WO2019112395A1 - Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode - Google Patents

Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode Download PDF

Info

Publication number
WO2019112395A1
WO2019112395A1 PCT/KR2018/015575 KR2018015575W WO2019112395A1 WO 2019112395 A1 WO2019112395 A1 WO 2019112395A1 KR 2018015575 W KR2018015575 W KR 2018015575W WO 2019112395 A1 WO2019112395 A1 WO 2019112395A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode
battery electrode
copolymer
binder
Prior art date
Application number
PCT/KR2018/015575
Other languages
French (fr)
Korean (ko)
Inventor
김영재
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/768,988 priority Critical patent/US11600823B2/en
Priority to EP18885044.0A priority patent/EP3703164A4/en
Priority to CN201880077760.9A priority patent/CN111436221B/en
Priority claimed from KR1020180157151A external-priority patent/KR102294865B1/en
Publication of WO2019112395A1 publication Critical patent/WO2019112395A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a secondary battery electrode in which a copolymer comprising a unit derived from a polyvinyl alcohol and a unit derived from ionized substituted acrylate is cross-linked, a secondary battery electrode comprising the secondary battery electrode and the secondary battery, And a method for manufacturing the secondary battery electrode.
  • the lithium secondary battery includes a cathode including a cathode active material capable of intercalating / deintercalating lithium ions, a cathode including a cathode active material capable of intercalating / deintercalating lithium ions, an electrode including a microporous separator interposed between the cathode and the anode, Means a battery in which a non-aqueous electrolyte containing lithium ions is contained in an assembly.
  • Lithium metal oxide is used as the positive electrode active material of the lithium secondary battery, and lithium metal, lithium alloy, crystalline or amorphous carbon, carbon composite, and silicon based active material are used as the negative electrode active material.
  • the silicon-based active material is used alone or in combination with other negative electrode active materials in order to improve the capacity of the secondary battery.
  • the electrode structure is changed and the electrode active material or the electrode active material is separated from the current collector, so that the electrode active material is separated or the electrode active material can not function.
  • the electrode is deformed due to damage of the SEI (solid electrolyte interface) membrane due to the volume change of the electrode during charging / discharging, so that lithium existing in the electrolyte is consumed more. This leads to deterioration of the electrode active material and battery due to depletion of the electrolyte. It is to be brought.
  • CMC carboxymethylcellose
  • SBR styrene butadiene rubber
  • the object of the present invention is to provide a binder for a secondary battery electrode capable of effectively controlling the electrode structure change due to volume expansion of the electrode active material during charging and discharging and improving the conductivity of the electrode, A composition for a secondary battery electrode for producing a secondary battery electrode, and a method for manufacturing the secondary battery electrode.
  • the present invention provides a binder for a secondary battery electrode in which a copolymer comprising a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate is crosslinked with each other.
  • the present invention also provides an electrode active material, a conductive material, a copolymer, a crosslinking agent and a solvent, and the copolymer provides a composition for a secondary battery electrode, which is the copolymerization described above.
  • the present invention also provides an active material layer comprising an electrode active material, a conductive material and a binder, wherein the binder is a binder for the secondary battery electrode, and a secondary battery comprising the same.
  • the present invention also provides a method for manufacturing a secondary battery electrode, comprising: coating and drying a composition for a secondary battery electrode as described above; And heat treating the current collector coated with the composition.
  • the electrode structure change due to the volume expansion of the electrode active material can be effectively controlled during charging and discharging, so that the efficiency of the secondary battery can be improved.
  • the conductivity of the electrode can be improved, so that the electrode resistance can be reduced and the output of the cell can be improved.
  • FIG. 1 is a graph showing a result of measurement of a capacity according to discharge rates of a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • FIG. 1 is a graph showing a result of measurement of a capacity according to discharge rates of a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • FIG. 2 is a graph showing changes in electrode thickness of a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • the present invention relates to a binder for a secondary battery electrode, wherein the binder is a binder for a secondary battery electrode in which a copolymer comprising a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate is crosslinked with each other.
  • secondary battery cathodes can be manufactured both in water and non-aqueous systems.
  • carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR) are generally used as binders.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • a negative electrode active material for example, silicon, Tin and oxides thereof
  • the conventional binder alone can not be used for the battery structure due to charging / discharging
  • the change can not be suppressed effectively, and there has been a problem in that deterioration of the battery and deterioration of the life characteristic are caused.
  • the binder when used, there is a problem that the conductive path in the electrode is difficult to secure and the electrode resistance is increased and the output of the battery is reduced.
  • the binder for the secondary battery electrode in which the copolymer comprising the unit derived from polyvinyl alcohol and the unit derived from ionized substituted acrylate according to the present invention are crosslinked is bridged (crosslinked) not only by hydrogen bonding but also by ionic bonding, So that it is excellent in resilience against the volume change of the electrode due to the volume expansion of the electrode active material. Therefore, the initial efficiency of the produced secondary battery can be improved.
  • the binder for the secondary battery electrode may be located between chains connected by hydrogen bonding, the distance between the hydroxyl groups can be appropriately increased. Thus, a conductive path through which lithium ions can move can be ensured, so that the resistance of the produced electrode can be reduced and the output of the secondary battery can be improved.
  • the binder can secure phase stability and adhesion even though it is a single binder, thereby simplifying the manufacturing process.
  • it can increase the solid content of the electrode slurry and suppress the disconnection of the conductive path due to the volume expansion of the electrode active material It is possible to prevent deformation of the electrode even with a change in the volume of the electrode with excellent adhesive force, and to secure excellent charge / discharge life characteristics.
  • the binder since the binder has a unit derived from an ionized substituted acrylate, the adhesive force can be remarkably improved as compared with the case where a unit derived from ionized and non-substituted acrylate is contained.
  • the case where the binder is used has the following effects.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the conductive path or network between the electrode active materials is difficult to maintain.
  • the copolymer is present in a state where the binder is partially broken and the remaining amount of the remaining binder capable of acting as a sufficient resistance against the volume expansion is adsorbed on the electrode active material, And serves to suppress the volume expansion of the electrode active material. Also, the conductive path or network between the electrode active materials can thereby be maintained. Thus, the life characteristics of the battery can be improved.
  • the unit derived from the ionized substituted acrylate may be formed by copolymerizing an alkyl acrylate with a monomer and then adding an excess amount of an ionic aqueous solution.
  • the unit derived from acrylate substituted by ionization in the final copolymer structure may be a unit derived from an ionized substituted acrylate, based on the ionized substituted final polymer, irrespective of the acrylate (for example, alkyl acrylate) Can be understood as a unit.
  • the molar fraction of units derived from the ionized substituted acrylate among units excluding units derived from polyvinyl alcohol may be 98 mol% to 100 mol%, specifically 100 mol%.
  • the above-mentioned " 100 mol% " means that all the units other than the units derived from polyvinyl alcohol are units derived from the ionized substituted acrylate, meaning that there is no unit derived from an unsubstituted acrylate do.
  • &quot 98 mol% or more " means that unreacted acrylate-derived units are present when intrinsic acrylate-derived hydrogen is entirely ionized through the above-described substitution process,
  • the content of units derived from the ionized unsubstituted acrylate is only a very small level at an error range level (for example, less than 2 mol%).
  • the unit derived from non-ionized substituted acrylate includes a hydroxyl group (-OH). If the unit derived from the ionized non-substituted acrylate is contained in the copolymer in a large amount, for example, in an amount of 2 mol% or more, crystallization proceeds to a high level due to the hydrogen bonding force after the electrode slurry is dried, The binder produced by crosslinking of the copolymer is excessively easily broken. Accordingly, the amount of the 'unbroken copolymer' which can suppress the volume expansion of the electrode active material is remarkably reduced, and the copolymer adsorbed on the electrode active material is reduced. As a result, the adhesive force between the active material layer and the current collector is lowered, and the life characteristics of the battery are deteriorated.
  • a hydroxyl group -OH
  • the copolymer used in the preparation of the binder of the present invention does not contain units derived from non-ionized substituted acrylate or contains only a low content of less than 2 mol% (error range), wherein the metal cation The degree of crystallinity of the copolymer is lowered to an appropriate level. Therefore, even if some binder is broken during the volume expansion of the electrode active material, the remaining binder is adsorbed to the electrode active material in a state of being not broken, so that the adhesive force between the active material layer and the current collector can be improved, .
  • the molar fraction can be measured as follows. First, GC / MS analysis is carried out on the copolymer using EQC-0107 (Pyrolyzer (PY-2020 / Agilent 6890N GC / 5973N MSD) in powder state) to grasp the exact functional group. Then, solid NMR (Agilent 600 MHz NMR) or solution NMR (Bruker 600 MHz NMR) is carried out to confirm the content ratio of each composition from the peak integral value of the measured graph. In addition, after separating the active material layer from the manufactured electrode and making it into powder form, the mole fraction can be confirmed by performing the above method.
  • the unit derived from polyvinyl alcohol may include a unit represented by the following formula (1).
  • the unit derived from the ionized substituted acrylate includes a unit represented by the following formula (2): wherein, each R may independently be at least one metal cation selected from the group consisting of Na, Li and K.
  • the copolymer may contain from 2000 to 3000 units of the formula (1) and from 1000 to 2000 units of the formula (2).
  • the copolymer may be a block copolymer formed from a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate. That is, a structure in which a unit block derived from polyvinyl alcohol and a unit block derived from ionized acrylate are linearly connected to each other may be a structure constituting a main chain.
  • the unit derived from polyvinyl alcohol and the unit derived from ionized substituted acrylate means a structure in which a polyvinyl alcohol and an acrylate unit having a double bond are formed by an addition reaction, and in the case of acrylate, an ester in the final copolymer structure May not necessarily be the same as the substituent in the starting material.
  • the ionized substituted acrylate may be at least one selected from the group consisting of sodium acrylate and lithium acrylate, and most preferably is at least one selected from the group consisting of sodium acrylate .
  • the alkyl acrylate may be copolymerized with a monomer, and then an excessive amount of sodium ion or lithium ion aqueous solution may be added to replace the monomer.
  • the acrylate-derived unit can be understood as a unit derived from sodium acrylate or a unit derived from lithium acrylate, regardless of the acrylate (for example, alkyl acrylate) used as the raw material.
  • the copolymer may include a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate in a weight ratio of 6: 4 to 8: 2.
  • the polymer is adsorbed on the particles by the polyvinyl alcohol having a hydrophilic group to maintain proper dispersibility, So as to exhibit a stable adhesive force.
  • the formed film may be advantageous in improving battery performance while forming a uniform and dense SEI film during charging / discharging of the battery.
  • the hydrophilic property is weakened, and the solid content soluble in water is decreased, so that the binder tends to float on the surface of the electrode, which affects the performance.
  • the polyvinyl alcohol is contained in an amount larger than the above-mentioned weight ratio range, particles tend to be adsorbed on the bubbles due to intrinsic properties of the PVA during the dissolution or mixing, Non-dispersed gypsum particles are produced, which represent a disadvantage of cell performance and can cause various problems.
  • the weight average molecular weight of the copolymer is less than 100,000, the dispersibility between the binder for the secondary battery electrode is lowered, the possibility of cohesion between the binder is increased, and the charge / discharge life characteristics If it exceeds 500,000, it is difficult to increase the solids content of the slurry because it is difficult to dissolve at a high concentration, and gelation tends to occur during polymerization.
  • the crosslinking may be carried out by an esterification reaction of the copolymer and the crosslinking agent.
  • the -COOR of the copolymer and the crosslinking agent are bonded by an esterification reaction, more specifically, the crosslinking agent comprises two or more glycidyl groups, and each glycidyl group is esterified with -COOR of the copolymer Can be reacted and combined.
  • the binder for the secondary battery electrode may include an ester structure (-COO-), and specifically, the ester structure may exist in a crosslinked chain between the copolymers.
  • the composition for a secondary battery electrode according to an embodiment of the present invention may include an electrode active material, a conductive material, a copolymer, a cross-linking agent, and a solvent.
  • the copolymer is a copolymer containing a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate, and is the same as the above-mentioned copolymer. That is, all of the copolymers that can be derived in the above-described embodiments may correspond to the copolymer included in the composition for the secondary battery electrode.
  • the unit derived from polyvinyl alcohol may include a unit represented by the following formula (1).
  • the unit derived from the ionized substituted acrylate includes a unit represented by the following formula (2): wherein, each R may independently be at least one metal cation selected from the group consisting of Na, Li and K.
  • the copolymer may contain from 2000 to 3000 units of the formula (1) and from 1000 to 2000 units of the formula (2).
  • the composition for the secondary battery electrode may be preferably used in the production of a negative electrode.
  • a carbon-based material lithium metal, silicon, or tin, which can normally store and release lithium ions, may be used.
  • the carbon-based material may be, for example, soft carbon, hard carbon, natural graphite, artificial graphite, kishi graphite (for example, Kish graphite, pyrolytic carbon, mesophase pitch based carbon fiber, mesocarbon microbeads, mesophase pitches and petroleum or coal tar pitch derived. cokes) may be selected from the group consisting of at least one.
  • the electrode active material may further include a Si-based material in the carbon-based material, for example, SiO.
  • the Si-based material may be included in an amount of 5% by weight to 30% by weight based on the total weight of the electrode active material. If the amount of the Si-based material is less than 5% by weight, it may be difficult to realize a high-capacity electrode because the capacity increase depending on the input ratio is not large. When the Si-based material is contained in an amount exceeding 30% by weight, Is too large to deform the electrode, and there is a problem that the life characteristic is remarkably deteriorated.
  • the Si-based material has a high capacity of about 10 times higher than the carbon-based material by about 10 times the theoretical capacity, a high capacity battery can be realized.
  • a change in the crystal structure is caused to cause volume expansion, There is a problem that the lifetime characteristics are deteriorated due to the separation of the active material and the collector and the deformation of the electrode.
  • the conductive material is not particularly limited as long as it can be generally used in the art.
  • artificial graphite, natural graphite, carbon black, acetylene black, ketjen black, denka black, thermal black, channel black A metal selected from the group consisting of aluminum, tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lanthanum, ruthenium, , Polythiophene, polyacetylene, polypyrrole, or a combination thereof.
  • a carbon black-based conductive material may be used.
  • the solvent may preferably include an aqueous solvent, and the aqueous solvent may include water.
  • the binder according to an embodiment of the present invention may be water-soluble or water-dispersible. However, in some cases, it is possible to use NN-dimethylformamide, NN-dimethylacetamide, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, methyl cellosolve, butyl cell One or more of them may be selected from rosorb, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, toluene and xylene, or they may be used in admixture with water.
  • the content of the solvent is not particularly limited and may be used to make the viscosity of the slurry appropriate.
  • the acrylate-derived unit is in the form of a salt, for example, in the case of sodium acrylate or lithium acrylate, when the binder is dissolved in the solvent, the sodium or lithium cation dissociates or the ionized state May coexist.
  • the composition for the secondary battery electrode may further include an additive for further improving the characteristics.
  • an additive may be a commonly used dispersant, thickener, filler, or the like.
  • Each of these additives may be mixed with the composition for electrodes in preparing the electrode composition beforehand, or separately prepared and used independently.
  • the additive is determined by the electrode active material and the binder component, and may be used in some cases.
  • the electrode composition may be mixed with binders such as carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR), which have been conventionally used together with the binder of the present invention.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the crosslinking agent serves to crosslink the copolymers.
  • the crosslinking agent may be bonded to the -COOR of the copolymer by an esterification reaction.
  • the crosslinking agent may include two or more glycidyl groups, and the ring structure of each glycidyl group is opened ring by a specific heat treatment, and is esterified with -COOR of the copolymer to be combined .
  • the crosslinking agent may include a diglycidyl ether crosslinking agent.
  • the diglycidyl ether-based crosslinking agent is selected from the group consisting of diglycidyl ether, bisphenol A diglycidyl ether, 1,4-butanediol diglycidyl ether and ethylene glycol diglycidyl ether May be at least one selected, and more specifically may be a diglycidyl ether.
  • the molecular weight of the crosslinking agent may be 300 g / mol to 1,000 g / mol, and specifically 400 g / mol to 600 g / mol. If the molecular weight of the crosslinking agent is less than 300 g / mol, the strength of the polymer may not be sufficient and the volume expansion of the electrode may be difficult to control. On the other hand, when the molecular weight exceeds 1,000 g / mol, the cross-linking agent may exist in a solid phase, so that the dispersion of the cross-linking agent in the electrode composition may not be smoothly performed. Therefore, when the above range is satisfied, the appropriate strength of the binder for electrodes and uniform dispersion of the cross-linking agent in the electrode composition can be derived.
  • the weight ratio of the crosslinking agent to the copolymer may be from 1: 4 to 1:20, specifically from 1.6.67 to 1:19, and more specifically from 1: 7.33 to 1: 13.29. If the cross-linking agent is used more than the above-mentioned range, the adhesive strength of the binder in the prepared electrode may be decreased, and the electrode performance may deteriorate. When the crosslinking agent is used less than the above range, crosslinking of the copolymers may not be sufficiently performed.
  • composition for an electrode according to an embodiment of the present invention may contain the copolymer in an amount of 1.8 wt% to 3.3 wt% based on the total weight of solids excluding the solvent.
  • the adhesive strength of the binder is sufficient and the electrode resistance can be at an appropriate level.
  • the secondary battery electrode of the present invention may include an active material layer including an electrode active material, a conductive material, and a binder, and the binder is the same as the binder for the secondary battery electrode described above. Further, the electrode active material and the conductive material are the same as the electrode active material and the conductive material that the composition for the secondary battery electrode described above can include.
  • the electrode active material may be any one selected from the group consisting of softened carbon, cured carbon, natural graphite, artificial graphite, chisel graphite, pyrolytic carbon, liquid crystal pitch carbon fiber, carbon microsphere, liquid crystal pitch, Based carbon material.
  • the electrode active material may further include a Si-based material. Specifically, the Si-based material may be included in an amount of 5% by weight to 30% by weight based on the total weight of the electrode active material.
  • the secondary battery electrode may be a cathode or a cathode, and preferably a cathode.
  • the binder may be included in an amount of 2 wt% to 3.7 wt% based on the total weight of the active material layer, specifically 2.5 wt% to 3.4 wt%, more specifically 2.8 wt% to 3.2 wt%. have.
  • the viscosity of the electrode composition is appropriate and the process can be smooth. Further, since the binder adhesion may be sufficient, the physical properties of the electrode may be improved.
  • the method for manufacturing a secondary battery electrode of the present invention comprises the steps of applying the composition for a secondary battery electrode to a current collector and drying the same; And heat treating the current collector to which the composition is applied.
  • the method for manufacturing the secondary battery electrode may be applied to the manufacture of a negative electrode.
  • the current collector is a metal having a high conductivity and capable of easily adhering to the composition for the secondary battery electrode, and any of them may be used as long as it is not reactive in the voltage range of the battery.
  • the current collector may be a positive current collector or a negative current collector.
  • Non-limiting examples of the positive electrode current collector include aluminum, nickel, or a combination thereof.
  • the negative electrode current collector may be made of copper, gold, nickel, or a copper alloy or a combination thereof. Foil to be manufactured, and the like.
  • the drying may be applied to remove the solvent in the composition for the secondary battery electrode.
  • the heat treatment corresponds to a process for a crosslinking reaction.
  • the heat treatment may be a heat treatment at 90 ° C to 120 ° C, a specific temperature range may be 100 ° C to 120 ° C, and a more specific temperature range may be 110 ° C to 120 ° C. If the heat treatment temperature is lower than 90 ° C, the cross-linking reaction of the copolymers in the composition for electrode may not occur smoothly. If it exceeds 120 ° C, the flexibility of the electrode may be reduced and the mechanical stability may be reduced.
  • the present invention is a lithium secondary battery including a cathode, a cathode, an electrolyte, and a separator.
  • the cathode is the same as the electrode for a secondary battery electrode according to the present invention.
  • the lithium secondary battery of the present invention can be produced by a conventional method known in the art. For example, a separation membrane may be placed between the anode and the cathode, and an electrolyte solution in which a lithium salt is dissolved may be added.
  • the anode may include a cathode active material.
  • the negative electrode may include a negative electrode active material.
  • the negative electrode active material may be a carbon-based material such as lithium metal, silicon, or tin, which is normally capable of occluding and releasing lithium ions, as described in the composition for electrodes of the present invention.
  • the carbon-based material may be mainly used, and the carbon-based material may further include a Si-based material.
  • the negative electrode active material may be the same as the electrode active material included in the composition for a secondary battery electrode of the present invention.
  • the separator included in the lithium secondary battery according to the present invention may be a conventional porous polymer film such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / methacrylate copolymer,
  • a porous polymer film made of the same polyolefin-based polymer may be used alone or in a laminate thereof, or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point or a polyethylene terephthalate fiber may be used. But is not limited thereto.
  • the electrolytic solution contained in the lithium secondary battery according to the present invention may be at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethylsulfoxide (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate (methyl ethyl ketone , At least one mixed organic solvent selected from the group consisting of ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, ethyl propionate and butyl propionate.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • the electrolyte according to the present invention may further include a lithium salt, and the anion of the lithium salt may be an anion selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P - , F 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5 ) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -,
  • the lithium secondary battery according to the present invention may be a cylindrical, square, or pouch type secondary battery, but is not limited thereto as long as it is a charge / discharge device.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery pack includes a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Or a system for power storage.
  • An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Or a system for power storage.
  • ≪ RTI ID 0.0 > [0027] < / RTI >
  • the weight average molecular weight of the prepared copolymer was 360,000, and the weight ratio of the unit derived from poly (vinylalcohol) and the unit derived from sodium acrylate was 6.7: 3.3.
  • the molar fraction of units derived from the ionized substituted acrylate among the units excluding the unit derived from polyvinyl alcohol was 100 mol%.
  • the mole fractions were determined as follows. First, GC / MS analysis was carried out on the copolymer using EQC-0107 (Pyrolyzer (PY-2020 / Agilent 6890N GC / 5973N MSD) in powder state) to obtain accurate functional groups. Then, solid NMR (Agilent 600 MHz NMR) or solution NMR (Bruker 600 MHz NMR) was carried out, and the content ratio of each composition was confirmed from the peak integral value of the measured graph. As a result, the mole fractions of units derived from ionized substituted acrylate were confirmed.
  • Example 1 Composition for secondary battery electrode, secondary battery Binder for electrode, manufacture of secondary battery and secondary battery
  • the thus-prepared composition for a secondary battery electrode was a mixed solution (solid content: 47.89 wt%) in which a negative electrode active material, a conductive material, a copolymer and a cross-linking agent were mixed at a weight ratio of 96.2: 0.8: 2.7: 0.3.
  • the prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 ⁇ m (mg / cm 2 ) so as to be 5.87 mg per unit area, and dried in a vacuum oven at 70 ° C. for 10 hours. Thereafter, the temperature of the vacuum oven was set at 120 ⁇ and heat treatment was performed for 1 hour. Thus, a binder for a secondary battery electrode was produced in the dried slurry.
  • the positive electrode active material NMC, the carbon black-based conductive material, and the binder PVDF powder were mixed at a weight ratio of 92: 2: 6, respectively, to the solvent N-methyl-2-pyrrolidone to prepare a positive electrode slurry.
  • the prepared positive electrode slurry was applied to a positive electrode current collector having a thickness of 15 ⁇ so as to have an electrode loading (mg / cm 2 ) of 23.4 mg per unit area, dried in a vacuum oven at 120 ⁇ for 10 hours, And rolled at a pressure of 15 MPa to prepare a positive electrode having a final thickness (current collector + active material layer) of 74.0 ⁇ m.
  • the prepared negative electrode and positive electrode and the porous polyethylene separator were assembled by using a stacking method.
  • Example 2 Composition for secondary battery electrode, binder for secondary battery electrode, manufacture of secondary battery electrode, and secondary battery
  • a composition for a secondary battery electrode was prepared in the same manner as in Example 1 except that a total of 94.35 g of the copolymer dispersion was added (3.74 g of total copolymer) and 0.94 g of the crosslinking agent was added.
  • the prepared secondary battery electrode composition was a mixed solution (solid content: 48.0 wt%) in which the anode active material, the conductive material, the copolymer and the cross-linking agent were mixed at a weight ratio of 96.2: 0.8: 2.4: 0.6.
  • a binder for a secondary battery electrode, a secondary battery electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the composition for the secondary battery electrode prepared above was used.
  • the final thickness (collector + active material layer) of the secondary battery electrode was 59.6 mu m, and the loading amount of the active material layer was 153.5 mg / 25 cm < 2 & gt ;.
  • the thus prepared secondary cell electrode composition was a mixed solution (solid content: 47.9 wt%) in which the negative electrode active material, the conductive material and the copolymer were mixed at a weight ratio of 96.2: 0.8: 3.0.
  • the prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 ⁇ m (mg / cm 2 ) so as to be 5.76 mg per unit area, dried in a vacuum oven at 70 ° C. for 10 hours, through a roll heated to 50 °C by rolling under a pressure of 15MPa, and the final thickness (current collector + active material layer) 57.1 ⁇ m, the loading amount of the active material layer was prepared 144.0mg / 25cm 2 of the negative electrode (the secondary battery electrode).
  • CMC carboxymethyl cellulose
  • 1.56 g of carboxymethyl cellulose (CMC, molecular weight: 1,200,000) was added to 140.19 g of water and mixed with a homomixer at a temperature of 40 DEG C and 1500 rpm for 180 minutes to prepare a 1.1 wt% CMC dispersion in which CMC was dispersed.
  • 1.25 g of the carbon black-based conductive material and 27.00 g of water were added to 57.27 g of the dispersion, and the mixture was dispersed with a homomixer.
  • 150.0 g of artificial graphite (negative active material) was added and mixed at 45 rpm for 40 minutes using a Planetary mixer to prepare a slurry.
  • the thus prepared secondary cell electrode composition was a mixed solution (solid content: 44.00 wt%) in which the anode active material, conductive material, and CMC were mixed at a weight ratio of 96.2 / 0.8 / 1.0 / 2.0.
  • the prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 ⁇ m (mg / cm 2 ) so as to be 5.89 mg per unit area, dried in a vacuum oven at 70 ° C. for 10 hours, through a roll heated to 50 °C by rolling under a pressure of 15MPa, and the final thickness (current collector + active material layer) 57.7 ⁇ m, the loading amount of the active material layer was prepared 147.1mg / 25cm 2 of the negative electrode (the secondary battery electrode).
  • the lithium secondary batteries manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 were charged at a constant current (CC) of 1 C under a constant current / constant voltage (CC / CV) condition (battery capacity of 3.4 mAh) After charging until the charge current becomes 0.17 mAh. And discharged at a constant current of 1 C until the voltage reached 1.5 V, followed by 30 cycles. Thereafter, the battery in a fully charged state was disassembled to measure the thickness of the negative electrode, and the electrode thickness increase in comparison with the initial thickness before the cycle is shown in Table 1 and Fig.
  • the electrode thickness increment was calculated as follows.

