器人还能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤;智能机器人还能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率;智能机器人还能够通过智能机器人与市民和移动终端的交互改善了用户体验;智能机器人还能够基于管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的;智能机器人还能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题;智能机器人还能够通过对残渣污物中废液的回收,达到了节能环保的目的;智能机器人还能够通过将管道的健康情况以健康程度报告的形式及时反馈给用户,改善人们的生活质量,提高了人们更换或修复管道的工作效率;智能机器人还能够长效持久的保护管道、监测管道,避免管道因长期不清理而导致的快速老化问题、破损问题,能够有效节省城市资源;智能机器人还能够通过对管壁测厚方法检测管道的可使用寿命,以及及时上报管道的使用寿命预防安全隐患,还能够通过设置更丰富的机构完善智能机器人的工作机制,提高智能机器人的工作效率和工作效果。所以,实施图3所描述的方法能够更进一步地减少对管道的损伤,延长管道的使用寿命。
实施例四
请参阅图4,图4是本发明实施例公开的一种智能机器人的结构示意图。如图4所示,该智能机器人可以包括:
第一检测单元401,用于检测管道的材质类型。
本发明实施例中,第一检测单元401检测管道的材质类型之后,触发开启单元402启动。
本发明实施例中,管道的材质类型可以是镀锌管、铜管、不锈钢管、铝塑复合管、PVC(硬聚氯乙烯)管、PE-X(交联聚乙烯)管、PE(聚乙烯)管、PPR(无规共聚聚丙烯)管、PP-H(均聚聚丙烯)管以及PP-B(耐冲击共聚聚丙烯)管中的任意一种或多种,本发明实施例不作限定。
本发明实施例中,第一检测单元401中可以设置有电感式接近传感器(图5中未画出)、电容式接近传感器(图5中未画出)、霍尔接近传感器(图5中未画出)以及光电传感器(图5中未画出),以检测管道的材质类型。作为一种可选的设置方式,第一检测单元401中可以设置电感式接近传感器、电容式接近传感器、霍尔接近传感器以及光电传感器中的任意一种或任意两种,本发明实施例不作限定。其中,电感式接近传感器利用金属导体靠近磁场时产生的涡流效应工作,该电感式接近传感器能够检测金属堵塞物;电容式接近传感器中包括测量头,该测量头是构成电容器的一个极板,另一个极板是开关的外壳。在第一检测单元401进行测量工作时,该外壳可以接地也可以连接设备。当智能机器人在管道中行走时,随着物体与电容式接近传感器的距离缩短,电容的介电常数会发生变化,以至于与测量头相连的电路状态发生变化,由此可以控制开关的接通或断开。电容式传感器能够检测金属堵塞物、绝缘的塑料堵塞物、玻璃材质堵塞物以及液体和其他材质堵塞物;霍尔接近传感器是一种磁性接近传感器,具有无触点、低功耗、寿命长、响应频率高等特点。霍尔接近传感器利用霍尔效应工作,故能够检测磁性堵塞物;光电传感器利用光电效应进行工作,光电传感器的发光器件与光电器按预设方向设置在同一个检测头内部。通常,光电传感器能够用于任何材质物体的检测。当智能机器人接近有反光面的堵塞物时,光电器件接收到反射光后即输出信号反馈至智能机器人的中央处理器。所以,执行第一检测单元401能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命。
开启单元402,用于开启行走机构在管道中行走;其中,行走机构包括至少三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片。
本发明实施例中,开启单元402开启行走机构在管道中行走之后,触发第一控制单元403启动。其中,该行走机构可以保证智能机器人在平直管道中稳定行走,当行走至管道的弯道处,行走机构可以控制行走轮伸缩,以保证每个行走轮均与管道壁贴合,使得智能机器人平稳且顺利的通过弯道。所以,执行开启单元402能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率。
第一控制单元403,用于在智能机器人利用行走机构在管道中行走时,控制内置的激光传感器进行堵塞物检测。
本发明实施例中,在开启单元402开启行走机构在管道中行走之后,第一控 制单元403可以利用行走机构在管道中行走时,控制内置的激光传感器进行堵塞物检测,并触发第一检测单元401启动。其中,第一控制单元403除了使用激光传感器检测堵塞物之外,还可以通过红外传感器(图5中未画出)、超声波传感器(图5中未画出)以及光栅传感器(图5中未画出)中的任意一种或多种,本发明实施例不作限定。其中,光栅传感器为接触型测量,具有距离近、精度高的特点;超声波传感器、红外传感器以及激光传感器均为非接触型测量。执行第一控制单元403能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果。
第一检测单元401,还用于在第一控制单元403控制内置的激光传感器进行堵塞物检测时检测到某堵塞物之后,检测某堵塞物的材质类型。
本发明实施例中,第一检测单元401检测某堵塞物的材质类型之后,触发第一控制单元403启动。
第一控制单元403,还用于在第一检测单元401检测出管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物之后,控制行走机构开启旋转行走模式,以磨削某堵塞物。
