WO2019112000A1 - Method for cutting and method for manufacturing laminate film - Google Patents

Method for cutting and method for manufacturing laminate film Download PDF

Info

Publication number
WO2019112000A1
WO2019112000A1 PCT/JP2018/044899 JP2018044899W WO2019112000A1 WO 2019112000 A1 WO2019112000 A1 WO 2019112000A1 JP 2018044899 W JP2018044899 W JP 2018044899W WO 2019112000 A1 WO2019112000 A1 WO 2019112000A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser
cutting
laser beam
film
Prior art date
Application number
PCT/JP2018/044899
Other languages
French (fr)
Japanese (ja)
Inventor
力也 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018208864A external-priority patent/JP7260993B2/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020207015578A priority Critical patent/KR102657288B1/en
Priority to CN201880077112.3A priority patent/CN111432979A/en
Publication of WO2019112000A1 publication Critical patent/WO2019112000A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a cutting method and manufacturing method of a laminated film in which a plurality of resin layers of different materials are laminated.
  • Priority is claimed on Japanese Patent Application No. 2017-235351, filed Dec. 7, 2017, and Japanese Patent Application No. 2018-208864, filed on Nov. 6, 2018, the contents of which are incorporated herein by reference. Is incorporated herein by reference.
  • an optical film such as a polarizing plate or a retardation film (retardation plate) is attached to an optical display panel such as a liquid crystal panel or an organic EL panel.
  • an optical display panel such as a liquid crystal panel or an organic EL panel.
  • a film obtained by unrolling a long film from a film roll and cutting (rolling out) the unrolled film into a width and a length corresponding to an optical display panel is used. .
  • a cutter is conventionally used for the cutting process of the optical film.
  • foreign substances such as film scraps are easily generated at the time of cutting.
  • a display defect etc. may be generated on an optical display panel.
  • Patent Document 1 in the cutting of a laminate including a resin film and one or more functional layers, a first cutting step of cutting a part of the functional layer and the resin film with a laser, and a cutting blade And a second cutting step of cutting the remaining resin film.
  • Patent Document 2 discloses a manufacturing method of a polarizing plate in which a polarizing plate is cut off a layer constituting another polarizing plate while leaving only a peeling film, and the surface protection film layer is formed of a laser light low absorptivity film. There is disclosed a method of cutting with a laser up to the layer immediately before the layer, and then cutting with a cutter the layer consisting of a low laser absorption film.
  • Patent Document 3 discloses a groove forming step of cutting a high absorptivity film by laser light irradiation and forming a groove in the low absorptivity film and a tearing step of tearing the low absorptivity film along the groove A method of cutting a polarizing plate is disclosed.
  • Japanese Patent No. 5359356 gazette Japanese Patent No. 4743339 Japanese Patent No. 5481300
  • a typical polarizing plate is, for example, polyvinyl alcohol (polarizer) between a triacetylcellulose (TAC) layer to be an upper protective layer and a cycloolefin polymer (COP) layer to be a lower protective layer.
  • polarizer polyvinyl alcohol
  • TAC triacetylcellulose
  • COP cycloolefin polymer
  • the layer comprises the laminated
  • the layer other than the COP layer is a layer which is relatively easy to be cut (a layer having a high laser beam absorptivity). It is cut by photodecomposition processing with few occurrence of and cross section quality is kept good.
  • the COP layer is a layer which is relatively difficult to cut (a layer having a low absorptivity of laser light)
  • the COP layer is cut by thermal processing due to the vibration of molecules, and the cross-sectional quality is deteriorated.
  • the aspect of the present invention has been proposed in view of such conventional circumstances, and can accurately cut a laminated film in which a plurality of resin layers of different materials such as a polarizing plate are laminated, and It is an object of the present invention to provide a method for cutting a laminated film capable of maintaining good cross-sectional quality of a cut laminated film, and a method for producing a laminated film using such a method for cutting a laminated film.
  • a method of cutting a laminated film in which a laminated film in which a plurality of resin layers of different materials are laminated is cut along a cutting line By scanning a cutting line of the film with a plurality of laser beams having different wavelengths, a method for cutting a laminated film is provided, in which the plurality of resin layers are cut.
  • the plurality of resin layers are scanned by scanning a cutting line of the laminated film with a first laser beam and a second laser beam having a wavelength different from that of the first laser beam.
  • the resin layer exhibiting a photolytic reaction due to the absorption of the first laser beam is cut by the first laser beam, and the photolytic reaction is caused by the absorption of the second laser beam among the plurality of resin layers. May be cut by the second laser beam.
  • the first laser beam is a laser beam excited by a carbon dioxide gas laser
  • the second laser beam is a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser.
  • a method of producing a laminated film in which a plurality of resin layers of different materials are laminated comprising: a cutting step of cutting the plurality of resin layers along a cutting line, In the process, a method of producing a laminated film using any of the above-mentioned cutting methods is provided.
  • the laminated film is a polarizing plate in which at least a cycloolefin polymer (COP) layer and a polyvinyl alcohol (PVA) layer are laminated, and the PVA layer is subjected to the first laser light. Cutting may be performed, and the COP layer may be cut by the second laser beam.
  • COP cycloolefin polymer
  • PVA polyvinyl alcohol
  • the laminated film is a polarizing plate further including a triacetylcellulose (TAC) layer, and the COP layer, the PVA layer, and the TAC layer are laminated in this order,
  • TAC triacetylcellulose
  • the TAC layer and the PVA layer may be cut by the first laser beam, and the COP layer may be cut by the second laser beam.
  • the second laser beam may be a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser.
  • the laminated film may be a laminated film for a flexible image display device including at least two or more selected from a circularly polarizing plate, a window film, and a touch sensor.
  • a laminated film in which a plurality of resin layers having different materials are laminated is cut by photolysis processing with little heat generation using laser beams of different wavelengths.
  • a plurality of resin layers constituting the laminated film can be cut with high precision, and the cross-sectional quality of the cut laminated film can be kept good.
  • Method of cutting laminated film In the method of cutting a laminated film to which the present invention is applied, when cutting a laminated film in which a plurality of resin layers of different materials are laminated along a cutting line, the cutting line of the laminated film is subjected to a plurality of laser beams of different wavelengths. A plurality of resin layers are cut by scanning.
  • the uppermost layer of the polarizing plate FX is protected by surface protection film S2.
  • the surface protective film S2 is made into a sheet piece of a predetermined size together with the polarizing plate FX in the cutting process, and after being bonded to the liquid crystal panel, it is peeled off from the polarizing plate FX.
  • a polyethylene terephthalate (PET) film can be used as such surface protection film S2.
  • the polarizing plate FX has a laminated structure in which a polarizer layer S5 (resin layer) is sandwiched between a pair of protective layers S3 and S4 (resin layers).
  • the polarizing plate FX according to this embodiment includes a cycloolefin polymer (COP) layer as the lower protective layer S3, a polyvinyl alcohol (PVA) layer as the polarizer layer S5, and a trilayer as the upper protective layer S4.
  • An acetyl cellulose (TAC) layer constitutes a laminated film laminated in this order.
  • the laminated structure of the polarizing plate FX shown in FIG. 1 is merely an example, and is not necessarily limited to such a laminated structure, and is a laminated film in which a plurality of resin layers (films) of different materials are laminated. It is possible to change the material, thickness, etc. used for each resin layer (film) suitably, and to carry out.
  • the method for producing a laminated film to which the present invention is applied can be suitably used when producing a laminated film (laminated film for flexible image display device) applied to a flexible image display device.
  • the flexible image display device comprises a laminated film for a flexible image display device and an organic EL display panel, and a laminate for a flexible image display device is disposed on the viewing side with respect to the organic EL display panel and is configured to be bendable. There is.
  • a laminate for a flexible image display device at least two or more selected from a window film (hereinafter sometimes abbreviated as “window”), a circularly polarizing plate, and a touch sensor may be used. Just do it.
  • a window film hereinafter sometimes abbreviated as “window”
  • a circularly polarizing plate As a laminate for a flexible image display device, at least two or more selected from a window film (hereinafter sometimes abbreviated as “window”), a circularly polarizing plate, and a touch sensor may be used. Just do it.
  • a window film hereinafter sometimes abbreviated as “window”
  • a circularly polarizing plate a touch sensor
  • the lamination order of the window, the circularly polarizing plate and the touch sensor is arbitrary, the configuration in which the window, the circularly polarizing plate and the touch sensor are laminated in order from the viewing side, or It is preferable to laminate in the order of the polarizing plates. If a circularly polarizing plate is present on the viewing side of the touch sensor, the pattern of the touch sensor is less likely to be viewed, and the visibility of the display image is preferably improved.
  • the window, the circularly polarizing plate, and the touch sensor can be stacked by bonding using an adhesive, a pressure-sensitive adhesive, or the like.
  • a light shielding pattern can be formed on at least one surface of any of the window, the circularly polarizing plate, and the touch sensor.
  • the window is disposed on the viewing side of the flexible image display device, and plays a role as a protective layer that protects other components from environmental changes such as external impact or temperature and humidity.
  • a protective layer that protects other components from environmental changes such as external impact or temperature and humidity.
  • glass has been used as such a protective layer, but the window in the flexible image display device is not as rigid and rigid as glass, but is made of the transparent substrate having the above-mentioned flexibility.
  • the transparent substrate may include a hard coat layer on at least one side.
  • the transparency of the transparent substrate used for the window is preferably such that the transmittance of visible light is 70% or more, and more preferably 80% or more.
  • the transparent substrate is not particularly limited as long as it is a transparent polymer film, and any material can be used.
  • polyolefins such as polyethylene, polypropylene, polymethylpentene, cycloolefin derivatives having units of monomers including norbornene or cycloolefin; (modified) celluloses such as diacetyl cellulose, triacetyl cellulose, propionyl cellulose Acrylics such as methyl methacrylate (co) polymer; polystyrenes such as styrene (co) polymer; acrylonitrile butadiene styrene copolymers acrylonitrile acrylonitrile styrene copolymers ethylene-vinyl acetate copolymer ; Halogen-containing polymers such as polyvinyl chlorides and polyvinylidene chlorides; Poly compounds such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate Steers; Polyamides such as nylon; Polyimides such as polyimides, polyimides
  • these polymers can be used alone or in combination of two or more.
  • the transparent substrate it is preferable to disperse inorganic particles such as silica, organic fine particles, rubber particles and the like. Furthermore, in transparent substrates, colorants such as pigments and dyes, optical brighteners, dispersants, plasticizers, heat stabilizers, light stabilizers, infrared absorbers, ultraviolet absorbers, antistatic agents, Ingredients such as antioxidants, lubricants and solvents may be contained.
  • the thickness of the transparent substrate is preferably 5 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • a hard coat layer may be provided on at least one surface of the window in order to prevent the surface of the transparent substrate from being scratched (for improving the scratch resistance).
  • the thickness of the hard coat layer is not particularly limited, but may be, for example, 2 to 100 ⁇ m. If the thickness of the hard coat layer is less than 2 ⁇ m, it will be difficult to secure sufficient scratch resistance. On the other hand, when the thickness of the hard coat layer exceeds 100 ⁇ m, the flexibility is lowered, and a problem of curling due to curing shrinkage may occur.
  • the hard coat layer can be formed by curing of a hard coat composition containing a reactive material that forms a crosslinked structure upon irradiation with active energy rays or thermal energy.
  • a reactive material that forms a crosslinked structure upon irradiation with active energy rays or thermal energy.
  • active energy rays those which form a crosslinked structure by irradiation with active energy rays, that is, those based on active energy ray curing are preferable.
  • An active energy ray is defined as an energy ray capable of decomposing a compound that generates an active species to generate an active species. Examples of active energy rays include visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays and electron beams. Among these, it is particularly preferable to use ultraviolet light.
  • the hard coat composition contains a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound.
  • the radically polymerizable compound is a compound having a radically polymerizable group.
  • the radical polymerizable group may be any functional group capable of causing a radical polymerization reaction, and includes a group containing a carbon-carbon unsaturated double bond. Specifically, a vinyl group, a (meth) acryloyl group, etc. are mentioned.
  • these radically polymerizable groups may be identical to or different from each other.
  • the number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably two or more from the viewpoint of improving the hardness of the hard coat layer.
  • the radically polymerizable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of high reactivity, and is a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule.
  • oligomers having a molecular weight of several hundred to several thousand having several (meth) acryloyl groups in a molecule called epoxy (meth) acrylate, urethane (meth) acrylate or polyester (meth) acrylate It is preferred to use.
  • the cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group.
  • the number of cationically polymerizable groups that the cationically polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the scratch resistance of the hard coat layer.
  • the cationically polymerizable compound is preferably a compound having at least one cyclic ether group of an epoxy group and an oxetanyl group as a cationically polymerizable group.
  • the cyclic ether group is preferable from the viewpoint of small shrinkage associated with the polymerization reaction.
  • compounds having an epoxy group among cyclic ether groups are easy to obtain from the market compounds having various structures, and do not adversely affect the scratch resistance and durability of the obtained hard coat layer.
  • the compatibility with the radically polymerizable compound can be easily controlled.
  • oxetanyl group tends to have a higher degree of polymerization compared to epoxy group, is less toxic, and accelerates the network formation speed obtained from the cationically polymerizable compound of the obtained hard coat layer, and radically polymerizes Even in the region mixed with the compound, there is an effect that no unreacted monomer is left in the film. Furthermore, there are advantages such as forming an independent network.
  • a cationically polymerizable compound having an epoxy group for example, polyglycidyl ether of polyhydric alcohol having an alicyclic group; a compound containing a cyclohexene ring or a cyclopentene ring is epoxidized with a suitable oxidizing agent such as hydrogen peroxide or a peracid Aliphatic epoxy resins obtained by: aliphatic polyalcohols, polyglycidyl ethers of alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, homopolymers of glycidyl (meth) acrylates, copolymers, etc.
  • a suitable oxidizing agent such as hydrogen peroxide or a peracid Aliphatic epoxy resins obtained by: aliphatic polyalcohols, polyglycidyl ethers of alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-
  • Aliphatic epoxy resins bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or alkylene oxide adducts thereof; glycidyl produced by reaction of epichlorohydrin with derivatives such as caprolactone adducts Such as ether and novolac epoxy resins; glycidyl ether epoxy resins derived from bisphenols are exemplified.
  • the hard coat composition may further contain a polymerization initiator.
  • a polymerization initiator a radical polymerization initiator, a cationic polymerization initiator, a radical, and a cationic polymerization initiator etc. are mentioned, for example. According to the kind of polymeric compound to be used among them, it can select suitably and can use.
  • These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • the radical polymerization initiator may be capable of releasing a substance that initiates radical polymerization by at least one of active energy ray irradiation and heating.
  • a substance that initiates radical polymerization by at least one of active energy ray irradiation and heating for example, organic peroxides such as hydrogen peroxide and perbenzoic acid, and azo compounds such as azobisbutyronitrile can be mentioned.
  • Type 1 type radical polymerization initiators which generate radicals by molecular decomposition
  • Type 2 type radical polymerization initiators which generate radicals by hydrogen abstraction reaction in coexistence with tertiary amines And can be used alone or in combination.
  • the cationic polymerization initiator may be capable of releasing a substance that initiates cationic polymerization by at least one of active energy ray irradiation and heating.
  • a cationic polymerization initiator for example, aromatic iodonium salts, aromatic sulfonium salts, cyclopentadienyl iron (II) complexes and the like can be used. Depending on the difference in structure, these can initiate cationic polymerization either by active energy ray irradiation or heating or any of them.
  • the polymerization initiator may comprise 0.1 to 10% by weight with respect to 100% by weight of the total hard coat composition.
  • content of the polymerization initiator is less than 0.1% by weight, it is difficult to promote curing sufficiently, and it becomes difficult to realize the mechanical properties and adhesion of the finally obtained coating film.
  • content of the polymerization initiator exceeds 10% by weight, adhesion failure due to curing shrinkage, cracking and curling may occur.
  • the hard coat composition may further contain one or more selected from solvents and additives.
  • Any solvent may be used as long as it can dissolve or disperse the polymerizable compound and the polymerization initiator, and any solvent conventionally known as a solvent for hard coat compositions in the technical field may be used without limitation. it can.
  • an additive an inorganic particle, a leveling agent, a stabilizer, surfactant, an antistatic agent, a lubricant, an antifouling agent etc. are mentioned, for example.
  • the circularly polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component. For example, external light incident on a display device is converted into right circularly polarized light, and the right circularly polarized light is reflected by the organic EL panel to become left circularly polarized light, and the left circularly polarized light is blocked by the circularly polarizing plate Can. As a result, a circularly polarizing plate is used in order to make the image easy to view by suppressing the influence of the reflected light and transmitting only the light emitting component of the organic EL.
  • a linear polarizing plate and a ⁇ / 4 retardation plate are laminated and combined, and the absorption axis of the linear polarizing plate and the slow axis of the ⁇ / 4 retardation plate
  • the angle should theoretically be 45 °, but practically it may be 45 ° ⁇ 10 °.
  • the linear polarizing plate and the ⁇ / 4 retardation plate do not necessarily have to be stacked adjacent to each other, as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferred to achieve perfect circular polarization at all wavelengths. However, since it is not always necessary in practice, the circularly polarizing plate used for the flexible image display may include an elliptically polarizing plate. Furthermore, by laminating a ⁇ / 4 retardation film on the viewing side of the linear polarizing plate to make the outgoing light circularly polarized, it is also possible to improve the visibility in the state where the polarized sunglasses are worn.
  • the linear polarizing plate is a functional layer having a function of transmitting light vibrating in the transmission axis direction but blocking polarization of a vibration component perpendicular thereto.
  • the linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof.
  • the thickness of the linear polarizing plate may be 200 ⁇ m or less, preferably 0.5 to 100 ⁇ m. When the thickness of the linear polarizing plate exceeds 200 ⁇ m, the flexibility may be reduced.
  • the linear polarizer is a linear polarizing plate and functions as a polarizer layer, and examples thereof include a film type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) -based film.
  • the dichroic dye is oriented by being drawn in a state in which a dichroic dye such as iodine is adsorbed to the PVA-based film oriented by stretching or adsorbed to the PVA molecule of the PVA-based film, and the polarization performance is exhibited. Do.
  • each step such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying may be included.
  • the stretching step and the dyeing step may be carried out with a PVA-based film alone, or may be carried out in a state of being laminated with another film such as polyethylene terephthalate.
  • the PVA-based film to be used preferably has a thickness of 10 to 100 ⁇ m and a stretching ratio of 2 to 10 times.
  • the linear polarizing plate having a film type polarizer as a linear polarizer and the circularly polarizing plate having the linear polarizing plate have been described above.
  • the thickness of the circular polarizing plate is described. It is preferable to further thin the film thickness and use a thin film polarizer (thin film polarizer).
  • mold polarizer which apply
  • liquid crystal polarizing compositions include those containing a liquid crystal compound and a dichroic dye compound.
  • the liquid crystal compound may have any property as long as it exhibits a liquid crystal state, and in particular, it is preferable to have a high-order alignment state such as a smectic phase because high polarization performance can be exhibited. Moreover, it is preferable to have a polymerizable functional group.