Abstract

The present invention relates to: a secondary battery electrode binder; a secondary battery electrode and a secondary battery which comprise the same; a secondary battery electrode composition for manufacturing the secondary battery electrode; and a method for manufacturing the secondary battery electrode. The secondary battery electrode binder can be a binder for a secondary battery electrode in which copolymers comprising a polyvinyl alcohol-derived unit and an ion-substituted acrylate-derived unit are linked to each other.

Description

이차전지 전극용 바인더, 이를 포함하는 이차전지 전극 및 이차전지, 상기 이차전지 전극을 제조하기 위한 이차전지 전극용 조성물, 및 상기 이차전지 전극 제조 방법A binder for a secondary battery electrode, a secondary battery electrode and a secondary battery including the same, a composition for a secondary battery electrode for manufacturing the secondary battery electrode, and a method for manufacturing the secondary battery electrode
관련출원과의 상호인용Mutual citation with related application
본 출원은 2017년 12월 08일자 출원된 한국 특허 출원 제10-2017-0168639호 및 2018년 12월 07일자 출원된 한국 특허 출원 제10-2018-0157151호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0168639 filed on December 08, 2017 and Korean Patent Application No. 10-2018-0157151 filed on December 07, 2018, All the contents disclosed in the Korean patent application are incorporated herein by reference.
기술분야Technical field
본 발명은 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더, 이를 포함하는 이차전지 전극 및 이차전지, 상기 이차전지 전극을 제조하기 위한 이차전지 전극용 조성물, 및 상기 이차전지 전극 제조 방법에 관한 것이다.The present invention relates to a binder for a secondary battery electrode in which a copolymer comprising a unit derived from a polyvinyl alcohol and a unit derived from ionized substituted acrylate is cross-linked, a secondary battery electrode comprising the secondary battery electrode and the secondary battery, And a method for manufacturing the secondary battery electrode.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.[Background Art] [0002] With the recent development of technology and demand for mobile devices, demand for batteries as an energy source has been rapidly increasing, and various studies have been made on batteries that can meet various demands. Particularly, research on a lithium secondary battery having a high energy density and excellent lifetime and cycle characteristics as a power source of such a device is being actively conducted.
리튬 이차전지는 리튬 이온의 삽입/탈리가 가능한 양극 활물질을 포함하고 있는 양극과, 리튬 이온의 삽입/탈리가 가능한 음극 활물질을 포함하고 있는 음극, 상기 양극과 음극 사이에 미세 다공성 분리막이 개재된 전극 조립체에 리튬 이온을 함유한 비수 전해질이 포함되어 있는 전지를 의미한다. The lithium secondary battery includes a cathode including a cathode active material capable of intercalating / deintercalating lithium ions, a cathode including a cathode active material capable of intercalating / deintercalating lithium ions, an electrode including a microporous separator interposed between the cathode and the anode, Means a battery in which a non-aqueous electrolyte containing lithium ions is contained in an assembly.
리튬 이차전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소, 탄소 복합체, 및 실리콘계 활물질 등이 사용되고 있다. 이 중, 상기 실리콘계 활물질은 이차전지의 용량을 개선시켜 주는 점에서 단독 또는 다른 음극 활물질과 병용되고 있다. Lithium metal oxide is used as the positive electrode active material of the lithium secondary battery, and lithium metal, lithium alloy, crystalline or amorphous carbon, carbon composite, and silicon based active material are used as the negative electrode active material. Among them, the silicon-based active material is used alone or in combination with other negative electrode active materials in order to improve the capacity of the secondary battery.
다만, 실리콘계 활물질의 경우, 전지의 충전 및 방전이 진행됨에 따라 지나치게 부피가 팽창하는 문제가 있다. 이에 따라, 전극 구조가 변화하면서 전극 활물질 간 또는 전극 활물질과 집전체 사이가 분리되어 전극 활물질의 탈리가 발생하거나 전극 활물질이 그 기능을 다하지 못하게 된다. 나아가, 충/방전 시 전극의 부피 변화에 의해 SEI(Solid electrolyte interface)막이 파손되는 등 전극이 변형되어 전해액에 존재하는 리튬을 더욱 많이 소비하게 되고, 이는 전해액 고갈에 따른 전극 활물질 및 전지의 열화를 가져오게 되는 것이다.However, in the case of the silicon-based active material, there is a problem that the volume is excessively expanded as the charging and discharging of the battery proceeds. Accordingly, the electrode structure is changed and the electrode active material or the electrode active material is separated from the current collector, so that the electrode active material is separated or the electrode active material can not function. Further, the electrode is deformed due to damage of the SEI (solid electrolyte interface) membrane due to the volume change of the electrode during charging / discharging, so that lithium existing in the electrolyte is consumed more. This leads to deterioration of the electrode active material and battery due to depletion of the electrolyte. It is to be brought.
상기 부피 팽창에 의한 전극의 변화를 억제하기 위해, 기존에는 카복시메틸셀룰로오스(carboxymethylcellose, CMC) 및 스티렌 부타디엔 고무(Styrene butadiene Rubber, SBR)와 같은 바인더를 사용하였다. 다만, 이러한 바인더들을 사용하더라도, 상기 부피 팽창에 따른 전극 구조의 변화가 효과적으로 제어되지 못하며, 전극 내 도전성 경로가 확보되기 어려워 저항이 증가하는 문제가 있다. Conventionally, a binder such as carboxymethylcellose (CMC) and styrene butadiene rubber (SBR) has been used in order to suppress the change of the electrode due to the volume expansion. However, even if such binders are used, the change of the electrode structure due to the volume expansion can not be effectively controlled, and the conductive path in the electrode is difficult to secure, thereby increasing the resistance.
따라서, 충/방전이 진행됨에 따라 발생하는 실리콘계 활물질의 부피 변화에도, 전극 구조의 변화를 효과적으로 억제할 수 있으며, 전극의 도전성을 개선할 수 있는 이차전지 전극용 바인더가 요구되고 있다.Accordingly, there is a demand for a binder for a secondary battery electrode that can effectively suppress the change of the electrode structure and improve the conductivity of the electrode even when the volume of the silicon-based active material changes as charging / discharging progresses.
본 발명의 목적은 충방전 시 전극 활물질의 부피 팽창에 따른 전극 구조 변화를 효과적으로 제어할 수 있으며, 전극의 도전성을 개선할 수 있는 이차전지 전극용 바인더, 이를 포함하는 이차전지 전극 및 이차전지, 상기 이차전지 전극을 제조하기 위한 이차전지 전극용 조성물, 및 상기 이차전지 전극 제조 방법을 제공하는 것이다.Disclosure of the Invention The object of the present invention is to provide a binder for a secondary battery electrode capable of effectively controlling the electrode structure change due to volume expansion of the electrode active material during charging and discharging and improving the conductivity of the electrode, A composition for a secondary battery electrode for producing a secondary battery electrode, and a method for manufacturing the secondary battery electrode.
본 발명은 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더를 제공한다.The present invention provides a binder for a secondary battery electrode in which a copolymer comprising a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate is crosslinked with each other.
또한, 본 발명은 전극 활물질, 도전재, 공중합체, 가교제 및 용매를 포함하며, 상기 공중합체는 상술한 공중합체인 이차전지 전극용 조성물을 제공한다.The present invention also provides an electrode active material, a conductive material, a copolymer, a crosslinking agent and a solvent, and the copolymer provides a composition for a secondary battery electrode, which is the copolymerization described above.
또한, 본 발명은 전극 활물질, 도전재 및 바인더를 포함하는 활물질층을 포함하며, 상기 바인더는 상술한 이차전지 전극용 바인더인 이차전지 전극 및 이를 포함하는 이차전지를 제공한다.The present invention also provides an active material layer comprising an electrode active material, a conductive material and a binder, wherein the binder is a binder for the secondary battery electrode, and a secondary battery comprising the same.
또한, 본 발명은 상술한 이차전지 전극용 조성물을 집전체 상에 도포하고 건조하는 단계; 및 상기 조성물이 도포된 집전체를 열처리하는 단계를 포함하는 이차전지 전극 제조 방법을 제공한다.The present invention also provides a method for manufacturing a secondary battery electrode, comprising: coating and drying a composition for a secondary battery electrode as described above; And heat treating the current collector coated with the composition.
본 발명에 따르면, 충방전 시 전극 활물질의 부피 팽창에 따른 전극 구조 변화가 효과적으로 제어될 수 있어서, 이차전지의 효율이 개선될 수 있다. 또한, 전극의 도전성이 개선될 수 있어서, 전극 저항이 감소될 수 있고 전지의 출력이 개선될 수 있다.According to the present invention, the electrode structure change due to the volume expansion of the electrode active material can be effectively controlled during charging and discharging, so that the efficiency of the secondary battery can be improved. In addition, the conductivity of the electrode can be improved, so that the electrode resistance can be reduced and the output of the cell can be improved.
도 1은 본 발명의 실시예 및 비교예에 따라 제조된 이차전지의 방전율에 따른 용량을 측정한 결과를 나타내는 그래프이다.FIG. 1 is a graph showing a result of measurement of a capacity according to discharge rates of a secondary battery manufactured according to Examples and Comparative Examples of the present invention. FIG.
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 이차전지의 전극 두께 변화를 나타내는 그래프이다.2 is a graph showing changes in electrode thickness of a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention. Herein, terms and words used in the present specification and claims should not be construed to be limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of the term to describe its own invention in the best way. It should be construed as meaning and concept consistent with the technical idea of the present invention.
<이차전지 전극용 바인더><Binder for Secondary Battery Electrode>
본 발명은 이차전지 전극용 바인더에 관한 것으로, 상기 바인더는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더이다.The present invention relates to a binder for a secondary battery electrode, wherein the binder is a binder for a secondary battery electrode in which a copolymer comprising a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate is crosslinked with each other.
종래에 이차전지 음극의 경우 수계 및 비수계 제조가 모두 가능한데, 수계 제조의 경우 일반적으로 카복시메틸셀룰로오스(carboxymethylcellose, CMC)와 스티렌 부타디엔 고무(Styrene butadiene Rubber, SBR)를 바인더로 사용하였다. 전지의 충전 및 방전이 진행됨에 따라 발생하는 전극의 부피 변화에 의해 입자간의 크랙 발생 및 전극간 단락의 문제가 발생하는데, 특히, 최근 고용량 확보를 위해 사용되는 음극 활물질 재료(예를 들어, 실리콘, 주석 및 이들의 산화물 등의 리튬과 금속 간 화합물을 형성하는 재료들)는 리튬을 흡수 저장할 때에 결정구조의 변화를 야기시켜 체적이 더욱 많이 팽창하기 때문에 종래의 바인더만으로는 충/방전에 따른 전지 구조의 변화를 효과적으로 억제할 수 없어서, 전지의 열화 및 수명특성 저하의 문제가 있었다. 또한, 상기 바인더 사용 시, 전극 내 도전성 경로가 확보되기 어려워, 전극 저항이 증가하여 전지의 출력이 감소하는 문제가 있었다.Conventionally, secondary battery cathodes can be manufactured both in water and non-aqueous systems. In the case of water-based manufacturing, carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR) are generally used as binders. There is a problem of cracking between particles and short-circuiting between electrodes due to the volume change of the electrode caused by the progress of charging and discharging of the battery. Particularly, a negative electrode active material (for example, silicon, Tin and oxides thereof) causes a change in the crystal structure when lithium is absorbed and stored, causing the volume to swell much more. Therefore, the conventional binder alone can not be used for the battery structure due to charging / discharging The change can not be suppressed effectively, and there has been a problem in that deterioration of the battery and deterioration of the life characteristic are caused. Further, when the binder is used, there is a problem that the conductive path in the electrode is difficult to secure and the electrode resistance is increased and the output of the battery is reduced.
그러나, 본 발명에 따른 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더는 수소결합 뿐만 아니라 이온결합으로 연결(가교)되어 있으므로, 강한 탄성을 가질 수 있어서, 전극 활물질의 부피 팽창에 따른 전극의 체적 변화에 대한 회복력이 우수하다. 따라서, 제조된 이차 전지의 초기 효율이 개선될 수 있다. 또한, 상기 이차전지 전극용 바인더는 수소결합에 의해 연결된 체인(chain)들 사이에 위치할 수 있으므로, 히드록시기들 간의 거리를 적절하게 증가시킬 수 있다. 이에 따라, 리튬 이온이 이동할 수 있는 도전성 경로가 확보될 수 있어서, 제조된 전극의 저항이 감소할 수 있고 이차 전지의 출력이 향상될 수 있다.However, since the binder for the secondary battery electrode in which the copolymer comprising the unit derived from polyvinyl alcohol and the unit derived from ionized substituted acrylate according to the present invention are crosslinked is bridged (crosslinked) not only by hydrogen bonding but also by ionic bonding, So that it is excellent in resilience against the volume change of the electrode due to the volume expansion of the electrode active material. Therefore, the initial efficiency of the produced secondary battery can be improved. In addition, since the binder for the secondary battery electrode may be located between chains connected by hydrogen bonding, the distance between the hydroxyl groups can be appropriately increased. Thus, a conductive path through which lithium ions can move can be ensured, so that the resistance of the produced electrode can be reduced and the output of the secondary battery can be improved.