本发明实施例中,在第一检测单元401检测某堵塞物的材质类型之后且管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物,第一控制单元403可以控制行走机构开启旋转行走模式,以磨削某堵塞物。其中,由于该管道的材质类型为硬度不高的塑料管道,为了对塑料管道进行保护,智能机器人可以采用控制行走机构开启旋转行走模式磨削某堵塞物,每个连接臂的前后两侧设置的磨削刀片在进行磨削工作时不会对管壁造成损伤。所以,执行第一控制单元403能够最大程度的对管道进行保护,延长管道的使用寿命。
作为一种可选的实施方式,该智能机器人可以应用于智慧城市的市政建设,该智能机器人可以针对市政给水、雨水排水以及污水排水的管道进行定时疏通工作以及质量监督工作。例如,及时疏通市政自来水管道能够保证市民的正常生活用水,及时疏通雨水排水以及污水排水管道能够间接减少社会矛盾,提高城市的幸福指数,还能够使城市保持正常的发展节奏。
市政给水、雨水排水以及污水排水对于管道的使用寿命要求较高,该智能机器人在进行管道清理时,能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤。
另外,针对市政的热力管道和燃气管道等此类管道,非智慧城市在进行管道疏通或检查时,通常需要中断供给,以至于给市民带来诸多不便。若智能机器人应用于智慧城市,该智能机器人能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率。
作为另一种可选的实施方式,该智能机器人可以应用于智慧城市的个人家庭生活。对于市民来说清理家庭中的下水管道不是易事,通常,非智慧城市的市民可以借助工具进行清理,或者求助于专业修理人员对家庭中的下水管道进行清理。若该智能机器人应用于智慧城市的个人家庭生活中,则能够自动进行清理工作,并且,智能机器人还可以与市民的移动终端建立连接,市民可以通过在与智能机器人建立连接的移动终端上检视到当前智能机器人的工作情况(智能机器人上可以设置有摄像头,也可以将摄像头拍摄的实时图像传输至移动终端),以及管道中的具体情况。市民也可以通过移动终端对智能机器人进行手动控制,以便 对管道进行更彻底的清理,提高了智能机器人的工作效果。
可见,实施该另一种可选的实施方式,能够通过智能机器人与市民和移动终端的交互改善了用户体验。
可见,实施图4所描述的智能机器人中,第一检测单元401能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命;开启单元402能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率;第一控制单元403能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果;第一控制单元403还能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤;智能机器人能够在减少人员成本并且不用中断供给的基础上,对热力管道和燃气管道等此类管道进行清理或检查,能够加快城市的发展进度,提高市政工作人员的工作效率;智能机器人还能够通过智能机器人与市民和移动终端的交互改善了用户体验。所以,实施图4所描述的智能机器人能够减少对管道的损伤,延长管道的使用寿命。
实施例五
请参阅图5,图5是本发明实施例公开的另一种智能机器人的结构示意图。其中,图5所示的智能机器人是由图4所示的智能机器人进行优化得到的。与图4所示的智能机器人相比较,图5所示的智能机器人的主体上设置有吸污装置(图5中未画出),吸污装置通过第一软性输送管与位于管道外部的固液分离装置(图5中未画出)连接,固液分离装置通过第二软性输送管与位于管道外部的污水循环利用装置(图5中未画出)连接。相应地,图5所示的智能机器人还可以包括:
第二控制单元404,用于在第一检测单元401检测出管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物之后,控制智能机器人的主体向前行方向伸出锯齿轮。
本发明实施例中,在第二控制单元404控制智能机器人的主体向前行方向伸出锯齿轮之后,触发启动单元405启动。
本发明实施例中,由于该管道的材质类型为硬度较高的金属管道,为了对塑料管道进行保护且达到清理彻底的目的,第二控制单元404可以控制智能机器人的主体向前行方向伸出锯齿轮,并启动锯齿轮进行转动以清理某堵塞物。其中,锯齿轮在工作时不会对智能机器人的行走轮以及连接臂造成损伤。所以,执行第二控制单元404能够在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的。
启动单元405,用于启动锯齿轮进行转动以清理某堵塞物,形成某堵塞物的残渣污物。
本发明实施例中,在启动单元405启动锯齿轮进行转动以清理某堵塞物,形成某堵塞物的残渣污物之后,触发第三控制单元406启动。
第三控制单元406,用于控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置。
本发明实施例中,在第三控制单元406控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置之后,触发第四控制单元407启动。
本发明实施例中,在第一控制单元403控制行走机构开启旋转行走模式,以磨削某堵塞物形成某堵塞物的残渣污物之后,触发第三控制单元406启动。