  • the dichroic dye compound is a dye that exhibits dichroism by aligning with a liquid crystal compound, and the dichroic dye itself may have liquid crystallinity and may have a polymerizable functional group. . Any of the compounds contained in a typical liquid crystal polarizing composition has a polymerizable functional group.
  • the liquid crystal polarizing composition preferably contains an initiator and a solvent, and may further contain an additive such as a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, and a silane coupling agent. .
  • the liquid crystal polarizing layer can be produced by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer.
  • a liquid crystal polarizing layer has the advantage of being able to be thinner than a film type polarizer.
  • the thickness of the liquid crystal polarizing layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the alignment film may be produced on a base material by, for example, applying a composition for forming an alignment film on the base material using a suitable base material, and imparting alignment property by rubbing, irradiation with polarized light, etc. it can.
  • the alignment film forming composition may contain, in addition to the alignment agent, a solvent, a crosslinking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent, and the like.
  • the alignment agent for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used.
  • an alignment agent containing a cinnamate group When applying photoalignment (polarized light), it is preferable to use an alignment agent containing a cinnamate group.
  • the polymer used as an alignment agent may have a weight average molecular weight of about 10,000 to 1,000,000.
  • the thickness of the alignment film is preferably 5 to 10000 nm, and more preferably 10 to 500 nm, because the alignment control force is sufficiently expressed.
  • the liquid crystal polarizing layer formed on the base material provided with the alignment film can be peeled off from the base material, and the second base material is bonded to a laminate in which the base material, the alignment film and the liquid crystal polarizing layer are laminated,
  • the liquid crystal polarizing layer can also be transferred to this second substrate.
  • the second substrate can serve as a protective film, a retardation plate, and a transparent substrate of a window.
  • any transparent polymer film may be used, and materials exemplified as the transparent substrate and additives can be used. Among them, cellulose-based films, olefin-based films, acrylic films, and polyester-based films are preferably used. Further, it may be a coating type protective film obtained by applying and curing a cationic curing composition such as an epoxy resin or a radical curing composition such as an acrylate.
  • a cationic curing composition such as an epoxy resin or a radical curing composition such as an acrylate.
  • the thickness of the protective film may be 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness of the protective film exceeds 200 ⁇ m, the flexibility may be reduced. In addition, the protective film can also serve as a window.
  • the ⁇ / 4 retardation plate is a film that gives a retardation of ⁇ / 4 in the direction (in-plane direction of the film) orthogonal to the traveling direction of the incident light.
  • the ⁇ / 4 retardation plate may be, for example, a stretched retardation plate manufactured by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film.
  • a retardation control agent if necessary, a plasticizer, an ultraviolet absorber, an infrared absorber, a coloring agent such as a pigment or a dye, a brightening agent, a dispersing agent, a heat stabilizer, a light stabilizer, an antistatic agent Antioxidants, lubricants, solvents and the like may be included.
  • the thickness of the stretched retardation plate may be 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness of the stretched retardation plate exceeds 200 ⁇ m, the flexibility may be reduced.
  • a liquid crystal application retardation plate formed by applying and forming a liquid crystal composition may be used.
  • the liquid crystal composition for forming a liquid crystal coating type retardation plate includes, for example, a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric or smectic. Any of the liquid crystal compounds contained in the liquid crystal composition has a polymerizable functional group.
  • the liquid crystal composition may contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like.
  • the liquid crystal coating type retardation plate can be manufactured by coating and curing a liquid crystal composition on an alignment film to form a liquid crystal retardation layer, as described for the liquid crystal polarizing layer.
  • the liquid crystal coated retardation plate can be formed thinner than a stretched retardation plate. Specifically, the thickness of the liquid crystal polarizing layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the liquid crystal coated retardation plate may be separated from the substrate, transferred and laminated, or the substrate may be laminated as it is.
  • the substrate can also serve as a protective film, a retardation plate, and a transparent substrate of a window.
  • the retardation plate has a larger birefringence as the wavelength is shorter, and often exhibits a smaller birefringence as the wavelength is longer.
  • a phase difference of ⁇ / 4 can not be given in the entire visible light region, it is often designed so as to be ⁇ / 4 in the vicinity of 560 nm where the visibility is high.
  • the in-plane retardation of the retardation plate is preferably 100 to 180 nm, more preferably 130 to 150 nm.
  • an inverse dispersion ⁇ / 4 retardation plate using a material having a birefringence and wavelength dispersion characteristics reverse to normal, because visibility can be improved.
  • a stretching type phase difference plate for example, those described in JP-A-2007-232873 can be used.
  • a liquid crystal coating type retardation plate those described in JP-A-2010-30979 can be used.
  • a technique for obtaining a wide band ⁇ / 4 retardation plate by combining the ⁇ / 4 retardation plate and the ⁇ / 2 retardation plate for example, JP-A-10-90521). No.2).
  • the ⁇ / 2 retardation plate is manufactured by the same material and method as the ⁇ / 4 retardation plate.
  • the combination of the stretching type retardation plate and the liquid crystal coating type retardation plate is optional, but both are preferable because the film thickness can be reduced by using the liquid crystal coating type retardation plate.
  • the circularly polarizing plate As the circularly polarizing plate, a method of laminating a positive C plate is also known in order to enhance the visibility in the oblique direction (see, for example, Japanese Patent Application Laid-Open No. 2014-224837).
  • the positive C plate may be a liquid crystal coated retardation plate or a stretching retardation plate.
  • the thickness direction retardation is preferably ⁇ 200 to ⁇ 20 nm, more preferably ⁇ 140 to ⁇ 40 nm.
  • a touch sensor is a typical member used as an input means of a flexible image display device.
  • various methods such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method can be used, and among them, the capacitance method is used preferable.
  • the capacitive touch sensor is divided into an active area and a non-active area located at an outer portion of the active area.
  • the active area is an area corresponding to an area (display unit) in which a screen is displayed on the display panel, and is an area where a user's touch is sensed.
  • the non-active area is an area corresponding to an area (non-display portion) in which the screen is not displayed on the image display device.
  • the touch sensor is formed on a substrate having flexible characteristics, a sensing pattern formed on an active region of the substrate, and a non-active region of the substrate, and is connected to an external driving circuit through the sensing pattern and the pad portion. And each of the sensing lines.
  • the substrate having the flexible property preferably has a toughness of 2,000 MPa% or more from the viewpoint of crack suppression of the touch sensor. More preferably, the toughness is 2,000 MPa% to 30,000 MPa%.
  • “toughness” is a property obtained from a stress (MPa) -strain (%) curve (Stress-strain curve) obtained in a tensile test of a polymer material. That is, a tensile test is carried out to obtain a stress (MPa) -strain (%) curve from the start of stress application to the breaking point of the test polymer material, and is defined by the area of the obtained curve.
  • the sensing pattern may include a first pattern formed in a first direction and a second pattern formed in a second direction.
  • the first pattern and the second pattern are arranged in different directions.
  • the first pattern and the second pattern are formed in the same layer, and in order to sense a point to be touched, the respective patterns must be electrically connected.
  • the first pattern is a form in which each unit pattern is connected to each other through a joint.
  • each unit pattern is separated from each other in an island form. Therefore, a separate bridge electrode is required to electrically connect the second pattern.
  • the sensing pattern may use a known transparent electrode material.
  • a known transparent electrode material for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), cadmium tin oxide (CTO), PEDOT (poly (3, 4- ethylenedioxythiophene)), carbon nanotubes (CNT), graphene, metal wires and the like, and these can be used alone or in combination of two or more. Among them, it is preferable to use ITO.
  • the metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, telenium, chromium and the like. These can be used singly or in combination of two or more.
  • the bridge electrode can be formed on the top of the sensing pattern through the insulating layer.
  • the bridge electrode is formed on a substrate, and an insulating layer and a sensing pattern can be formed thereon.
  • the bridge electrode can also be formed of the same material as the sensing pattern, for example, a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium or an alloy of two or more of these Can be formed by
  • an insulating layer is formed between the sensing pattern and the bridge electrode.
  • the insulating layer can be formed only between the joint of the first pattern and the bridge electrode. Moreover, it can also be formed in the structure of the layer which covers a sensing pattern. In the latter case, the bridge electrode can be connected to the second pattern through the contact hole formed in the insulating layer.
  • the touch sensor measures the light transmittance induced by the difference in transmittance between the pattern region where the pattern is formed and the non-pattern region where the pattern is not formed, specifically, the difference in refractive index in these regions.
  • An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating for the difference in
  • the optical adjustment layer may include an inorganic insulating material or an organic insulating material.
  • the optical control layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. Additionally, the photocurable composition can include inorganic particles. The inorganic particles increase the refractive index of the optical adjustment layer.
  • the photocurable organic binder contained in the photocurable composition for example, a copolymer of monomers such as an acrylate monomer, a styrene monomer, and a carboxylic acid monomer can be used.
  • the photocurable organic binder may be, for example, a copolymer containing mutually different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
  • the photocurable composition can contain, for example, each additive such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
  • Each layer (window, circularly polarizing plate, touch sensor) forming a laminate for a flexible image display device, and film members (linearly polarizing plate, ⁇ / 4 retardation plate, etc.) constituting each layer are formed of an adhesive. It can bond via an adhesive layer.
  • the adhesive examples include water-based adhesives, organic solvents, solvent-free adhesives, solid adhesives, solvent volatilization adhesives, moisture curing adhesives, heat curing adhesives, anaerobic curing, active energy
  • a general-purpose adhesive such as a linear curing adhesive, a curing agent mixed adhesive, a heat melting adhesive, a pressure sensitive adhesive (pressure sensitive adhesive), a rewetting adhesive can be used.
  • water-based adhesives, solvent volatilization adhesives, active energy ray-curable adhesives, and pressure-sensitive adhesives are often used.
  • the thickness of the adhesive layer can be appropriately adjusted depending on the required adhesive strength and the like, and is preferably 0.01 to 500 ⁇ m, more preferably 0.1 to 300 ⁇ m.
  • the thickness and type of each adhesive layer may be the same or different.
  • the water-based adhesive mainly contains water, and a polymer in water dispersion state such as polyvinyl alcohol polymer, water-soluble polymer such as starch, ethylene-vinyl acetate emulsion, styrene-butadiene emulsion, etc. is used as a main polymer. be able to. Further, in addition to water and the main polymer, a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be blended.
  • a polymer in water dispersion state such as polyvinyl alcohol polymer, water-soluble polymer such as starch, ethylene-vinyl acetate emulsion, styrene-butadiene emulsion, etc.
  • the thickness of the adhesive layer in the case of using a water-based adhesive is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 1 ⁇ m.
  • the thickness and type of each adhesive layer may be the same or different.
  • the active energy ray-curable adhesive can be formed by curing of an active energy ray-curable composition containing a reactive material that irradiates active energy rays to form an adhesive layer.
  • the active energy ray curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the radically polymerizable compound and the cationically polymerizable compound as used herein are the same as the radically polymerizable compound and the cationically polymerizable compound contained in the above-described hard coat composition.
  • the radically polymerizable compound contained in the active energy ray-curable adhesive used for forming the adhesive layer it is preferable to use a compound having an acryloyl group.
  • a monofunctional compound as the radically polymerizable compound.
  • the cationically polymerizable compound is the same as that described for the hard coat composition described above.
  • an epoxy compound is preferably used as the cationically polymerizable compound used for the active energy ray curing adhesive.
  • the active energy ray-curable adhesive can further contain a polymerization initiator.
  • the polymerization initiator is, for example, a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator or the like, and can be appropriately selected and used according to the type of the polymerizable compound. Specific examples of these radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators may be the same as those described for the polymerization initiators contained in the above-described hard coat composition.
  • the active energy ray-curable composition comprises an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, an antifoam solvent, an additive, It can contain solvents and the like.
  • an active energy ray-curable adhesive the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and the active energy ray is applied through either of the adherend layers or both adherent layers. Can be adhered by irradiating and curing.
  • the thickness of the adhesive layer is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. In the case of using a plurality of active energy ray-curable adhesives, the thickness and type of each layer may be the same or different.
  • the pressure-sensitive adhesive may contain, in addition to the main agent polymer, a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like.
  • Each component constituting the pressure-sensitive adhesive is dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied to a substrate and then dried to form a pressure-sensitive adhesive layer adhesive layer. .
  • the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition the pressure-sensitive adhesive composition may be directly applied to an adherend, or separately formed on a substrate may be transferred.
  • the thickness of the adhesive layer is preferably 0.1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m.
  • the thickness and type of each layer may be the same or different.
  • the light blocking pattern can be applied as at least a part of a bezel or a housing of a flexible image display.
  • the visibility of the image is improved by concealing the wiring disposed at the peripheral portion of the flexible image display device by the light shielding pattern and making it difficult to be visually recognized.
  • the light blocking pattern may be in the form of a single layer or multiple layers.
  • the color of the light shielding pattern is not particularly limited, and has various colors such as black, white and metal.
  • the light blocking pattern may be formed of a pigment for realizing a color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, a polyurethane, and a silicone. Also, these may be used alone or as a mixture of two or more.
  • the light shielding pattern can be formed by, for example, various methods such as printing, lithography, and inkjet.
  • the thickness of the light shielding pattern is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m.
  • the light shielding pattern can be provided with a shape such as inclination in the thickness direction.
  • the film thickness of the above film, functional layer, element or the like can be measured using a general film thickness measuring method.
  • a film thickness measurement method for example, cross-sectional observation using an electron microscope, a method using a step difference meter, a film thickness measurement method using an optical interference method such as spectral interference method or laser interference method, and film thickness by spectral ellipsometry The measurement method etc. are mentioned.
  • FIG. 2 is a perspective view showing an example of the laser processing apparatus 30 used in the cutting process of the present embodiment.
  • the laser processing apparatus 30 shown in FIG. 2 is a laser irradiation apparatus (irradiation means) 31 for irradiating the polarizing plate FX with the laser light L and a laser for scanning the laser light L along the cutting line C of the polarizing plate FX.
  • a scanning device (scanning means) 32 and a drive control device (drive control means) 33 for controlling the drive of each part are provided.
  • FIG. 3 is a perspective view showing a specific configuration of the laser irradiation device 31.
  • the laser irradiation apparatus 31 shown in FIG. 3 comprises a first laser light source 34A for emitting a first laser light L1; a second laser light source 34B for emitting a second laser light L2; and a first laser light L1.
  • Dichroic mirror (optical path conversion means) 35 for transmitting or reflecting the laser light L2 and the second laser light L2 and emitting the first laser light L1 and the second laser light L2 in the same direction; the first laser A condensing lens (condensing optical system) 36 for condensing the light L1 and the second laser light L1 toward the polarizing plate FX; and an optical path between the dichroic mirror 35 and the condensing lens 36,
  • the first and second position adjusting mechanisms 37A and 37B position adjusting means for adjusting the irradiation position of the first laser light L1 and the second laser light L2 irradiated to the polarizing plate FX are provided.
  • the first laser light L1 and the second laser light L2 having different wavelengths are collectively described as the laser light L without distinction.
  • the first laser beam L1 and the second laser beam L2 are collectively treated as the laser beam L when it is not necessary to distinguish them.
  • the first laser light source 34A outputs the first laser light L1 by a pulse oscillation method.
  • the second laser light source 34B outputs the second laser light L2 having a wavelength different from that of the first laser light L1 by a pulse oscillation method.
  • a carbon dioxide gas (CO 2 ) laser oscillator is used as the first laser light source 34A
  • a YAG laser oscillator is used as the second laser light source 34B.
  • the first laser beam L1 is an infrared laser beam with a wavelength of 9.4 ⁇ m
  • the second laser beam L2 is an ultraviolet laser beam with a wavelength of 266 nm.
  • an excimer laser oscillator (ultraviolet laser light with a wavelength of 157 to 351 nm), a semiconductor laser (LD: Laser Diode) excitation solid pulsed laser oscillator (infrared laser light with a wavelength of 2940 nm), pulse fiber A laser oscillator (infrared laser light with a wavelength of 3 ⁇ m), a CO pulse laser oscillator (infrared laser light with a wavelength of 5.5 ⁇ m), or the like can also be used.
  • LD Laser Diode
  • the dichroic mirror 35 transmits either one of the first laser light L1 and the second laser light L2 having different wavelengths (the first laser light L1 in the present embodiment), and the other The laser light (in this embodiment, the second laser light L2) is reflected.
  • the first laser light L1 (one laser light) is reflected as the dichroic mirror 35, and the second laser light L2 is reflected. What transmits the (other laser light) may be used. Also, instead of the dichroic mirror 35, it is also possible to use a dichroic prism.
  • the condenser lens 36 is, for example, an f ⁇ lens, and this f ⁇ lens has a function of correcting the scanning speed of the laser beam L (L1, L2) to a constant.
  • the first and second position adjusting mechanisms 37A and 37B are, for example, galvano mirrors, and are scanners capable of scanning the laser light L (L1 and L2) biaxially in a plane parallel to the polarizing plate FX (scanning means Have a function as
  • the first position adjustment mechanism 37A has a mirror 38a that reflects the laser beam L (L1, L2) toward the second position adjustment mechanism 37B, and an actuator 39a that adjusts the angle of the mirror 38a.
  • the mirror 38a is attached to a rotating shaft 40a that is rotatable about the Z axis of the actuator 39a.
  • the second position adjustment mechanism 37B includes a mirror 38b that reflects the laser beam L (L1, L2) reflected by the mirror 38a of the first position adjustment mechanism 37A toward the condensing lens 36, and a mirror 38b. It has an actuator 39b for adjusting the angle, and has a structure in which a mirror 38b is attached to a rotating shaft 40b rotatable about the Y axis of the actuator 39b.
  • the drive control device 33 described later controls the drive of each of the actuators 39a and 39b, adjusts the angle of each of the mirrors 38a and 38b, and irradiates the polarizing plate FX It is possible to adjust the irradiation position of the laser beam L (L1, L2) by two-axis scanning.
  • the laser beam L indicated by the solid line in FIG. 3 is adjusted by adjusting the irradiation position of the laser beam L (L1, L2) irradiated to the polarizing plate FX.
  • (L1, L2) is focused on the focusing point Qa on the polarizing plate FX, or the laser light L (L1, L2) shown by the alternate long and short dash line in FIG. 3 is focused on the focusing point Qb on the polarizing plate FX
  • the laser beam L (L1, L2) shown by the two-dot chain line in FIG. 3 is possible to cause the laser beam L (L1, L2) shown by the two-dot chain line in FIG. 3 to be focused on the focusing point Qc on the polarizing plate FX.
  • the laser scanning device 32 comprises a slider mechanism (not shown) using, for example, a linear motor or the like, and the laser irradiation device 31 has a width of the polarizing plate FX under control of a drive control device 33 described later. It is possible to move and operate in the direction (X axis direction) V1, the length direction (Y axis direction) V2 of the polarizing plate FX, and the thickness direction (Z axis direction) V3 of the polarizing plate FX There is.