구체적으로, 상기 바인더는 단일 바인더임에도 불구하고 상안정성 및 접착력을 확보할 수 있어 제조공정을 간소화할 수 있을 뿐만 아니라, 전극 슬러리의 고형분을 높이고, 전극 활물질의 부피 팽창에 따른 도전성 경로의 단절을 억제하고, 우수한 접착력으로 전극의 부피 변화에도 전극의 변형을 방지하고, 우수한 충/방전 수명 특성을 확보할 수 있다. 특히, 상기 바인더는 이온화 치환된 아크릴레이트 유래의 단위를 가짐으로써, 이온화 치환되지 않은 아크릴레이트 유래의 단위가 포함된 경우보다도 접착력이 현저히 향상될 수 있다. Specifically, the binder can secure phase stability and adhesion even though it is a single binder, thereby simplifying the manufacturing process. In addition, it can increase the solid content of the electrode slurry and suppress the disconnection of the conductive path due to the volume expansion of the electrode active material It is possible to prevent deformation of the electrode even with a change in the volume of the electrode with excellent adhesive force, and to secure excellent charge / discharge life characteristics. Particularly, since the binder has a unit derived from an ionized substituted acrylate, the adhesive force can be remarkably improved as compared with the case where a unit derived from ionized and non-substituted acrylate is contained.
보다 구체적으로, 상기 바인더를 사용하는 경우를 살펴보면 다음과 같은 효과가 있다. 일반적으로 사용되는 바인더인 카르복시메틸 셀룰로오스(CMC)와 스티렌 부타디엔 고무(SBR)의 경우, 전극 활물질의 팽창 시 상기 전극 활물질에 흡착되었던 CMC나 SBR은 파단되지 않고 늘어나게 되며, 다시 회복되지 않는다. 이에 따라, 전극 활물질 간의 도전성 경로 내지 네트워크가 유지되기 어려운 문제가 있다. 반면, 상기 공중합체는 전극 활물질이 팽창할 시, 상기 바인더가 일부가 파단되고, 상기 부피 팽창에 대한 충분한 저항으로 작용할 수 있는 최소한의 양의 나머지 바인더가 전극 활물질에 흡착된 상태로 존재하여, 상기 전극 활물질의 부피 팽창을 억제하는 역할을 한다. 또한, 이에 따라, 전극 활물질 간의 도전성 경로 내지 네트워크가 유지될 수 있다. 따라서, 전지의 수명 특성이 개선될 수 있다.More specifically, the case where the binder is used has the following effects. In the case of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR), which are commonly used binders, CMC or SBR adsorbed on the electrode active material at the time of expansion of the electrode active material is stretched without breaking, and is not recovered again. As a result, there is a problem that the conductive path or network between the electrode active materials is difficult to maintain. On the other hand, when the electrode active material is expanded, the copolymer is present in a state where the binder is partially broken and the remaining amount of the remaining binder capable of acting as a sufficient resistance against the volume expansion is adsorbed on the electrode active material, And serves to suppress the volume expansion of the electrode active material. Also, the conductive path or network between the electrode active materials can thereby be maintained. Thus, the life characteristics of the battery can be improved.
상기 이온화 치환된 아크릴레이트 유래의 단위는 알킬 아크릴레이트를 단량체로 공중합한 후, 과량의 이온 수용액을 첨가하여 치환하는 과정으로 형성할 수 있다. 이때, 상기 최종 공중합체 구조에서 이온화 치환된 아크릴레이트 유래의 단위는 원료로 사용된 아크릴레이트(예를 들어, 알킬 아크릴레이트)와 상관없이 이온화 치환된 최종 중합체를 기준으로 이온화 치환된 아크릴레이트 유래의 단위로 이해될 수 있다.The unit derived from the ionized substituted acrylate may be formed by copolymerizing an alkyl acrylate with a monomer and then adding an excess amount of an ionic aqueous solution. In this case, the unit derived from acrylate substituted by ionization in the final copolymer structure may be a unit derived from an ionized substituted acrylate, based on the ionized substituted final polymer, irrespective of the acrylate (for example, alkyl acrylate) Can be understood as a unit.
상기 공중합체 내에서, 상기 폴리비닐알코올 유래의 단위를 제외한 단위들 중 상기 이온화 치환된 아크릴레이트 유래의 단위의 몰분율은 98몰% 내지 100몰%일 수 있으며, 구체적으로 100몰%일 수 있다. 상기 “100몰%”라는 것은, 상기 폴리비닐알코올 유래의 단위를 제외한 나머지 단위는 모두 상기 이온화 치환된 아크릴레이트 유래의 단위인 것을 의미하며, 치환되지 않은 아크릴레이트 유래의 단위가 존재하지 않음을 의미한다. 상기 “98몰% 이상”의 의미는 상기 치환화 과정을 진행하여 의도적으로 아크릴레이트 유래의 단위 내 수소를 모두 이온화 시킬 때, 미처 이온화 치환되지 않은 아크릴레이트 유래의 단위가 존재하는 것을 의미하며, 이 때 상기 이온화 치환되지 않은 아크릴레이트 유래의 단위의 함량은 오차 범위 수준(예컨대 2몰%미만)으로 매우 작은 수준에 불과하다. In the copolymer, the molar fraction of units derived from the ionized substituted acrylate among units excluding units derived from polyvinyl alcohol may be 98 mol% to 100 mol%, specifically 100 mol%. The above-mentioned &quot; 100 mol% &quot; means that all the units other than the units derived from polyvinyl alcohol are units derived from the ionized substituted acrylate, meaning that there is no unit derived from an unsubstituted acrylate do. The term &quot; 98 mol% or more &quot; means that unreacted acrylate-derived units are present when intrinsic acrylate-derived hydrogen is entirely ionized through the above-described substitution process, The content of units derived from the ionized unsubstituted acrylate is only a very small level at an error range level (for example, less than 2 mol%).
이온화 치환되지 않은 아크릴레이트 유래의 단위는 히드록시기(-OH)를 포함한다. 상기 이온화 치환되지 않은 아크릴레이트 유래의 단위가 상기 공중합체에 다량으로 포함되는 경우, 예컨대 2몰% 이상으로 포함되는 경우라면, 전극 슬러리가 건조된 후 수소결합력에 의해 결정화가 높은 수준으로 진행되어 상기 공중합체의 가교에 의해 제조된 바인더가 지나치게 쉽게 파단된다. 이에 따라, 전극 활물질의 부피 팽창을 억제할 수 있는 '파단되지 않은 공중합체'의 양이 현저히 줄어들고, 전극 활물질에 흡착된 공중합체가 줄어든다. 이에 따라, 활물질층과 집전체의 접착력이 낮아지고, 전지의 수명 특성이 저하된다. The unit derived from non-ionized substituted acrylate includes a hydroxyl group (-OH). If the unit derived from the ionized non-substituted acrylate is contained in the copolymer in a large amount, for example, in an amount of 2 mol% or more, crystallization proceeds to a high level due to the hydrogen bonding force after the electrode slurry is dried, The binder produced by crosslinking of the copolymer is excessively easily broken. Accordingly, the amount of the 'unbroken copolymer' which can suppress the volume expansion of the electrode active material is remarkably reduced, and the copolymer adsorbed on the electrode active material is reduced. As a result, the adhesive force between the active material layer and the current collector is lowered, and the life characteristics of the battery are deteriorated.
그러나, 본 발명의 바인더 제조에 사용되는 공중합체는 이온화 치환되지 않은 아크릴레이트 유래의 단위를 포함하지 않거나, 2몰% 미만인 낮은 함량으로만(오차 범위) 포함하며, 이 때 수소를 치환하는 금속 양이온에 의해 공중합체의 결정화도가 적정 수준으로 낮아지게 된다. 따라서, 전극 활물질의 부피 팽창 시 일부 바인더의 파단이 일어나더라도, 나머지 바인더는 전극 활물질에 파단되지 않은 상태로 흡착되어, 활물질층과 집전체 간의 접착력이 향상될 수 있으며, 전지의 수명 특성이 개선될 수 있다.However, the copolymer used in the preparation of the binder of the present invention does not contain units derived from non-ionized substituted acrylate or contains only a low content of less than 2 mol% (error range), wherein the metal cation The degree of crystallinity of the copolymer is lowered to an appropriate level. Therefore, even if some binder is broken during the volume expansion of the electrode active material, the remaining binder is adsorbed to the electrode active material in a state of being not broken, so that the adhesive force between the active material layer and the current collector can be improved, .
상기 몰분율은 다음과 같이 측정될 수 있다. 먼저, 상기 공중합체에 대해, 파우더 상태에서 EQC-0107(Pyrolyzer (PY-2020/Agilent6890N GC/5973N MSD))를 사용하여 GC/MS 분석을 진행하여, 이를 통해 정확한 관능기를 파악한다. 이 후, solid NMR(Agilent 600MHz NMR) 또는 solution NMR(Bruker 600MHz NMR)을 진행하여, 측정된 그래프의 피크 적분값으로부터 각 조성에 대한 함량비를 확인한다. 또한, 제조된 전극에서 활물질층을 분리해낸 뒤, 파우더 형태로 만든 후, 상기 방법을 수행하여 상기 몰분율을 확인할 수도 있다.The molar fraction can be measured as follows. First, GC / MS analysis is carried out on the copolymer using EQC-0107 (Pyrolyzer (PY-2020 / Agilent 6890N GC / 5973N MSD) in powder state) to grasp the exact functional group. Then, solid NMR (Agilent 600 MHz NMR) or solution NMR (Bruker 600 MHz NMR) is carried out to confirm the content ratio of each composition from the peak integral value of the measured graph. In addition, after separating the active material layer from the manufactured electrode and making it into powder form, the mole fraction can be confirmed by performing the above method.
상기 공중합체에 있어서, 상기 폴리비닐알코올 유래의 단위는 하기 화학식 1의 단위를 포함할 수 있다.In the copolymer, the unit derived from polyvinyl alcohol may include a unit represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015575-appb-I000001
Figure PCTKR2018015575-appb-I000001
상기 이온화 치환된 아크릴레이트 유래의 단위는 하기 화학식 2의 단위를 포함하며, 상기 화학식 2에서, R은 각각 독립적으로 Na, Li 및 K로 이루어진 군에서 선택된 적어도 하나 이상의 금속 양이온일 수 있다.The unit derived from the ionized substituted acrylate includes a unit represented by the following formula (2): wherein, each R may independently be at least one metal cation selected from the group consisting of Na, Li and K.
[화학식 2](2)
Figure PCTKR2018015575-appb-I000002
Figure PCTKR2018015575-appb-I000002
나아가, 상기 공중합체는 상기 화학식 1의 단위를 2000개 내지 3000개 포함할 수 있으며, 상기 화학식 2의 단위를 1000개 내지 2000개 포함할 수 있다.Furthermore, the copolymer may contain from 2000 to 3000 units of the formula (1) and from 1000 to 2000 units of the formula (2).
상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하여 형성된 블록 공중합체(block copolymer)일 수 있다. 즉, 폴리비닐알코올 유래의 단위 블록과 이온화 아크릴레이트 유래의 단위 블록이 선상(Linear)으로 연결된 구조이며, 메인 체인(Main chain)을 구성하는 구조일 수 있다. The copolymer may be a block copolymer formed from a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate. That is, a structure in which a unit block derived from polyvinyl alcohol and a unit block derived from ionized acrylate are linearly connected to each other may be a structure constituting a main chain.
상기 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위는 이중결합을 가지는 폴리비닐알코올 및 아크릴레이트 단위체가 첨가반응을 하여 형성된 구조를 의미하며, 아크릴레이트의 경우 최종 공중합체 구조에서의 에스테르에 결합된 치환기와 원료에서의 치환기가 반드시 일치하는 것은 아닐 수 있다.The unit derived from polyvinyl alcohol and the unit derived from ionized substituted acrylate means a structure in which a polyvinyl alcohol and an acrylate unit having a double bond are formed by an addition reaction, and in the case of acrylate, an ester in the final copolymer structure May not necessarily be the same as the substituent in the starting material.
상기 이온화 치환된 아크릴레이트는 보다 바람직하게는, 소듐 아크릴레이트(Sodium Acrylate) 및 리튬 아크릴레이트(Lithium Acrylate)로 이루어진 군에서 선택된 적어도 하나 이상일 수 있고, 가장 바람직하게는 소듐 아크릴레이트(Sodium Acrylate)일 수 있다.More preferably, the ionized substituted acrylate may be at least one selected from the group consisting of sodium acrylate and lithium acrylate, and most preferably is at least one selected from the group consisting of sodium acrylate .
상기 소듐 아크릴레이트(Sodium Acrylate) 및 리튬 아크릴레이트(Lithium Acrylate)의 경우, 알킬 아크릴레이트를 단량체로 공중합한 후, 과량의 소듐 이온 또는 리튬 이온 수용액을 첨가하여 치환하는 과정으로 형성할 수 있다. 이때, 상기 최종 공중합체 구조에서, 아크릴레이트 유래의 단위는 원료로 사용된 아크릴레이트(예를 들어, 알킬 아크릴레이트)와 상관없이 소듐 아크릴레이트 유래의 단위 또는 리튬 아크릴레이트 유래의 단위로 이해될 수 있다.In the case of the sodium acrylate and the lithium acrylate, the alkyl acrylate may be copolymerized with a monomer, and then an excessive amount of sodium ion or lithium ion aqueous solution may be added to replace the monomer. At this time, In the final copolymer structure, the acrylate-derived unit can be understood as a unit derived from sodium acrylate or a unit derived from lithium acrylate, regardless of the acrylate (for example, alkyl acrylate) used as the raw material.
상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위가 6:4 내지 8:2의 중량비로 포함될 수 있다. 상기 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위가 상기 중량비 범위로 포함될 경우, 친수성기를 가진 폴리비닐알코올에 의해서 입자에 흡착되어 적당한 분산성을 유지시켜주며 흡착된 고분자는 건조 후에 피막을 형성하여 안정된 접착력을 발현시켜준다. 또한, 형성된 피막은 전지의 충방전 시 균일하고 밀도가 높은 SEI막을 형성하면서 전지 성능의 향상에 도움을 주게 되는 장점이 있을 수 있다.The copolymer may include a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate in a weight ratio of 6: 4 to 8: 2. When the unit derived from the polyvinyl alcohol and the unit derived from the ionized substituted acrylate are contained in the above weight ratio, the polymer is adsorbed on the particles by the polyvinyl alcohol having a hydrophilic group to maintain proper dispersibility, So as to exhibit a stable adhesive force. In addition, the formed film may be advantageous in improving battery performance while forming a uniform and dense SEI film during charging / discharging of the battery.
상기 폴리비닐알코올이 상기 중량비 범위보다 적게 포함될 경우, 친수성 특성이 약해지면서 물에 녹일 수 있는 고형분이 감소하게 되어 전극 표면으로 바인더가 뜨는 현상이 강해서 성능에 영향을 끼치게 되며, 소수성인 활물질 표면에는 흡착이 가능하지만 분산에 문제를 발생하는 문제가 있을 수 있고, 상기 폴리비닐알코올이 상기 중량비 범위보다 많게 포함될 경우, PVA 고유 특성으로 인해 용해 혹은 믹싱 중에 버블이 많이 생성되면서 입자들이 버블에 흡착되어 응집되면서 분산이 되지 않은 거분 입자들이 생성되게 되는데, 이는 셀 성능의 열위를 나타내며 다양한 문제를 일으킬 수 있다.When the polyvinyl alcohol is contained in an amount less than the above-mentioned weight ratio range, the hydrophilic property is weakened, and the solid content soluble in water is decreased, so that the binder tends to float on the surface of the electrode, which affects the performance. On the surface of the hydrophobic active material, However, when the polyvinyl alcohol is contained in an amount larger than the above-mentioned weight ratio range, particles tend to be adsorbed on the bubbles due to intrinsic properties of the PVA during the dissolution or mixing, Non-dispersed gypsum particles are produced, which represent a disadvantage of cell performance and can cause various problems.
상기 공중합체는 중량평균분자량이 100,000 내지 500,000일 수 있다.상기 공중합체의 중량평균분자량이 100,000 미만일 경우, 상기 이차전지 전극용 바인더 간의 분산력이 약해져 바인더 간 응집의 가능성이 높아지고, 충/방전 수명특성 개선이 어려운 부분이 있으며, 500,000를 초과할 경우 고농도로 용해하기 어렵기 때문에 슬러리의 고형분을 증가시키기 부적합하며 중합 도중 겔화가 발생하기 쉽다. When the weight average molecular weight of the copolymer is less than 100,000, the dispersibility between the binder for the secondary battery electrode is lowered, the possibility of cohesion between the binder is increased, and the charge / discharge life characteristics If it exceeds 500,000, it is difficult to increase the solids content of the slurry because it is difficult to dissolve at a high concentration, and gelation tends to occur during polymerization.