本发明实施例中,在第一控制单元403智能机器人控制行走机构开启旋转行走模式,以磨削某堵塞物形成某堵塞物的残渣污物之后,或者第二控制单元404控制智能机器人的主体向前行方向伸出锯齿轮,并启动锯齿轮进行转动以清理某堵塞物形成某堵塞物的残渣污物之后,第三控制单元406控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置。所以,执行第三控制单元406能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题。
第四控制单元407,用于控制固液分离装置分离残渣污物中的废液和固体,并控制污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体。
本发明实施例中,在第三控制单元406控制吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置之后,第四控制单元407可以控制固液分离装置分离残渣污物中的废液和固体,并控制污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体。所以,执行第四控制单元407能够通过对残渣污物中废液的回收,达到了节能环保的目的。
接收单元408,用于在第一检测单元401检测出管道的材质类型之前,接收由移动终端发送的开启信号。
本发明实施例中,接收单元408接收由移动终端发送的开启信号之后,触发开启单元402启动。
开启单元402,还用于开启智能机器人使得智能机器人开始工作,并开启智能机器人的摄像头并将摄像头拍摄的实时图像传输至移动终端。
本发明实施例中,开启单元402开启智能机器人的摄像头并将摄像头拍摄的实时图像传输至移动终端之后,触发第一检测单元401启动。
第二检测单元409,用于在第四控制单元407控制污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体之后,检测管道中是否存在至少一处堵塞。
本发明实施例中,在第二检测单元409执行完毕之后,触发第一发送单元410启动。
第一发送单元410,用于在第二检测单元409检测出管道中不存在至少一处堵塞之后,发送用于表示清理工作已完成的提示信号至移动终端。
可见,实施图5所描述的智能机器人中,第二控制单元404能够基于管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的;第三控制单元406能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题;第四控制单元407能够通过对残渣污物中废液的回收,达到了节能环保的目的。所以,实施图5所描述的智能机器人能够进一步地减少对管道的损伤,延长管道的使用寿命。
实施例六
请参阅图6,图6是本发明实施例公开的又一种智能机器人的结构示意图。其中,图6所示的智能机器人是由图5所示的智能机器人进行优化得到的。与图5所示的智能机器人相比较,图6所示的智能机器人的主体上还设置有高速射流机构(图6中未画出),相应地,图6所示的智能机器人还可以包括:
选取单元411,用于当第一检测单元401检测出管道的材质类型属于金属管道且某堵塞物的材质类型属于可溶解堵塞物时,选用不损伤金属管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理,形成某堵塞物的残渣污物。
本发明实施例中,在选取单元411选用不损伤金属管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理之后,触发第三控制单元406启动。
选取单元411,还用于当第一检测单元401检测出管道的材质类型属于塑料管道且某堵塞物的材质类型属于可溶解堵塞物时,选用不损伤塑料管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理,形成某堵塞物的残渣污物。
本发明实施例中,在选取单元411选用不损伤塑料管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理之后,触发第三控制单元406启动。
第五控制单元412,用于当第一检测单元401检测出某堵塞物的材质类型属于可冲刷堵塞物时,控制高速射流机构对某堵塞物进行冲刷,形成某堵塞物的残渣污物。
本发明实施例中,在第五控制单元412控制高速射流机构对某堵塞物进行冲刷之后,触发第三控制单元406启动。
超声波探伤单元413,用于在第二检测单元409检测出管道中不存在至少一处堵塞之后,以及在第一发送单元410发送用于表示清理工作已完成的提示信号至移动终端之前,对管道的管道壁进行超声波探伤,得到超声波在管道壁中的传播距离和超声波的反射波的幅值。
本发明实施例中,在超声波探伤单元413得到超声波在管道壁中的传播距离和超声波的反射波的幅值之后,触发绘制单元414启动。
绘制单元414,用于将传播距离作为横坐标,以及将反射波的幅值作为纵坐标绘制超声波的反射波的波形图。
本发明实施例中,在绘制单元414将传播距离作为横坐标,以及将反射波的幅值作为纵坐标绘制超声波的反射波的波形图之后,触发分析单元415启动。
分析单元415,用于基于深度学习算法对波形图进行分析,得出管道的健康程度报告;其中,如果管道存在破损处,健康程度报告包括管道的管道壁破损位置、破损类型。
本发明实施例中,在分析单元415得出管道的健康程度报告之后,触发第二发送单元416启动。
第二发送单元416,用于将健康程度报告发送至移动终端。
本发明实施例中,在第二发送单元416将健康程度报告发送至移动终端之后,触发第一发送单元410启动。
