WO2019112393A1 - 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔 - Google Patents

에어로겔 전구체 및 이를 이용하여 제조한 에어로겔 Download PDF

Info

Publication number
WO2019112393A1
WO2019112393A1 PCT/KR2018/015571 KR2018015571W WO2019112393A1 WO 2019112393 A1 WO2019112393 A1 WO 2019112393A1 KR 2018015571 W KR2018015571 W KR 2018015571W WO 2019112393 A1 WO2019112393 A1 WO 2019112393A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
precursor
crosslinking agent
alkoxysilane compound
aerogel
Prior art date
Application number
PCT/KR2018/015571
Other languages
English (en)
French (fr)
Inventor
최희정
권세현
장영래
장석훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020527782A priority Critical patent/JP7127934B2/ja
Priority to EP18885470.7A priority patent/EP3722349A4/en
Priority to CN201880074908.3A priority patent/CN111372973A/zh
Priority to US16/767,303 priority patent/US11760647B2/en
Publication of WO2019112393A1 publication Critical patent/WO2019112393A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • C08G65/33351Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a hydrophobic aerogel precursor and an aerogel prepared using the same.
  • Aerogel refers to a material with a porous structure in which the SiO 2 nanostructure is composed of woven and entwined entities such that the air occupies 98% of the total volume.
  • the airgel has a high porosity, pores in the range of 1 to 50 nm, and a high specific surface area, and has super insulation and low dielectric properties and is used as an inorganic insulation material.
  • pre-hydrolyzed TEOS based on tetra ethyl orthosilicate (TEOS) has been used as a precursor of Aerogel.
  • TEOS tetra ethyl orthosilicate
  • Pre-hydrolyzed TEOS with hydrophobic functional groups is applied to produce aerogels with high thermal stability.
  • TEOS or pre-hydrolyzed TEOS is used as a precursor.
  • H 2 O, alcohol and acid / base catalyst are used to adjust the porosity of the wet gel and the surface of the wet gel is hydrophobized.
  • Supercritical drying to produce hydrophobic aerogels the surface modification method of hydrophilic wet gel surface after wet gel manufacturing is a chemical reaction in two phases of liquid / solid, and the reaction efficiency is lower than that in one phase liquid state. Therefore, when the surface of wet gel is subjected to hydrophobic treatment, a large amount of hydrophobizing agent (surface modifier) is used, which results in deterioration of high temperature durability due to the residual hydrophobic agent.
  • TEOS or pre-hydrolyzed TEOS and co-precursors are used to impart hydrophobicity to the pores by using alkyl alkoxy silane.
  • gelation control is difficult, pores are uneven, thermal conductivity is increased, .
  • there is a method of producing an aerogel by preparing a hydrophobic aerogel precursor using a Sol-Gel forming group having a mono-halide reaction site having a hydrophobic functional group as a monomer in polymerization of an aerogel precursor, Mechanical durability is somewhat problematic due to pore defects.
  • Patent Document 1 KR 2007-0022003 A (February 23, 2007)
  • the present invention has been made in order to solve the problems of the prior art, and it is an object of the present invention to prepare a hydrophobic aerogel precursor by introducing a linear silane crosslinking agent containing PEG (polyethylene glycol)
  • the present invention relates to a method for preparing an alkoxysilane compound, comprising: preparing an alkoxysilane compound or a prehydrolyzed alkoxysilane compound;
  • linear silane cross-linking agent comprises a PEG-derived unit.
  • hydrophobic aerogel precursor comprising an alkoxysilane compound derived unit and a PEG-derived unit.
  • hydrophobic silica airgel prepared from the hydrophobic aerogel precursor and a method of making the same.
  • a hydrophobic aerogel precursor can be produced, and a hydrophobic aerogel having uniform pores, improved thermal stability at high temperature, and improved mechanical properties can be produced using the hydrophobic aerogelling precursor.
  • the hydrophobic aerogels can be produced without the surface modification step in the production of the aerogels, the cost of purchasing the expensive surface modifier can be reduced, and the surface modification process The process time can be shortened.
  • the object of the present invention is to prepare an airgel having improved thermal stability and mechanical properties by introducing a linear silane crosslinking agent containing PEG-derived units in the production of a hydrophobic aerogelling precursor.
  • the present invention provides a process for preparing a compound of formula (I), comprising: preparing an alkoxysilane compound or a prehydrolyzed alkoxysilane compound;
  • linear silane cross-linking agent comprises a PEG-derived unit.
  • the hydrophobic aerogel precursor preparation method of the present invention may use an alkoxysilane compound as an aerogel precursor or an alkoxysilane compound obtained by prehydrolyzing the same.
  • the alkoxysilane compounds usable in the present invention include tetra methyl orthosilicate (TMOS), tetra ethyl orthosilicate (TEOS), methyl triethyl orthosilicate silicate, dimethyl diethyl ortho silicate, tetra propyl ortho silicate, tetra isopropyl ortho silicate, tetra butyl ortho silicate, silicate, tetra secondary butyl orthosilicate, tetra tertiarybutyl ortho silicate, tetra hexyl orthosilicate, tetracyclohexyl orthosilicate, tetrabutyl orthosilicate, tetrabutyl orthosilicate, tetrabutyl orthosilicate, tetra cyclohexyl ortho silicate) and tetradodecyl Warsaw silicate, and be at least one selected from the group consisting of (tetra dodecyl ortho
  • the hydrolyzed alkoxysilane compounds usable in the present invention may have a degree of hydration of 50 to 80%, more specifically 65 to 75%.
  • alkoxydisiloxane-based prepolymers which are prehydrolyzed alkoxysilane compounds, are prepared and used as the airgel monomers instead of monomers such as alkoxysilane compounds, the gelation reaction time is easily controlled and the storage stability is excellent, which is preferable .
  • the degree of hydration when the degree of hydration is less than the above range, the sol-gel reaction does not occur smoothly, resulting in a problem that the molecular weight is lowered and the stability is lowered. If the degree of hydration is above the range, the crosslinking density can not be controlled and the specific surface area of the airgel is low There may be a problem that the pore area is reduced.