상기 가교는 상기 공중합체와 가교제의 에스테르(ester)화 반응에 의해 이루어질 수 있다. 구체적으로, 상기 공중합체의 -COOR과 가교제가 에스테르화 반응에 의해 결합되며, 더욱 구체적으로 상기 가교제가 2 이상의 글리시딜기를 포함하며, 각각의 글리시딜기가 상기 공중합체의 -COOR와 에스테르화 반응을 하여 결합될 수 있다. 따라서, 상기 이차전지 전극용 바인더는 에스테르 구조(-COO-)를 포함할 수 있으며, 구체적으로 상기 에스테르 구조는 공중합체 간의 가교 체인에 존재할 수 있다.The crosslinking may be carried out by an esterification reaction of the copolymer and the crosslinking agent. Specifically, the -COOR of the copolymer and the crosslinking agent are bonded by an esterification reaction, more specifically, the crosslinking agent comprises two or more glycidyl groups, and each glycidyl group is esterified with -COOR of the copolymer Can be reacted and combined. Therefore, the binder for the secondary battery electrode may include an ester structure (-COO-), and specifically, the ester structure may exist in a crosslinked chain between the copolymers.
<이차전지 전극용 조성물>&Lt; Composition for Secondary Battery Electrode &
본 발명의 일 실시예에 따른 이차전지 전극용 조성물은 전극 활물질, 도전재, 공중합체, 가교제 및 용매를 포함할 수 있다. 여기서, 상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체로, 상술한 공중합체와 동일하다. 즉, 상술한 실시예에서 도출될 수 있는 모든 공중합체가 상기 이차전지 전극용 조성물이 포함하는 공중합체에 해당될 수 있다. 예컨대, 상기 공중합체에 있어서, 상기 폴리비닐알코올 유래의 단위는 하기 화학식 1의 단위를 포함할 수 있다.The composition for a secondary battery electrode according to an embodiment of the present invention may include an electrode active material, a conductive material, a copolymer, a cross-linking agent, and a solvent. Here, the copolymer is a copolymer containing a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate, and is the same as the above-mentioned copolymer. That is, all of the copolymers that can be derived in the above-described embodiments may correspond to the copolymer included in the composition for the secondary battery electrode. For example, in the copolymer, the unit derived from polyvinyl alcohol may include a unit represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015575-appb-I000003
Figure PCTKR2018015575-appb-I000003
상기 이온화 치환된 아크릴레이트 유래의 단위는 하기 화학식 2의 단위를 포함하며, 상기 화학식 2에서, R은 각각 독립적으로 Na, Li 및 K로 이루어진 군에서 선택된 적어도 하나 이상의 금속 양이온일 수 있다.The unit derived from the ionized substituted acrylate includes a unit represented by the following formula (2): wherein, each R may independently be at least one metal cation selected from the group consisting of Na, Li and K.
[화학식 2](2)
Figure PCTKR2018015575-appb-I000004
Figure PCTKR2018015575-appb-I000004
나아가, 상기 공중합체는 상기 화학식 1의 단위를 2000개 내지 3000개 포함할 수 있으며, 상기 화학식 2의 단위를 1000개 내지 2000개 포함할 수 있다.Furthermore, the copolymer may contain from 2000 to 3000 units of the formula (1) and from 1000 to 2000 units of the formula (2).
상기 이차 전지 전극용 조성물은 음극 제조시 바람직하게 사용될 수 있다. 음극 제조시 사용되는 상기 전극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소계 물질, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 주로 탄소계 물질을 사용할 수 있으며, 상기 탄소계 물질은 특별히 제한되는 것은 아니나, 예를 들어, 연화탄소 (soft carbon), 경화탄소 (hard carbon), 천연 흑연, 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes)로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.The composition for the secondary battery electrode may be preferably used in the production of a negative electrode. As the electrode active material used in manufacturing the negative electrode, a carbon-based material, lithium metal, silicon, or tin, which can normally store and release lithium ions, may be used. The carbon-based material may be, for example, soft carbon, hard carbon, natural graphite, artificial graphite, kishi graphite (for example, Kish graphite, pyrolytic carbon, mesophase pitch based carbon fiber, mesocarbon microbeads, mesophase pitches and petroleum or coal tar pitch derived. cokes) may be selected from the group consisting of at least one.
또한, 보다 고용량을 구현하기 위하여 상기 전극 활물질은 탄소계 물질에 Si계 물질을 더 포함할 수 있으며, 예를 들어, SiO를 더 포함할 수 있다. Further, in order to realize a higher capacity, the electrode active material may further include a Si-based material in the carbon-based material, for example, SiO.
상기 Si계 물질은 전극 활물질 전체 중량을 기준으로 5중량% 내지 30중량%로 포함될 수 있다. 상기 Si계 물질이 5중량% 미만으로 포함될 경우 투입비율에 따른 용량 증가 폭이 크지 않기 때문에 고용량 전극을 구현하기가 어려울 수 있으며, Si계 물질이 30중량%를 초과하여 포함될 경우 충전에 의한 부피 팽창이 너무 커서 전극이 변형되고, 수명 특성이 현저히 떨어지는 문제가 있을 수 있다.The Si-based material may be included in an amount of 5% by weight to 30% by weight based on the total weight of the electrode active material. If the amount of the Si-based material is less than 5% by weight, it may be difficult to realize a high-capacity electrode because the capacity increase depending on the input ratio is not large. When the Si-based material is contained in an amount exceeding 30% by weight, Is too large to deform the electrode, and there is a problem that the life characteristic is remarkably deteriorated.
상기 Si계 물질은 탄소계 물질에 비하여 이론 용량이 약 10배 정도 높은 고용량을 가지고 있어 고용량 전지를 구현할 수 있지만, 리튬을 흡수 저장할 때에 결정구조의 변화를 야기시켜 부피 팽창이 크게 발생하며, 이러한 충전에 의한 부피 변화로 인해 충/방전이 진행됨에 따라 활물질 간 및 집전체와의 분리 및 전극의 변형 등이 일어나 수명특성이 저하되는 문제가 있었다.Although the Si-based material has a high capacity of about 10 times higher than the carbon-based material by about 10 times the theoretical capacity, a high capacity battery can be realized. However, when absorbing and storing lithium, a change in the crystal structure is caused to cause volume expansion, There is a problem that the lifetime characteristics are deteriorated due to the separation of the active material and the collector and the deformation of the electrode.
그러나, 본 발명의 일 실시예에 따르면, 상기 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더에 의해 전극 구조의 지나친 변형이 억제될 수 있으므로 충/방전 수명 특성이 개선될 수 있다.However, according to one embodiment of the present invention, excessive strain of the electrode structure is suppressed by the binder for the secondary battery electrode in which the copolymer comprising the polyvinyl alcohol-derived unit and the ionization-substituted acrylate-derived unit are cross- The charge / discharge life characteristics can be improved.
상기 도전재는 당업계에서 일반적으로 사용될 수 있는 것이라면 특별하게 제한되지 않으나, 예를 들면, 인조 흑연, 천연 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 탄소 섬유, 금속 섬유, 알루미늄, 주석, 비스무트, 실리콘, 안티몬, 니켈, 구리, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 아연, 몰리브덴, 텅스텐, 은, 금, 란타늄, 루테늄, 백금, 이리듐, 산화티탄, 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 또는 이들의 조합 등이 적용될 수 있으며, 일반적으로는 카본 블랙계 도전재가 자주 사용될 수 있다.The conductive material is not particularly limited as long as it can be generally used in the art. For example, artificial graphite, natural graphite, carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, A metal selected from the group consisting of aluminum, tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lanthanum, ruthenium, , Polythiophene, polyacetylene, polypyrrole, or a combination thereof. In general, a carbon black-based conductive material may be used.
상기 용매는 바람직하게는 수계 용매를 포함할 수 있으며, 수계 용매로는 물을 들 수 있다. 본 발명의 일 실시예에 따른 상기 바인더는 물에 녹는 수용성이거나 물에 분산되어 있을 수 있다. 다만, 경우에 따라서는 N.N-디메틸포름아미드, N.N-디메틸아세트아미드, 메틸에틸케톤, 사이클로헥사논, 아세트산에틸, 아세트산부틸, 셀로솔브아세테이트, 프로필렌글리콜 모노메틸에테르 아세테이트, 메틸셀로솔브, 부틸셀로솔브, 메틸카비톨, 부틸카비톨, 프로필렌글리콜 모노메틸에테르, 디에틸렌글리콜 디메틸에테르, 톨루엔, 크실렌 중에서 1종 이상을 선택하여 사용할 수도 있고, 또한 물과 혼합하여 사용할 수도 있다. 상기 용매의 함량은 특별히 제한 두지 않으며 슬러리의 점도를 알맞게 만들도록 사용할 수 있다.The solvent may preferably include an aqueous solvent, and the aqueous solvent may include water. The binder according to an embodiment of the present invention may be water-soluble or water-dispersible. However, in some cases, it is possible to use NN-dimethylformamide, NN-dimethylacetamide, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, methyl cellosolve, butyl cell One or more of them may be selected from rosorb, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, toluene and xylene, or they may be used in admixture with water. The content of the solvent is not particularly limited and may be used to make the viscosity of the slurry appropriate.
본 발명의 일 실시예에 따른 바인더 중 아크릴레이트 유래의 단위가 염의 형태인 경우, 예를 들어, 소듐 아크릴레이트 또는 리튬 아크릴레이트인 경우, 바인더가 용매에 용해되면 소듐 또는 리튬 양이온은 해리되거나 이온화상태가 공존되어 있을 수 있다.When the acrylate-derived unit is in the form of a salt, for example, in the case of sodium acrylate or lithium acrylate, when the binder is dissolved in the solvent, the sodium or lithium cation dissociates or the ionized state May coexist.
상기 이차전지 전극용 조성물은 이외에도 추가적인 특성 향상을 위해 첨가제가 더 포함될 수 있다. 이러한 첨가제로는 통상적으로 사용되는 분산제, 증점체, 충진제 등이 있을 수 있다. 이들 각각 첨가제는 전극용 조성물 제조 시 상기 전극용 조성물과 미리 혼합하여 사용할 수도 있고, 별도로 제조하여 독립적으로 사용할 수도 있다. 상기 첨가제들은 전극 활물질과 바인더 성분에 의해 사용하고자 하는 성분이 정해지며, 경우에 따라서는 사용 안 할 수도 있다. 한편, 상기 전극용 조성물은 본 발명의 바인더와 함께 기존에 사용해 오던 카복시메틸셀룰로오스(CMC) 및 스티렌 부타디엔 고무(SBR) 등의 바인더와 혼합하여 사용할 수도 있다.The composition for the secondary battery electrode may further include an additive for further improving the characteristics. Such an additive may be a commonly used dispersant, thickener, filler, or the like. Each of these additives may be mixed with the composition for electrodes in preparing the electrode composition beforehand, or separately prepared and used independently. The additive is determined by the electrode active material and the binder component, and may be used in some cases. Meanwhile, the electrode composition may be mixed with binders such as carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR), which have been conventionally used together with the binder of the present invention.
상기 가교제는 상기 공중합체들을 가교시키는 역할을 한다. 상기 가교제는 상기 공중합체의 -COOR과 에스테르화 반응에 의해 결합될 수 있다. 구체적으로 상기 가교제는 2 이상의 글리시딜기를 포함할 수 있으며, 각각의 글리시딜기의 환구조가 특정 열처리에 의해 개환(opened ring)되어, 상기 공중합체의 -COOR와 에스테르화 반응을 하여 결합될 수 있다. The crosslinking agent serves to crosslink the copolymers. The crosslinking agent may be bonded to the -COOR of the copolymer by an esterification reaction. Specifically, the crosslinking agent may include two or more glycidyl groups, and the ring structure of each glycidyl group is opened ring by a specific heat treatment, and is esterified with -COOR of the copolymer to be combined .
상기 가교제는 디글리시딜 에테르계 가교졔를 포함할 수 있다. 구체적으로, 상기 디글리시딜 에테르계 가교제는 디글리시딜 에테르, 비스페놀 A 디글리시딜 에테르, 1,4-부탄디올 디글리시딜 에테르 및 에틸렌 글라이콜 디글리시딜 에테르로 이루어진 군에서 선택된 적어도 하나 이상일 수 있으며, 보다 구체적으로 디글리시딜 에테르일 수 있다. The crosslinking agent may include a diglycidyl ether crosslinking agent. Specifically, the diglycidyl ether-based crosslinking agent is selected from the group consisting of diglycidyl ether, bisphenol A diglycidyl ether, 1,4-butanediol diglycidyl ether and ethylene glycol diglycidyl ether May be at least one selected, and more specifically may be a diglycidyl ether.
상기 가교제의 분자량은 300g/mol 내지 1,000g/mol일 수 있으며, 구체적으로 400g/mol 내지 600g/mol일 수 있다. 상기 가교제의 분자량이 300g/mol 미만인 경우, 고분자의 강도가 충분하지 못해서 전극의 부피 팽창이 제어되기 어려울 수 있다. 반면, 상기 분자량이 1,000g/mol을 초과하는 경우, 가교제가 고체 상으로 존재할 수 있으므로, 전극용 조성물에서 가교제의 분산이 원활하게 이루어지지 않을 수 있다. 따라서, 상기 범위를 만족하는 경우, 전극용 바인더의 적절한 강도와 전극용 조성물 내 가교제의 균일한 분산이 도출될 수 있다. The molecular weight of the crosslinking agent may be 300 g / mol to 1,000 g / mol, and specifically 400 g / mol to 600 g / mol. If the molecular weight of the crosslinking agent is less than 300 g / mol, the strength of the polymer may not be sufficient and the volume expansion of the electrode may be difficult to control. On the other hand, when the molecular weight exceeds 1,000 g / mol, the cross-linking agent may exist in a solid phase, so that the dispersion of the cross-linking agent in the electrode composition may not be smoothly performed. Therefore, when the above range is satisfied, the appropriate strength of the binder for electrodes and uniform dispersion of the cross-linking agent in the electrode composition can be derived.
상기 가교제와 상기 공중합체의 중량비는 1:4 내지 1:20일 수 있으며, 구체적으로 1.6.67 내지 1:19 일 수 있고, 더욱 구체적으로 1:7.33 내지 1:13.29일 수 있다. 상기 범위에 비해 상기 가교제가 더 많이 사용되는 경우, 제조된 전극 내 바인더의 접착력이 감소하여 전극 성능이 열화되는 문제가 발생할 수 있다. 상기 범위에 비해 상기 가교제가 적게 사용되는 경우, 상기 공중합체들의 가교가 충분히 이루어지지 못할 수 있다.The weight ratio of the crosslinking agent to the copolymer may be from 1: 4 to 1:20, specifically from 1.6.67 to 1:19, and more specifically from 1: 7.33 to 1: 13.29. If the cross-linking agent is used more than the above-mentioned range, the adhesive strength of the binder in the prepared electrode may be decreased, and the electrode performance may deteriorate. When the crosslinking agent is used less than the above range, crosslinking of the copolymers may not be sufficiently performed.
본 발명의 일 실시예에 따른 전극용 조성물은 용매를 제외한 고형분 전체 중량에 대하여 상기 공중합체를 1.8중량% 내지 3.3중량%로 포함할 수 있다. 상기 범위를 만족하는 경우, 바인더의 접착력이 충분하면서 전극 저항이 적정 수준일 수 있다. The composition for an electrode according to an embodiment of the present invention may contain the copolymer in an amount of 1.8 wt% to 3.3 wt% based on the total weight of solids excluding the solvent. When the above range is satisfied, the adhesive strength of the binder is sufficient and the electrode resistance can be at an appropriate level.
<이차전지 전극><Secondary Battery Electrode>
본 발명의 이차전지 전극은 전극 활물질, 도전재 및 바인더를 포함하는 활물질층을 포함할 수 있으며, 상기 바인더는 상술한 이차전지 전극용 바인더와 동일하다. 나아가, 상기 전극 활물질 및 도전재는 상술한 이차전지 전극용 조성물이 포함할 수 있는 전극 활물질 및 도전재와 동일하다. The secondary battery electrode of the present invention may include an active material layer including an electrode active material, a conductive material, and a binder, and the binder is the same as the binder for the secondary battery electrode described above. Further, the electrode active material and the conductive material are the same as the electrode active material and the conductive material that the composition for the secondary battery electrode described above can include.