本发明实施例中,健康程度报告能够反映管道的目前健康状况,如果管道存在破损或老化的问题,用户也能基于健康程度报告更换或快速修复管道,所以,执行第二发送单元416能够通过将管道的健康情况以健康程度报告的形式及时反馈给用户,改善人们的生活质量,提高了人们更换或修复管道的工作效率。
第一发送单元410,具体用于在第二发送单元416将健康程度报告发送至移动终端之后,发送用于表示清理工作已完成的提示信号至移动终端。
作为一种可选的实施方式,该应用于智慧城市的管道清理方法,还可以包括以下步骤:
如果管道的材质类型属于金属管道且某堵塞物的材质类型属于可溶解堵塞物,智能机器人选用不损伤金属管道且能溶解某堵塞物的预存化学试剂对某堵塞 物进行清理;如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可溶解堵塞物,智能机器人选用不损伤塑料管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理;
如果某堵塞物的材质类型属于可冲刷堵塞物,智能机器人控制高速射流机构对某堵塞物进行冲刷。
可见,实施该可选的实施方式,能够通过对管道材质和堵塞物材质的结合分析,有针对性的对管道进行基于保护管道壁的彻底清理。
作为另一种可选的实施方式,智能机器人在应用于智能城市的个人家庭生活时,该智能机器人可以记录对该家庭的下水管道清理情况,如果下水管道堵塞原因常为残留食物,该智能机器人可以推送建议信息至已建立连接的移动终端(例如,建议信息可以用于建议用户勿将饭菜倒入下水管道)。该智能机器人还可以监测管道的健康状况,如果智能机器人检测出管道老化或开裂问题,可以直接反馈问题报告至移动终端并建议进行管道更换。
可见,实施该另一种可选的实施方式能够长效持久的保护管道、监测管道,避免管道因长期不清理而导致的快速老化问题、破损问题,能够有效节省城市资源。
作为又一种可选的实施方式,智能机器人不仅能够对管道进行超声波探伤,还能够通过超声波对管道的管道壁进行测厚,对于测厚方法的选择,该智能机器人可以使用网格测量法、连续测量法、精确测量法以及30mm多点测量法中的任意一种,本发明实施例不作限定。智能机器人还可以将测量到的管壁厚度、摄像头拍摄到的管内壁图像上传至服务器,并接收由数据库结合管壁厚度、摄像头拍摄到的管内壁图像以及大数据确定出管道的可使用寿命,该智能机器人还可以发送用于标识管道的可使用寿命的提示信息至移动终端(例如,移动终端的使用者可以是市民也可以是市政建设的管理人员)。
可见,实施该又一种可选的实施方式,能够通过对管壁测厚方法检测管道的可使用寿命,以及及时上报管道的使用寿命预防安全隐患。
作为又一种可选的实施方式,该智能机器人中除了已设置的高速射流机构、吸污装置、高速射流机构、固液分离装置连接、污水循环利用装置之外,还可以设置有引流机构(图6中未画出)、加速机构(图6中未画出)、排污机构(图6中未画出)、防水机身(图6中未画出)、动力线组(图6中未画出)。其中,引流机构能够在管道内情况复杂时,采用倾斜面引流;加速机构能够将堵塞物残渣与液体的混合物高速甩出,能够实现全自动化的清理堵塞物,避免堵塞物积压;排污机构能够在高速旋转且封闭的机构中通入管道;动力线组能够为智能机器人提供能源。
可见,实施该又一种可选的实施方式,能够通过设置更丰富的机构完善智能机器人的工作机制,提高智能机器人的工作效率和工作效果。
可见,实施图6所描述的智能机器人中,第二发送单元416能够通过将管道的健康情况以健康程度报告的形式及时反馈给用户,改善人们的生活质量,提高了人们更换或修复管道的工作效率;智能机器人还能够长效持久的保护管道、监测管道,避免管道因长期不清理而导致的快速老化问题、破损问题,能够有效节省城市资源;智能机器人还能够通过对管壁测厚方法检测管道的可使用寿命,以及及时上报管道的使用寿命预防安全隐患,还能够通过设置更丰富的机构完善智能机器人的工作机制,提高智能机器人的工作效率和工作效果。所以,实施图6 所描述的智能机器人能够更进一步地减少对管道的损伤,延长管道的使用寿命。
其中,图6所描述的智能机器人的工作场景可以如图7所示,图7是本发明实施例公开的一种智能机器人工作场景的场景示意图。如图7所示,智能机器人包括智能机器人的主体,该主体上可以有吸污装置、高速射流机构以及激光传感器;智能机器人还包括行走机构,该行走机构包括三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片;需要说明的是,图7中的行走机构还可以包括三个以上的行走轮,只要行走机构包括的所有行走轮都连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走即可,本发明实施例不对行走轮的数量作具体限定;智能机器人还包括第一软性输送管、第二软性输送管、固液分离装置以及污水循环利用装置,其中,主体中的吸污装置通过第一软性输送管与固液分离装置相连,固液分离装置通过第二软性输送管与污水循环处理装置相连。
可见,实施图7所描述的智能机器人能够通过与主体相连的行走轮,保证智能机器人在管道的中心轴上稳定行走,此外,还能够通过对管道材质类型的检测,以针对该管道材质类型选用最优清理方案,最大程度保护管道、延长管道的使用寿命,此外,还能够通过智能机器人控制行走机构在管道中自适应,降低了智能机器人的破损几率、延长了智能机器人本体的使用寿命、一级提高了智能机器人的工作效率,此外,还能够通过智能机器人中的激光传感器进行堵塞物检测,以及激光传感器速度快精度高量程大的特点,提高智能机器人的工作效率和工作效果,此外,还能够根据管道和堵塞物的材质,有针对性的进行清理,能够最大程度减少清理时对管道的损伤,此外,还能够基于管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,在最大程度的对管道进行保护的同时,达到对管道彻底清理的目的,此外,还能够通过吸污装置对堵塞物的残渣污物进行排出,避免了管道中残渣污物的积压问题,此外,还能够通过对残渣污物中废液的回收,达到了节能环保的目的此外,此外,还能够通过对管壁测厚方法检测管道的可使用寿命,以及及时上报管道的使用寿命预防安全隐患,此外,还能够通过设置更丰富的机构完善智能机器人的工作机制,提高智能机器人的工作效率和工作效果。