  • polyethoxydisiloxane (PEDS-P x ) can be prepared through hydrolysis and condensation reaction as shown in the following reaction formula (1).
  • n is the number of moles of water used, and n ⁇ 2.
  • PEG polyethylene glycol
  • PEG polyethylene glycol
  • the present invention can use a linear silane crosslinking agent represented by the following formula (1) prepared by the above reaction.
  • n 3 to 24.
  • the linear crosslinking agents include PEG-derived units.
  • hydrophobic functional groups may be imparted to an aerogelling precursor when monomers are added to produce hydrophobic aerogels including hydrophobic pores, and crosslinked hydrophobic aerogels precursors There is an effect that a hydrophobicized airgel having improved high temperature thermal stability and mechanical properties can be produced.
  • the linear silane crosslinking agent of the present invention has a hydrophilic and hydrophobic PEG functional group together with excellent solubility with the sol-gel reaction product and has a hydrophobic pore sufficiently in the airgel due to its large molecular weight compared to other linear silane compounds Thereby producing an aerogel precursor having a high porosity and excellent room temperature / high temperature hydrophobicity.
  • the linear silane crosslinking agent is added in an amount of 0.5 to 20 mol%, more preferably 1.0 to 10 mol%, based on the total molar amount of the alkoxysilane compound or the hydrolyzed alkoxysilane compound.
  • the hydrophobic aerogelling precursor of the present invention has a weight average molecular weight (Mw) of 500 to 6,500 g / mol, more specifically 1,500 to 3,500 g / mol.
  • Weight average molecular weight When the above-mentioned range is satisfied, excellent durability is obtained and mass production is possible, and it can be used for manufacturing aerogels after mass production and storage for a long time.
  • the weight average molecular weight is less than the above range, there is a problem that the wet gel formation time is long and the heat resistance of the airgel is lowered when producing the aerogels. If the weight average molecular weight is more than the above range, the durability of the airgel precursor is deteriorated .
  • hydrophobic aerogelling precursor of the present invention is characterized by containing PEG-derived units in an amount of 0.2 to 10% by weight, more specifically 0.5 to 10% by weight.
  • the amount of the silica gel is less than the above range, there may be a problem that the hydrophobicity is not high during the production of aerogels and the thermal stability and mechanical properties are deteriorated.
  • the amount exceeds the above range, There may be a problem that the gelling reaction is not efficiently performed.
  • the hydrophobic aerogelling precursor of the present invention has a carbon content of 20 wt% or more, more specifically 30 wt% or more.
  • the present invention also provides a hydrophobic aerobic precursor comprising an alkoxysilane compound-derived unit and a PEG-derived unit, which is produced by the above-described method for producing a hydrophobic aerogelling precursor.
  • hydrophobic aerogelling precursor is as discussed in the above-described method for producing a hydrophobic aerogelling precursor.
  • the present invention also provides a process for producing a hydrophobic silica airgel prepared using a hydrophobic aerogelling precursor.
  • a silica sol is prepared by using the hydrophobic aerogel precursor, and then a basic / acidic catalyst is added to perform a gelation reaction to prepare a silica wet gel.
  • the silica gel is selectively aged and then subjected to atmospheric pressure / supercritical drying A hydrophobic silica airgel can be produced.
  • the hydrophobic silica airgel manufacturing method of the present invention uses a hydrophobic aerogelling precursor and is characterized in that it does not include an additional surface modification step in the production of silica airgel.
  • the surface modifier is expensive and the reaction efficiency is not high so that a large amount of the surface modifier is used and in that case the residual surface modifier can also be increased and a large amount of expensive solvent is used to wash the remaining surface modifier, A long time is required for the modification, and the conventional hydrophobic silica aerogel manufacturing method which is subjected to the surface modification step is not good in productivity and economy.
  • the present invention uses the aerogel precursor itself for hydrophobicization and is used in the production of aerogels, it is possible to reduce the cost of purchasing an expensive surface modifying agent and avoid the surface modification process requiring a long time, There is an effect that the time can be shortened.
  • the present invention also provides a hydrophobic silica aerogels comprising hydrophobic aerogelling precursor-derived units comprising the PEG-derived units.
  • the hydrophobic silica aerogels of the present invention are characterized in that the hydrophobicity of the hydrophobic silica aerogels is well maintained to the inner pores, and the high temperature thermal stability and mechanical properties are improved compared to the conventional hydrophobic silica airgel.
  • the hydrophobic silica airgel of the present invention may have a carbon content of at least 11.0 wt%, more specifically at least 12.5 wt%, and a specific surface area of at least 725 m 2 / g, more specifically at least 770 m 2 / g ,
  • the average pore diameter may be 13.7 nm or more
  • the total pore volume may be 3.15 cm 3 / g or more, more specifically 3.35 cm 3 / g or more
  • the compressive strength may be 0.025 MPa or more, more specifically 0.028 MPa or more .
  • a 500 mL reactor was charged with 150 g of TEOS, 51 g of ethanol and 0.04 g of 35% aqueous HCl solution, stirred, and the reaction temperature was increased to 70 ° C.
  • the reaction temperature was maintained at 70 ° C, 19.4 g of acidified distilled water containing 0.02 g of 35% hydrochloric acid aqueous solution was added dropwise over 1 hour, followed by reaction for 8 hours.
  • a mixture of ethanol, distilled water and ammonia water was slowly added to the hydrophobic aerogelling precursor to perform a gelation reaction.
  • the reaction was carried out at room temperature (23 ⁇ 5 ° C), wherein the mixing weight ratio of the hydrophobic aerogel precursor: ethanol: distilled water: ammonia water was 3: 8: 1: 40.1.
  • the mixture was allowed to stand to obtain a wet gel.
  • the obtained wet gel was subjected to supercritical drying under the conditions of 40 DEG C and 80 atm to prepare a hydrophobic aerogel.
  • a 500 mL reactor was charged with 150 g of TEOS and 51 g of ethanol, 3.5 g of linear silane crosslinking agent of Preparation Example 2 (0.5 mol% of TEOS) and 0.04 g of 35% aqueous HCl solution, and stirred to raise the reaction temperature to 70 ° C.