예를 들어, 상기 전극 활물질은 연화탄소, 경화탄소, 천연 흑연, 인조흑연, 키시흑연, 열분해 탄소, 액정피치계 탄소섬유, 탄소 미소구체, 액정피치 및 석유와 석탄계 코크스로 이루어진 군에서 선택된 어느 하나 이상의 탄소계 물질을 포함할 수 있다. 또한, 상기 전극 활물질은 Si계 물질을 더 포함할 수 있으며, 구체적으로 Si계 물질은 전극 활물질 전체 중량을 기준으로 5중량% 내지 30중량%로 포함될 수 있다. For example, the electrode active material may be any one selected from the group consisting of softened carbon, cured carbon, natural graphite, artificial graphite, chisel graphite, pyrolytic carbon, liquid crystal pitch carbon fiber, carbon microsphere, liquid crystal pitch, Based carbon material. In addition, the electrode active material may further include a Si-based material. Specifically, the Si-based material may be included in an amount of 5% by weight to 30% by weight based on the total weight of the electrode active material.
상기 이차전지 전극은 양극 또는 음극일 수 있으며, 바람직하게는 음극일 수 있다. The secondary battery electrode may be a cathode or a cathode, and preferably a cathode.
상기 바인더는 상기 활물질층 전체 중량을 기준으로 2중량% 내지 3.7중량%로 포함될 수 있으며, 구체적으로 2.5중량% 내지 3.4중량%로 포함될 수 있고, 더욱 구체적으로 2.8중량% 내지 3.2중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 전극용 조성물의 점도가 적절하여 공정이 원활할 수 있다. 또한, 바인더 접착력이 충분할 수 있으므로, 전극의 물성이 개선될 수 있다.The binder may be included in an amount of 2 wt% to 3.7 wt% based on the total weight of the active material layer, specifically 2.5 wt% to 3.4 wt%, more specifically 2.8 wt% to 3.2 wt%. have. When the above range is satisfied, the viscosity of the electrode composition is appropriate and the process can be smooth. Further, since the binder adhesion may be sufficient, the physical properties of the electrode may be improved.
<이차전지 전극 제조 방법><Secondary Battery Electrode Manufacturing Method>
본 발명의 이차전지 전극 제조 방법은 상술한 이차전지 전극용 조성물을 집전체 상에 도포하고 건조하는 단계; 및 상기 조성물이 도포된 집전체를 열처리하는 단계를 포함할 수 있다. 바람직하게 상기 이차전지 전극 제조 방법은 음극 제조에 적용될 수 있다. The method for manufacturing a secondary battery electrode of the present invention comprises the steps of applying the composition for a secondary battery electrode to a current collector and drying the same; And heat treating the current collector to which the composition is applied. Preferably, the method for manufacturing the secondary battery electrode may be applied to the manufacture of a negative electrode.
상기 집전체는 전도성이 높고 상기 이차전지 전극용 조성물이 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 상기 집전체는 양극 집전체 또는 음극 집전체일 수 있다. 상기 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 상기 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The current collector is a metal having a high conductivity and capable of easily adhering to the composition for the secondary battery electrode, and any of them may be used as long as it is not reactive in the voltage range of the battery. The current collector may be a positive current collector or a negative current collector. Non-limiting examples of the positive electrode current collector include aluminum, nickel, or a combination thereof. The negative electrode current collector may be made of copper, gold, nickel, or a copper alloy or a combination thereof. Foil to be manufactured, and the like.
상기 이차전지 전극용 조성물을 집전체 상에 도포하고 건조하는 단계에 있어서, 상기 건조는 상기 이차전지 전극용 조성물 내 용매를 제거하기 위해 적용되는 것으로 볼 수 있다. In the step of coating and drying the composition for a secondary battery electrode on a current collector, the drying may be applied to remove the solvent in the composition for the secondary battery electrode.
상기 조성물이 도포된 집전체를 열처리하는 단계에 있어서, 상기 열처리는 가교 반응을 위한 공정에 해당한다. 상기 열처리는 90℃ 내지 120℃로 열처리하는 것일 수 있으며, 구체적인 온도 범위는 100℃ 내지 120℃일 수 있고, 더욱 구체적인 온도 범위는 110℃ 내지 120℃일 수 있다. 상기 열처리 온도가 90℃ 미만인 경우, 전극용 조성물 내 공중합체들의 가교 반응이 원활하게 발생하지 않을 수 있다. 120℃를 초과하는 경우, 전극의 유연성이 줄어들어 기계적 안정성이 줄어들 수 있다.In the step of heat-treating the current collector coated with the composition, the heat treatment corresponds to a process for a crosslinking reaction. The heat treatment may be a heat treatment at 90 ° C to 120 ° C, a specific temperature range may be 100 ° C to 120 ° C, and a more specific temperature range may be 110 ° C to 120 ° C. If the heat treatment temperature is lower than 90 ° C, the cross-linking reaction of the copolymers in the composition for electrode may not occur smoothly. If it exceeds 120 ° C, the flexibility of the electrode may be reduced and the mechanical stability may be reduced.
<이차전지><Secondary Battery>
본 발명은 양극, 음극, 전해액 및 분리막을 포함하는 리튬 이차전지로서, 상기 음극은 상술한 본 발명에 따른 이차전지 전극용 전극과 동일하다. The present invention is a lithium secondary battery including a cathode, a cathode, an electrolyte, and a separator. The cathode is the same as the electrode for a secondary battery electrode according to the present invention.
상기 본 발명의 리튬 이차전지는 당 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 분리막을 넣고 리튬염이 용해되어 있는 전해액을 투입하여 제조할 수 있다.The lithium secondary battery of the present invention can be produced by a conventional method known in the art. For example, a separation membrane may be placed between the anode and the cathode, and an electrolyte solution in which a lithium salt is dissolved may be added.
상기 양극은 양극 활물질을 포함할 수 있다. 상기 양극 활물질은 리튬 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 Lix1CoO2(0.5<x1<1.3), Lix2NiO2(0.5<x2<1.3), Lix3MnO2(0.5<x3<1.3), Lix4Mn2O4(0.5<x4<1.3), Lix5(Nia1Cob1Mnc1)O2(0.5<x5<1.3, 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1), Lix6Ni1-y1Coy1O2(0.5<x6<1.3, 0<y1<1), Lix7Co1-y2Mny2O2(0.5<x7<1.3, 0≤≤y2<1), Lix8Ni1-y3Mny3O2(0.5<x8<1.3, O≤≤y3<1), Lix9(Nia2Cob2Mnc2)O4(0.5<x9<1.3, 0<a2<2, 0<b2<2, 0<c2<2, a2+b2+c22), Lix10Mn2-z1Niz1O4(0.5<x10<1.3, 0<z1<2), Lix11Mn2-z2Coz2O4(0.5<x11<1.3, 0<z2<2), Lix12CoPO4(0.5<x12<1.3) 및 Lix13FePO4(0.5<x13<1.3)로 이루어진 군에서 선택되는 하나 이상의 혼합물일 수 있다.The anode may include a cathode active material. Li x 1 CoO 2 (0.5 <x 1 <1.3), Li x 2 NiO 2 (0.5 <x 2 <1.3) and Li x 3 MnO 2 (0.5 <x 3 ) are preferably used as the cathode active material, X1 < 1.3, 0 < a1 < l, 0 < b1 < l, 0), Li x4 Mn 2 O 4 (0.5 <x4 <1.3), Li x5 (Ni a1 Co b1 Mn c1 ) O 2 <c1 <1, a1 + b1 + c1 = 1), Li x6 Ni 1-y1 Co y1 O 2 (0.5 <x6 <1.3, 0 <y1 <1), Li x7 Co 1-y2 Mn y2 O 2 (0.5 <x7 <1.3, 0≤≤y2 <1), Li 1-x8 Ni y3 y3 Mn O 2 (0.5 <x8 <1.3, O≤≤y3 <1), Li x9 (Ni a2 Mn b2 Co c2) O 4 (0.5 <x9 <1.3, 0 <a2 <2, 0 <b2 <2, 0 <c2 <2, a2 + b2 + c22), Li x10 Mn 2-z1 Ni z1 O 4 (0.5 <x10 <1.3, 0 <z1 <2), Li x11 Mn 2-z2 Co z2 O 4 (0.5 <x11 <1.3, 0 <z2 <2), Li x12 CoPO 4 (0.5 <x12 <1.3) and Li x13 FePO 4 (0.5 <x13 &Lt; 1.3).
상기 음극은 음극 활물질을 포함할 수 있다. 상기 음극 활물질은 상기 본 발명의 전극용 조성물에서 살펴본 바와 같이 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소계 물질, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 주로 탄소계 물질을 사용할 수 있으며, 탄소계 물질에 Si계 물질을 더 포함할 수 있다. 상기 음극 활물질은 상술한 본 발명의 이차전지 전극용 조성물에 포함되는 전극 활물질과 동일할 수 있다.The negative electrode may include a negative electrode active material. The negative electrode active material may be a carbon-based material such as lithium metal, silicon, or tin, which is normally capable of occluding and releasing lithium ions, as described in the composition for electrodes of the present invention. Preferably, the carbon-based material may be mainly used, and the carbon-based material may further include a Si-based material. The negative electrode active material may be the same as the electrode active material included in the composition for a secondary battery electrode of the present invention.
본 발명에 따른 리튬 이차전지에 포함되는 분리막으로는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator included in the lithium secondary battery according to the present invention may be a conventional porous polymer film such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / methacrylate copolymer, A porous polymer film made of the same polyolefin-based polymer may be used alone or in a laminate thereof, or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point or a polyethylene terephthalate fiber may be used. But is not limited thereto.
본 발명에 따른 리튬 이차전지에 포함되는 전해액은 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로 피온산 메틸, 프로피온산 에틸, 프로피온산 에틸 및 프로피온산 부틸로 이루어진 군으로부터 선택되는 하나 이상의 혼합 유기 용매일 수 있다. The electrolytic solution contained in the lithium secondary battery according to the present invention may be at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethylsulfoxide (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate (methyl ethyl ketone , At least one mixed organic solvent selected from the group consisting of ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, ethyl propionate and butyl propionate.
또한, 본 발명에 따른 상기 전해액은 리튬염을 더 포함할 수 있으며, 상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, F3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 하나 이상일 수 있다. Further, the electrolyte according to the present invention may further include a lithium salt, and the anion of the lithium salt may be an anion selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P - , F 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5 ) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and ( CF 3 CF 2 SO 2 ) 2 N - .
본 발명에 따른 리튬 이차전지는 원통형, 각형, 파우치형 이차전지일 수 있으나, 충방전 디바이스에 해당하는 것이라면 이에 제한되는 것은 아니다.The lithium secondary battery according to the present invention may be a cylindrical, square, or pouch type secondary battery, but is not limited thereto as long as it is a charge / discharge device.
또한, 본 발명은 상기 리튬 이차전지를 단위 셀로 포함하는 전지모듈 및 이를 포함하는 전지팩을 제공한다. The present invention also provides a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
상기 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템으로 이루어진 군에서 선택되는 1종 이상의 중대형 디바이스 전원으로 사용될 수 있다. The battery pack includes a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Or a system for power storage. &Lt; RTI ID = 0.0 &gt; [0027] &lt; / RTI &gt;
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
제조예: 공중합체의 제조Preparation Example: Preparation of Copolymer
가열기, 냉각기 및 교반기를 갖춘 1L 반응 용기에 26.7g의 메틸 아크릴레이트(Methyl acrylate)와 53.3g의 폴리비닐알코올(Poly(vinylalcohol))을 320g의 벤젠(benzene)에 녹여 교반하였다. 벤조일 퍼옥사이드(Benzoyl peroxide)를 개시제로 2.256g을 넣어주고 1-부테인티올(1-butanethiol)을 연쇄 전달(Chain Transfer) 반응제로 16.8g 넣어주었다. 질소분위기에서 온도를 110℃까지 올려주었다. 4시간 반응시간이 지난 후, 메탄올(Methanol)을 이용하여 개시제와 모노머를 세척한 후, 생성된 파우더를 과량의 n-헥산(n-hexane)에 교반 시켜주었다. 교반하고 있는 용액 안에 과량의 5N NaOH 용액을 넣어주고, 2시간 교반해 주어 메틸 아크릴레이트의 메틸을 Na 이온으로 치환하였다. 반응 후, 침강시켜 파우더를 얻고, 60℃ 오븐에서 건조시켜 최종 합성된 공중합체를 얻었다.26.7 g of methyl acrylate and 53.3 g of poly (vinylalcohol) were dissolved in 320 g of benzene and stirred in a 1 L reaction vessel equipped with a stirrer, a heater, a condenser and a stirrer. Benzoyl peroxide (2.256 g) was added as an initiator and 1-butanethiol (16.8 g) was added as a chain transfer reagent. The temperature was raised to 110 DEG C in a nitrogen atmosphere. After a reaction time of 4 hours, the initiator and the monomer were washed with methanol, and the resulting powder was stirred in an excess of n-hexane. An excess amount of 5N NaOH solution was added to the stirring solution, and the methyl acrylate was replaced with Na ion by stirring for 2 hours. After the reaction, the mixture was sedimented to obtain a powder, which was then dried in an oven at 60 ° C to obtain a final synthesized copolymer.
제조된 공중합체의 중량평균분자량은 360,000였으며, 폴리비닐알코올(Poly(vinylalcohol)) 유래의 단위 및 소듐 아크릴레이트(Methyl acrylate) 유래의 단위의 중량비는 6.7:3.3이었다.The weight average molecular weight of the prepared copolymer was 360,000, and the weight ratio of the unit derived from poly (vinylalcohol) and the unit derived from sodium acrylate was 6.7: 3.3.
상기 공중합체 내에서, 상기 폴리비닐알코올 유래의 단위를 제외한 단위들 중 상기 이온화 치환된 아크릴레이트 유래의 단위의 몰분율은 100몰%이었다.In the copolymer, the molar fraction of units derived from the ionized substituted acrylate among the units excluding the unit derived from polyvinyl alcohol was 100 mol%.
상기 몰분율은 다음과 같이 측정되었다. 먼저, 상기 공중합체에 대해, 파우더 상태에서 EQC-0107(Pyrolyzer (PY-2020/Agilent6890N GC/5973N MSD))를 사용하여 GC/MS 분석을 진행하여, 이를 통해 정확한 관능기를 파악하였다. 이 후, solid NMR(Agilent 600MHz NMR) 또는 solution NMR(Bruker 600MHz NMR)을 진행하여, 측정된 그래프의 피크 적분값으로부터 각 조성에 대한 함량비를 확인하였다. 결과적으로 이온화 치환된 아크릴레이트 유래의 단위의 몰분율을 확인하였다.The mole fractions were determined as follows. First, GC / MS analysis was carried out on the copolymer using EQC-0107 (Pyrolyzer (PY-2020 / Agilent 6890N GC / 5973N MSD) in powder state) to obtain accurate functional groups. Then, solid NMR (Agilent 600 MHz NMR) or solution NMR (Bruker 600 MHz NMR) was carried out, and the content ratio of each composition was confirmed from the peak integral value of the measured graph. As a result, the mole fractions of units derived from ionized substituted acrylate were confirmed.
실시예 1: 이차전지 전극용 조성물, 이차전지 전극용 바인더, 이차전지 및 이차전지의 제조Example 1: Composition for secondary battery electrode, secondary battery Binder for electrode, manufacture of secondary battery and secondary battery
(1) 이차전지 전극용 조성물(1) Composition for secondary battery electrode