实施例八
请参阅图8,图8是本发明实施例公开的又一种智能机器人的结构示意图。其中,该智能机器人可以为图7所描述的智能机器人。如图8所示,该智能机器人的主体除了包括吸污装置、高速射流机构以及激光传感器之外,还可以包括:
存储有可执行程序代码的存储器801;
与存储器801耦合的处理器802;
其中,处理器802调用存储器801中存储的可执行程序代码,用于执行以下操作:
驱动相应的传感器检测管道的材质类型;其中,该相应的传感器可以为电感式接近传感器、电容式接近传感器、霍尔接近传感器以及光电传感器;
开启行走机构在管道中行走;其中,行走机构包括至少三个行走轮,且每个行走轮通过连接臂连接智能机器人的主体,以保证智能机器人的主体始终在管道的中心轴上稳定行走,每个连接臂的前后两侧均设置有磨削刀片;
在利用行走机构在所述管道中行走时,驱动内置的激光传感器进行堵塞物检 测;
当检测到某堵塞物时,驱动相应的传感器检测某堵塞物的材质类型;
如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可磨削堵塞物,控制行走机构开启旋转行走模式,以磨削某堵塞物。
进一步地,处理器802还用于执行以下操作:
如果管道的材质类型属于金属管道且某堵塞物的材质类型属于可磨削堵塞物,驱动智能机器人的主体向前行方向伸出锯齿轮;
启动所述锯齿轮进行转动以清理某堵塞物,形成某堵塞物的残渣污物;
驱动吸污装置抽取管道中的某堵塞物的残渣污物,并通过第一软性输送管输送给固液分离装置;
驱动所述固液分离装置分离残渣污物中的废液和固体,并驱动污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体。
驱动相应的传感器检测管道的材质类型之前,相应的,处理器702还用于执行以下操作:
接收由移动终端发送的开启信号;
开启智能机器人使得智能机器人开始工作,并开启智能机器人的摄像头并将摄像头拍摄的实时图像传输至移动终端;
驱动所述污水循环利用装置将残渣污物中的废液进行回收处理,得到可用液体之后,处理器802还用于执行以下操作:
驱动激光传感器检测所述管道中是否存在至少一处堵塞;
如果否,发送用于表示清理工作已完成的提示信号至移动终端。
智能机器人的主体上设置有高速射流机构,相应的,处理器802还用于执行以下操作:
如果管道的材质类型属于金属管道且某堵塞物的材质类型属于可溶解堵塞物,驱动储存装置(在图8中未画出)输出不损伤金属管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理;如果管道的材质类型属于塑料管道且某堵塞物的材质类型属于可溶解堵塞物,驱动储存装置输出不损伤塑料管道且能溶解某堵塞物的预存化学试剂对某堵塞物进行清理;
如果某堵塞物的材质类型属于可冲刷堵塞物,驱动高速射流机构对某堵塞物进行冲刷。
驱动激光传感器检测到管道中不存在至少一处堵塞之后,以及发送用于表示清理工作已完成的提示信号至移动终端之前,处理器802还用于执行以下操作:
驱动超声波探伤装置(在图8中未画出)对管道的管道壁进行超声波探伤,得到超声波在管道壁中的传播距离和所述超声波的反射波的幅值;
驱动超声波探伤装置将传播距离作为横坐标,以及将反射波的幅值作为纵坐标绘制超声波的反射波的波形图;
驱动超声波探伤装置基于深度学习算法对波形图进行分析,得出管道的健康程度报告;其中,如果管道存在破损处,健康程度报告包括管道的管道壁破损位置、破损类型;
所述健康程度报告发送至移动终端并发送用于表示清理工作已完成的提示信号至所述移动终端。
本发明实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序使得计算机执行图1~图3任意一种应用于智慧城市的管道清理方法。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上所述,以上实施例仅用以说明本申请的技术方案而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,然而本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种应用于智慧城市的管道清理方法,其特征在于,所述方法包括:
    智能机器人检测所述管道的材质类型;
    所述智能机器人开启行走机构在所述管道中行走;其中,所述行走机构包括至少三个行走轮,且每个所述行走轮通过连接臂连接所述智能机器人的主体,以保证所述智能机器人的主体始终在所述管道的中心轴上稳定行走,每个所述连接臂的前后两侧均设置有磨削刀片;
    在所述智能机器人利用所述行走机构在所述管道中行走时,所述智能机器人控制内置的激光传感器进行堵塞物检测;
    当所述智能机器人检测到某堵塞物时,所述智能机器人检测所述某堵塞物的材质类型;
    如果所述管道的材质类型属于塑料管道且所述某堵塞物的材质类型属于可磨削堵塞物,所述智能机器人控制所述行走机构开启旋转行走模式,以磨削所述某堵塞物。