  • the laser scanning device 32 is not necessarily limited to the one that moves the laser irradiation device 31, and may move the polarizing plate FX itself. Also in this case, it is possible to scan (trace) the laser light L (L1, L2) from the laser irradiation device 31 along the cutting line C of the polarizing plate FX. In addition, both the laser irradiation device 31 and the polarizing plate FX may be moved.
  • the drive control device 33 is electrically connected to the first and second laser light sources 34A and 34B included in the laser irradiation device 31, and controls the driving of the first and second laser light sources 34A and 34B. Specifically, the drive control device 33 switches driving (ON / OFF) of the first laser light source 34A and the second laser light source 34B. The drive control device 33 controls the output and the number of pulse oscillations of the laser light L (L1, L2) emitted from the first and second laser light sources 34A, 34B.
  • the first laser beam L1 and the second laser beam L2 can be selectively irradiated to the polarizing plate FX. Further, it is possible to variably adjust the amount of energy per unit area of the laser beam L (L1, L2) irradiated to the polarizing plate FX.
  • the drive control device 33 is electrically connected to the laser scanning device 32 to control the moving speed of the laser scanning device 32. Thereby, the amount of energy per unit area of the laser beam L (L1, L2) irradiated to the polarizing plate FX can be variably adjusted while variably adjusting the scanning speed of the laser beam L (L1, L2) It is possible.
  • the drive control device 33 is electrically connected to the first and second position adjustment mechanisms 37A and 37B included in the laser irradiation device 31 to control the driving of the first and second position adjustment mechanisms 37A and 37B. . Thereby, it is possible to adjust the irradiation position of the laser beam L (L1, L2) irradiated to the polarizing plate FX by biaxial scanning.
  • the laminated film to be cut by the cutting method of the present invention includes at least a layer composed of a cycloolefin polymer such as a COP layer in order to exert the effects of the present invention.
  • FIGS. 4 (a) and 4 (b) are cross-sectional views sequentially showing the cutting process of the polarizing plate FX.
  • the polarizing plate FX When the polarizing plate FX is cut using the laser processing apparatus 30, first, as shown in FIG. 4A, while irradiating the first laser beam L1 to the polarizing plate FX, the polarizing plate FX is The first laser beam L1 is scanned along the cutting line C (referred to as a first scan).
  • the cutting line C may be set on the polarizing plate FX so as to obtain a sheet sheet piece of a desired size after cutting.
  • S5 is cut by the first laser beam L1. Further, in the first scan with the first laser beam L1, it is preferable to set the focal position U1 of the first laser beam L1 to a position deeper than the polarizer layer (PVA layer) S5.
  • the cutting groove V along the cutting line C is formed in the polarizing plate FX.
  • the cutting groove V is formed at a depth at which the protective layer (TAC layer) S4 on the upper layer side and the polarizer layer (PVA layer) S5 are divided.
  • the second laser light L2 is scanned along the cutting line C of the polarizing plate FX ( It is called the second scan.)
  • the lower protective layer (COP layer) S3 exhibiting a photolytic reaction by absorption of the second laser beam L2 is irradiated with the second laser beam L2. Disconnect.
  • the focal position U2 of the second laser beam L2 it is preferable to set the focal position U2 of the second laser beam L2 to a position deeper than the protective layer (COP layer) S3 on the lower layer side.
  • the cutting groove V is formed deeper in the depth direction from the position where the polarizer layer (PVA layer) S5 is divided so as to divide the lower protective layer (COP layer) S3. Therefore, in the main cutting step, it is possible to cut the polarizing plate FX along the cutting line C in the second scan.
  • the wavelengths of “COP”, “PVA”, “TAC”, and “PET” which are constituent materials of the lower protective layer S3, the polarizer layer S5, the upper protective layer S4, and the surface protective film S2 The transmittance for light of 2.0 to 14.0 ⁇ m is shown in FIG.
  • the transmittance for light with a wavelength of 200 to 500 ⁇ m is shown in FIG. 6 for “COP”.
  • the upper protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 are layers that are relatively easy to cut (first Since it is a layer having a high absorptivity of the laser beam L1, it is cut by photolysis processing with little heat generation.
  • the protective layer (COP layer) S3 on the lower layer side is a layer which is relatively difficult to cut (a layer having a low absorptivity of the first laser beam L1), and thus cut by thermal processing by molecular vibration. Is worse.
  • the upper protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 are cut by the first laser beam L1, and the lower protective layer (COP) Layer) S3 is cut by the second laser beam L2.
  • the layers S3, S5, and S4 is cut by photolysis processing which generates less heat, it is possible to obtain a cut surface with a good finish in the polarizing plate FX after cutting.
  • polarization is performed by cutting the polarizing plate FX by light decomposition processing with less heat generation using the first and second laser beams L1 and L2 having different wavelengths. It is possible to cut the plate FX precisely along the cutting line C. Further, since the finish of the cut surface of the polarizing plate FX is good without damaging the polarizing plate FX, it is possible to cope with the further narrowing of the display area in the optical display device.
  • FIG. 7 is a perspective view showing the configuration of the laser processing apparatus 30A.
  • part equivalent to the said laser processing apparatus 30 suppose that the same code
  • the laser processing apparatus 30A shown in FIG. 7 includes a first laser irradiation apparatus 31A that emits a first laser beam L1 instead of the laser irradiation apparatus 31 and a second laser that emits a second laser beam L2. And a radiation device 31B. That is, the laser processing apparatus 30A separately includes a first laser irradiation apparatus 31A having a first laser light source 34A and a second laser irradiation apparatus 31B having a second laser light source 34B.
  • the first and second laser irradiation devices 31A and 31B omit the dichroic mirror 35 from the configuration of the laser irradiation device 31.
  • the first or second laser beam L1 or L2 may be emitted from the first or second laser light source 34A or 34B to the first position adjustment mechanism 37A.
  • the first laser irradiation device 31A and the second laser irradiation device 31B are separately moved and operated by the laser scanning device 32, and are separately driven and controlled by the drive control device 33.
  • the first laser irradiation device 31A irradiates the polarizing plate FX with the first laser light L1, and the polarizing plate FX
  • the first laser beam L1 is scanned along the cutting line C of FIG.
  • the protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 on the upper layer side among the layers S3, S5, and S4 constituting the polarizing plate FX are cut by the first laser beam L1.
  • the second laser irradiation device 31B scans the second laser light L2 along the cutting line C of the polarizing plate FX while irradiating the second laser light L2 to the polarizing plate FX.
  • the protective layer (COP layer) S3 on the lower layer side among the layers S3, S5, and S4 constituting the polarizing plate FX is cut by the second laser beam L2. Therefore, in the main cutting step, it is possible to cut the polarizing plate FX along the cutting line C in the second scan, as in the case of using the laser processing apparatus 30 shown in FIG.
  • the laser processing apparatus 30A shown in FIG. 7 When the laser processing apparatus 30A shown in FIG. 7 is used, while following the scanning of the first laser light L1 by the first laser irradiation apparatus 31A, the second laser light L2 by the second laser irradiation apparatus 31B It can scan. Therefore, when the laser processing apparatus 30A shown in FIG. 7 is used, it is possible to cut the polarizing plate FX at a higher speed than in the case where the laser processing apparatus 30 shown in FIG. 2 is used.
  • an adhesive layer is newly provided on the sheet piece cut out of the polarizing plate FX according to the embodiment of the present invention by applying an adhesive to the protective layer (COP layer) S3 on the lower layer side.
  • the liquid crystal panel may be bonded, or a retardation film or a brightness enhancement film may be bonded.
  • a polarizing plate FX ′ shown in FIG. 8 has surface protection on both the lower protective layer (COP layer) S3 and the upper protective layer (TAC layer) S4 sandwiching the polarizer layer (PVA layer) S5. It has the structure by which film (PET film) S2 was peelably bonded.
  • FIGS. 9 (a) to 9 (c) are cross-sectional views sequentially showing the cutting process of the polarizing plate FX '.
  • the polarizing plate FX ′ is cut using the laser processing apparatus 30, first, as shown in FIG. 9A, while irradiating the first laser beam L1 to the polarizing plate FX, the polarizing plate FX is The first laser beam L1 is scanned along the cutting line C (referred to as a first scan).
  • the upper surface side protective film (PET layer) showing photolysis reaction by absorption of the first laser beam L1.
  • a protective layer (TAC layer) S4 on the upper layer side and a polarizer layer (PVA layer) S5 are cut by a first laser beam L1.
  • the focal position U1 of the first laser beam L1 it is preferable to set the focal position U1 of the first laser beam L1 to a position deeper than the polarizer layer (PVA layer) S5.
  • a cutting groove V 'along the cutting line C is formed in the polarizing plate FX'.
  • the cutting groove V ' is formed with a depth that divides the upper surface side surface protective film (PET film) S2, the upper surface side protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5.
  • the second laser light L2 is scanned along the cutting line C of the polarizing plate FX ′ Yes (called the second scan).
  • the lower protective layer (COP layer) S3 exhibiting a photolytic reaction by absorption of the second laser beam L2. Is cut with a second laser beam L2. In the second scan with the second laser beam L2, it is preferable to set the focal position U2 of the second laser beam L2 to a position deeper than the protective layer (COP layer) S3 on the lower layer side.
  • cutting groove V ' is formed by the depth which divides lower layer side protective layer (COP layer) S3 in the depth direction from the position which divides light polarizer layer (PVA layer) S5 further.
  • the first laser light L1 is scanned along the cutting line C of the polarizing plate FX ′ Yes (called the third scan).
  • the lower surface-side surface protective film (PET film) showing photodegradation reaction by absorption of the first laser beam L1.
  • S2 is cut by the first laser beam L1.
  • cutting groove V ' is formed in the depth which divides surface protection film (PET film) S2 by the side of a lower layer in the depth direction from the position which divides protective layer (COP layer) S3 by the side of a lower layer. . Therefore, in the main cutting step, it is possible to cut the polarizing plate FX ′ along the cutting line C in the third scan.
  • PET film surface protection film
  • COP layer protective layer
  • the first and second laser beams L1 and L2 having different wavelengths are used to cut the polarizing plate FX ′ by light decomposition processing with less heat generation. It is possible to cut the polarizing plate FX ′ precisely along the cutting line C. In addition, it is possible to keep the cross-sectional quality of the cut polarizing plate FX 'in a good condition.
  • the first laser light L1 described above is used for the third laser light. If it is a laser beam which can cut
  • PET film disconnect surface protection film
  • a laser beam having a wavelength that can be cut by a photolysis reaction is appropriately selected and used according to the resin layer to be cut among the plurality of resin layers constituting the laminated film. Just do it.
  • the cutting method of the laminated film to which the present invention is applied is not limited to the case of cutting the above-described polarizing plates FX and FX ′, but in the cutting step of cutting the laminated film in which a plurality of resin layers of different materials are laminated, It is possible to apply the invention widely.
  • the method for producing a laminated film to which the present invention is applied widely applies the present invention to one including the above-described cutting step when producing a laminated film in which a plurality of resin layers of different materials are laminated. It is possible.
  • optical films such as a retardation film and a brightness enhancement film can be mentioned besides the above-mentioned polarizing plates FX and FX '.
  • polarizing plates FX and FX ' polarizing plates
  • stacked these optical films it is possible to apply the cutting method of this invention.
  • multilayer film other than a liquid crystal panel, an organic electroluminescent panel etc. may be sufficient, for example.
  • the number of laminations, etc. it is also possible to increase the number of times of scanning of the laser light, or to adjust the output and scanning speed of the laser light.
  • a method of scanning the laser light with respect to the cutting line a method of repeatedly scanning the laser light in one direction along the cutting line, a method of repeatedly reciprocatingly scanning the laser light between the start point and the end point of the cutting line, etc. It can be mentioned. Further, a method of simultaneously scanning a plurality of laser beams L along the cutting line can be mentioned.
  • SYMBOLS 30 Laser processing apparatus 31 Laser irradiation apparatus (irradiation means) 32 Laser scanning apparatus (scanning means) 33 Drive control apparatus (drive control means) 34A 1st laser light source 34B 2nd laser light source 35 dichroic Mirror (optical path conversion means) 36 ... condensing lens (condensing optical system) 37A ... first position adjustment mechanism 37B ... second position adjustment mechanism FX, FX '... polarizing plate (laminated film) S2 ...
  • PET film surface protective film
  • COP layer Protective layer on the lower layer side
  • TAC layer Protective layer on the upper layer side
  • PVC layer Polarizer layer
  • L Laser light
  • L1 First laser light (third laser light Light)
  • L2 ... second laser light C ... cutting line U1, U2, U3 ... focal position V, V '... cutting groove

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)

Abstract

This method for cutting a laminate film is a method for cutting a laminate film (FX) in which the laminate film (FX) obtained by laminating a plurality of resin layers (S3, S5, S4) of different materials, is cut along a cutting line (C), the plurality of resin layers (S3, S5, S4) being cut by scanning the cutting line (C) of the laminate film (FX) with a plurality of laser beams (L1, L2) having different wavelengths. Specifically, among the plurality of resin layers (S3, S5, S4), the resin layers (S4, S5) that exhibits photodegradation reaction by absorbing the first laser beam (L1) are cut with the first laser beam (L1), and, among the plurality of resin layers (S3, S5, S4), the resin layer (S3) that exhibits photodegradation reaction by absorbing the second laser beam (L2) is cut with the second laser beam (L2).

Description

積層フィルムの切断方法及び製造方法Method of cutting laminated film and method of manufacturing
 本発明は、材質の異なる複数の樹脂層が積層された積層フィルムの切断方法及び製造方法に関する。
 本願は、2017年12月7日に出願された日本国特許出願2017-235351号及び2018年11月6日に出願された日本国特許出願2018-208864号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cutting method and manufacturing method of a laminated film in which a plurality of resin layers of different materials are laminated.
Priority is claimed on Japanese Patent Application No. 2017-235351, filed Dec. 7, 2017, and Japanese Patent Application No. 2018-208864, filed on Nov. 6, 2018, the contents of which are incorporated herein by reference. Is incorporated herein by reference.
 例えば、液晶パネルや有機ELパネルなどの光学表示パネルには、偏光板や位相差フィルム(位相差板)などの光学フィルムが貼り付けられている。一般に、これらの光学フィルムには、原反ロールから長尺のフィルムを巻き出し、この巻き出したフィルムを光学表示パネルに対応する幅や長さにカット(切断加工)したものが用いられている。 For example, an optical film such as a polarizing plate or a retardation film (retardation plate) is attached to an optical display panel such as a liquid crystal panel or an organic EL panel. Generally, for these optical films, a film obtained by unrolling a long film from a film roll and cutting (rolling out) the unrolled film into a width and a length corresponding to an optical display panel is used. .
 光学フィルムの切断加工には、従来より刃物が用いられている。しかしながら、刃物による切断加工の場合、切断加工時にフィルム屑等の異物が生じ易い。そして、このような異物が付着した光学フィルムは、光学表示パネルに貼り付けられた際に、光学表示パネルに表示欠陥等を発生させることがある。 A cutter is conventionally used for the cutting process of the optical film. However, in the case of cutting with a blade, foreign substances such as film scraps are easily generated at the time of cutting. And when the optical film to which such a foreign material has adhered is stuck on an optical display panel, a display defect etc. may be generated on an optical display panel.
 そこで、近年では、レーザー光を用いて光学フィルムをカット(切断加工)することが行われている(例えば、特許文献1~3を参照。)。具体的に、特許文献1には、樹脂フィルムと一層又は複数層の機能層とを含む積層体の切断において、レーザーにより機能層と樹脂フィルムの一部を切断する第1切断工程と、切断刃により残りの樹脂フィルムを切断する第2切断工程とを有する樹脂フィルム媒体の製造方法が開示されている。 Therefore, in recent years, cutting (cutting process) of an optical film using a laser beam has been performed (see, for example, Patent Documents 1 to 3). Specifically, in Patent Document 1, in the cutting of a laminate including a resin film and one or more functional layers, a first cutting step of cutting a part of the functional layer and the resin film with a laser, and a cutting blade And a second cutting step of cutting the remaining resin film.
 一方、特許文献2には、偏光板を剥離フィルムのみを残して他の偏光板を構成する層を切断する偏光板の製造方法であって、表面保護フィルム層からレーザー光低吸収率フィルムからなる層の直前の層までをレーザーで切断し、次いでレーザー光低吸収率フィルムからなる層をカッターで切断する方法が開示されている。 On the other hand, Patent Document 2 discloses a manufacturing method of a polarizing plate in which a polarizing plate is cut off a layer constituting another polarizing plate while leaving only a peeling film, and the surface protection film layer is formed of a laser light low absorptivity film. There is disclosed a method of cutting with a laser up to the layer immediately before the layer, and then cutting with a cutter the layer consisting of a low laser absorption film.
 一方、特許文献3には、レーザー光の照射により高吸収率フィルムを切断すると共に、低吸収率フィルムに溝を形成する溝形成工程と、溝に沿って低吸収率フィルムを引き裂く引裂工程とを含む偏光板の切断方法が開示されている。 On the other hand, Patent Document 3 discloses a groove forming step of cutting a high absorptivity film by laser light irradiation and forming a groove in the low absorptivity film and a tearing step of tearing the low absorptivity film along the groove A method of cutting a polarizing plate is disclosed.
日本国特許第5359356号公報Japanese Patent No. 5359356 gazette 日本国特許第4743339号公報Japanese Patent No. 4743339 日本国特許第5481300号公報Japanese Patent No. 5481300
 典型的な偏光板は、例えば、上側の保護層となるトリアセチルセルロース(TAC)層と、下側の保護層となるシクロオレフィンポリマー(COP)層との間に、偏光子となるポリビニルアルコール(PVA)層が挟み込まれた形式の積層フィルムを構成している。 A typical polarizing plate is, for example, polyvinyl alcohol (polarizer) between a triacetylcellulose (TAC) layer to be an upper protective layer and a cycloolefin polymer (COP) layer to be a lower protective layer. PVA) The layer comprises the laminated | multilayer film of the type | mold inserted.
 このような積層フィルムをレーザー光(例えば、炭酸ガスレーザー、波長9.4μm)により切断すると、COP層以外は、比較的切断しやすい層(レーザー光の吸収率が高い層)であるため、熱の発生が少ない光分解加工により切断され、断面品位が良好に保たれる。一方、COP層は、比較的切断しにくい層(レーザー光の吸収率が低い層)であるため、分子の振動による熱加工により切断され、断面品位が悪化するといった課題があった。 When such a laminated film is cut by a laser beam (for example, a carbon dioxide gas laser, wavelength 9.4 μm), the layer other than the COP layer is a layer which is relatively easy to be cut (a layer having a high laser beam absorptivity). It is cut by photodecomposition processing with few occurrence of and cross section quality is kept good. On the other hand, since the COP layer is a layer which is relatively difficult to cut (a layer having a low absorptivity of laser light), the COP layer is cut by thermal processing due to the vibration of molecules, and the cross-sectional quality is deteriorated.