  • the reaction temperature was maintained at 70 ° C, 19.4 g of acidified distilled water containing 0.02 g of 35% hydrochloric acid aqueous solution was added dropwise over 1 hour, followed by reaction for 8 hours.
  • the temperature of the reactor was cooled to room temperature.
  • the cooled reactant was filtered under reduced pressure using a filter to remove impurities to prepare a hydrophobic aerogel precursor.
  • a mixture of ethanol, distilled water and ammonia water was slowly added to the hydrophobic aerogelling precursor to react. At this time, the reaction was carried out at room temperature (23 ⁇ 5 ° C), wherein the mixing weight ratio of the hydrophobic aerogel precursor: ethanol: distilled water: ammonia water was 3: 8: 1: 40.1. After stirring for about 10 minutes, the mixture was allowed to stand to obtain a wet gel. The obtained wet gel was subjected to supercritical drying under the conditions of 40 DEG C and 80 atm to prepare a hydrophobic aerogel.
  • a hydrophobic aerogel precursor and a hydrophobic aerogel were prepared in the same manner as in Example 1, except that 0.35 g (0.05 mol% of the prepolymer prepared in Preparation Example 1) of the linear silane crosslinking agent in Production Example 2 was used .
  • a hydrophobic aerogel precursor and a hydrophobic aerogel were prepared in the same manner as in Example 1, except that 175 g of the linear silane crosslinking agent of Production Example 2 (25 mol% of the prepolymer prepared in Preparation Example 1) was used in Example 1 .
  • a mixture of ethanol, distilled water and ammonia water was slowly added to the hydrophobic aerogelling precursor to react. At this time, the reaction was carried out at room temperature (23 ⁇ 5 ° C), wherein the mixing weight ratio of the hydrophobic aerogel precursor: ethanol: distilled water: ammonia water was 3: 8: 1: 40.1. After stirring for about 10 minutes, the mixture was allowed to stand to obtain a wet gel. The obtained wet gel was subjected to supercritical drying under the conditions of 40 DEG C and 80 atm to prepare a hydrophobic aerogel.
  • Example 1 Pre-hydrolyzed TEOS The linear silane crosslinking agent of Production Example 2 0.5
  • Example 3 Pre-hydrolyzed TEOS The linear silane crosslinking agent of Production Example 2 0.05
  • Example 4 Pre-hydrolyzed TEOS The linear silane crosslinking agent of Production Example 2 25 Comparative Example 1 Pre-hydrolyzed TEOS Chlorotrimethylsilane 5
  • the tap density was analyzed using a tap density meter (TAP-2S, Logan Instruments co.).
  • the specific surface area, average pore diameter and pore volume were analyzed by adsorption / desorption amount of nitrogen with partial pressure (0.11 ⁇ p / po ⁇ 1) using Micrometrics ASAP 2010 instrument.
  • the carbon content was measured using an Eltra Carbon / Sulfur Analyzer (CS-800).
  • the silica airgel of the Examples had an excellent specific surface area and a large total pore volume. Thus, it was predicted that the heat insulating performance was excellent, and the compressive strength was also superior to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 소수성 실리카 에어로겔 전구체 및 이를 이용하여 제조한 소수성 실리카 에어로겔에 관한 것으로서, 본 발명에 의하면 소수성 에어로겔 전구체 제조 시, PEG 유래 단위를 포함하는 선형 실란 가교제를 도입함으로써 고온 열안정성 개선 및 기계적 물성이 향상된 소수성 실리카 에어로겔을 제조할 수 있다.

Description

에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
관련 출원과의 상호 인용
본 출원은 2017년 12월 08일자 한국 특허 출원 10-2017-0167918호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 소수성 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔에 관한 것이다.
Aerogel은 SiO2 나노 구조체가 부직포처럼 성글게 얽혀 이루어져, 공기가 전체 부피의 98 %를 차지하는 다공성 구조를 지닌 물질을 말한다. 상기 에어로겔은 높은 기공율과 1 ~ 50nm 범위의 기공, 높은 비표면적을 가져 초단열 및 저유전 특성을 가지며, 무기 단열재로 사용되고 있다. 최근 Aerogel의 균일한 기공율과 비표면적을 향상하기 위해 TEOS(테트라 에틸 오르소 실리케이트; tetra ethyl ortho silicate)를 기반으로 한 Pre-hydrolyzed TEOS 를 Aerogel의 전구체로 사용하고 있으며, 고온 단열재로써 내구성 향상을 위해 소수화 작용기가 도입된 Pre-hydrolyzed TEOS 를 적용하여 열안정성이 높은 에어로겔을 제조하고 있다.
에어로겔 합성 시, 전구체로 TEOS 혹은 Pre-hydrolyzed TEOS 를 사용하고 있으며 H2O 과 alcohol 그리고 acid/base 촉매를 사용하여 wet gel의 기공율을 조절하고 상기 wet gel 표면을 소수화시키는 표면개질 단계 이후, 상압 건조/초임계 건조를 통해 소수성을 띄는 에어로겔을 제조하고 있다. 하지만 wet gel 제조 후 wet gel 표면을 소수화시키는 표면개질 방법은 liquid/solid의 2 phase 에서 화학반응으로서, 1 phase의 liquid 상태에서 보다 반응 효율이 낮다. 따라서 wet gel의 표면을 소수화 처리 시, 다량의 소수화제(표면개질제)를 사용함으로써 잔류하는 소수화제로 인해 고온 내구성이 떨어지는 단점이 있다.
상기 문제를 해결하고자 TEOS 또는 pre-hydrolyzed TEOS와 co-precursor로써 alkyl alkoxy silane을 사용하여 기공에 소수성을 부여하는 방법이 있으나, gelation control이 어렵고, 기공이 불균일하여 열전도도가 높아지고 열 안정성이 떨어지는 단점이 있다. 이러한 단점을 해결하기 위해 소수화 작용기를 가진 mono-halide reaction site를 가진 Sol-Gel 형성 가능기를 에어로겔 전구체 중합 시, 단량체로 사용하여 소수성의 에어로겔 전구체를 제조하여 에어로겔을 제조하는 방법이 있지만, 에어로겔 내 소수화 기공의 defect으로 인해 기계적 내구성에 다소 문제가 있다.