  2. 根据权利要求1所述的方法,其特征在于,所述智能机器人的主体上设置有吸污装置,所述吸污装置通过第一软性输送管与位于所述管道外部的固液分离装置连接,所述固液分离装置通过第二软性输送管与位于所述管道外部的污水循环利用装置连接,所述方法还包括:
    如果所述管道的材质类型属于金属管道且所述某堵塞物的材质类型属于所述可磨削堵塞物,所述智能机器人控制所述智能机器人的主体向前行方向伸出锯齿轮;
    所述智能机器人启动所述锯齿轮进行转动以清理所述某堵塞物,形成所述某堵塞物的残渣污物;
    所述智能机器人控制所述吸污装置抽取所述管道中的所述某堵塞物的残渣污物,并通过所述第一软性输送管输送给所述固液分离装置;
    所述智能机器人控制所述固液分离装置分离所述残渣污物中的废液和固体,并控制所述污水循环利用装置将所述残渣污物中的废液进行回收处理,得到可用液体。
  3. 根据权利要求2所述的方法,其特征在于,智能机器人检测所述管道的材质类型之前,所述方法还包括:
    所述智能机器人接收由移动终端发送的开启信号;
    所述智能机器人开启所述智能机器人使得所述智能机器人开始工作,并开启所述智能机器人的摄像头并将所述摄像头拍摄的实时图像传输至所述移动终端;
    所述智能机器人控制所述污水循环利用装置将所述残渣污物中的废液进行回收处理,得到可用液体之后,所述方法还包括:
    所述智能机器人检测所述管道中是否存在至少一处堵塞;
    如果否,所述智能机器人发送用于表示清理工作已完成的提示信号至所述移动终端。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述智能机器人的主体上设置有高速射流机构,所述方法还包括:
    如果所述管道的材质类型属于所述金属管道且所述某堵塞物的材质类型属于所述可溶解堵塞物,所述智能机器人选用不损伤所述金属管道且能溶解所述某堵塞物的预存化学试剂对所述某堵塞物进行清理;如果所述管道的材质类型属于 所述塑料管道且所述某堵塞物的材质类型属于所述可溶解堵塞物,所述智能机器人选用不损伤所述塑料管道且能溶解所述某堵塞物的预存化学试剂对所述某堵塞物进行清理;
    如果所述某堵塞物的材质类型属于所述可冲刷堵塞物,所述智能机器人控制所述高速射流机构对所述某堵塞物进行冲刷。
  5. 根据权利要求3所述的方法,其特征在于,所述智能机器人检测到所述管道中不存在所述至少一处堵塞之后,以及所述智能机器人发送用于表示清理工作已完成的提示信号至所述移动终端之前,所述方法还包括:
    所述智能机器人对所述管道的管道壁进行超声波探伤,得到所述超声波在所述管道壁中的传播距离和所述超声波的反射波的幅值;
    所述智能机器人将所述传播距离作为横坐标,以及将所述反射波的幅值作为纵坐标绘制所述超声波的反射波的波形图;
    所述智能机器人基于深度学习算法对所述波形图进行分析,得出所述管道的健康程度报告;其中,如果所述管道存在破损处,所述健康程度报告包括所述管道的管道壁破损位置、破损类型;
    所述智能机器人将所述健康程度报告发送至所述移动终端并执行所述的发送用于表示清理工作已完成的提示信号至所述移动终端。
  6. 一种智能机器人,其特征在于,所述智能机器人包括:
    第一检测单元,用于检测管道的材质类型;
    开启单元,用于开启行走机构在所述管道中行走;其中,所述行走机构包括至少三个行走轮,且每个所述行走轮通过连接臂连接所述智能机器人的主体,以保证所述智能机器人的主体始终在所述管道的中心轴上稳定行走,每个所述连接臂的前后两侧均设置有磨削刀片;
    第一控制单元,用于在所述智能机器人利用所述行走机构在所述管道中行走时,控制内置的激光传感器进行堵塞物检测;
    所述第一检测单元,还用于在所述第一控制单元控制内置的激光传感器进行堵塞物检测时检测到某堵塞物之后,检测所述某堵塞物的材质类型;
    所述第一控制单元,还用于在所述第一检测单元检测出所述管道的材质类型属于塑料管道且所述某堵塞物的材质类型属于可磨削堵塞物之后,控制所述行走机构开启旋转行走模式,以磨削所述某堵塞物。
  7. 根据权利要求6所述的智能机器人,其特征在于,所述智能机器人的主体上设置有吸污装置,所述吸污装置通过第一软性输送管与位于所述管道外部的固液分离装置连接,所述固液分离装置通过第二软性输送管与位于所述管道外部的污水循环利用装置连接,所述智能机器人还包括:
    第二控制单元,用于在所述第一检测单元检测出所述管道的材质类型属于金属管道且所述某堵塞物的材质类型属于所述可磨削堵塞物之后,控制所述智能机器人的主体向前行方向伸出锯齿轮;
    启动单元,用于启动所述锯齿轮进行转动以清理所述某堵塞物,形成所述某堵塞物的残渣污物;
    第三控制单元,用于控制所述吸污装置抽取所述管道中的所述某堵塞物的残渣污物,并通过所述第一软性输送管输送给所述固液分离装置;
    第四控制单元,用于控制所述固液分离装置分离所述残渣污物中的废液和固体,并控制所述污水循环利用装置将所述残渣污物中的废液进行回收处理,得到 可用液体。
  8. 根据权利要求7所述的智能机器人,其特征在于,所述智能机器人还包括:
    接收单元,用于在所述第一检测单元检测出所述管道的材质类型之前,接收由移动终端发送的开启信号;
    所述开启单元,还用于开启所述智能机器人使得所述智能机器人开始工作,并开启所述智能机器人的摄像头并将所述摄像头拍摄的实时图像传输至所述移动终端;
    第二检测单元,用于在所述第四控制单元控制所述污水循环利用装置将所述残渣污物中的废液进行回收处理,得到可用液体之后,检测所述管道中是否存在至少一处堵塞;