상기 제조예에서 제조한 공중합체 4.21g를 물 79.99g에 넣고, 호모 믹서로 70℃, 1500rpm 조건에서 180분간 혼합하여, 공중합체가 분산된 5.0wt% 공중합체 분산액을 제조하였다. 상기 분산액 12.21g에 카본블랙계열 도전재를 1.25g, 물을 70.8g 넣고, 호모 믹서(Homomixer)로 분산시켜 주었다. 분산시킨 용액에 20㎛인 인조흑연 150.0g(음극 활물질)을 넣고 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하였다. 이 후, 상기 혼합된 용액에 가교제인 디글리시딜 에테르(분자량: 500g/mol)를 0.47g 넣고 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 슬러리를 제조하였다. 상기 슬러리에 남은 공중합체 용액 71.99g과 물 46.6g을 넣고 다시 한번 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 이차전지 전극용 조성물을 제조하였다. 이와 같이 제조된 이차전지 전극용 조성물은 음극 활물질, 도전재, 공중합체, 가교제가 96.2:0.8:2.7:0.3의 중량비로 혼합된 혼합 용액(고형분 47.89wt%)이었다.4.21 g of the copolymer prepared in the above Production Example was added to 79.99 g of water and mixed at 70 DEG C and 1500 rpm for 180 minutes using a homomixer to prepare a 5.0 wt% copolymer dispersion in which the copolymer was dispersed. 1.25 g of the carbon black-based conductive material and 70.8 g of water were added to 12.21 g of the dispersion, and the mixture was dispersed with a homomixer. 150.0 g of artificial graphite (anode active material) of 20 mu m in size was put into the dispersed solution and mixed at 45 rpm for 40 minutes using a Planetary mixer. Then, 0.47 g of diglycidyl ether (molecular weight: 500 g / mol) as a cross-linking agent was added to the mixed solution and mixed at 45 rpm for 40 minutes using a Planetary mixer to prepare a slurry. 71.99 g of the copolymer solution remaining in the slurry and 46.6 g of water were added and mixed again using a Planetary mixer at 45 rpm for 40 minutes to prepare a composition for a secondary battery electrode. The thus-prepared composition for a secondary battery electrode was a mixed solution (solid content: 47.89 wt%) in which a negative electrode active material, a conductive material, a copolymer and a cross-linking agent were mixed at a weight ratio of 96.2: 0.8: 2.7: 0.3.
(2) 이차전지 전극용 바인더 및 이차전지 전극의 제조(2) Preparation of Binder for Secondary Battery Electrode and Secondary Battery Electrode
제조된 이차전지 전극용 조성물(슬러리)을 두께가 20㎛인 음극 집전체에 전극 로딩(mg/cm2)이 단위 면적당 5.87mg이 되도록 도포하고, 70℃의 진공 오븐에서 10시간 동안 건조하였다. 이 후, 상기 진공 오븐의 온도를 120℃로 하여, 1시간 동안 열처리하였다. 이에 따라, 상기 건조된 슬러리 내에서 이차전지 전극용 바인더가 제조되었다. The prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 μm (mg / cm 2 ) so as to be 5.87 mg per unit area, and dried in a vacuum oven at 70 ° C. for 10 hours. Thereafter, the temperature of the vacuum oven was set at 120 캜 and heat treatment was performed for 1 hour. Thus, a binder for a secondary battery electrode was produced in the dried slurry.
이 후, 50℃로 가열된 롤 사이로 15MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 58.6㎛이고, 활물질층의 로딩양이 146.7mg/25cm2인 음극(이차전지 전극)을 제조하였다.Thereafter, to prepare a rolled at a pressure of 15MPa, ultimate thickness (current collector + active material layer) 58.6㎛, and the loading amount of the active material layer 146.7mg / 25cm 2 of the negative electrode (the secondary battery electrodes) between a roll heated to 50 ℃ Respectively.
(3) 이차전지 제조(3) Secondary battery manufacturing
양극 활물질 NMC, 카본 블랙 계열의 도전재, 바인더 PVDF 파우더를 각각 92:2:6 중량비로 용매 N-메틸-2 피롤리돈에 혼합하여 양극 슬러리를 제조하였다.The positive electrode active material NMC, the carbon black-based conductive material, and the binder PVDF powder were mixed at a weight ratio of 92: 2: 6, respectively, to the solvent N-methyl-2-pyrrolidone to prepare a positive electrode slurry.
제조된 양극 슬러리를 두께가 15㎛인 양극 집전체에 전극 로딩(mg/cm2)이 단위 면적당 23.4mg이 되도록 도포하고, 120℃의 진공 오븐에서 10시간 동안 건조한 후, 80℃로 가열된 롤 사이로 15MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 74.0㎛인 양극을 제조하였다.The prepared positive electrode slurry was applied to a positive electrode current collector having a thickness of 15 탆 so as to have an electrode loading (mg / cm 2 ) of 23.4 mg per unit area, dried in a vacuum oven at 120 캜 for 10 hours, And rolled at a pressure of 15 MPa to prepare a positive electrode having a final thickness (current collector + active material layer) of 74.0 μm.
상기 제조된 음극 및 양극과 다공성 폴리에틸렌 분리막을 스태킹(Stacking)방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)=1/2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰)을 주입하여 리튬 이차전지를 제조하였다.The prepared negative electrode and positive electrode and the porous polyethylene separator were assembled by using a stacking method. An electrolyte (ethylene carbonate (EC) / ethylmethyl carbonate (EMC) = 1/2 (volume ratio), lithium hexa (LiPF 6 1 mole) was injected to prepare a lithium secondary battery.
실시예 2: 이차전지 전극용 조성물, 이차전지 전극용 바인더, 이차전지 전극, 및 이차 전지의 제조Example 2: Composition for secondary battery electrode, binder for secondary battery electrode, manufacture of secondary battery electrode, and secondary battery
(1) 이차전지 전극용 조성물의 제조(1) Preparation of Composition for Secondary Battery Electrode
상기 공중합체 분산액을 총 94.35g 투입하고(총 공중합체 3.74g), 상기 가교제를 0.94g 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지 전극용 조성물을 제조하였다. 제조된 이차전지 전극용 조성물은 음극 활물질, 도전재, 공중합체, 가교제가 96.2:0.8:2.4:0.6의 중량비로 혼합된 혼합 용액(고형분 48.0wt%)이었다.A composition for a secondary battery electrode was prepared in the same manner as in Example 1 except that a total of 94.35 g of the copolymer dispersion was added (3.74 g of total copolymer) and 0.94 g of the crosslinking agent was added. The prepared secondary battery electrode composition was a mixed solution (solid content: 48.0 wt%) in which the anode active material, the conductive material, the copolymer and the cross-linking agent were mixed at a weight ratio of 96.2: 0.8: 2.4: 0.6.
(2) 이차전지 전극용 바인더, 이차전지 전극, 및 이차 전지의 제조(2) Preparation of Binder for Secondary Battery Electrode, Secondary Battery Electrode, and Secondary Battery
상기 제조된 이차전지 전극용 조성물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지 전극용 바인더, 이차전지 전극, 및 이차 전지를 제조하였다. 상기 이차전지 전극의 최종 두께(집전체+활물질 층)는 59.6㎛이고, 활물질층의 로딩양은 153.5mg/25cm2였다.A binder for a secondary battery electrode, a secondary battery electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the composition for the secondary battery electrode prepared above was used. The final thickness (collector + active material layer) of the secondary battery electrode was 59.6 mu m, and the loading amount of the active material layer was 153.5 mg / 25 cm &lt; 2 & gt ;.
비교예 1Comparative Example 1
상기 제조예에서 제조한 공중합체 4.68g를 물 93.56g에 넣고, 호모 믹서로 70℃, 1500rpm 조건에서 180분간 혼합하여, 공중합체가 분산된 5.0wt% 공중합체 분산액을 제조하였다. 상기 분산액 13.57g에 카본블랙계열 도전재를 1.25g, 물을 70.80g 넣고, 호모 믹서(Homomixer)로 분산시켜 주었다. 분산시킨 용액에 20㎛인 인조흑연 150.0g(음극 활물질)을 넣고 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 슬러리를 제조하였다. 상기 슬러리에 남은 공중합체 용액 79.99g과 물 38.8g을 넣고 다시 한번 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 이차전지 전극용 조성물을 제조하였다. 이와 같이 제조된 이차전지 전극용 조성물은 음극 활물질, 도전재, 공중합체가 96.2:0.8:3.0의 중량비로 혼합된 혼합 용액(고형분 47.9wt%)이었다.4.68 g of the copolymer prepared in the above Production Example was put into 93.56 g of water and mixed at 70 DEG C and 1500 rpm for 180 minutes using a homomixer to prepare a 5.0 wt% copolymer dispersion in which the copolymer was dispersed. 1.25 g of the carbon black-based conductive material and 70.80 g of water were put into 13.57 g of the above dispersion and dispersed with a homomixer. To the dispersed solution, 150.0 g of artificial graphite (negative active material) was added and mixed at 45 rpm for 40 minutes using a Planetary mixer to prepare a slurry. 79.99 g of the copolymer solution remaining in the slurry and 38.8 g of water were added and mixed again using a Planetary mixer at 45 rpm for 40 minutes to prepare a composition for a secondary battery electrode. The thus prepared secondary cell electrode composition was a mixed solution (solid content: 47.9 wt%) in which the negative electrode active material, the conductive material and the copolymer were mixed at a weight ratio of 96.2: 0.8: 3.0.
제조된 이차전지 전극용 조성물(슬러리)을 두께가 20㎛인 음극 집전체에 전극 로딩(mg/cm2)이 단위 면적당 5.76mg이 되도록 도포하고, 70℃의 진공 오븐에서 10시간 동안 건조한 후, 50℃로 가열된 롤 사이로 15MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 57.1㎛이고, 활물질층의 로딩양이 144.0mg/25cm2인 음극(이차전지 전극)을 제조하였다.The prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 μm (mg / cm 2 ) so as to be 5.76 mg per unit area, dried in a vacuum oven at 70 ° C. for 10 hours, through a roll heated to 50 ℃ by rolling under a pressure of 15MPa, and the final thickness (current collector + active material layer) 57.1㎛, the loading amount of the active material layer was prepared 144.0mg / 25cm 2 of the negative electrode (the secondary battery electrode).
비교예 2Comparative Example 2
카복시 메틸셀룰로오스 (CMC, 분자량 1,200,000) 1.56g를 물 140.19g에 넣고, 호모 믹서로 40℃, 1500rpm 조건에서 180분간 혼합하여, CMC가 분산된 1.1wt% CMC 분산액을 제조하였다. 상기 분산액 57.27g에 카본블랙계열 도전재를 1.25g, 물을 27.00g 넣고, 호모 믹서(Homomixer)로 분산시켜 주었다. 분산시킨 용액에 20㎛인 인조흑연 150.0g(음극 활물질)을 넣고 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 슬러리를 제조하였다. 상기 슬러리에 남은 CMC 분산액 84.48g, 물 26.65g, SBR 분산액 7.72g(SBR 투입량: 3.12g, 고형분: 40.4wt%)을 넣고 다시 한번 프랜터리(Planetary) 믹서를 이용하여 45rpm에서 40분간 혼합하여 이차전지 전극용 조성물을 제조하였다. 이와 같이 제조된 이차전지 전극용 조성물은 음극 활물질, 도전재, CMC가 96.2/0.8/1.0/2.0 중량비로 혼합된 혼합 용액(고형분 44.00wt%)이었다.1.56 g of carboxymethyl cellulose (CMC, molecular weight: 1,200,000) was added to 140.19 g of water and mixed with a homomixer at a temperature of 40 DEG C and 1500 rpm for 180 minutes to prepare a 1.1 wt% CMC dispersion in which CMC was dispersed. 1.25 g of the carbon black-based conductive material and 27.00 g of water were added to 57.27 g of the dispersion, and the mixture was dispersed with a homomixer. To the dispersed solution, 150.0 g of artificial graphite (negative active material) was added and mixed at 45 rpm for 40 minutes using a Planetary mixer to prepare a slurry. To the slurry, 84.48 g of CMC dispersion liquid, 26.65 g of water and 7.72 g of SBR dispersion (SBR input amount: 3.12 g, solid content: 40.4 wt%) were added and mixed again using a Planetary mixer at 45 rpm for 40 minutes, Thereby preparing a composition for a battery electrode. The thus prepared secondary cell electrode composition was a mixed solution (solid content: 44.00 wt%) in which the anode active material, conductive material, and CMC were mixed at a weight ratio of 96.2 / 0.8 / 1.0 / 2.0.
제조된 이차전지 전극용 조성물(슬러리)을 두께가 20㎛인 음극 집전체에 전극 로딩(mg/cm2)이 단위 면적당 5.89mg이 되도록 도포하고, 70℃의 진공 오븐에서 10시간 동안 건조한 후, 50℃로 가열된 롤 사이로 15MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 57.7㎛이고, 활물질층의 로딩양이 147.1mg/25cm2인 음극(이차전지 전극)을 제조하였다.The prepared composition (slurry) for a secondary battery electrode was applied to an anode current collector having a thickness of 20 μm (mg / cm 2 ) so as to be 5.89 mg per unit area, dried in a vacuum oven at 70 ° C. for 10 hours, through a roll heated to 50 ℃ by rolling under a pressure of 15MPa, and the final thickness (current collector + active material layer) 57.7㎛, the loading amount of the active material layer was prepared 147.1mg / 25cm 2 of the negative electrode (the secondary battery electrode).
실험예 1: 방전 C Rate 에 따른 방전 용량 평가EXPERIMENTAL EXAMPLE 1 Evaluation of Discharge Capacity According to Discharge C Rate
실시예 1, 2 및 비교예 1, 2에서 제조된 리튬 이차전지를 방전 C-Rate별로 평가한 결과를 도 1에 나타내었다. 이 때, 충전 C-Rate는 0.1C로 고정하였으며, 방전 C-Rate를 증가시키면서, 방전 용량을 측정하였다. The results of evaluating the lithium secondary batteries manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 by discharge C-Rate are shown in FIG. At this time, the charge C-Rate was fixed at 0.1 C, and the discharge capacity was measured while increasing the discharge C-Rate.
그 결과, 비교예 1, 2에 비해 실시예 1, 2의 방전 C-Rate 별 방전 용량이 확연히 덜 감소하는 것을 알 수 있다. As a result, it can be seen that the discharge capacity by the discharge C-Rate of Examples 1 and 2 is significantly less than that of Comparative Examples 1 and 2.
실험예 2: 전극 만충 두께 평가Experimental Example 2: Evaluation of electrode full thickness
실시예 1, 2 및 비교예 1, 2에서 제조된 리튬 이차전지를 정전류/정전압(CC/CV) 조건에서 (전지용량 3.4 mAh)를 1C의 정전류(CC)로 충전하고, 이후 정전압(CV)으로 충전전류가 0.17 mAh가 될 때까지 충전 후. 1C의 정전류로 1.5V가 될 때까지 방전하여 30 사이클을 진행하였다. 이 후, 만충전 상태의 전지를 분해하여 음극 두께를 측정하여, 사이클 전의 초기 두께와 비교하여, 전극 두께 증가분을 표 1 및 도 2에 나타내었다.The lithium secondary batteries manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 were charged at a constant current (CC) of 1 C under a constant current / constant voltage (CC / CV) condition (battery capacity of 3.4 mAh) After charging until the charge current becomes 0.17 mAh. And discharged at a constant current of 1 C until the voltage reached 1.5 V, followed by 30 cycles. Thereafter, the battery in a fully charged state was disassembled to measure the thickness of the negative electrode, and the electrode thickness increase in comparison with the initial thickness before the cycle is shown in Table 1 and Fig.
비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2
전극 두께 증가분(%)Increase in electrode thickness (%) 87.087.0 89.089.0 69.969.9 73.773.7
상기 전극 두께 증가분은 아래와 같은 식으로 계산되었다.The electrode thickness increment was calculated as follows.
전극 두께 증가분 = 100×(30 사이클 후 만충전 상태의 전지 내 음극 두께 - 초기 음극 두께)/초기 음극 두께Increase in electrode thickness = 100 占 (negative electrode thickness in full charge state after 30 cycles - initial negative electrode thickness) / initial negative electrode thickness
결과적으로, 비교예 1 및 2에 비해 실시예 1 및 2의 전극 두께 변화가 더 적은 것을 알 수 있다.As a result, it can be seen that the electrode thickness variations of Examples 1 and 2 are smaller than those of Comparative Examples 1 and 2.