따라서 본 발명을 통하여, 선형 실란 가교제를 도입한 Pre-hydrolyzed TEOS 전구체를 제조하고, 이를 이용하여 에어로겔을 제조함으로써 열안정성과 물리적 안정성이 높은 에어로겔을 제조할 수 있다.
[선행기술문헌]
(특허문헌 1) KR 2007-0022003 A (2007.02.23)
본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 에어로겔 전구체 제조 시, PEG(polyethylene glycol) 유래 단위를 포함하는 선형 실란 가교제를 도입하여 소수성 에어로겔 전구체를 제조하는 것을 목적으로 한다.
또한, 상기 소수성 에어로겔 전구체를 이용하여 고온 열안정성이 개선되고 기계적 물성이 향상된 소수성 에어로겔을 제조하는 것을 목적으로 한다.
본 발명은 알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물을 준비하는 단계; 및
선형 실란 가교제를 첨가하여 중합시키는 단계를 포함하고,
상기 선형 실란 가교제는 PEG 유래 단위를 포함하는 것인 소수성 에어로겔 전구체 제조방법을 제공한다.
또한, 알콕시 실란 화합물 유래 단위 및 PEG 유래 단위를 포함하는 소수성 에어로겔 전구체를 제공한다.
또한, 상기 소수성 에어로겔 전구체로부터 제조된 소수성 실리카 에어로겔 및 그의 제조방법을 제공한다.
본 발명에 의하면 소수성 에어로겔 전구체를 제조할 수 있으며, 상기 소수성 에어로겔 전구체를 이용하여 기공이 균일하고, 고온 열안정성이 개선되고, 기계적 물성이 향상된 소수성 에어로겔을 제조할 수 있다.
본 발명에 소수성 에어로겔 전구체를 사용하면 에어로겔 제조 시 표면개질 단계를 거치지 않고 소수성 에어로겔을 제조할 수 있어, 고가의 표면개질제 구입 비용을 절감할 수 있고, 장 시간이 요구되었던 표면개질 공정을 거치지 않아 총 공정 시간을 단축시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 소수성 에어로겔 전구체 제조 시, PEG 유래 단위를 포함하는 선형 실란 가교제를 도입함으로써 고온 열안정성 개선 및 기계적 물성이 향상된 에어로겔을 제조하는 것을 목적으로 한다.
이에 본 발명은 알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물을 준비하는 단계; 및
선형 실란 가교제를 첨가하여 중합시키는 단계를 포함하고,
상기 선형 실란 가교제는 PEG 유래 단위를 포함하는 것인 소수성 에어로겔 전구체 제조방법을 제공한다.
이하, 상기 본 발명의 소수성 에어로겔 전구체 제조방법을 상세히 설명하기로 한다.
본 발명의 소수성 에어로겔 전구체 제조방법은 에어로겔 전구체로서 알콕시 실란 화합물 또는 이를 전가수분해시킨 알콕시 실란 화합물을 사용할 수 있다.
구체적으로 본 발명에서 사용할 수 있는 알콕시 실란 화합물은 테트라 메틸 오르소 실리케이트(tetra methyl ortho silicate; TMOS), 테트라 에틸 오르소 실리케이트(tetra ethyl ortho silicate; TEOS), 메틸 트리에틸 오르소 실리케이트(methyl triethyl ortho silicate), 디메틸 디에틸 오르소 실리케이트(dimethyl diethyl ortho silicate), 테트라 프로필 오르소 실리케이트(tetra propyl ortho silicate), 테트라 이소프로필 오르소 실리케이트(tetra isopropyl ortho silicate), 테트라 부틸 오르소 실리케이트 (tetra butyl ortho silicate), 테트라 세컨드리부틸 오르소 실리케이트(tetra secondarybutyl ortho silicate), 테트라 터셔리부틸 오르소 실리케이트 (tetra tertiarybutyl ortho silicate), 테트라 헥실 오르소 실리케이트(tetra hexyl ortho silicate), 테트라 시클로헥실 오르소 실리케이트(tetra cyclohexyl ortho silicate) 및 테트라 도데실 오르소 실리케이트(tetra dodecyl ortho silicate)로 이루어진 군으로부터 선택된 1 종 이상일 수 있으며, 구체적으로는 테트라 에틸 오르소 실리케이트(tetra ethyl ortho silicate; TEOS)일 수 있다.
한편, 본 발명에서 사용할 수 있는 전가수분해된 알콕시 실란 화합물은 수화도가 50 내지 80 %, 보다 구체적으로는 65 내지 75 % 인 것을 사용할 수 있다. 에어로겔 단량체로서 알콕시 실란 화합물과 같은 모노머를 사용하는 것보다 전가수분해된 알콕시 실란 화합물인 알콕시 디실록산계 프레폴리머를 제조하여 사용하는 경우, 겔화 반응 시간 제어가 용이하며, 저장 안정성이 우수하여 바람직하다.
다만, 수화도가 상기 범위 미만인 경우, 졸겔 반응이 원활하게 일어나지 않아 분자량이 낮아지고 안정성이 낮아지는 문제가 있을 수 있으며, 상기 범위를 초과하는 경우, 가교 밀도가 조절되지 않아 에어로겔의 비표면적이 낮아지고 기공 면적이 줄어드는 문제가 있을 수 있다.
한편, 상기 알콕시 실란 화합물로서 테트라에톡시실란을 사용할 경우, 하기 반응식 1과 같은 가수분해 및 축합반응을 통해 폴리에톡시디실록산(PEDS-Px)을 제조할 수 있다.
[반응식 1]
Si(OC2H5)4 + nH2O -> PEDS-Px + 용매(C2H5OH)
(상기 반응식 1에서, n은 사용되는 물의 몰수로, n<2이다.)
물의 몰수가 n=2인 경우 SiO2의 실리카 입자가 생성되고 n<2인 경우 알콕시 디실록산계 프레폴리머로서 폴리에톡시디실록산(PEDS-Px)이 제조될 수 있다.
한편, 상기 수화도는 n=2를 수화도 100 %로 정의한다. 예를 들어 n=1은 수화도 50 %를 의미하며, 투입되는 물의 몰수에 비례하여 수화도를 계산할 수 있다.