    第一发送单元,用于在所述第二检测单元检测出所述管道中不存在至少一处堵塞之后,发送用于表示清理工作已完成的提示信号至所述移动终端。
  9. 根据权利要求6~8任一项所述的智能机器人,其特征在于,所述智能机器人的主体上设置有高速射流机构,所述智能机器人还包括:
    选取单元,用于当所述第一检测单元检测出所述管道的材质类型属于所述金属管道且所述某堵塞物的材质类型属于所述可溶解堵塞物时,选用不损伤所述金属管道且能溶解所述某堵塞物的预存化学试剂对所述某堵塞物进行清理;
    所述选取单元,还用于当所述第一检测单元检测出所述管道的材质类型属于所述塑料管道且所述某堵塞物的材质类型属于所述可溶解堵塞物时,选用不损伤所述塑料管道且能溶解所述某堵塞物的预存化学试剂对所述某堵塞物进行清理;
    第五控制单元,用于当所述第一检测单元检测出所述某堵塞物的材质类型属于所述可冲刷堵塞物时,控制所述高速射流机构对所述某堵塞物进行冲刷。
  10. 根据权利要求8所述的智能机器人,其特征在于,所述智能机器人还包括:
    超声波探伤单元,用于在所述第二检测单元检测出所述管道中不存在至少一处堵塞之后,以及在所述第一发送单元发送用于表示清理工作已完成的提示信号至所述移动终端之前,对所述管道的管道壁进行超声波探伤,得到所述超声波在所述管道壁中的传播距离和所述超声波的反射波的幅值;
    绘制单元,用于将所述传播距离作为横坐标,以及将所述反射波的幅值作为纵坐标绘制所述超声波的反射波的波形图;
    分析单元,用于基于深度学习算法对所述波形图进行分析,得出所述管道的健康程度报告;其中,如果所述管道存在破损处,所述健康程度报告包括所述管道的管道壁破损位置、破损类型;
    第二发送单元,用于将所述健康程度报告发送至所述移动终端;
    所述第一发送单元,具体用于在所述第二发送单元将所述健康程度报告发送至所述移动终端之后,发送用于表示清理工作已完成的提示信号至所述移动终端。
PCT/CN2017/117676 2017-12-11 2017-12-21 一种应用于智慧城市的管道清理方法及智能机器人 WO2019114012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711308670.X 2017-12-11
CN201711308670.XA CN108043832B (zh) 2017-12-11 2017-12-11 一种应用于智慧城市的管道清理方法及智能机器人

Publications (1)

Publication Number Publication Date
WO2019114012A1 true WO2019114012A1 (zh) 2019-06-20

Family

ID=62123654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117676 WO2019114012A1 (zh) 2017-12-11 2017-12-21 一种应用于智慧城市的管道清理方法及智能机器人

Country Status (2)

Country Link
CN (1) CN108043832B (zh)
WO (1) WO2019114012A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455808A (zh) * 2019-07-23 2019-11-15 上海航天精密机械研究所 适用于管件内部质量检测的智能质检***及方法
CN111632963B (zh) * 2020-05-29 2021-09-21 藤仓烽火光电材料科技有限公司 一种自动清理排气管道的方法和设备
CN112705533B (zh) * 2021-01-25 2023-06-20 成都和拓土木工程有限公司 一种盲管疏通与检测一体化设备
CN114812952B (zh) * 2022-04-11 2024-06-11 河北农业大学 城镇管道清检一体化机器人
CN115121559B (zh) * 2022-09-02 2023-01-31 苏州方舟环保科技有限公司 水污染治理地下管的智能污垢去除***及其方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044733A2 (en) * 1999-03-19 2000-10-18 International Westar Limited Apparatus for cleaning and removing deposits from internal walls of ducts for conveying fluids of any kind
DE10215325A1 (de) * 2002-04-02 2003-10-23 Fraunhofer Ges Forschung Roboter zur Inspektion und/oder Reinigung und/oder Sanierung von Kanälen
CN101435522A (zh) * 2008-12-16 2009-05-20 安徽工程科技学院 一种管道行走机器人及其控制方法
CN102979988A (zh) * 2012-11-24 2013-03-20 西南石油大学 一种主动驱动的螺旋管道机器人
CN205128531U (zh) * 2015-09-11 2016-04-06 大连诚高科技股份有限公司 一种自走式污水管道除水垢设备