 本発明の態様は、このような従来の事情に鑑みて提案されたものであり、偏光板のような材質の異なる複数の樹脂層が積層された積層フィルムを精度良く切断することができ、且つ、切断された積層フィルムの断面品位を良好に保つことが可能な積層フィルムの切断方法、並びにそのような積層フィルムの切断方法を用いた積層フィルムの製造方法を提供することを目的とする。 The aspect of the present invention has been proposed in view of such conventional circumstances, and can accurately cut a laminated film in which a plurality of resin layers of different materials such as a polarizing plate are laminated, and It is an object of the present invention to provide a method for cutting a laminated film capable of maintaining good cross-sectional quality of a cut laminated film, and a method for producing a laminated film using such a method for cutting a laminated film.
 上記課題を解決するための手段として、本発明の態様に従えば、材質の異なる複数の樹脂層が積層された積層フィルムを切断ラインに沿って切断する積層フィルムの切断方法であって、前記積層フィルムの切断ラインを波長の異なる複数のレーザー光で走査することによって、前記複数の樹脂層を切断する積層フィルムの切断方法が提供される。 As a means for solving the above problems, according to an aspect of the present invention, there is provided a method of cutting a laminated film in which a laminated film in which a plurality of resin layers of different materials are laminated is cut along a cutting line By scanning a cutting line of the film with a plurality of laser beams having different wavelengths, a method for cutting a laminated film is provided, in which the plurality of resin layers are cut.
 前記積層フィルムの切断方法では、前記積層フィルムの切断ラインを第1のレーザー光と、前記第1のレーザー光とは波長が異なる第2のレーザー光とで走査することによって、前記複数の樹脂層のうち、前記第1のレーザー光の吸収により光分解反応を示す樹脂層を前記第1のレーザー光で切断し、前記複数の樹脂層のうち、前記第2のレーザー光の吸収により光分解反応を示す樹脂層を前記第2のレーザー光で切断してもよい。 In the method for cutting the laminated film, the plurality of resin layers are scanned by scanning a cutting line of the laminated film with a first laser beam and a second laser beam having a wavelength different from that of the first laser beam. Among the plurality of resin layers, the resin layer exhibiting a photolytic reaction due to the absorption of the first laser beam is cut by the first laser beam, and the photolytic reaction is caused by the absorption of the second laser beam among the plurality of resin layers. May be cut by the second laser beam.
 前記積層フィルムの切断方法では、前記第1のレーザー光が炭酸ガスレーザーにより励起されたレーザー光であり、前記第2のレーザー光がYAGレーザー、エキシマレーザー又は半導体レーザーにより励起されたレーザー光であってもよい。 In the method for cutting the laminated film, the first laser beam is a laser beam excited by a carbon dioxide gas laser, and the second laser beam is a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser. May be
 本発明の別の態様に従えば、材質の異なる複数の樹脂層が積層された積層フィルムの製造方法であって、前記複数の樹脂層を切断ラインに沿って切断する切断工程を含み、前記切断工程において、前記何れかの切断方法を用いる積層フィルムの製造方法が提供される。 According to another aspect of the present invention, there is provided a method of producing a laminated film in which a plurality of resin layers of different materials are laminated, comprising: a cutting step of cutting the plurality of resin layers along a cutting line, In the process, a method of producing a laminated film using any of the above-mentioned cutting methods is provided.
 前記積層フィルムの製造方法では、前記積層フィルムは、少なくともシクロオレフィンポリマー(COP)層と、ポリビニルアルコール(PVA)層とが積層された偏光板であり、前記PVA層を前記第1のレーザー光により切断し、前記COP層を前記第2のレーザー光により切断してもよい。 In the method for producing a laminated film, the laminated film is a polarizing plate in which at least a cycloolefin polymer (COP) layer and a polyvinyl alcohol (PVA) layer are laminated, and the PVA layer is subjected to the first laser light. Cutting may be performed, and the COP layer may be cut by the second laser beam.
 前記積層フィルムの製造方法では、前記積層フィルムは、更にトリアセチルセルロース(TAC)層を含み、前記COP層と、前記PVA層と、前記TAC層とが、この順に積層された偏光板であり、前記TAC層及び前記PVA層を前記第1のレーザー光により切断し、前記COP層を前記第2のレーザー光により切断してもよい。 In the method for producing a laminated film, the laminated film is a polarizing plate further including a triacetylcellulose (TAC) layer, and the COP layer, the PVA layer, and the TAC layer are laminated in this order, The TAC layer and the PVA layer may be cut by the first laser beam, and the COP layer may be cut by the second laser beam.
 前記積層フィルムの製造方法では、前記第2のレーザー光がYAGレーザー、エキシマレーザー又は半導体レーザーにより励起されたレーザー光であってもよい。 In the method for producing a laminated film, the second laser beam may be a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser.
 前記積層フィルムの製造方法では、前記積層フィルムは、円偏光板と、ウィンドウフィルムと、タッチセンサとの中から選ばれる少なくとも2つ以上を含むフレキシブル画像表示装置用積層フィルムであってもよい。 In the method of manufacturing the laminated film, the laminated film may be a laminated film for a flexible image display device including at least two or more selected from a circularly polarizing plate, a window film, and a touch sensor.
 以上のように、本発明の態様に従えば、波長の異なるレーザー光を用いて、材質の異なる複数の樹脂層が積層された積層フィルムを熱の発生が少ない光分解加工により切断することで、積層フィルムを構成する複数の樹脂層を精度良く切断することができ、且つ、切断された積層フィルムの断面品位を良好に保つことが可能である。 As described above, according to the embodiment of the present invention, a laminated film in which a plurality of resin layers having different materials are laminated is cut by photolysis processing with little heat generation using laser beams of different wavelengths. A plurality of resin layers constituting the laminated film can be cut with high precision, and the cross-sectional quality of the cut laminated film can be kept good.
偏光板の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of a polarizing plate. レーザー加工装置の一例を示す斜視図である。It is a perspective view which shows an example of a laser processing apparatus. レーザー照射装置の具体的な構成を示す斜視図である。It is a perspective view showing the concrete composition of a laser irradiation device. 偏光板の切断工程を説明するための断面図である。It is sectional drawing for demonstrating the cutting process of a polarizing plate. COP、PVA、TAC、PETの波長2.0~14.0μmの光に対する透過率を示すグラフである。It is a graph which shows the transmittance | permeability with respect to wavelength 2.0-14.0 micrometers light of COP, PVA, TAC, and PET. COPの波長200~500μmの光に対する透過率を示すグラフである。It is a graph which shows the transmittance | permeability with respect to the wavelength 200-500 micrometers light of COP. レーザー加工装置の他例を示す斜視図である。It is a perspective view which shows the other example of a laser processing apparatus. 表面保護フィルムが貼合された偏光板の積層構成を示す断面図である。It is sectional drawing which shows the laminated structure of the polarizing plate in which the surface protective film was bonded. 図8に示す偏光板の切断工程を説明するための断面図である。It is sectional drawing for demonstrating the cutting process of the polarizing plate shown in FIG.
 以下、本発明の実施形態について図面を参照して説明する。
 なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the drawings used in the following description, in order to make the features easy to understand, the features that are the features may be enlarged for the sake of convenience, and the dimensional ratio of each component may be limited to the same as the actual Absent. In addition, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not necessarily limited to them, and can be appropriately changed and implemented without changing the gist of the invention. .
(積層フィルムの切断方法)
 本発明を適用した積層フィルムの切断方法は、材質の異なる複数の樹脂層が積層された積層フィルムを切断ラインに沿って切断する際に、積層フィルムの切断ラインを波長の異なる複数のレーザー光で走査することによって、複数の樹脂層を切断することを特徴とする。
(Method of cutting laminated film)
In the method of cutting a laminated film to which the present invention is applied, when cutting a laminated film in which a plurality of resin layers of different materials are laminated along a cutting line, the cutting line of the laminated film is subjected to a plurality of laser beams of different wavelengths. A plurality of resin layers are cut by scanning.
 本実施形態では、本発明を適用した積層フィルムの切断方法の一具体例として、例えば図1に示す偏光板(積層フィルム)FXを切断する場合を例に挙げて説明する。 In the present embodiment, as a specific example of the method of cutting a laminated film to which the present invention is applied, a case of cutting a polarizing plate (laminated film) FX shown in FIG. 1 will be described as an example.
 偏光板FXは、図1に示すように、偏光板FXの最上層が表面保護フィルムS2により保護されている。表面保護フィルムS2は、切断工程により偏光板FXと共に、所定の大きさのシート片とされ、液晶パネルへ貼合された後に、偏光板FX上から剥離除去される。
 このような表面保護フィルムS2としては、ポリエチレンテレフタレート(PET)フィルムを用いることができる。
As for the polarizing plate FX, as shown in FIG. 1, the uppermost layer of the polarizing plate FX is protected by surface protection film S2. The surface protective film S2 is made into a sheet piece of a predetermined size together with the polarizing plate FX in the cutting process, and after being bonded to the liquid crystal panel, it is peeled off from the polarizing plate FX.
A polyethylene terephthalate (PET) film can be used as such surface protection film S2.
 偏光板FXは、一対の保護層S3,S4(樹脂層)の間に偏光子層S5(樹脂層)が挟み込まれた積層構造を有している。具体的に、本実施形態の偏光板FXは、下層側の保護層S3としてシクロオレフィンポリマー(COP)層と、偏光子層S5としてポリビニルアルコール(PVA)層と、上層側の保護層S4としてトリアセチルセルロース(TAC)層とが、この順で積層された積層フィルムを構成している。 The polarizing plate FX has a laminated structure in which a polarizer layer S5 (resin layer) is sandwiched between a pair of protective layers S3 and S4 (resin layers). Specifically, the polarizing plate FX according to this embodiment includes a cycloolefin polymer (COP) layer as the lower protective layer S3, a polyvinyl alcohol (PVA) layer as the polarizer layer S5, and a trilayer as the upper protective layer S4. An acetyl cellulose (TAC) layer constitutes a laminated film laminated in this order.
 なお、図1に示す偏光板FXの積層構造は、ほんの一例であり、このような積層構造に必ずしも限定されるものではなく、材質の異なる複数の樹脂層(フィルム)が積層された積層フィルムとして、各樹脂層(フィルム)に用いる材料や厚み等を適宜変更して実施することが可能である。 The laminated structure of the polarizing plate FX shown in FIG. 1 is merely an example, and is not necessarily limited to such a laminated structure, and is a laminated film in which a plurality of resin layers (films) of different materials are laminated. It is possible to change the material, thickness, etc. used for each resin layer (film) suitably, and to carry out.
(フレキシブル画像表示装置)
 本発明を適用した積層フィルムの製造方法は、フレキシブル画像表示装置に適用される積層フィルム(フレキシブル画像表示装置用積層フィルム)を製造する際に好適に用いることができる。
(Flexible image display device)
The method for producing a laminated film to which the present invention is applied can be suitably used when producing a laminated film (laminated film for flexible image display device) applied to a flexible image display device.
 フレキシブル画像表示装置は、フレキシブル画像表示装置用積層フィルムと、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル画像表示装置用積層体が配置され、折り曲げ自在に構成されている。 The flexible image display device comprises a laminated film for a flexible image display device and an organic EL display panel, and a laminate for a flexible image display device is disposed on the viewing side with respect to the organic EL display panel and is configured to be bendable. There is.
 フレキシブル画像表示装置用積層体としては、ウィンドウフィルム(以下、「ウィンドウ」と略称することがある。)と、円偏光板と、タッチセンサとの中から選ばれる少なくとも2つ以上を含むものであればよい。なお、ウィンドウ、円偏光板及びタッチセンサは、何れも可撓性(フレキシブル性)を有するものである。 As a laminate for a flexible image display device, at least two or more selected from a window film (hereinafter sometimes abbreviated as “window”), a circularly polarizing plate, and a touch sensor may be used. Just do it. Each of the window, the circularly polarizing plate, and the touch sensor has flexibility (flexibility).
 また、ウィンドウ、円偏光板及びタッチセンサの積層順序については、任意であるが、視認側からウィンドウ、円偏光板及びタッチセンサの順で積層した構成、又は、視認側からウィンドウ、タッチセンサ及び円偏光板の順で積層し構成とすることが好ましい。タッチセンサの視認側に円偏光板が存在すると、タッチセンサのパターンが視認されにくくなり、表示画像の視認性が良くなるので好ましい。 In addition, although the lamination order of the window, the circularly polarizing plate and the touch sensor is arbitrary, the configuration in which the window, the circularly polarizing plate and the touch sensor are laminated in order from the viewing side, or It is preferable to laminate in the order of the polarizing plates. If a circularly polarizing plate is present on the viewing side of the touch sensor, the pattern of the touch sensor is less likely to be viewed, and the visibility of the display image is preferably improved.
 また、ウィンドウ、円偏光板及びタッチセンサは、接着剤や粘着剤などを用いて貼り合わせることで積層することができる。また、ウィンドウと、円偏光板と、タッチセンサとの何れかの層の少なくとも一面に、遮光パターンを形成することができる。 The window, the circularly polarizing plate, and the touch sensor can be stacked by bonding using an adhesive, a pressure-sensitive adhesive, or the like. In addition, a light shielding pattern can be formed on at least one surface of any of the window, the circularly polarizing plate, and the touch sensor.
(ウィンドウ)
 ウィンドウは、フレキシブル画像表示装置の視認側に配置され、その他の構成要素を外部からの衝撃又は温湿度などの環境変化から保護する保護層としての役割を担っている。
 従来、このような保護層としては、ガラスが使用されてきたが、フレキシブル画像表示装置におけるウィンドウは、ガラスのように剛直で堅いものではなく、上述したフレキシブル性を有する透明基材からなる。この透明基材は、少なくとも一面にハードコート層を含んでいてもよい。
(window)
The window is disposed on the viewing side of the flexible image display device, and plays a role as a protective layer that protects other components from environmental changes such as external impact or temperature and humidity.
Conventionally, glass has been used as such a protective layer, but the window in the flexible image display device is not as rigid and rigid as glass, but is made of the transparent substrate having the above-mentioned flexibility. The transparent substrate may include a hard coat layer on at least one side.
(透明基材)
 ウィンドウに用いる透明基材の透明性は、可視光線の透過率が70%以上であることが好ましく、より好ましくは80%以上である。透明基材は、透明性のある高分子フィルムであれば特に限定はなく、どのようなものでも使用することが可能である。
(Transparent substrate)
The transparency of the transparent substrate used for the window is preferably such that the transmittance of visible light is 70% or more, and more preferably 80% or more. The transparent substrate is not particularly limited as long as it is a transparent polymer film, and any material can be used.
 具体的には、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ノルボルネン又はシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体などのポリオレフィン類;ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロースなどの(変性)セルロース類;メチルメタクリレート(共)重合体などのアクリル類;スチレン(共)重合体などのポリスチレン類;アクリロニトリル・ブタジエン・スチレン共重合体類;アクリロニトリル・スチレン共重合体類;エチレン-酢酸ビニル共重合体類;ポリ塩化ビニル類、ポリ塩化ビニリデン類などのハロゲン含有重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレートなどのポリエステル類;ナイロンなどのポリアミド類;ポリイミド類、ポリアミドイミド類、ポリエーテルイミド類などのポリイミド類;ポリエーテルスルホン類、ポリスルホン類などのポリスルホン類;ポリビニルアルコール類;ポリビニルアセタール類;ポリウレタン類;エポキシ樹脂類などの高分子からなるフィルムを用いることができる。また、これらの高分子からなる未延伸フィルムや、1軸又は2軸延伸フィルムを使用することができる。 Specifically, polyolefins such as polyethylene, polypropylene, polymethylpentene, cycloolefin derivatives having units of monomers including norbornene or cycloolefin; (modified) celluloses such as diacetyl cellulose, triacetyl cellulose, propionyl cellulose Acrylics such as methyl methacrylate (co) polymer; polystyrenes such as styrene (co) polymer; acrylonitrile butadiene styrene copolymers acrylonitrile acrylonitrile styrene copolymers ethylene-vinyl acetate copolymer ; Halogen-containing polymers such as polyvinyl chlorides and polyvinylidene chlorides; Poly compounds such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate Steers; Polyamides such as nylon; Polyimides such as polyimides, polyamide imides and polyether imides; Polysulfones such as polyether sulfones and polysulfones; Polyvinyl alcohols; Polyvinyl acetals; Polyurethanes; Epoxy resin It is possible to use a film made of a polymer such as a kind. Moreover, the unstretched film which consists of these polymers, and a uniaxial or biaxial stretched film can be used.
 さらに、これらの高分子は、それぞれ単独又は2種以上を混合して使用することができる。その中でも、透明性及び耐熱性に優れたポリアミドフィルム、ポリアミドイミドフィルム又はポリイミドフィルム、ポリエステル系フィルム、オレフィン系フィルム、アクリルフィルム、セルロース系フィルムを用いることが好ましい。 Furthermore, these polymers can be used alone or in combination of two or more. Among them, it is preferable to use a polyamide film, a polyamideimide film or a polyimide film, a polyester film, an olefin film, an acrylic film and a cellulose film which are excellent in transparency and heat resistance.
 透明基材の中には、シリカなどの無機粒子、有機微粒子、ゴム粒子などを分散させることが好ましい。さらに、透明基材の中には、顔料や染料のような着色剤、蛍光増白剤、分散剤、可塑剤、熱安定剤、光安定剤、赤外線吸収剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤を含有させてもよい。透明基材の厚みは、5~200μmであることが好ましく、より好ましくは20~100μmである。 In the transparent substrate, it is preferable to disperse inorganic particles such as silica, organic fine particles, rubber particles and the like. Furthermore, in transparent substrates, colorants such as pigments and dyes, optical brighteners, dispersants, plasticizers, heat stabilizers, light stabilizers, infrared absorbers, ultraviolet absorbers, antistatic agents, Ingredients such as antioxidants, lubricants and solvents may be contained. The thickness of the transparent substrate is preferably 5 to 200 μm, more preferably 20 to 100 μm.
(ハードコート)
 ウィンドウには、透明基材の表面における傷付きを防止するため(耐擦傷性の向上のため)、少なくとも一面にハードコート層が設けられていてもよい。ハードコート層の厚みは、特に限定されないが、例えば2~100μmであればよい。ハードコート層の厚みが2μm未満になると、十分な耐擦傷性を確保することが難しなる。一方、ハードコート層の厚みが100μmを超えると、フレキシブル性が低下し、硬化収縮によるカール発生の問題が発生することがある。
(Hard coat)
A hard coat layer may be provided on at least one surface of the window in order to prevent the surface of the transparent substrate from being scratched (for improving the scratch resistance). The thickness of the hard coat layer is not particularly limited, but may be, for example, 2 to 100 μm. If the thickness of the hard coat layer is less than 2 μm, it will be difficult to secure sufficient scratch resistance. On the other hand, when the thickness of the hard coat layer exceeds 100 μm, the flexibility is lowered, and a problem of curling due to curing shrinkage may occur.