상기 PEG 유래 단위를 포함하는 선형 실란 가교제는 하기 반응식 2와 같이 이소시아네이트 실란과 폴리에틸렌글리콜(n=3 내지 24)을 반응시켜 제조할 수 있다. 본 발명의 선형 실란 가교제를 제조하는데 있어 PEG(Polyethylene Glycol)는 분자량에 따라 다양하게 사용 가능하다.
[반응식 2]
Figure PCTKR2018015571-appb-I000001
본 발명은 상기 반응에 의해 제조된 하기 화학식 1 로 표시되는 선형 실란 가교제를 사용할 수 있다.
[화학식 1]
Figure PCTKR2018015571-appb-I000002
(상기 화학식 1에서 n은 3 내지 24이다.)
상기 선형 가교제들은 PEG 유래 단위를 포함하는 것으로서, 에어로겔 전구체 제조 시, 단량체로 첨가하는 경우 에어로겔 전구체에 소수성 작용기를 부여하여 소수성 기공을 포함하는 소수화된 에어로겔을 제조할 수 있으며, 소수화된 에어로겔 전구체 간 가교 반응으로 고온 열안정성 및 기계적 물성이 향상된 소수화된 에어로겔을 제조할 수 있는 효과가 있다.
보다 구체적으로, 본 발명의 선형 실란 가교제는 분자 내에 친수성과 소수성을 함께 가지는 PEG 작용기를 가지고 있어서 졸-겔 반응물과 상용성이 우수하고 다른 선형 실란 화합물에 비해 큰 분자량으로 인해 에어로겔 내에 충분한 소수성 기공을 생성시켜 높은 기공율과 상온/고온 소수성이 우수한 에어로겔 전구체를 제조할 수 있다.
한편, 상기 선형 실란 가교제는 상기 알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물 총 몰수 대비 0.5 내지 20 몰%, 더 구체적으로는 1.0 내지 10 몰% 첨가하는 것을 특징으로 한다.
상기 범위 미만으로 첨가할 경우, 실리카 에어로겔 제조 시 소수화도가 높지 못하여 에어로겔의 열 안정성 및 기계적 물성이 저하되는 문제가 있을 수 있으며, 상기 범위를 초과하여 첨가할 경우, 에어로겔 제조 시 겔화 반응하는 실리카 단위 비율이 적어 겔화 반응이 효율적으로 이루어지지 않는 문제가 있을 수 있다.
본 발명의 상기 소수성 에어로겔 전구체의 중량평균분자량은(Mw) 500 내지 6,500 g/mol, 보다 구체적으로는 1,500 내지 3,500 g/mol 인 것을 특징으로 한다. 중량평균분자량 상기 범위를 만족할 경우, 내구성이 우수하여 양산이 가능하고, 양산 후 장기간 보관하여 에어로겔 제조에 이용할 수 있다.
한편, 중량평균분자량이 상기 범위 미만인 경우, 에어로겔 제조 시 습윤겔 형성 시간이 길어지고 에어로겔의 내열성이 저하되는 문제가 있을 수 있으며, 상기 범위를 초과하는 경우, 에어로겔 전구체의 내구성이 저하되는 문제가 있을 수 있다.
또한, 본 발명의 상기 소수성 에어로겔 전구체는 PEG 유래 단위를 0.2 내지 10 중량%, 보다 구체적으로는 0.5 내지 10 중량% 포함하는 것을 특징으로 한다.
상기 범위 미만으로 포함된 경우, 에어로겔 제조시 소수화도가 높지 못하여 열안정성 및 기계적 물성이 저하되는 문제가 있을 수 있으며, 상기 범위를 초과하여 포함된 경우, 실리카 에어로겔 제조 시 겔화 반응하는 실리카 단위 비율이 적어 겔화 반응이 효율적으로 이루어지지 않는 문제가 있을 수 있다.
또한, 본 발명의 상기 소수성 에어로겔 전구체는 탄소함량이 20 중량% 이상, 보다 구체적으로는 30 중량% 이상인 것을 특징으로 한다.
탄소함량이 상기 범위 미만인 경우, 실리카 에어로겔 제조 시 소수성이 높지 못하여 열안정성 및 기계적 물성이 저하되는 문제가 있을 수 있으며, 상기 범위를 초과하는 경우, 실리카 에어로겔 제조 시 겔화 반응하는 실리카 단위 비율이 적어 겔화 반응이 효율적으로 이루어지지 않는 문제가 있을 수 있다.
또한, 본 발명은 상기 소수성 에어로겔 전구체 제조방법에 의해 제조된, 알콕시 실란 화합물 유래 단위 및 PEG 유래 단위를 포함하는 소수성 에어로겔 전구체를 제공한다.
상기 소수성 에어로겔 전구체의 구체적인 특징은 상기 소수성 에어로겔 전구체 제조방법에서 검토한 바와 같다.
또한, 본 발명은 소수성 에어로겔 전구체를 사용하여 제조한 소수성 실리카 에어로겔 제조방법을 제공한다.
본 발명은 상기 소수성 에어로겔 전구체를 사용하여 실리카 졸을 제조한 뒤, 염기성/산성 촉매를 첨가하여 겔화 반응시켜 실리카 습윤겔을 제조한 뒤, 선택적으로 숙성 단계를 거친 뒤, 상압/초임계 건조를 통해 소수성 실리카 에어로겔을 제조할 수 있다.
본 발명의 소수성 실리카 에어로겔 제조방법은 소수성 에어로겔 전구체를 사용하는 바, 실리카 에어로겔 제조 시, 추가의 표면개질 단계를 포함하지 않는 것을 특징으로 한다.
표면개질제는 고가이고, 반응 효율이 높지 않아 다량의 표면개질제가 사용되고, 그 경우 잔류하는 표면개질제도 증가할 수 있으며, 상기 잔류하는 표면개질제를 세척하는 데에도 값비싼 다량의 용매가 사용되며, 표면개질에 긴 시간이 필요한 바, 표면개질 단계를 거치는 종래 소수성 실리카 에어로겔 제조방법은 생산성 및 경제성이 좋지 않았다.