CN106193269A (zh) * 2016-06-12 2016-12-07 湖南帝星智能科技有限公司 一种下水道清淤设备
CN206038612U (zh) * 2016-08-26 2017-03-22 天津阿斯米工程技术有限公司 一种管体无损检测设备
CN106513390A (zh) * 2016-12-20 2017-03-22 鞍钢贝克吉利尼水处理有限公司 一种管道清洗方法及所用的遥控旋洗式管道清洗机器人
CN206632075U (zh) * 2017-02-28 2017-11-14 重庆交通大学 自适应管道疏通设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106439386B (zh) * 2016-10-09 2021-03-02 西安石油大学 一种智能管道内壁行走机器人
CN107225122A (zh) * 2017-06-02 2017-10-03 江苏集萃智能制造技术研究所有限公司 一种城市雨水管道清理机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044733A2 (en) * 1999-03-19 2000-10-18 International Westar Limited Apparatus for cleaning and removing deposits from internal walls of ducts for conveying fluids of any kind
DE10215325A1 (de) * 2002-04-02 2003-10-23 Fraunhofer Ges Forschung Roboter zur Inspektion und/oder Reinigung und/oder Sanierung von Kanälen
CN101435522A (zh) * 2008-12-16 2009-05-20 安徽工程科技学院 一种管道行走机器人及其控制方法
CN102979988A (zh) * 2012-11-24 2013-03-20 西南石油大学 一种主动驱动的螺旋管道机器人
CN205128531U (zh) * 2015-09-11 2016-04-06 大连诚高科技股份有限公司 一种自走式污水管道除水垢设备
CN106193269A (zh) * 2016-06-12 2016-12-07 湖南帝星智能科技有限公司 一种下水道清淤设备
CN206038612U (zh) * 2016-08-26 2017-03-22 天津阿斯米工程技术有限公司 一种管体无损检测设备
CN106513390A (zh) * 2016-12-20 2017-03-22 鞍钢贝克吉利尼水处理有限公司 一种管道清洗方法及所用的遥控旋洗式管道清洗机器人
CN206632075U (zh) * 2017-02-28 2017-11-14 重庆交通大学 自适应管道疏通设备

Also Published As

Publication number Publication date
CN108043832B (zh) 2020-04-28
CN108043832A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019114012A1 (zh) 一种应用于智慧城市的管道清理方法及智能机器人
CN104765363B (zh) 智能扫地机器人及其控制方法
CN106513390B (zh) 一种管道清洗方法及所用的遥控旋洗式管道清洗机器人
CN104532948B (zh) 一种带垃圾粉碎收集功能的管道机器人
CN104771115A (zh) 一种自动吸尘器控制***
CN204042309U (zh) 输油管道声磁热复合防蜡解堵装置
CN108266594A (zh) 管道机器人自动巡检清淤装置及清淤方法
CN107510416A (zh) 扫地机器人的节能方法及扫地机器人
CN211101951U (zh) 一种螺旋钢管外焊缝清渣设备
CN115372360A (zh) 一种工业液体杂质含量检测装置及检测***
GB2589849A (en) Sewer blockage detection
CN114281082A (zh) 一种无人驾驶环卫车辆
CN206406154U (zh) 塑料管材切割碎屑收集装置
CN207919673U (zh) 管道堵塞检测器
CN107305390A (zh) 一种停靠***
CN108625317A (zh) 一种用于环卫清扫车的路面识别***
CN109877109A (zh) 用于遥测遥感的光学玻璃窗口自清洁气刀控制***及装置
CN108554957B (zh) 一种石油管道清理装置
CN109530326A (zh) 一种智能超声波清洗机
CN107630506A (zh) 一种室内排水管道通堵清洁机器人
CN104917211B (zh) 基于传感器的对接方法及其***
CN108252400A (zh) 一种清污机器人
CN204343440U (zh) 一种带垃圾粉碎收集功能的管道机器人
CN218318700U (zh) 垃圾箱及环卫车
KR102382936B1 (ko) 강재교량 폐합부재의 부식 및 채수 탐상시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934491

Country of ref document: EP

Kind code of ref document: A1