 ハードコート層は、活性エネルギー線又は熱エネルギーを照射して架橋構造を形成する反応性材料を含むハードコート組成物の硬化により形成することができる。その中でも、活性エネルギー線を照射して架橋構造を形成するもの、すなわち、活性エネルギー線硬化によるものが好ましい。活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義される。活性エネルギー線としては、例えば、可視光線、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられる。その中でも、紫外線を用いることが特に好ましい。 The hard coat layer can be formed by curing of a hard coat composition containing a reactive material that forms a crosslinked structure upon irradiation with active energy rays or thermal energy. Among them, those which form a crosslinked structure by irradiation with active energy rays, that is, those based on active energy ray curing are preferable. An active energy ray is defined as an energy ray capable of decomposing a compound that generates an active species to generate an active species. Examples of active energy rays include visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, γ-rays and electron beams. Among these, it is particularly preferable to use ultraviolet light.
 ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。ラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素-炭素不飽和二重結合を含む基などが挙げられる。具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基は、それぞれ同一であってもよく、異なっていてもよい。 The hard coat composition contains a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound. The radically polymerizable compound is a compound having a radically polymerizable group. The radical polymerizable group may be any functional group capable of causing a radical polymerization reaction, and includes a group containing a carbon-carbon unsaturated double bond. Specifically, a vinyl group, a (meth) acryloyl group, etc. are mentioned. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be identical to or different from each other.
 ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましい。ラジカル重合性化合物としては、反応性の高さの点から、(メタ)アクリロイル基を有する化合物であることが好ましく、1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーを使用することが好ましい。また、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートの中から選択された1種以上を含むことが好ましい。 The number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably two or more from the viewpoint of improving the hardness of the hard coat layer. The radically polymerizable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of high reactivity, and is a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule. And oligomers having a molecular weight of several hundred to several thousand having several (meth) acryloyl groups in a molecule called epoxy (meth) acrylate, urethane (meth) acrylate or polyester (meth) acrylate It is preferred to use. Moreover, it is preferable to contain 1 or more types selected from epoxy (meth) acrylate, urethane (meth) acrylate, and polyester (meth) acrylate.
 カチオン重合性化合物とは、エポキシ基、オキセタニル基、ビニルエーテル基などのカチオン重合性基を有する化合物である。カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の耐擦傷性を向上する点から、2つ以上であることが好ましく、3つ以上であることが更に好ましい。 The cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group. The number of cationically polymerizable groups that the cationically polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the scratch resistance of the hard coat layer.
 また、カチオン重合性化合物としては、カチオン重合性基としてエポキシ基とオキセタニル基との少なくとも1種の環状エーテル基を有する化合物であることが好ましい。環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は、多様な構造の化合物が市場から入手し易く、得られたハードコート層の耐擦傷性や耐久性に悪影響を与えない。 The cationically polymerizable compound is preferably a compound having at least one cyclic ether group of an epoxy group and an oxetanyl group as a cationically polymerizable group. The cyclic ether group is preferable from the viewpoint of small shrinkage associated with the polymerization reaction. In addition, compounds having an epoxy group among cyclic ether groups are easy to obtain from the market compounds having various structures, and do not adversely affect the scratch resistance and durability of the obtained hard coat layer.
 また、ハードコート組成物として、ラジカル重合性化合物とカチオン重合性化合物とを含む場合、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなり易く、低毒性であり、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さないという効果がある。さらに、独立したネットワークを形成するなどの利点がある。 When the hard coat composition contains a radically polymerizable compound and a cationically polymerizable compound, the compatibility with the radically polymerizable compound can be easily controlled. Among the cyclic ether groups, oxetanyl group tends to have a higher degree of polymerization compared to epoxy group, is less toxic, and accelerates the network formation speed obtained from the cationically polymerizable compound of the obtained hard coat layer, and radically polymerizes Even in the region mixed with the compound, there is an effect that no unreacted monomer is left in the film. Furthermore, there are advantages such as forming an independent network.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環を有する多価アルコールのポリグリシジルエーテル;シクロヘキセン環やシクロペンテン環含有化合物を、過酸化水素、過酸などの適当な酸化剤でエポキシ化することによって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールAなどのビスフェノール類、又はそれらのアルキレンオキサイド付加体;カプロラクトン付加体などの誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル及びノボラックエポキシ樹脂など;ビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂などが挙げられる。 As a cationically polymerizable compound having an epoxy group, for example, polyglycidyl ether of polyhydric alcohol having an alicyclic group; a compound containing a cyclohexene ring or a cyclopentene ring is epoxidized with a suitable oxidizing agent such as hydrogen peroxide or a peracid Aliphatic epoxy resins obtained by: aliphatic polyalcohols, polyglycidyl ethers of alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, homopolymers of glycidyl (meth) acrylates, copolymers, etc. Aliphatic epoxy resins; bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or alkylene oxide adducts thereof; glycidyl produced by reaction of epichlorohydrin with derivatives such as caprolactone adducts Such as ether and novolac epoxy resins; glycidyl ether epoxy resins derived from bisphenols are exemplified.
 ハードコート組成物は、更に重合開始剤を含んでいてもよい。重合開始剤としては、例えば、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤などが挙げられる。その中から使用する重合性化合物の種類に応じて適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。 The hard coat composition may further contain a polymerization initiator. As a polymerization initiator, a radical polymerization initiator, a cationic polymerization initiator, a radical, and a cationic polymerization initiator etc. are mentioned, for example. According to the kind of polymeric compound to be used among them, it can select suitably and can use. These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
 ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくとも何れかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸などの有機過酸化物、アゾビスブチロニトリルなどのアゾ化合物などが挙げられる。 The radical polymerization initiator may be capable of releasing a substance that initiates radical polymerization by at least one of active energy ray irradiation and heating. For example, as the thermal radical polymerization initiator, organic peroxides such as hydrogen peroxide and perbenzoic acid, and azo compounds such as azobisbutyronitrile can be mentioned.
 活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤とがあり、それぞれ単独で又は併用して使用することができる。 As active energy ray radical polymerization initiators, Type 1 type radical polymerization initiators which generate radicals by molecular decomposition, and Type 2 type radical polymerization initiators which generate radicals by hydrogen abstraction reaction in coexistence with tertiary amines And can be used alone or in combination.
 カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくとも何れかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、例えば、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体などが使用できる。これらは、構造の違いによって活性エネルギー線照射又は加熱の何れか又は何れでもカチオン重合を開始することができる。 The cationic polymerization initiator may be capable of releasing a substance that initiates cationic polymerization by at least one of active energy ray irradiation and heating. As a cationic polymerization initiator, for example, aromatic iodonium salts, aromatic sulfonium salts, cyclopentadienyl iron (II) complexes and the like can be used. Depending on the difference in structure, these can initiate cationic polymerization either by active energy ray irradiation or heating or any of them.
 重合開始剤は、ハードコート組成物の全体100重量%に対して0.1~10重量%を含むことができる。重合開始剤の含量が0.1重量%未満の場合、硬化を十分に進行させにくくなり、最終的に得られた塗膜の機械的物性や密着力を具現することが難しくなる。
 一方、重合開始剤の含量が10重量%を超える場合、硬化収縮による接着力不良や割れ現象及びカール現象が発生することがある。
The polymerization initiator may comprise 0.1 to 10% by weight with respect to 100% by weight of the total hard coat composition. When the content of the polymerization initiator is less than 0.1% by weight, it is difficult to promote curing sufficiently, and it becomes difficult to realize the mechanical properties and adhesion of the finally obtained coating film.
On the other hand, when the content of the polymerization initiator exceeds 10% by weight, adhesion failure due to curing shrinkage, cracking and curling may occur.
 ハードコート組成物は、更に溶剤と添加剤との中から選択される一つ以上を含んでいてもよい。溶剤は、重合性化合物及び重合開始剤を溶解又は分散させることができるものであればよく、本技術分野のハードコート組成物の溶剤として従来より知られているものならば制限なく使用することができる。添加剤としては、例えば、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などを挙げられる。 The hard coat composition may further contain one or more selected from solvents and additives. Any solvent may be used as long as it can dissolve or disperse the polymerizable compound and the polymerization initiator, and any solvent conventionally known as a solvent for hard coat compositions in the technical field may be used without limitation. it can. As an additive, an inorganic particle, a leveling agent, a stabilizer, surfactant, an antistatic agent, a lubricant, an antifouling agent etc. are mentioned, for example.
[円偏光板]
 円偏光板は、右円偏光成分又は左円偏光成分のみを透過させる機能を有する機能層である。例えば、表示装置に入射した外光を右円偏光に変換し、この右円偏光が、有機ELパネルで反射されて左円偏光となることで、その左円偏光を円偏光板で遮断することができる。この結果、反射光の影響を抑制して、有機ELの発光成分のみを透過させることで、画像を見易くするために、円偏光板が用いられる。
[Circularly polarizing plate]
The circularly polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component. For example, external light incident on a display device is converted into right circularly polarized light, and the right circularly polarized light is reflected by the organic EL panel to become left circularly polarized light, and the left circularly polarized light is blocked by the circularly polarizing plate Can. As a result, a circularly polarizing plate is used in order to make the image easy to view by suppressing the influence of the reflected light and transmitting only the light emitting component of the organic EL.
 円偏光としての機能を達成するためには、直線偏光板及びλ/4位相差板を積層して組み合わせ、その直線偏光板の吸収軸と、そのλ/4位相差板の遅相軸との角度を理論上45°とする必要があるが、実用的には45°±10°であればよい。 In order to achieve the function as circularly polarized light, a linear polarizing plate and a λ / 4 retardation plate are laminated and combined, and the absorption axis of the linear polarizing plate and the slow axis of the λ / 4 retardation plate The angle should theoretically be 45 °, but practically it may be 45 ° ± 10 °.
 直線偏光板とλ/4位相差板とは、必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が上記の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましい。しかし、実用上は、必ずしもその必要はないので、フレキシブル画像表示装置に用いる円偏光板は、楕円偏光板を包含してもよい。さらに、直線偏光板の視認側にλ/4位相差フィルムを積層して、出射光を円偏光とすることで、偏光サングラスをかけた状態での視認性を向上させることも可能である。 The linear polarizing plate and the λ / 4 retardation plate do not necessarily have to be stacked adjacent to each other, as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferred to achieve perfect circular polarization at all wavelengths. However, since it is not always necessary in practice, the circularly polarizing plate used for the flexible image display may include an elliptically polarizing plate. Furthermore, by laminating a λ / 4 retardation film on the viewing side of the linear polarizing plate to make the outgoing light circularly polarized, it is also possible to improve the visibility in the state where the polarized sunglasses are worn.
 直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。また、直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。直線偏光板の厚みは、200μm以下であればよく、好ましくは0.5~100μmである。直線偏光板の厚みが200μmを超えると、フレキシブル性が低下することがある。 The linear polarizing plate is a functional layer having a function of transmitting light vibrating in the transmission axis direction but blocking polarization of a vibration component perpendicular thereto. The linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof. The thickness of the linear polarizing plate may be 200 μm or less, preferably 0.5 to 100 μm. When the thickness of the linear polarizing plate exceeds 200 μm, the flexibility may be reduced.
 直線偏光子は、直線偏光板において、偏光子層として機能するものであり、例えば、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子などが挙げられる。また、延伸によって配向したPVA系フィルムに、ヨウ素などの二色性色素が吸着、又はPVA系フィルムのPVA分子に吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。 The linear polarizer is a linear polarizing plate and functions as a polarizer layer, and examples thereof include a film type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) -based film. In addition, the dichroic dye is oriented by being drawn in a state in which a dichroic dye such as iodine is adsorbed to the PVA-based film oriented by stretching or adsorbed to the PVA molecule of the PVA-based film, and the polarization performance is exhibited. Do.
 フィルム型偏光子の製造においては、その他にも、膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥などの各工程を有していてもよい。延伸工程や染色工程は、PVA系フィルム単独で行ってもよく、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。使用するPVA系フィルムとしては、厚みが10~100μm、延伸倍率が2~10倍であることが好ましい。 In addition, in the production of a film type polarizer, each step such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying may be included. The stretching step and the dyeing step may be carried out with a PVA-based film alone, or may be carried out in a state of being laminated with another film such as polyethylene terephthalate. The PVA-based film to be used preferably has a thickness of 10 to 100 μm and a stretching ratio of 2 to 10 times.
 以上、フィルム型偏光子を直線偏光子として有する直線偏光板、及びその直線偏光板を有する円偏光板について説明したが、この円偏光板のフレキシブル性を向上させるためには、円偏光板の厚みを更に薄くし、より薄膜の偏光子(薄膜偏光子)を用いることが好ましい。 The linear polarizing plate having a film type polarizer as a linear polarizer and the circularly polarizing plate having the linear polarizing plate have been described above. In order to improve the flexibility of the circular polarizing plate, the thickness of the circular polarizing plate is described. It is preferable to further thin the film thickness and use a thin film polarizer (thin film polarizer).
 このような薄膜偏光子の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子を挙げることができる。液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むものが挙げられる。 As an example of such a thin film polarizer, the liquid-crystal application | coating type | mold polarizer which apply | coats and forms a liquid-crystal polarizing composition can be mentioned. Examples of liquid crystal polarizing compositions include those containing a liquid crystal compound and a dichroic dye compound.
 液晶性化合物としては、液晶状態を示す性質を有していればよく、特にスメクチック相などの高次の配向状態を有していることが、高い偏光性能を発揮することができるため好ましい。また、重合性官能基を有していることが好ましい。 The liquid crystal compound may have any property as long as it exhibits a liquid crystal state, and in particular, it is preferable to have a high-order alignment state such as a smectic phase because high polarization performance can be exhibited. Moreover, it is preferable to have a polymerizable functional group.
 二色性色素化合物は、液晶化合物と共に配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよく、重合性官能基を有していてもよい。典型的な液晶偏光組成物に含まれる何れかの化合物は、重合性官能基を有している。 The dichroic dye compound is a dye that exhibits dichroism by aligning with a liquid crystal compound, and the dichroic dye itself may have liquid crystallinity and may have a polymerizable functional group. . Any of the compounds contained in a typical liquid crystal polarizing composition has a polymerizable functional group.
 さらに、液晶偏光組成物は、開始剤や溶剤を含むことが好ましく、さらに、分散剤やレベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などの添加剤を含んでいてもよい。 Further, the liquid crystal polarizing composition preferably contains an initiator and a solvent, and may further contain an additive such as a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, and a silane coupling agent. .
 液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することで製造することができる。このような液晶偏光層は、フィルム型偏光子に比べて厚みを薄くできるという利点がある。その場合、液晶偏光層の厚みは、0.5~10μmであることが好ましく、より好ましくは1~5μmである。 The liquid crystal polarizing layer can be produced by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer. Such a liquid crystal polarizing layer has the advantage of being able to be thinner than a film type polarizer. In that case, the thickness of the liquid crystal polarizing layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
 配向膜は、例えば、適当な基材を用い、その基材上に配向膜形成組成物を塗布し、ラビングや、偏光照射などにより配向性を付与することで、基材上に製造することができる。
 配向膜形成組成物は、配向剤の他に、溶剤や、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤などを含んでいてもよい。
The alignment film may be produced on a base material by, for example, applying a composition for forming an alignment film on the base material using a suitable base material, and imparting alignment property by rubbing, irradiation with polarized light, etc. it can.
The alignment film forming composition may contain, in addition to the alignment agent, a solvent, a crosslinking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent, and the like.
 配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用することができる。光配向を適用する場合(偏光照射)には、シンナメート基を含む配向剤を使用することが好ましい。配向剤として使用される高分子は、重量平均分子量が10,000~1000,000程度であってもよい。配向膜の厚みは、5~10000nmであることが好ましく、特に10~500nmであれば、配向規制力が十分に発現されるため、更に好ましい。 As the alignment agent, for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used. When applying photoalignment (polarized light), it is preferable to use an alignment agent containing a cinnamate group. The polymer used as an alignment agent may have a weight average molecular weight of about 10,000 to 1,000,000. The thickness of the alignment film is preferably 5 to 10000 nm, and more preferably 10 to 500 nm, because the alignment control force is sufficiently expressed.
 配向膜を備えた基材上に形成した液晶偏光層は、基材から剥離することもでき、基材、配向膜及び液晶偏光層が積層した積層体に第2の基材を貼合し、この第2の基材に液晶偏光層を転写することもできる。第2の基材に液晶偏光層を転写する場合、この第2の基材を保護フィルムや位相差板、ウィンドウの透明基材としての役割を担うことができる。 The liquid crystal polarizing layer formed on the base material provided with the alignment film can be peeled off from the base material, and the second base material is bonded to a laminate in which the base material, the alignment film and the liquid crystal polarizing layer are laminated, The liquid crystal polarizing layer can also be transferred to this second substrate. When the liquid crystal polarizing layer is transferred to the second substrate, the second substrate can serve as a protective film, a retardation plate, and a transparent substrate of a window.
 保護フィルムとしては、透明な高分子フィルムであればよく、透明基材として例示した材料、並びに添加剤が使用できる。その中でも、セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムを用いることが好ましい。また、エポキシ樹脂などのカチオン硬化組成物やアクリレートなどのラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。 As the protective film, any transparent polymer film may be used, and materials exemplified as the transparent substrate and additives can be used. Among them, cellulose-based films, olefin-based films, acrylic films, and polyester-based films are preferably used. Further, it may be a coating type protective film obtained by applying and curing a cationic curing composition such as an epoxy resin or a radical curing composition such as an acrylate.
 さらに、必要により、可塑剤や、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤などを含んでいてもよい。保護フィルムの厚みは、200μm以下であればよく、好ましくは、1~100μmである。保護フィルムの厚みが200μmを超えると、フレキシブル性が低下することがある。また、保護フィルムは、ウィンドウの役割を兼ねることもできる。 Furthermore, if necessary, plasticizers, ultraviolet light absorbers, infrared light absorbers, colorants such as pigments and dyes, fluorescent whitening agents, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants, A lubricant, a solvent and the like may be contained. The thickness of the protective film may be 200 μm or less, preferably 1 to 100 μm. When the thickness of the protective film exceeds 200 μm, the flexibility may be reduced. In addition, the protective film can also serve as a window.
 λ/4位相差板は、入射光の進行方向に直行する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。λ/4位相差板は、例えば、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルムなどの高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。また、必要により、位相差調整剤や、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤などを含んでいてもよい。延伸型位相差板の厚みは、200μm以下であればよく、好ましくは1~100μmである。延伸型位相差板の厚みが200μmを超えると、柔軟性が低下することがある。 The λ / 4 retardation plate is a film that gives a retardation of λ / 4 in the direction (in-plane direction of the film) orthogonal to the traveling direction of the incident light. The λ / 4 retardation plate may be, for example, a stretched retardation plate manufactured by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film. In addition, if necessary, a retardation control agent, a plasticizer, an ultraviolet absorber, an infrared absorber, a coloring agent such as a pigment or a dye, a brightening agent, a dispersing agent, a heat stabilizer, a light stabilizer, an antistatic agent Antioxidants, lubricants, solvents and the like may be included. The thickness of the stretched retardation plate may be 200 μm or less, preferably 1 to 100 μm. When the thickness of the stretched retardation plate exceeds 200 μm, the flexibility may be reduced.