본 발명은 에어로겔 전구체 자체를 소수화시켜 에어로겔 제조에 사용하므로, 추가의 표면개질 단계를 거치지 않는 바, 고가의 표면개질제 구입 비용을 절감할 수 있고, 장 시간이 요구되었던 표면개질 공정을 거치지 않아 총 공정 시간을 단축시킬 수 있는 효과가 있다.
또한, 본 발명은 상기 PEG 유래 단위를 포함하는 소수성 에어로겔 전구체 유래 단위를 포함하는 소수성 실리카 에어로겔을 제공한다. 본 발명의 소수성 실리카 에어로겔은 내부 기공까지 소수성이 잘 유지되는 바, 종래 소수성 실리카 에어로겔 대비 고온 열안정성 및 기계적 물성이 향상된 것을 특징으로 한다.
구체적으로, 본 발명의 소수성 실리카 에어로겔은 탄소함량이 11.0 중량% 이상, 보다 구체적으로는 12.5 중량% 이상일 수 있으며, 비표면적은 725 m2/g 이상, 보다 구체적으로는 770 m2/g 이상일 수 있고, 평균 기공 직경은 13.7 nm 이상일 수 있으며, 총 기공 부피는 3.15 cm3/g 이상, 보다 구체적으로는 3.35 cm3/g이상일 수 있고, 압축강도는 0.025 Mpa 이상, 보다 구체적으로는 0.028 Mpa 이상일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1 : 전가수분해된 알콕시 실란 화합물(알콕시 디실록산계 프레폴리머) 제조
500 mL 반응기에 TEOS 150 g과 에탄올 51g 그리고 35 % HCl 수용액 0.04 g을 투입한 후 교반시키며, 70 ℃까지 반응온도를 높였다. 반응 온도가 70 ℃로 유지되면 35 % 염산 수용액 0.02 g을 투입한 산성화된 증류수 19.4 g을 1 시간에 결쳐서 천천히 적가시킨 후 8 시간 반응을 실시하였다.
반응 종결 후 반응기의 온도를 실온까지 냉각시켰다. 냉각된 반응물을 필터를 이용하여 감압 여과시켜 불순물을 제거하여 75 % 가수분해된 에톡시 디실록산계 프레폴리머(Pre-hydrolyzed TEOS)를 제조하였다
제조예 2 : PEG(polyethylene glycol) 유래 단위를 포함하는 선형 실란 가교제 제조
[반응식 2]
Figure PCTKR2018015571-appb-I000003
1000 ml 플라스크에 이소시아네이트 실란(KBE-9007, 일본 ShinEtsu사) 19.79 g, 폴리에틸렌글리콜 PEG-400(한국, 덕산약품공업, n=8.2~9.1) 12.80 g를 첨가하고, KBE-9007 대비 3 mol%가 되도록 DBTDL(Dibutyltin dilaurate) 0.57 g을 넣고, THF(테트라하이드로퓨란) 300 g으로 실온에서 희석하여 PEG(polyethylene glycol) 유래 단위를 포함하는 선형 실란 가교제를 제조하였다. TLC(Thin Layer Chromatography)로 반응물이 모두 소모된 것이 확인될 때까지 상온에서 교반한 후, 감압하여 반응 용매를 모두 제거하였으며, 다이클로로메테인 : 메틸알코올 = 30 : 1의 전개액 조건 하에서 컬럼 크로마토그래피를 통해 순도 95 % 이상의 액상 생성물 28 g을 91 %의 수율로 수득하였다.
실시예 1
상기 제조예 1에서 제조한 프레폴리머 용액을 0 ℃로 냉각시킨 후 제조예 2의 선형 실란 가교제 3.5g(제조예 1에서 제조한 프레폴리머의 0.5 몰%)을 에탄올 40 g에 희석시켜 1 시간에 걸쳐 천천히 적가한 후, 4 시간 동안 격렬하게 교반시켜 반응시켰다. 반응 종결 후 반응기의 온도를 실온까지 냉각시켜 소수성 에어로겔 전구체를 제조하였다.
상기 소수성 에어로겔 전구체에 에탄올과 증류수 그리고 암모니아수를 혼합한 것을 서서히 첨가하여 겔화 반응시켰다. 이때 반응은 실온(23±5℃)에서 수행하였으며, 이때 소수성 에어로겔 전구체:에탄올:증류수:암모니아수의 혼합 중량비는 3:8:1:40.1이었다. 10 분 정도 교반한 후 정치하여 습윤겔을 수득하였다. 수득된 습윤겔에 대해 40 ℃, 80 기압의 조건으로 초임계 건조를 수행하여 소수성 에어로겔을 제조하였다.
실시예 2
500 mL 반응기에 TEOS 150 g과 에탄올 51g, 제조예 2의 선형 실란 가교제 3.5g(TEOS 의 0.5 몰%) 그리고 35 % HCl 수용액 0.04 g을 투입한 후 교반시키며, 70 ℃까지 반응온도를 높였다. 반응 온도가 70 ℃로 유지되면 35 % 염산 수용액 0.02 g을 투입한 산성화된 증류수 19.4 g을 1 시간에 결쳐서 천천히 적가시킨 후 8 시간 반응을 실시하였다. 반응 종결 후 반응기의 온도를 실온까지 냉각시켰다. 냉각된 반응물을 필터를 이용하여 감압여과시켜 불순물을 제거하여 소수성 에어로겔 전구체를 제조하였다.
상기 소수성 에어로겔 전구체에 에탄올과 증류수 그리고 암모니아수를 혼합한 것을 서서히 첨가하여 반응시켰다. 이때 반응은 실온(23±5℃)에서 수행하였으며, 이때 소수성 에어로겔 전구체:에탄올:증류수:암모니아수의 혼합 중량비는 3:8:1:40.1이었다. 10 분 정도 교반한 후 정치하여 습윤겔을 수득하였다. 수득된 습윤겔에 대해 40 ℃, 80 기압의 조건으로 초임계 건조를 수행하여 소수성 에어로겔을 제조하였다.
실시예 3
상기 실시예 1에서 제조예 2의 선형 실란 가교제를 0.35g(제조예 1에서 제조한 프레폴리머의 0.05 몰%) 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 소수성 에어로겔 전구체 및 소수성 에어로겔을 제조하였다.