Claims (24)

  1. 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 공중합체가 서로 가교된 이차전지 전극용 바인더.A binder for a secondary battery electrode in which a copolymer comprising a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate is crosslinked with each other.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리비닐알코올 유래의 단위는 하기 화학식 1의 단위를 포함하며,Wherein the polyvinyl alcohol-derived unit comprises a unit represented by the following formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018015575-appb-I000005
    Figure PCTKR2018015575-appb-I000005
    상기 이온화 치환된 아크릴레이트 유래의 단위는 하기 화학식 2의 단위를 포함하며,Wherein the unit derived from the ionized substituted acrylate comprises a unit represented by the following formula (2)
    [화학식 2](2)
    Figure PCTKR2018015575-appb-I000006
    Figure PCTKR2018015575-appb-I000006
    상기 화학식 2에서, R은 각각 독립적으로 Na, Li 및 K로 이루어진 군에서 선택된 적어도 하나 이상의 금속 양이온인 이차전지 전극용 바인더.Wherein R is independently at least one metal cation selected from the group consisting of Na, Li and K. In the binder for a secondary battery electrode,
  3. 청구항 2에 있어서,The method of claim 2,
    상기 공중합체는 상기 화학식 1의 단위를 2000개 내지 3000개 포함하며, 상기 화학식 2의 단위를 1000개 내지 2000개 포함하는 이차전지 전극용 바인더.Wherein the copolymer comprises 2000 to 3000 units of the formula 1 and 1000 to 2000 units of the unit of the formula 2. 2. A binder for a secondary battery electrode,
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위가 6:4 내지 8:2의 중량비로 포함되는 이차전지 전극용 바인더.Wherein the copolymer comprises a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate in a weight ratio of 6: 4 to 8: 2.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 이온화 치환된 아크릴레이트는 소듐 아크릴레이트 및 리튬 아크릴레이트로 이루어진 군에서 선택된 적어도 하나 이상의 염인 이차전지 전극용 바인더.Wherein the ionized substituted acrylate is at least one salt selected from the group consisting of sodium acrylate and lithium acrylate.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하여 형성된 블록 공중합체인 이차전지 전극용 바인더.Wherein the copolymer is a block copolymer formed of a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 공중합체는 중량평균분자량이 100,000 내지 500,000인 이차전지 전극용 바인더.Wherein the copolymer has a weight average molecular weight of 100,000 to 500,000.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 바인더는 에스테르 구조(-COO-)를 포함하는 이차전지 전극용 바인더.Wherein the binder comprises an ester structure (-COO-).
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 공중합체 내에서,Within the copolymer,
    상기 폴리비닐알코올 유래의 단위를 제외한 단위들 중 상기 이온화 치환된 아크릴레이트 유래의 단위의 몰분율은 98몰% 내지 100몰%인, 이차전지 전극용 바인더.Wherein the molar fraction of units derived from the ionized substituted acrylate among the units excluding the units derived from polyvinyl alcohol is 98 mol% to 100 mol%.
  10. 전극 활물질, 도전재, 공중합체, 가교제 및 용매를 포함하며,An electrode active material, a conductive material, a copolymer, a cross-linking agent, and a solvent,
    상기 공중합체는 폴리비닐알코올 유래의 단위 및 이온화 치환된 아크릴레이트 유래의 단위를 포함하는 이차전지 전극용 조성물.Wherein the copolymer comprises a unit derived from polyvinyl alcohol and a unit derived from ionized substituted acrylate.
  11. 청구항 10에 있어서,The method of claim 10,
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018015575-appb-I000007
    Figure PCTKR2018015575-appb-I000007
    상기 이온화 치환된 아크릴레이트 유래의 단위는 하기 화학식 2의 단위를 포함하며,Wherein the unit derived from the ionized substituted acrylate comprises a unit represented by the following formula (2)
    [화학식 2](2)
    Figure PCTKR2018015575-appb-I000008
    Figure PCTKR2018015575-appb-I000008
    상기 화학식 2에서, R은 각각 독립적으로 Na, Li 및 K로 이루어진 군에서 선택된 적어도 하나 이상의 금속 양이온인 이차전지 전극용 조성물.Wherein R is independently at least one metal cation selected from the group consisting of Na, Li and K. In the composition for a secondary battery electrode,
  12. 청구항 11에 있어서,The method of claim 11,
    상기 공중합체는 상기 화학식 1의 단위를 2000개 내지 3000개 포함하며, 상기 화학식 2의 단위를 1000개 내지 2000개 포함하는 이차전지 전극용 조성물.Wherein the copolymer comprises 2000 to 3000 units of the formula 1 and 1000 to 2000 units of the formula 2.
  13. 청구항 10에 있어서,The method of claim 10,
    상기 이온화 치환된 아크릴레이트는 소듐 아크릴레이트 및 리튬 아크릴레이트로 이루어진 군에서 선택된 적어도 하나 이상의 염인 이차전지 전극용 조성물.Wherein the ionized substituted acrylate is at least one salt selected from the group consisting of sodium acrylate and lithium acrylate.
  14. 청구항 10에 있어서,The method of claim 10,
    상기 가교제는 디글리시딜 에테르, 비스페놀 A 디글리시딜 에테르, 1,4-부탄디올 디글리시딜 에테르 및 에틸렌 글라이콜 디글리시딜 에테르로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지 전극용 조성물.Wherein the crosslinking agent is at least one selected from the group consisting of diglycidyl ether, bisphenol A diglycidyl ether, 1,4-butanediol diglycidyl ether and ethylene glycol diglycidyl ether. .
  15. 청구항 10에 있어서,The method of claim 10,
    상기 가교제의 분자량은 300g/mol 내지 1,000g/mol인 이차전지 전극용 조성물.And the molecular weight of the crosslinking agent is 300 g / mol to 1,000 g / mol.
  16. 청구항 10에 있어서,The method of claim 10,
    상기 가교제와 상기 공중합체의 중량비는 1:4 내지 1:20인 이차전지 전극용 조성물.Wherein the weight ratio of the crosslinking agent to the copolymer is from 1: 4 to 1:20.
  17. 전극 활물질, 도전재 및 바인더를 포함하는 활물질층을 포함하며,An active material layer including an electrode active material, a conductive material, and a binder,
    상기 바인더는 청구항 1 내지 청구항 9 중 어느 한 항에 따른 바인더인 이차전지 전극.The binder is the binder according to any one of claims 1 to 9.
  18. 청구항 17에 있어서,18. The method of claim 17,
    상기 전극 활물질은 연화탄소, 경화탄소, 천연 흑연, 인조흑연, 키시흑연, 열분해 탄소, 액정피치계 탄소섬유, 탄소 미소구체, 액정피치 및 석유와 석탄계 코크스로 이루어진 군에서 선택된 어느 하나 이상의 탄소계 물질을 포함하는 이차 전지 전극.Wherein the electrode active material is at least one selected from the group consisting of softened carbon, hardened carbon, natural graphite, artificial graphite, chitosan graphite, pyrolytic carbon, liquid crystal pitch carbon fiber, carbon microsphere, liquid crystal pitch, And a secondary battery electrode.
  19. 청구항 17에 있어서,18. The method of claim 17,
    상기 바인더는 상기 활물질층 전체 중량을 기준으로 2중량% 내지 3.7중량%로 포함되는 이차전지 전극.Wherein the binder comprises 2% by weight to 3.7% by weight based on the total weight of the active material layer.
  20. 청구항 17에 있어서,18. The method of claim 17,
    상기 전극 활물질은 Si계 물질을 더 포함하는 이차전지 전극.Wherein the electrode active material further comprises a Si-based material.
  21. 청구항 20에 있어서,The method of claim 20,
    상기 Si계 물질은 전극 활물질 전체 중량을 기준으로 5중량% 내지 30중량%로 포함되는 이차전지 전극.Wherein the Si-based material is contained in an amount of 5% by weight to 30% by weight based on the total weight of the electrode active material.
  22. 청구항 10 내지 16 중 어느 한 항의 이차전지 전극용 조성물을 집전체 상에 도포하고 건조하는 단계; 및Applying and drying the composition for a secondary battery electrode according to any one of claims 10 to 16 onto a current collector; And
    상기 조성물이 도포된 집전체를 열처리하는 단계를 포함하는 이차전지 전극 제조 방법.And heat treating the current collector coated with the composition.
  23. 청구항 22에 있어서,23. The method of claim 22,
    상기 열처리는 90℃ 내지 120℃로 열처리하는 것인 이차전지 전극 제조 방법.Wherein the heat treatment is performed at a temperature of 90 to 120 캜.
  24. 양극; 음극; 상기 양극 및 음극 사이에 개재되는 분리막; 및 전해액을 포함하고,anode; cathode; A separator interposed between the anode and the cathode; And an electrolytic solution,
    상기 음극은 청구항 17 내지 21 중 어느 한 항에 따른 전극인 이차전지.Wherein the cathode is an electrode according to any one of claims 17 to 21.
PCT/KR2018/015575 2017-12-08 2018-12-07 Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode WO2019112395A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/768,988 US11600823B2 (en) 2017-12-08 2018-12-07 Binder for secondary battery electrode, secondary battery electrode and secondary battery including same, composition for secondary battery electrode for producing said secondary battery electrode, and method for producing said secondary battery electrode
EP18885044.0A EP3703164A4 (en) 2017-12-08 2018-12-07 Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode
CN201880077760.9A CN111436221B (en) 2017-12-08 2018-12-07 Binder and composition for secondary battery electrode, secondary battery, and method for producing secondary battery electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170168639 2017-12-08
KR10-2017-0168639 2017-12-08
KR10-2018-0157151 2018-12-07
KR1020180157151A KR102294865B1 (en) 2017-12-08 2018-12-07 Binder for secondary battery electrode, secondary battery electrode and secondary battery comprising the same, composition for preparing the secondary battery electrode, and method for preparing the secondary battery electrode