 さらに、このようなλ/4位相差板としては、液晶組成物を塗布して形成することで形成される液晶塗布型位相差板であってもよい。液晶塗布型位相差板を形成するための液晶組成物は、例えば、ネマチック、コレステリック、スメクチックなどの液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物に含まれる液晶性化合物の何れかは、重合性官能基を有している。 Furthermore, as such a λ / 4 retardation plate, a liquid crystal application retardation plate formed by applying and forming a liquid crystal composition may be used. The liquid crystal composition for forming a liquid crystal coating type retardation plate includes, for example, a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric or smectic. Any of the liquid crystal compounds contained in the liquid crystal composition has a polymerizable functional group.
 さらに、液晶組成物は、開始剤や、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含んでいてもよい。液晶塗布型位相差板は、上記液晶偏光層で記載したものと同様に、配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。 Furthermore, the liquid crystal composition may contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like. The liquid crystal coating type retardation plate can be manufactured by coating and curing a liquid crystal composition on an alignment film to form a liquid crystal retardation layer, as described for the liquid crystal polarizing layer.
 液晶塗布型位相差板は、延伸型位相差板に比べて厚みを薄く形成することができる。具体的に、液晶偏光層の厚みは、0.5~10μmであることが好ましく、より好ましくは1~5μmである。液晶塗布型位相差板は、基材から剥離して転写して積層することもでき、基材をそのまま積層することもできる。基材は、保護フィルムや、位相差板、ウィンドウの透明基材としての役割を担うこともできる。 The liquid crystal coated retardation plate can be formed thinner than a stretched retardation plate. Specifically, the thickness of the liquid crystal polarizing layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm. The liquid crystal coated retardation plate may be separated from the substrate, transferred and laminated, or the substrate may be laminated as it is. The substrate can also serve as a protective film, a retardation plate, and a transparent substrate of a window.
 位相差板は、一般的には短波長ほど複屈折が大きく、長波長になるほど小さな複屈折を示すことが多い。この場合、全可視光領域でλ/4の位相差を与えることはできないので、視感度の高い560nm付近に対してλ/4となるように設計されることが多い。また、位相差板の面内位相差は、100~180nmであることが好ましく、より好ましくは130~150nmである。 In general, the retardation plate has a larger birefringence as the wavelength is shorter, and often exhibits a smaller birefringence as the wavelength is longer. In this case, since a phase difference of λ / 4 can not be given in the entire visible light region, it is often designed so as to be λ / 4 in the vicinity of 560 nm where the visibility is high. The in-plane retardation of the retardation plate is preferably 100 to 180 nm, more preferably 130 to 150 nm.
 通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を円偏光板に用いることは、視認性を良くすることができるので好ましい。このような材料を延伸型位相差板とした場合、例えば、日本国特開2007‐232873号公報などに記載されているものを用いることができる。また、液晶塗布型位相差板の場合には、日本国特開2010‐30979号公報に記載されているものを用いることができる。 It is preferable to use, as the circularly polarizing plate, an inverse dispersion λ / 4 retardation plate using a material having a birefringence and wavelength dispersion characteristics reverse to normal, because visibility can be improved. When such a material is used as a stretching type phase difference plate, for example, those described in JP-A-2007-232873 can be used. In the case of a liquid crystal coating type retardation plate, those described in JP-A-2010-30979 can be used.
 また、他の方法としては、λ/4位相差板とλ/2位相差板と組み合わせることで広帯域λ/4位相差板を得る技術も知られている(例えば、日本国特開平10-90521号公報を参照。)。λ/2位相差板は、λ/4位相差板と同様の材料や方法で製造される。その場合、延伸型位相差板と液晶塗布型位相差板との組み合わせは任意であるが、どちらも液晶塗布型位相差板を用いて膜厚を薄くできるので好ましい。 Further, as another method, there is also known a technique for obtaining a wide band λ / 4 retardation plate by combining the λ / 4 retardation plate and the λ / 2 retardation plate (for example, JP-A-10-90521). No.2). The λ / 2 retardation plate is manufactured by the same material and method as the λ / 4 retardation plate. In that case, the combination of the stretching type retardation plate and the liquid crystal coating type retardation plate is optional, but both are preferable because the film thickness can be reduced by using the liquid crystal coating type retardation plate.
 円偏光板は、斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(例えば、日本国特開2014‐224837号公報を参照。)。正のCプレートは、液晶塗布型位相差板であってもよく、延伸型位相差板であってもよい。厚み方向の位相差は、-200~-20nmであることが好ましく、より好ましくは-140~-40nmである。 As the circularly polarizing plate, a method of laminating a positive C plate is also known in order to enhance the visibility in the oblique direction (see, for example, Japanese Patent Application Laid-Open No. 2014-224837). The positive C plate may be a liquid crystal coated retardation plate or a stretching retardation plate. The thickness direction retardation is preferably −200 to −20 nm, more preferably −140 to −40 nm.
(タッチセンサ)
 タッチセンサは、フレキシブル画像表示装置の入力手段として用いられる典型的な部材である。タッチセンサとしては、例えば、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式など、様々な方式のものを用いることができ、その中でも静電容量方式を用いることが好ましい。
(Touch sensor)
A touch sensor is a typical member used as an input means of a flexible image display device. As the touch sensor, for example, various methods such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method can be used, and among them, the capacitance method is used preferable.
 静電容量方式タッチセンサは、活性領域及びその活性領域の外郭部に位置する非活性領域に区分される。活性領域は、表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域である。一方、非活性領域は、画像表示装置で画面が表示されない領域(非表示部)に対応する領域である。 The capacitive touch sensor is divided into an active area and a non-active area located at an outer portion of the active area. The active area is an area corresponding to an area (display unit) in which a screen is displayed on the display panel, and is an area where a user's touch is sensed. On the other hand, the non-active area is an area corresponding to an area (non-display portion) in which the screen is not displayed on the image display device.
 タッチセンサは、フレキシブルな特性を有する基板と、基板の活性領域に形成された感知パターンと、基板の非活性領域に形成され、感知パターンとパッド部とを介して外部の駆動回路と接続するための各センシングラインとを含むことができる。 The touch sensor is formed on a substrate having flexible characteristics, a sensing pattern formed on an active region of the substrate, and a non-active region of the substrate, and is connected to an external driving circuit through the sensing pattern and the pad portion. And each of the sensing lines.
 フレキシブルな特性を有する基板としては、ウィンドウの透明基板と同様の材料が使用できる。タッチセンサの基板は、靱性が2,000MPa%以上のものがタッチセンサのクラック抑制の面から好ましい。より好ましくは、靱性が2,000MPa%~30,000MPa%である。ここで、「靭性」とは、高分子材料の引張試験で求められる応力(MPa)-ひずみ(%)曲線(Stress-strain curve)から求められる性質である。すなわち、引張試験を実施して、応力付加開始から試験高分子材料の破壊点までの応力(MPa)-ひずみ(%)曲線を求め、得られた曲線の面積で定義されるものである。 As the substrate having the flexible property, the same material as the transparent substrate of the window can be used. The substrate of the touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of crack suppression of the touch sensor. More preferably, the toughness is 2,000 MPa% to 30,000 MPa%. Here, “toughness” is a property obtained from a stress (MPa) -strain (%) curve (Stress-strain curve) obtained in a tensile test of a polymer material. That is, a tensile test is carried out to obtain a stress (MPa) -strain (%) curve from the start of stress application to the breaking point of the test polymer material, and is defined by the area of the obtained curve.
 感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターン及び第2パターンは、互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは、各単位パターンが継ぎ手を介して互いに接続された形態である。一方、第2パターンは、各単位パターンがアイランド形態に互いに分離された構造になっている。したがって、第2パターンを電気的に接続するためには、別途のブリッジ電極が必要である。 The sensing pattern may include a first pattern formed in a first direction and a second pattern formed in a second direction. The first pattern and the second pattern are arranged in different directions. The first pattern and the second pattern are formed in the same layer, and in order to sense a point to be touched, the respective patterns must be electrically connected. The first pattern is a form in which each unit pattern is connected to each other through a joint. On the other hand, in the second pattern, each unit pattern is separated from each other in an island form. Therefore, a separate bridge electrode is required to electrically connect the second pattern.
 感知パターンは、周知の透明電極素材を用いることができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4―ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独又は2種以上混合して使用することができる。その中でも、ITOを使用することが好ましい。 The sensing pattern may use a known transparent electrode material. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), cadmium tin oxide (CTO), PEDOT (poly (3, 4- ethylenedioxythiophene)), carbon nanotubes (CNT), graphene, metal wires and the like, and these can be used alone or in combination of two or more. Among them, it is preferable to use ITO.
 金属ワイヤに使用される金属は、特に限定されないが、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、テレニウム、クロムなどを挙げることができる。これらは単独又は2種以上混合して使用することができる。 The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, telenium, chromium and the like. These can be used singly or in combination of two or more.
 ブリッジ電極は、感知パターンの上部に絶縁層を介して形成することができる。ブリッジ電極は、基板上に形成されており、その上に絶縁層及び感知パターンを形成することができる。ブリッジ電極は、感知パターンと同じ素材で形成することもでき、例えば、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金などの金属で形成することができる。 The bridge electrode can be formed on the top of the sensing pattern through the insulating layer. The bridge electrode is formed on a substrate, and an insulating layer and a sensing pattern can be formed thereon. The bridge electrode can also be formed of the same material as the sensing pattern, for example, a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium or an alloy of two or more of these Can be formed by
 第1パターンと第2パターンとは電気的に絶縁されなければならないので、感知パターンとブリッジ電極との間には、絶縁層が形成される。絶縁層は、第1パターンの継ぎ手とブリッジ電極の間にのみ形成することができる。また、感知パターンを覆う層の構造に形成することもできる。後者の場合、ブリッジ電極は、絶縁層に形成されたコンタクトホールを介して第2パターンと接続することができる。 Since the first pattern and the second pattern must be electrically isolated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer can be formed only between the joint of the first pattern and the bridge electrode. Moreover, it can also be formed in the structure of the layer which covers a sensing pattern. In the latter case, the bridge electrode can be connected to the second pattern through the contact hole formed in the insulating layer.
 タッチセンサは、パターンが形成されたパターン領域と 、パターンが形成されていない非パターン領域と間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として、基板と電極との間に光学調節層を更に含むことができる。 The touch sensor measures the light transmittance induced by the difference in transmittance between the pattern region where the pattern is formed and the non-pattern region where the pattern is not formed, specifically, the difference in refractive index in these regions. An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating for the difference in
 光学調節層は、無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は、光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。さらに、光硬化組成物は、無機粒子を含むことができる。この無機粒子によって、光学調節層の屈折率が上昇する。 The optical adjustment layer may include an inorganic insulating material or an organic insulating material. The optical control layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. Additionally, the photocurable composition can include inorganic particles. The inorganic particles increase the refractive index of the optical adjustment layer.
 光硬化組成物に含まれる光硬化性有機バインダーとしては、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を用いることができる。光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。 As the photocurable organic binder contained in the photocurable composition, for example, a copolymer of monomers such as an acrylate monomer, a styrene monomer, and a carboxylic acid monomer can be used. . The photocurable organic binder may be, for example, a copolymer containing mutually different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
 光硬化組成物に含まれる無機粒子としては、例えば、ジルコニア粒子や、チタニア粒子、アルミナ粒子などが挙げられる。さらに、光硬化組成物は、例えば、光重合開始剤や、重合性モノマー、硬化補助剤などの各添加剤を含むことができる。 As an inorganic particle contained in a photocuring composition, a zirconia particle, a titania particle, an alumina particle etc. are mentioned, for example. Furthermore, the photocurable composition can contain, for example, each additive such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
(接着層)
 フレキシブル画像表示装置用積層体を形成する各層(ウィンドウ、円偏光板、タッチセンサ)、並びに各層を構成するフィルム部材(直線偏光板、λ/4位相差板など)は、接着剤から形成される接着層を介して貼合することができる。
(Adhesive layer)
Each layer (window, circularly polarizing plate, touch sensor) forming a laminate for a flexible image display device, and film members (linearly polarizing plate, λ / 4 retardation plate, etc.) constituting each layer are formed of an adhesive. It can bond via an adhesive layer.
 接着剤としては、例えば、水系接着剤や、有機溶剤系、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤など、汎用のものが使用できる。その中でも、水系接着剤、溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよく用いられる。 Examples of the adhesive include water-based adhesives, organic solvents, solvent-free adhesives, solid adhesives, solvent volatilization adhesives, moisture curing adhesives, heat curing adhesives, anaerobic curing, active energy A general-purpose adhesive such as a linear curing adhesive, a curing agent mixed adhesive, a heat melting adhesive, a pressure sensitive adhesive (pressure sensitive adhesive), a rewetting adhesive can be used. Among them, water-based adhesives, solvent volatilization adhesives, active energy ray-curable adhesives, and pressure-sensitive adhesives are often used.
 接着剤層の厚みは、求められる接着力などに応じて適宜調節することができ、好ましくは0.01~500μm、より好ましくは0.1~300μmである。フレキシブル画像表示装置用積層体が複数の接着層を有する場合、各接着層の厚みや種類は、同じであっても、異なっていてもよい。 The thickness of the adhesive layer can be appropriately adjusted depending on the required adhesive strength and the like, and is preferably 0.01 to 500 μm, more preferably 0.1 to 300 μm. When the laminate for a flexible image display device has a plurality of adhesive layers, the thickness and type of each adhesive layer may be the same or different.
 水系接着剤とは、水を主として含むものであり、ポリビニルアルコール系ポリマー、でんぷんなどの水溶性ポリマー、エチレン-酢酸ビニル系エマルジョン、スチレン-ブタジエン系エマルジョンなど水分散状態のポリマーを主剤ポリマーとして使用することができる。また、水、主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤などを配合してもよい。 The water-based adhesive mainly contains water, and a polymer in water dispersion state such as polyvinyl alcohol polymer, water-soluble polymer such as starch, ethylene-vinyl acetate emulsion, styrene-butadiene emulsion, etc. is used as a main polymer. be able to. Further, in addition to water and the main polymer, a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be blended.
 水系水系溶剤揮散型接着剤によって接着する場合、水系水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。
 水系接着剤を用いる場合の接着層の厚みは、0.01~10μmであることが好ましく、より好ましくは0.1~1μmである。水系接着剤を複数の接着層に用いる場合、各接着層の厚みや種類は、同じであっても、異なっていてもよい。
When it adhere | attaches with a water-system water-based solvent volatilization-type adhesive agent, adhesiveness can be provided by making it dry, after inject | pouring a water-system water-based solvent volatilization-type adhesive agent and bonding an adhesion layer.
The thickness of the adhesive layer in the case of using a water-based adhesive is preferably 0.01 to 10 μm, more preferably 0.1 to 1 μm. When a water-based adhesive is used for a plurality of adhesive layers, the thickness and type of each adhesive layer may be the same or different.
 活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。活性エネルギー線硬化組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。 The active energy ray-curable adhesive can be formed by curing of an active energy ray-curable composition containing a reactive material that irradiates active energy rays to form an adhesive layer. The active energy ray curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
 ここでいうラジカル重合性化合物及びカチオン重合性化合物の具体例は、上述したハードコート組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物と同様である。その中でも、ラジカル重合性化合物を用いることが好ましい。特に、接着層形成に用いられる活性エネルギー線硬化型接着剤に含まれるラジカル重合性化合物としては、アクリロイル基を有する化合物を用いることが好ましい。また、活性エネルギー線硬化型接着剤自体の粘度を下げるために、ラジカル重合性化合物として単官能の化合物を含むことが好ましい。 Specific examples of the radically polymerizable compound and the cationically polymerizable compound as used herein are the same as the radically polymerizable compound and the cationically polymerizable compound contained in the above-described hard coat composition. Among these, it is preferable to use a radically polymerizable compound. In particular, as the radically polymerizable compound contained in the active energy ray-curable adhesive used for forming the adhesive layer, it is preferable to use a compound having an acryloyl group. Moreover, in order to lower the viscosity of the active energy ray-curable adhesive itself, it is preferable to include a monofunctional compound as the radically polymerizable compound.
 カチオン重合性化合物は、上述したハードコート組成物で説明したものと同様である。
 その中でも、活性エネルギー線硬化接着剤に用いられるカチオン重合性化合物としては、エポキシ化合物を用いることが好ましい。また、接着剤組成物としての粘度を下げるために、単官能の化合物を反応性希釈剤として含むことが好ましい。
The cationically polymerizable compound is the same as that described for the hard coat composition described above.
Among them, an epoxy compound is preferably used as the cationically polymerizable compound used for the active energy ray curing adhesive. Moreover, in order to reduce the viscosity as an adhesive composition, it is preferable to include a monofunctional compound as a reactive diluent.
 活性エネルギー線硬化型接着剤は、更に重合開始剤を含むことができる。重合開始剤としては、例えば、ラジカル重合開始剤や、カチオン重合開始剤、ラジカル及びカチオン重合開始剤などであり、重合性化合物の種類に応じて適宜選択して用いることができる。これらラジカル重合開始剤や、カチオン重合開始剤、ラジカル及びカチオン重合開始剤の具体例は、上述したハードコート組成物に含まれる重合開始剤で説明したものと同じものが挙げられる。 The active energy ray-curable adhesive can further contain a polymerization initiator. The polymerization initiator is, for example, a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator or the like, and can be appropriately selected and used according to the type of the polymerizable compound. Specific examples of these radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators may be the same as those described for the polymerization initiators contained in the above-described hard coat composition.
 さらに、活性エネルギー線硬化組成物は、イオン捕捉剤や、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤などを含むことができる。活性エネルギー線硬化型接着剤を用いる場合、活性エネルギー線硬化組成物を被接着層の何れか又は両方に塗布した後に貼合し、何れかの被着層又は両方の被着層を通して活性エネルギー線を照射して硬化させることで接着できる。活性エネルギー線硬化型接着剤を用いる場合、接着層の厚みは、0.01~20μmであることが好ましく、より好ましくは0.1~10μmである。活性エネルギー線硬化型接着剤を複数層用いる場合、各層の厚みや種類は、同じであっても、異なっていてもよい。 Furthermore, the active energy ray-curable composition comprises an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, an antifoam solvent, an additive, It can contain solvents and the like. When using an active energy ray-curable adhesive, the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and the active energy ray is applied through either of the adherend layers or both adherent layers. Can be adhered by irradiating and curing. When an active energy ray-curable adhesive is used, the thickness of the adhesive layer is preferably 0.01 to 20 μm, more preferably 0.1 to 10 μm. In the case of using a plurality of active energy ray-curable adhesives, the thickness and type of each layer may be the same or different.
 粘着剤としては、主剤ポリマーの種類に応じて、例えば、アクリル系粘着剤や、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤などに分類される。また、フレキシブル画像表示装置用積層体の各層の貼合に使用することもできる。粘着剤は、主剤ポリマーに加えて、架橋剤や、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラーなどを配合してもよい。 As an adhesive, according to the kind of main ingredient polymer, it is classified into an acrylic adhesive, a urethane adhesive, a rubber adhesive, a silicone adhesive etc., for example. Moreover, it can also be used for bonding of each layer of the laminated body for flexible image displays. The pressure-sensitive adhesive may contain, in addition to the main agent polymer, a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like.
 粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着剤層接着層が形成される。粘着剤組成物から形成される粘着層は、被接着体にその粘着剤組成物を直接塗布してもよく、別途基材に形成したものを転写してもよい。 Each component constituting the pressure-sensitive adhesive is dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied to a substrate and then dried to form a pressure-sensitive adhesive layer adhesive layer. . In the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition, the pressure-sensitive adhesive composition may be directly applied to an adherend, or separately formed on a substrate may be transferred.
 また、接着前の粘着面をカバーするために、離型フィルムを使用することが好ましい。
 活性エネルギー線硬化型接着剤を用いる場合、接着層の厚みは、0.1~500μmであることが好ましく、より好ましくは1~300μmである。粘着剤を複数層用いる場合、各層の厚みや種類は、同じであっても、異なっていてもよい。
Moreover, in order to cover the adhesive surface before adhesion | attachment, it is preferable to use a release film.
When an active energy ray-curable adhesive is used, the thickness of the adhesive layer is preferably 0.1 to 500 μm, more preferably 1 to 300 μm. When a plurality of pressure-sensitive adhesives are used, the thickness and type of each layer may be the same or different.
(遮光パターン)
 遮光パターンは、フレキシブル画像表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによってフレキシブル画像表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。
(Light blocking pattern)
The light blocking pattern can be applied as at least a part of a bezel or a housing of a flexible image display. The visibility of the image is improved by concealing the wiring disposed at the peripheral portion of the flexible image display device by the light shielding pattern and making it difficult to be visually recognized.
 遮光パターンは、単層又は複層の形態であってもよい。遮光パターンのカラーは、特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有する。遮光パターンは、カラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子とで形成することができる。また、これらを単独又は2種類以上の混合物として使用してもよい。 The light blocking pattern may be in the form of a single layer or multiple layers. The color of the light shielding pattern is not particularly limited, and has various colors such as black, white and metal. The light blocking pattern may be formed of a pigment for realizing a color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, a polyurethane, and a silicone. Also, these may be used alone or as a mixture of two or more.
 遮光パターンは、例えば、印刷や、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚みは、1~100μmであることが好ましく、より好ましくは2~50μmである。また、遮光パターンは、その厚み方向に傾斜などの形状を付与することも可能である。 The light shielding pattern can be formed by, for example, various methods such as printing, lithography, and inkjet. The thickness of the light shielding pattern is preferably 1 to 100 μm, more preferably 2 to 50 μm. In addition, the light shielding pattern can be provided with a shape such as inclination in the thickness direction.
 上記のフィルム、機能層、素子等の膜厚は、一般的な膜厚測定方法を用いて測定することができる。膜厚測定方法としては、例えば、電子顕微鏡を用いた断面観察、段差計を用いる方法、分光干渉法やレーザー干渉法などの光干渉法を利用した膜厚測定方法、及び分光エリプソメトリによる膜厚測定方法等が挙げられる。 The film thickness of the above film, functional layer, element or the like can be measured using a general film thickness measuring method. As a film thickness measurement method, for example, cross-sectional observation using an electron microscope, a method using a step difference meter, a film thickness measurement method using an optical interference method such as spectral interference method or laser interference method, and film thickness by spectral ellipsometry The measurement method etc. are mentioned.
<レーザー加工装置>
 図2は、本実施形態の切断工程で用いられるレーザー加工装置30の一例を示す斜視図である。
 図2に示すレーザー加工装置30は、偏光板FXに対して、レーザー光Lを照射するレーザー照射装置(照射手段)31と、偏光板FXの切断ラインCに沿ってレーザー光Lを走査するレーザー走査装置(走査手段)32と、各部の駆動を制御する駆動制御装置(駆動制御手段)33とを備えている。
<Laser processing equipment>
FIG. 2 is a perspective view showing an example of the laser processing apparatus 30 used in the cutting process of the present embodiment.
The laser processing apparatus 30 shown in FIG. 2 is a laser irradiation apparatus (irradiation means) 31 for irradiating the polarizing plate FX with the laser light L and a laser for scanning the laser light L along the cutting line C of the polarizing plate FX. A scanning device (scanning means) 32 and a drive control device (drive control means) 33 for controlling the drive of each part are provided.
 図3は、レーザー照射装置31の具体的な構成を示す斜視図である。
 図3に示すレーザー照射装置31は、第1のレーザー光L1を出射する第1のレーザー光源34Aと;第2のレーザー光L2を出射する第2のレーザー光源34Bと、第1のレーザー光L1と第2のレーザー光L2とを透過又は反射させ、第1のレーザー光L1と第2のレーザー光L2とを同一方向に向けて出射させるダイクロイックミラー(光路変換手段)35と;第1のレーザー光L1及び第2のレーザー光L1を偏光板FXに向かって集光させる集光レンズ(集光光学系)36と;ダイクロイックミラー35と集光レンズ36との間の光路中に配置されて、偏光板FXに照射される第1のレーザー光L1及び第2のレーザー光L2の照射位置を調整する第1及び第2の位置調整機構37A,37B(位置調整手段)と;を備えている。
FIG. 3 is a perspective view showing a specific configuration of the laser irradiation device 31. As shown in FIG.
The laser irradiation apparatus 31 shown in FIG. 3 comprises a first laser light source 34A for emitting a first laser light L1; a second laser light source 34B for emitting a second laser light L2; and a first laser light L1. Dichroic mirror (optical path conversion means) 35 for transmitting or reflecting the laser light L2 and the second laser light L2 and emitting the first laser light L1 and the second laser light L2 in the same direction; the first laser A condensing lens (condensing optical system) 36 for condensing the light L1 and the second laser light L1 toward the polarizing plate FX; and an optical path between the dichroic mirror 35 and the condensing lens 36, The first and second position adjusting mechanisms 37A and 37B (position adjusting means) for adjusting the irradiation position of the first laser light L1 and the second laser light L2 irradiated to the polarizing plate FX are provided.
 図2に示すレーザー加工装置30では、波長の異なる第1のレーザー光L1と第2のレーザー光L2とを区別することなく、まとめてレーザー光Lとして説明している。以下の説明において、第1のレーザー光L1と第2のレーザー光L2とを特に区別する必要がない場合には、レーザー光Lとしてまとめて扱うものとする。 In the laser processing apparatus 30 illustrated in FIG. 2, the first laser light L1 and the second laser light L2 having different wavelengths are collectively described as the laser light L without distinction. In the following description, the first laser beam L1 and the second laser beam L2 are collectively treated as the laser beam L when it is not necessary to distinguish them.
 第1のレーザー光源34Aは、第1のレーザー光L1をパルス発振方式により出力する。第2のレーザー光源34Bは、第1のレーザー光L1と波長の異なる第2のレーザー光L2をパルス発振方式により出力する。具体的に、本実施形態では、第1のレーザー光源34Aとして、炭酸ガス(CO)レーザー発振機を用い、第2のレーザー光源34Bとして、YAGレーザー発振機を用いている。この場合、第1のレーザー光L1は、波長9.4μmの赤外線レーザー光であり、第2のレーザー光L2は、波長266nmの紫外線レーザー光である。 The first laser light source 34A outputs the first laser light L1 by a pulse oscillation method. The second laser light source 34B outputs the second laser light L2 having a wavelength different from that of the first laser light L1 by a pulse oscillation method. Specifically, in the present embodiment, a carbon dioxide gas (CO 2 ) laser oscillator is used as the first laser light source 34A, and a YAG laser oscillator is used as the second laser light source 34B. In this case, the first laser beam L1 is an infrared laser beam with a wavelength of 9.4 μm, and the second laser beam L2 is an ultraviolet laser beam with a wavelength of 266 nm.
 第2のレーザー光源34Bとしては、エキシマレーザー発振機(波長157~351nmの紫外線レーザー光)や、半導体レーザー(LD:Laser Diode)励起固体パルスレーザー発振機(波長2940nmの赤外線レーザー光)、パルスファイバーレーザー発振機(波長3μmの赤外線レーザー光)、COパルスレーザー発振機(波長5.5μmの赤外線レーザー光)などを用いることもできる。 As the second laser light source 34B, an excimer laser oscillator (ultraviolet laser light with a wavelength of 157 to 351 nm), a semiconductor laser (LD: Laser Diode) excitation solid pulsed laser oscillator (infrared laser light with a wavelength of 2940 nm), pulse fiber A laser oscillator (infrared laser light with a wavelength of 3 μm), a CO pulse laser oscillator (infrared laser light with a wavelength of 5.5 μm), or the like can also be used.
 ダイクロイックミラー35は、互いに波長の異なる第1のレーザー光L1と第2のレーザー光L2とのうち、何れか一方のレーザー光(本実施形態では第1のレーザー光L1)を透過し、他方のレーザー光(本実施形態では第2のレーザー光L2)を反射する。 The dichroic mirror 35 transmits either one of the first laser light L1 and the second laser light L2 having different wavelengths (the first laser light L1 in the present embodiment), and the other The laser light (in this embodiment, the second laser light L2) is reflected.
 第1のレーザー光源34Aと第2のレーザー光源34Bとの配置を逆転させた場合は、ダイクロイックミラー35として、第1のレーザー光L1(一方のレーザー光)を反射し、第2のレーザー光L2(他方のレーザー光)を透過するものを用いればよい。また、ダイクロイックミラー35の代わりに、ダイクロイックプリズムを用いることも可能である。 When the arrangement of the first laser light source 34A and the second laser light source 34B is reversed, the first laser light L1 (one laser light) is reflected as the dichroic mirror 35, and the second laser light L2 is reflected. What transmits the (other laser light) may be used. Also, instead of the dichroic mirror 35, it is also possible to use a dichroic prism.
 集光レンズ36は、例えばfθレンズからなり、このfθレンズは、レーザー光L(L1,L2)の走査速度を一定に補正する機能を有する。 The condenser lens 36 is, for example, an fθ lens, and this fθ lens has a function of correcting the scanning speed of the laser beam L (L1, L2) to a constant.
 第1及び第2の位置調整機構37A,37Bは、例えばガルバノミラーからなり、レーザー光L(L1,L2)を偏光板FXと平行な平面内で二軸走査することが可能なスキャナー(走査手段)としての機能を有している。 The first and second position adjusting mechanisms 37A and 37B are, for example, galvano mirrors, and are scanners capable of scanning the laser light L (L1 and L2) biaxially in a plane parallel to the polarizing plate FX (scanning means Have a function as
 具体的に、第1の位置調整機構37Aは、レーザー光L(L1,L2)を第2の位置調整機構37Bに向かって反射するミラー38aと、ミラー38aの角度を調整するアクチュエータ39aとを有し、アクチュエータ39aのZ軸回りに回転可能な回転軸40aにミラー38aが取り付けられた構造を有している。 Specifically, the first position adjustment mechanism 37A has a mirror 38a that reflects the laser beam L (L1, L2) toward the second position adjustment mechanism 37B, and an actuator 39a that adjusts the angle of the mirror 38a. The mirror 38a is attached to a rotating shaft 40a that is rotatable about the Z axis of the actuator 39a.
 一方、第2の位置調整機構37Bは、第1の位置調整機構37Aのミラー38aで反射されたレーザー光L(L1,L2)を集光レンズ36に向かって反射するミラー38bと、ミラー38bの角度を調整するアクチュエータ39bとを有し、アクチュエータ39bのY軸回りに回転可能な回転軸40bにミラー38bが取り付けられた構造を有している。 On the other hand, the second position adjustment mechanism 37B includes a mirror 38b that reflects the laser beam L (L1, L2) reflected by the mirror 38a of the first position adjustment mechanism 37A toward the condensing lens 36, and a mirror 38b. It has an actuator 39b for adjusting the angle, and has a structure in which a mirror 38b is attached to a rotating shaft 40b rotatable about the Y axis of the actuator 39b.
 第1及び第2の位置調整装置37A,37Bでは、後述する駆動制御装置33により各アクチュエータ39a,39bの駆動を制御しながら、各ミラー38a,38bの角度を調整し、偏光板FXに照射されるレーザー光L(L1,L2)の照射位置を二軸走査で調整することが可能となっている。 In the first and second position adjustment devices 37A and 37B, the drive control device 33 described later controls the drive of each of the actuators 39a and 39b, adjusts the angle of each of the mirrors 38a and 38b, and irradiates the polarizing plate FX It is possible to adjust the irradiation position of the laser beam L (L1, L2) by two-axis scanning.
 例えば、第1及び第2の位置調整機構37A,37Bでは、偏光板FXに照射されるレーザー光L(L1,L2)の照射位置を調整することによって、図3中の実線で示すレーザー光L(L1,L2)を偏光板FX上の集光点Qaに集光させたり、図3中の一点鎖線で示すレーザー光L(L1,L2)を偏光板FX上の集光点Qbに集光させたり、図3中の二点鎖線で示すレーザー光L(L1,L2)を偏光板FX上の集光点Qcに集光させたりすることが可能である。 For example, in the first and second position adjustment mechanisms 37A and 37B, the laser beam L indicated by the solid line in FIG. 3 is adjusted by adjusting the irradiation position of the laser beam L (L1, L2) irradiated to the polarizing plate FX. (L1, L2) is focused on the focusing point Qa on the polarizing plate FX, or the laser light L (L1, L2) shown by the alternate long and short dash line in FIG. 3 is focused on the focusing point Qb on the polarizing plate FX It is possible to cause the laser beam L (L1, L2) shown by the two-dot chain line in FIG. 3 to be focused on the focusing point Qc on the polarizing plate FX.
 レーザー走査装置32は、図2に示すように、例えばリニアモータ等を用いたスライダ機構(不図示)からなり、後述する駆動制御装置33の制御により、上記レーザー照射装置31を偏光板FXの幅方向(X軸方向)V1と、偏光板FXの長さ方向(Y軸方向)V2と、偏光板FXの厚み方向(Z軸方向)V3との各方向に移動操作することが可能となっている。 As shown in FIG. 2, the laser scanning device 32 comprises a slider mechanism (not shown) using, for example, a linear motor or the like, and the laser irradiation device 31 has a width of the polarizing plate FX under control of a drive control device 33 described later. It is possible to move and operate in the direction (X axis direction) V1, the length direction (Y axis direction) V2 of the polarizing plate FX, and the thickness direction (Z axis direction) V3 of the polarizing plate FX There is.
 レーザー走査装置32は、上記レーザー照射装置31を移動操作するものに必ずしも限定されるものではなく、偏光板FX自体を移動操作するものであってもよい。この場合も、上記レーザー照射装置31からのレーザー光L(L1,L2)を偏光板FXの切断ラインCに沿って走査(トレース)することが可能である。また、レーザー照射装置31及び偏光板FXの両方を移動操作するものであってもよい。 The laser scanning device 32 is not necessarily limited to the one that moves the laser irradiation device 31, and may move the polarizing plate FX itself. Also in this case, it is possible to scan (trace) the laser light L (L1, L2) from the laser irradiation device 31 along the cutting line C of the polarizing plate FX. In addition, both the laser irradiation device 31 and the polarizing plate FX may be moved.
 駆動制御装置33は、上記レーザー照射装置31が備える第1及び第2のレーザー光源34A,34Bと電気的に接続されて、第1及び第2のレーザー光源34A,34Bの駆動を制御する。具体的に、駆動制御装置33は、第1のレーザー光源34Aと第2のレーザー光源34Bとの駆動(ON/OFF)を切り替える。駆動制御装置33は、第1及び第2のレーザー光源34A,34Bから出射されるレーザー光L(L1,L2)の出力やパルス発振数を制御する。 The drive control device 33 is electrically connected to the first and second laser light sources 34A and 34B included in the laser irradiation device 31, and controls the driving of the first and second laser light sources 34A and 34B. Specifically, the drive control device 33 switches driving (ON / OFF) of the first laser light source 34A and the second laser light source 34B. The drive control device 33 controls the output and the number of pulse oscillations of the laser light L (L1, L2) emitted from the first and second laser light sources 34A, 34B.
 これにより、偏光板FXに対して第1のレーザー光L1と第2のレーザー光L2とを選択的に照射することができる。また、偏光板FXに照射されるレーザー光L(L1,L2)の単位面積当たりのエネルギー量を可変に調整することが可能となっている。 Thereby, the first laser beam L1 and the second laser beam L2 can be selectively irradiated to the polarizing plate FX. Further, it is possible to variably adjust the amount of energy per unit area of the laser beam L (L1, L2) irradiated to the polarizing plate FX.
 駆動制御装置33は、上記レーザー走査装置32と電気的に接続されて、レーザー走査装置32の移動速度を制御する。これにより、レーザー光L(L1,L2)の走査速度を可変に調整しながら、偏光板FXに照射されるレーザー光L(L1,L2)の単位面積当たりのエネルギー量を可変に調整することが可能となっている。 The drive control device 33 is electrically connected to the laser scanning device 32 to control the moving speed of the laser scanning device 32. Thereby, the amount of energy per unit area of the laser beam L (L1, L2) irradiated to the polarizing plate FX can be variably adjusted while variably adjusting the scanning speed of the laser beam L (L1, L2) It is possible.
 駆動制御装置33は、上記レーザー照射装置31が備える第1及び第2の位置調整機構37A,37Bと電気的に接続されて、第1及び第2の位置調整機構37A,37Bの駆動を制御する。これにより、偏光板FXに照射されるレーザー光L(L1,L2)の照射位置を二軸走査で調整することが可能となっている。 The drive control device 33 is electrically connected to the first and second position adjustment mechanisms 37A and 37B included in the laser irradiation device 31 to control the driving of the first and second position adjustment mechanisms 37A and 37B. . Thereby, it is possible to adjust the irradiation position of the laser beam L (L1, L2) irradiated to the polarizing plate FX by biaxial scanning.
<偏光板の切断工程>
 本発明の切断方法により切断される積層フィルムは、少なくともCOP層のようなシクロオレフィンポリマーからなる層を含むことが、本発明の効果を発現する上で特に好ましい。
<Cutting process of polarizing plate>
It is particularly preferable that the laminated film to be cut by the cutting method of the present invention includes at least a layer composed of a cycloolefin polymer such as a COP layer in order to exert the effects of the present invention.
 COP層は、例えば炭酸ガスレーザーによる切断方法のようなフィルム切断に通常用いられる切断方法を用いた場合、上述したような仕上がりのよい切断面を得ることができない。これに対して、COP層を含む積層フィルム、特にCOP層を含む偏光板に対して、本発明を適用した切断方法を用いた場合、著しい効果を奏することが可能である。 For example, when using a cutting method usually used for film cutting such as a carbon dioxide gas laser cutting method, it is not possible to obtain a finished cutting surface as described above. On the other hand, when the cutting method to which the present invention is applied is used for a laminated film including a COP layer, in particular, a polarizing plate including the COP layer, significant effects can be exhibited.