실시예 4
상기 실시예 1에서 제조예 2의 선형 실란 가교제를 175 g(제조예 1에서 제조한 프레폴리머의 25 몰%) 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 소수성 에어로겔 전구체 및 소수성 에어로겔을 제조하였다.
비교예 1
상기 제조예 1에서 제조한 프레폴리머 용액을 0 ℃로 냉각시킨 후 chlorotrimethylsilane 3.9g(TEOS 의 5 몰%)을 에탄올 40 g에 희석시켜 1 시간에 걸쳐 천천히 적가한 후, 4 시간 동안 격렬하게 교반시켜 반응시켰다. 반응 종결 후 반응기의 온도를 실온까지 냉각시켜 소수성 에어로겔 전구체를 제조하였다.
상기 소수성 에어로겔 전구체에 에탄올과 증류수 그리고 암모니아수를 혼합한 것을 서서히 첨가하여 반응시켰다. 이때 반응은 실온(23±5℃)에서 수행하였으며, 이때 소수성 에어로겔 전구체:에탄올:증류수:암모니아수의 혼합 중량비는 3:8:1:40.1이었다. 10 분 정도 교반한 후 정치하여 습윤겔을 수득하였다. 수득된 습윤겔에 대해 40 ℃, 80 기압의 조건으로 초임계 건조를 수행하여 소수성 에어로겔을 제조하였다.
에어로겔 전구체 가교제 선형 실란 가교제 첨가량*(몰%)
실시예 1 Pre-hydrolyzed TEOS 제조예 2의 선형 실란 가교제 0.5
실시예 2 TEOS 제조예 2의 선형 실란 가교제 0.5
실시예 3 Pre-hydrolyzed TEOS 제조예 2의 선형 실란 가교제 0.05
실시예 4 Pre-hydrolyzed TEOS 제조예 2의 선형 실란 가교제 25
비교예 1 Pre-hydrolyzed TEOS 클로로트리메틸실란 5
(* 선형 실란 가교제 첨가량(몰%)=[(첨가한 선형 실란 가교제의 몰 수)/(알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물 몰수)] x 100%)
실험예
상기 실시예 및 비교예에서 제조한 각 실리카 에어로겔에 대하여 하기 물성을 측정하여 그 결과를 하기 표 2에 나타내었다.
1) 탭 밀도
탭 밀도는 탭 밀도 측정기 (TAP-2S, Logan Instruments co.)를 이용하여 분석하였다.
2) 비표면적(BET 표면적, m2/g), 평균 기공 직경(Dp, nm) 및 총 기공 부피 (Vp, cm3/g)
비표면적, 평균 기공 직경 및 기공 부피는 Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량으로 분석하였다.
3) 탄소함량(carbon content, wt%)
탄소함량은 Eltra의 Carbon/Sulfur Analyzer (CS-800)를 이용하여 측정하였다.
4) 압축강도(Mpa)
UTM(H10K-C, Hounsfield, U.K)를 사용하여 동일한 높이 (12 mm)로 표면을 연마한 원통형 시편들에 대하여 5 mm/min의 down cross head Speed로 일축가압(uniaxial pressing)에 의한 변형 정도로 평가하였다.
탭 밀도(g/ml) 에어로겔 탄소함량(중량%) 비표면적(m2/g) 평균 기공직경 (nm) 총 기공부피(cm3/g) 압축강도(Mpa)
실시예 1 0.13 13.1 796 14.0 3.40 0.030
실시예 2 0.13 12.9 783 13.9 3.39 0.029
실시예 3 0.13 12.0 734 13.8 3.18 0.026
실시예 4 0.14 15.0 728 14.1 3.24 0.027
비교예 1 0.12 10.0 724 13.6 3.13 0.024
상기 표 1에서 보는 바와 같이, 실시예의 실리카 에어로겔은 비표면적이 우수하고, 총 기공 부피가 큰 것으로 보아 단열 성능이 우수할 것을 예상할 수 있었고, 압축강도 역시 비교예 대비 우수한 것을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물을 준비하는 단계; 및
    선형 실란 가교제를 첨가하여 중합시키는 단계를 포함하고,
    상기 선형 실란 가교제는 PEG(폴리에틸렌 글리콜; polyethylene glycol) 유래 단위를 포함하는 것인 소수성 에어로겔 전구체 제조방법.
  2. 제1항에 있어서,
    상기 선형 실란 가교제는 하기 화학식 1로 표시되는 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
    [화학식 1]
    Figure PCTKR2018015571-appb-I000004
    (상기 화학식 1에서 n은 3 내지 24이다.)
  3. 제1항에 있어서,
    상기 선형 실란 가교제는 상기 알콕시 실란 화합물 또는 전가수분해된 알콕시 실란 화합물 총 몰수 대비 0.5 내지 20 몰% 첨가하는 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
  4. 제1항에 있어서,
    상기 소수성 에어로겔 전구체의 중량평균분자량은(Mw) 500 내지 6,500 g/mol 인 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
  5. 제1항에 있어서,
    상기 소수성 에어로겔 전구체는 PEG 유래 단위를 0.2 내지 10 중량% 포함하는 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
  6. 제1항에 있어서,
    상기 소수성 에어로겔 전구체는 탄소함량이 20 중량% 이상인 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
  7. 제1항에 있어서,
    상기 전가수분해된 알콕시 실란 화합물의 수화도는 50 내지 80 % 인 것을 특징으로 하는 소수성 에어로겔 전구체 제조방법.
  8. 알콕시 실란 화합물 유래 단위 및 PEG 유래 단위를 포함하는 소수성 에어로겔 전구체.
  9. 제1항에 있어서,
    상기 소수성 에어로겔 전구체는 PEG 유래 단위를 0.2 내지 10 중량% 포함하는 것을 특징으로 하는 소수성 에어로겔 전구체.
  10. 제8항에 있어서,
    상기 소수성 에어로겔 전구체는 탄소함량이 20 중량% 이상인 것을 특징으로 하는 소수성 에어로겔 전구체.