Publications (1)

Publication Number Publication Date
WO2019112395A1 true WO2019112395A1 (en) 2019-06-13

Family

ID=66751690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015575 WO2019112395A1 (en) 2017-12-08 2018-12-07 Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode

Country Status (1)

Country Link
WO (1) WO2019112395A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
KR20140139845A (en) * 2013-05-28 2014-12-08 삼성에스디아이 주식회사 Electrode for rechargable lithium battery, and recharable lithium battery including the electrode
KR20150131014A (en) * 2013-03-15 2015-11-24 제온 코포레이션 Binder composition for secondary batteries, slurry composition for secondary batteries, negative electrode for secondary batteries, and secondary battery
KR20170059899A (en) * 2015-11-23 2017-05-31 주식회사 엘지화학 Electrode with Improved Adhesion Property for Lithium Secondary Battery and Preparing Method therof
KR20170076592A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
KR20150131014A (en) * 2013-03-15 2015-11-24 제온 코포레이션 Binder composition for secondary batteries, slurry composition for secondary batteries, negative electrode for secondary batteries, and secondary battery
KR20140139845A (en) * 2013-05-28 2014-12-08 삼성에스디아이 주식회사 Electrode for rechargable lithium battery, and recharable lithium battery including the electrode
KR20170059899A (en) * 2015-11-23 2017-05-31 주식회사 엘지화학 Electrode with Improved Adhesion Property for Lithium Secondary Battery and Preparing Method therof
KR20170076592A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703164A4 *

Similar Documents

Publication Publication Date Title
WO2018093032A1 (en) Lithium-sulfur battery
WO2020050661A1 (en) Negative electrode and secondary battery comprising same
WO2017171274A2 (en) Method for manufacturing electrode slurry for lithium secondary battery
WO2017146426A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising same
WO2019009564A1 (en) Separator, lithium battery employing same, and method for manufacturing separator
WO2018038501A1 (en) Composite cathode active material for lithium ion battery, manufacturing method therefor, and lithium ion battery containing cathode comprising same
WO2019212315A1 (en) Method for manufacturing electrode comprising polymer-based solid electrolyte, and electrode manufactured by method
WO2020091453A1 (en) Lithium secondary battery
US20180294512A1 (en) Binder for secondary battery electrode, secondary battery electrode composition including the same, and secondary battery using the same
WO2022240225A1 (en) Composition for coating separator, method for manufacturing separator by using same, separator, and lithium battery employing same
WO2014129749A1 (en) Si/c composite, method for manufacturing same, and cathode active material including same for lithium secondary battery
US11600823B2 (en) Binder for secondary battery electrode, secondary battery electrode and secondary battery including same, composition for secondary battery electrode for producing said secondary battery electrode, and method for producing said secondary battery electrode
WO2019031766A2 (en) Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same
WO2019245087A1 (en) Lithium secondary battery employing gel-type polymer electrolyte and manufacturing method therefor
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2020159202A1 (en) Anode and lithium secondary battery comprising same
WO2018012881A1 (en) Binder for secondary battery electrode, composition comprising same for secondary battery electrode, and secondary battery using same
WO2017074116A1 (en) Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2019112395A1 (en) Secondary battery electrode binder, secondary battery electrode and secondary battery which comprise same, secondary battery electrode composition for manufacturing secondary battery electrode, and method for manufacturing secondary battery electrode
WO2020009505A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021133027A1 (en) Binder composition for anode, anode, and secondary battery
WO2021241959A1 (en) Free-standing film-type positive electrode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2021034130A1 (en) Ion conductive polymer, and lithium secondary battery electrode and lithium secondary battery which comprise same
WO2018236046A1 (en) Lithium-sulfur battery
WO2020197093A1 (en) Lithium secondary battery including electrolyte additive for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885044

Country of ref document: EP

Effective date: 20200528