  11. 제1항 내지 제7항에서 제조된 소수성 에어로겔 전구체를 사용하여 제조한 소수성 실리카 에어로겔 제조방법.
  12. 제11항에 있어서,
    상기 소수성 실리카 에어로겔 제조방법은 표면개질 단계를 수행하지 않는 것을 특징으로 하는 소수성 실리카 에어로겔 제조방법.
  13. 제8항 내지 제10항의 소수성 에어로겔 전구체 유래 단위를 포함하는 소수성 실리카 에어로겔.
PCT/KR2018/015571 2017-12-08 2018-12-07 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔 WO2019112393A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020527782A JP7127934B2 (ja) 2017-12-08 2018-12-07 エアロゲル前駆体およびそれを用いて製造したエアロゲル
EP18885470.7A EP3722349A4 (en) 2017-12-08 2018-12-07 PRECURSOR OF AEROGEL AND AEROGEL PRODUCED BY THE LATTER
CN201880074908.3A CN111372973A (zh) 2017-12-08 2018-12-07 气凝胶前体和使用该气凝胶前体制备的气凝胶
US16/767,303 US11760647B2 (en) 2017-12-08 2018-12-07 Aerogel precursor and aerogel produced using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0167918 2017-12-08
KR1020170167918A KR102176632B1 (ko) 2017-12-08 2017-12-08 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Publications (1)

Publication Number Publication Date
WO2019112393A1 true WO2019112393A1 (ko) 2019-06-13

Family

ID=66751617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015571 WO2019112393A1 (ko) 2017-12-08 2018-12-07 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Country Status (6)

Country Link
US (1) US11760647B2 (ko)
EP (1) EP3722349A4 (ko)
JP (1) JP7127934B2 (ko)
KR (1) KR102176632B1 (ko)
CN (1) CN111372973A (ko)
WO (1) WO2019112393A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160555B1 (ko) * 2017-11-13 2020-09-28 주식회사 엘지화학 폐용매 정제방법
WO2024117202A1 (ja) * 2022-12-02 2024-06-06 東洋製罐グループホールディングス株式会社 多孔質体および多孔質体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070022003A (ko) 2004-01-06 2007-02-23 아스펜 에어로겔, 인코포레이티드 실리콘 결합 선형 중합체를 함유하는 오르모실 에어로겔
KR20070022004A (ko) * 2004-01-06 2007-02-23 아스펜 에어로겔, 인코포레이티드 규소 결합된 폴리메타크릴레이트를 함유하는 오르모실에어로겔
KR20120070948A (ko) * 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
KR20170107739A (ko) * 2016-03-16 2017-09-26 주식회사 엘지화학 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775669B1 (en) 1995-11-16 2001-05-02 Texas Instruments Incorporated Low volatility solvent-based precursors for nanoporous aerogels
JP2007519780A (ja) 2004-01-06 2007-07-19 アスペン エアロゲルズ,インコーポレイティド ケイ素結合ポリメタクリレートを含有する有機変性シリカエアロゲル
US20100155644A1 (en) * 2005-01-05 2010-06-24 Aspen Aerogels, Inc. Aerogels containing silicon bonded polymers
FR2969313B1 (fr) 2010-12-16 2012-12-21 Essilor Int Element optique comprenant un aerogel sans fissure
US10350576B2 (en) 2013-10-29 2019-07-16 Wisconsin Alumni Research Foundation Sustainable aerogels and uses thereof
CN103951966B (zh) 2014-04-23 2016-04-20 江苏绿源新材料有限公司 硬质聚氨酯-气凝胶二氧化硅复合泡沫塑料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070022003A (ko) 2004-01-06 2007-02-23 아스펜 에어로겔, 인코포레이티드 실리콘 결합 선형 중합체를 함유하는 오르모실 에어로겔
KR20070022004A (ko) * 2004-01-06 2007-02-23 아스펜 에어로겔, 인코포레이티드 규소 결합된 폴리메타크릴레이트를 함유하는 오르모실에어로겔
KR20120070948A (ko) * 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
KR20170107739A (ko) * 2016-03-16 2017-09-26 주식회사 엘지화학 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RADI, B.: "Effect of dangling chains on the structure and physical properties of a tightly crosslinked poly(ethylene glycol) network", SOFT MATTER, vol. 9, no. 12, 2013, pages 3262 - 3271, XP055243509, DOI: 10.1039/c3sm27819k *

Also Published As

Publication number Publication date
EP3722349A4 (en) 2021-01-27
KR102176632B1 (ko) 2020-11-09
KR20190067984A (ko) 2019-06-18
EP3722349A1 (en) 2020-10-14
JP7127934B2 (ja) 2022-08-30
US11760647B2 (en) 2023-09-19
JP2021503532A (ja) 2021-02-12
CN111372973A (zh) 2020-07-03
US20200407231A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2017171279A1 (ko) 구형 실리카 에어로겔 과립의 제조방법 및 이에 의해 제조되는 구형 실리카 에어로겔 과립
WO2018070755A1 (ko) 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2018048198A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2015126216A1 (ko) 졸겔법을 이용하여 제조된 복합 세라믹, 이를 함유하는 초고온 내열성 및 고 내식성을 갖는 박막 코팅재 및 이의 제조방법
WO2018048289A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2019112393A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
WO2019160368A1 (ko) 소수성의 실리카 에어로겔 과립의 제조방법
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2011013970A2 (ko) 폴리우레아 다공질체 및 그 제조방법
KR100809901B1 (ko) 실리카 제로젤 복합체 제조방법 및 복합체
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2017159968A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
WO2018093063A1 (ko) 전가수분해된 알킬 폴리실리케이트의 합성방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2018186546A1 (ko) 침상형 금속-실리카 복합 에어로겔 입자 제조방법 및 이에 의해 제조된 침상형 금속-실리카 복합 에어로겔 입자
JP3296440B2 (ja) ケイ素系ハイブリッド材料
WO2019050347A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2013055016A1 (ko) 탄화규소 분말의 제조방법 및 이에 의해서 제조된 탄화규소 분말
KR101298840B1 (ko) 주형 및 주형의 제조 방법
WO2019083136A1 (ko) 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885470

Country of ref document: EP

Effective date: 20200708