 具体的に、本発明を適用した積層フィルムの切断方法として、上記レーザー加工装置30を用いた偏光板FXの切断工程について、図4(a),(b)を参照して説明する。なお、図4(a),(b)は、偏光板FXの切断工程を順に示す断面図である。 Specifically, as a method of cutting a laminated film to which the present invention is applied, a cutting process of the polarizing plate FX using the laser processing apparatus 30 will be described with reference to FIGS. 4 (a) and 4 (b). 4 (a) and 4 (b) are cross-sectional views sequentially showing the cutting process of the polarizing plate FX.
 本実施形態では、偏光板FXとして、TAC層、PVA層(フィルム型偏光子=偏光子層)及びCOP層が、この順で積層された偏光板(積層フィルム)の切断工程を例に挙げて説明する。 In this embodiment, a cutting process of a polarizing plate (laminated film) in which a TAC layer, a PVA layer (film type polarizer = polarizer layer) and a COP layer are laminated in this order as the polarizing plate FX is exemplified as an example. explain.
 上記レーザー加工装置30を用いて偏光板FXを切断する際は、先ず、図4(a)に示すように、偏光板FXに対して第1のレーザー光L1を照射しながら、偏光板FXの切断ラインCに沿って第1のレーザー光L1を走査する(1回目の走査という。)。切断ラインCは、切断後、所望するサイズの枚葉シート片が得られるように偏光板FX上で設定されていればよい。 When the polarizing plate FX is cut using the laser processing apparatus 30, first, as shown in FIG. 4A, while irradiating the first laser beam L1 to the polarizing plate FX, the polarizing plate FX is The first laser beam L1 is scanned along the cutting line C (referred to as a first scan). The cutting line C may be set on the polarizing plate FX so as to obtain a sheet sheet piece of a desired size after cutting.
 このとき、偏光板FXを構成する各層S3,S5,S4のうち、第1のレーザー光L1の吸収により光分解反応を示す上層側の保護層(TAC層)S4及び偏光子層(PVA層)S5を第1のレーザー光L1で切断する。また、第1のレーザー光L1による1回目の走査では、第1のレーザー光L1の焦点位置U1を偏光子層(PVA層)S5よりも深い位置に設定することが好ましい。 At this time, among the layers S3, S5, and S4 constituting the polarizing plate FX, the upper-layer-side protective layer (TAC layer) S4 and the polarizer layer (PVA layer) which exhibit a photolytic reaction by absorption of the first laser beam L1. S5 is cut by the first laser beam L1. Further, in the first scan with the first laser beam L1, it is preferable to set the focal position U1 of the first laser beam L1 to a position deeper than the polarizer layer (PVA layer) S5.
 これにより、偏光板FXには、切断ラインCに沿った切断溝Vが形成される。切断溝Vは、上層側の保護層(TAC層)S4及び偏光子層(PVA層)S5を分断する深さで形成される。 Thereby, the cutting groove V along the cutting line C is formed in the polarizing plate FX. The cutting groove V is formed at a depth at which the protective layer (TAC layer) S4 on the upper layer side and the polarizer layer (PVA layer) S5 are divided.
 次に、図4(b)に示すように、偏光板FXに対して第2のレーザー光L2を照射しながら、偏光板FXの切断ラインCに沿って第2のレーザー光L2を走査する(2回目の走査という。)。 Next, as shown in FIG. 4B, while irradiating the second laser light L2 to the polarizing plate FX, the second laser light L2 is scanned along the cutting line C of the polarizing plate FX ( It is called the second scan.)
 このとき、偏光板FXを構成する各層S3,S5,S4のうち、第2のレーザー光L2の吸収により光分解反応を示す下層側の保護層(COP層)S3を第2のレーザー光L2で切断する。第2のレーザー光L2による2回目の走査では、第2のレーザー光L2の焦点位置U2を下層側の保護層(COP層)S3よりも深い位置に設定することが好ましい。 At this time, among the layers S3, S5, and S4 constituting the polarizing plate FX, the lower protective layer (COP layer) S3 exhibiting a photolytic reaction by absorption of the second laser beam L2 is irradiated with the second laser beam L2. Disconnect. In the second scan with the second laser beam L2, it is preferable to set the focal position U2 of the second laser beam L2 to a position deeper than the protective layer (COP layer) S3 on the lower layer side.
 これにより、切断溝Vは、偏光子層(PVA層)S5を分断する位置から更に深さ方向に深く、下層側の保護層(COP層)S3を分断する深さで形成される。したがって、本切断工程では、2回目の走査で偏光板FXを切断ラインCに沿って切断することが可能である。 As a result, the cutting groove V is formed deeper in the depth direction from the position where the polarizer layer (PVA layer) S5 is divided so as to divide the lower protective layer (COP layer) S3. Therefore, in the main cutting step, it is possible to cut the polarizing plate FX along the cutting line C in the second scan.
 下層側の保護層S3と、偏光子層S5と、上層側の保護層S4と、表面保護フィルムS2との構成材料である「COP」、「PVA」、「TAC」、「PET」について、波長2.0~14.0μmの光に対する透過率を図5に示す。「COP」について、波長200~500μmの光に対する透過率を図6に示す。 The wavelengths of “COP”, “PVA”, “TAC”, and “PET” which are constituent materials of the lower protective layer S3, the polarizer layer S5, the upper protective layer S4, and the surface protective film S2 The transmittance for light of 2.0 to 14.0 μm is shown in FIG. The transmittance for light with a wavelength of 200 to 500 μm is shown in FIG. 6 for “COP”.
 図5に示すように、波長9.4μmの第1のレーザー光L1(炭酸ガスレーザー)に対して、COPは、ほとんど光吸収性を示さず(透過率がほぼ100%)、COP以外のPVA、TAC、PETは、ある程度の光吸収性を示すことがわかる。一方、図6に示すように、波長266nmの第2のレーザー光L2(YAGレーザー、第四高調波)に対して、COPは、ある程度の光吸収性を示すことがわかる。 As shown in FIG. 5, with respect to the first laser light L1 (carbon dioxide gas laser) having a wavelength of 9.4 μm, COP hardly shows light absorbability (transmittance almost 100%), and PVA other than COP , TAC, and PET show a certain degree of light absorption. On the other hand, as shown in FIG. 6, it can be seen that COP exhibits a certain degree of light absorption with respect to the second laser light L2 (YAG laser, fourth harmonic) having a wavelength of 266 nm.
 したがって、第1のレーザー光L1だけで偏光板FXを切断しようとした場合、上側の保護層(TAC層)S4及び偏光子層(PVA層)S5は、比較的切断しやすい層(第1のレーザー光L1の吸収率が高い層)であるため、熱の発生が少ない光分解加工で切断される。一方、下層側の保護層(COP層)S3は、比較的切断しにくい層(第1のレーザー光L1の吸収率が低い層)であるため、分子の振動による熱加工で切断され、断面品位が悪化する。 Therefore, when it is intended to cut the polarizing plate FX with only the first laser beam L1, the upper protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 are layers that are relatively easy to cut (first Since it is a layer having a high absorptivity of the laser beam L1, it is cut by photolysis processing with little heat generation. On the other hand, the protective layer (COP layer) S3 on the lower layer side is a layer which is relatively difficult to cut (a layer having a low absorptivity of the first laser beam L1), and thus cut by thermal processing by molecular vibration. Is worse.
 これに対して、本発明を適用した切断方法では、上側の保護層(TAC層)S4及び偏光子層(PVA層)S5を第1のレーザー光L1で切断し、下層側の保護層(COP層)S3を第2のレーザー光L2で切断する。この場合、何れの層S3,S5,S4も熱の発生が少ない光分解加工により切断されるため、切断後の偏光板FXにおいて、仕上がりの良い切断面を得ることが可能である。 On the other hand, in the cutting method to which the present invention is applied, the upper protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 are cut by the first laser beam L1, and the lower protective layer (COP) Layer) S3 is cut by the second laser beam L2. In this case, since any of the layers S3, S5, and S4 is cut by photolysis processing which generates less heat, it is possible to obtain a cut surface with a good finish in the polarizing plate FX after cutting.
 なお、第2のレーザー光L2だけで偏光板FXを切断しようとした場合は、熱の発生が少ない光分解加工で偏光板FXが切断されるが、レーザー出力が弱いために、加工速度が著しく遅くなる。したがって、第2のレーザー光L2だけによる切断方法は、工業的に非効率である。 In addition, when it is going to cut the polarizing plate FX only by 2nd laser beam L2, although the polarizing plate FX is cut by photolysis processing with little generation | occurrence | production of heat, since laser output is weak, processing speed is remarkable. Become slow. Therefore, the cutting method using only the second laser beam L2 is industrially inefficient.
 以上のように、本実施形態の切断方法では、波長の異なる第1及び第2のレーザー光L1,L2を用いて、偏光板FXを熱の発生が少ない光分解加工により切断することで、偏光板FXを切断ラインCに沿って精度良く切断することを可能である。また、偏光板FXにダメージを与えることなく、偏光板FXの切断面の仕上がりも良好なことから、光学表示デバイスにおける表示領域の更なる狭額縁化にも対応可能である。 As described above, in the cutting method of the present embodiment, polarization is performed by cutting the polarizing plate FX by light decomposition processing with less heat generation using the first and second laser beams L1 and L2 having different wavelengths. It is possible to cut the plate FX precisely along the cutting line C. Further, since the finish of the cut surface of the polarizing plate FX is good without damaging the polarizing plate FX, it is possible to cope with the further narrowing of the display area in the optical display device.
(その他の実施形態)
 なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
(Other embodiments)
In addition, this invention is not necessarily limited to the thing of the said embodiment, It is possible to add a various change in the range which does not deviate from the meaning of this invention.
 具体的に、上記切断工程では、上記図2に示すレーザー加工装置30を用いる代わりに、例えば図7に示すようなレーザー加工装置30Aを用いて、偏光板FXを切断することも可能である。なお、図7は、レーザー加工装置30Aの構成を示す斜視図である。また、以下の説明では、上記レーザー加工装置30と同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。 Specifically, in the cutting step, instead of using the laser processing apparatus 30 shown in FIG. 2, it is also possible to cut the polarizing plate FX using, for example, a laser processing apparatus 30A as shown in FIG. 7. FIG. 7 is a perspective view showing the configuration of the laser processing apparatus 30A. Moreover, in the following description, while abbreviate | omitting description about the site | part equivalent to the said laser processing apparatus 30, suppose that the same code | symbol is attached | subjected in drawing.
<レーザー加工装置>
 図7に示すレーザー加工装置30Aは、上記レーザー照射装置31の代わりに、第1のレーザー光L1を照射する第1のレーザー照射装置31Aと、第2のレーザー光L2を照射する第2のレーザー照射装置31Bとを備えた構成である。すなわち、レーザー加工装置30Aは、第1のレーザー光源34Aを有する第1のレーザー照射装置31Aと、第2のレーザー光源34Bを有する第2のレーザー照射装置31Bとを別々に備えている。
<Laser processing equipment>
The laser processing apparatus 30A shown in FIG. 7 includes a first laser irradiation apparatus 31A that emits a first laser beam L1 instead of the laser irradiation apparatus 31 and a second laser that emits a second laser beam L2. And a radiation device 31B. That is, the laser processing apparatus 30A separately includes a first laser irradiation apparatus 31A having a first laser light source 34A and a second laser irradiation apparatus 31B having a second laser light source 34B.
 第1のレーザー照射装置31Aと第2のレーザー照射装置31Bとを別々に備える場合、第1及び第2のレーザー照射装置31A,31Bは、上記レーザー照射装置31の構成から、ダイクロイックミラー35を省略し、第1又は第2のレーザー光源34A,34Bから第1の位置調整機構37Aに向けて、第1又は第2のレーザー光L1,L2を出射する構成とすればよい。 When the first laser irradiation device 31A and the second laser irradiation device 31B are separately provided, the first and second laser irradiation devices 31A and 31B omit the dichroic mirror 35 from the configuration of the laser irradiation device 31. The first or second laser beam L1 or L2 may be emitted from the first or second laser light source 34A or 34B to the first position adjustment mechanism 37A.
 第1のレーザー照射装置31Aと第2のレーザー照射装置31Bとは、レーザー走査装置32により別々に移動操作されると共に、駆動制御装置33により別々に駆動制御される。 The first laser irradiation device 31A and the second laser irradiation device 31B are separately moved and operated by the laser scanning device 32, and are separately driven and controlled by the drive control device 33.
 図7に示すレーザー加工装置30Aを用いて偏光板FXを切断する際は、先ず、第1のレーザー照射装置31Aが偏光板FXに対して第1のレーザー光L1を照射しながら、偏光板FXの切断ラインCに沿って第1のレーザー光L1を走査する。 When the polarizing plate FX is cut using the laser processing apparatus 30A shown in FIG. 7, first, the first laser irradiation device 31A irradiates the polarizing plate FX with the first laser light L1, and the polarizing plate FX The first laser beam L1 is scanned along the cutting line C of FIG.
 これにより、偏光板FXを構成する各層S3,S5,S4のうち、上層側の保護層(TAC層)S4及び偏光子層(PVA層)S5を第1のレーザー光L1で切断する。 Thus, the protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5 on the upper layer side among the layers S3, S5, and S4 constituting the polarizing plate FX are cut by the first laser beam L1.
 次に、第2のレーザー照射装置31Bが偏光板FXに対して第2のレーザー光L2を照射しながら、偏光板FXの切断ラインCに沿って第2のレーザー光L2を走査する。 Next, the second laser irradiation device 31B scans the second laser light L2 along the cutting line C of the polarizing plate FX while irradiating the second laser light L2 to the polarizing plate FX.
 これにより、偏光板FXを構成する各層S3,S5,S4のうち、下層側の保護層(COP層)S3を第2のレーザー光L2で切断する。したがって、本切断工程では、上記図2に示すレーザー加工装置30を用いた場合と同様に、2回目の走査で偏光板FXを切断ラインCに沿って切断することが可能である。 Thereby, the protective layer (COP layer) S3 on the lower layer side among the layers S3, S5, and S4 constituting the polarizing plate FX is cut by the second laser beam L2. Therefore, in the main cutting step, it is possible to cut the polarizing plate FX along the cutting line C in the second scan, as in the case of using the laser processing apparatus 30 shown in FIG.
 図7に示すレーザー加工装置30Aを用いた場合は、第1のレーザー照射装置31Aによる第1のレーザー光L1の走査に追従しながら、第2のレーザー照射装置31Bによる第2のレーザー光L2の走査を行うことができる。したがって、図7に示すレーザー加工装置30Aを用いた場合は、上記図2に示すレーザー加工装置30を用いた場合よりも、偏光板FXの切断を高速で行うことが可能である。 When the laser processing apparatus 30A shown in FIG. 7 is used, while following the scanning of the first laser light L1 by the first laser irradiation apparatus 31A, the second laser light L2 by the second laser irradiation apparatus 31B It can scan. Therefore, when the laser processing apparatus 30A shown in FIG. 7 is used, it is possible to cut the polarizing plate FX at a higher speed than in the case where the laser processing apparatus 30 shown in FIG. 2 is used.
 また、本発明の実施形態により偏光板FXから切り出されたシート片に対し、下層側の保護層(COP層)S3に粘着剤を塗布することにより粘着層を新たに設け、この粘着層を介して液晶パネルに貼合してもよく、更に位相差フィルムや輝度向上フィルムなどを貼合してもよい。 In addition, an adhesive layer is newly provided on the sheet piece cut out of the polarizing plate FX according to the embodiment of the present invention by applying an adhesive to the protective layer (COP layer) S3 on the lower layer side. The liquid crystal panel may be bonded, or a retardation film or a brightness enhancement film may be bonded.
 例えば図8に示す偏光板FX’は、偏光子層(PVA層)S5を挟み込む下層側の保護層(COP層)S3と上層側の保護層(TAC層)S4との両面に、それぞれ表面保護フィルム(PETフィルム)S2が剥離自在に貼合された構成を有している。 For example, a polarizing plate FX ′ shown in FIG. 8 has surface protection on both the lower protective layer (COP layer) S3 and the upper protective layer (TAC layer) S4 sandwiching the polarizer layer (PVA layer) S5. It has the structure by which film (PET film) S2 was peelably bonded.
<偏光板の切断工程>
 上記レーザー加工装置30を用いた偏光板FX’の切断工程について、図9(a)~(c)を参照して説明する。なお、図9(a)~(c)は、偏光板FX’の切断工程を順に示す断面図である。
<Cutting process of polarizing plate>
The cutting process of the polarizing plate FX ′ using the laser processing apparatus 30 will be described with reference to FIGS. 9 (a) to 9 (c). 9 (a) to 9 (c) are cross-sectional views sequentially showing the cutting process of the polarizing plate FX '.
 レーザー加工装置30を用いて偏光板FX’を切断する際は、先ず、図9(a)に示すように、偏光板FXに対して第1のレーザー光L1を照射しながら、偏光板FXの切断ラインCに沿って第1のレーザー光L1を走査する(1回目の走査という。)。 When the polarizing plate FX ′ is cut using the laser processing apparatus 30, first, as shown in FIG. 9A, while irradiating the first laser beam L1 to the polarizing plate FX, the polarizing plate FX is The first laser beam L1 is scanned along the cutting line C (referred to as a first scan).
 このとき、偏光板FX’を構成する各層(フィルム)S2,S3,S5,S4,S2のうち、第1のレーザー光L1の吸収により光分解反応を示す上層側の表面保護フィルム(PET層)S2、上層側の保護層(TAC層)S4及び偏光子層(PVA層)S5を第1のレーザー光L1で切断する。第1のレーザー光L1による1回目の走査では、第1のレーザー光L1の焦点位置U1を偏光子層(PVA層)S5よりも深い位置に設定することが好ましい。 At this time, of the layers (films) S2, S3, S5, S4 and S2 constituting the polarizing plate FX ′, the upper surface side protective film (PET layer) showing photolysis reaction by absorption of the first laser beam L1. S2, a protective layer (TAC layer) S4 on the upper layer side and a polarizer layer (PVA layer) S5 are cut by a first laser beam L1. In the first scan with the first laser beam L1, it is preferable to set the focal position U1 of the first laser beam L1 to a position deeper than the polarizer layer (PVA layer) S5.
 これにより、偏光板FX’には、切断ラインCに沿った切断溝V’が形成される。切断溝V’は、上層側の表面保護フィルム(PETフィルム)S2、上層側の保護層(TAC層)S4及び偏光子層(PVA層)S5を分断する深さで形成される。 Thereby, a cutting groove V 'along the cutting line C is formed in the polarizing plate FX'. The cutting groove V 'is formed with a depth that divides the upper surface side surface protective film (PET film) S2, the upper surface side protective layer (TAC layer) S4 and the polarizer layer (PVA layer) S5.
 次に、図9(b)に示すように、偏光板FX’に対して第2のレーザー光L2を照射しながら、偏光板FX’の切断ラインCに沿って第2のレーザー光L2を走査する(2回目の走査という。)。 Next, as shown in FIG. 9B, while irradiating the second laser light L2 to the polarizing plate FX ′, the second laser light L2 is scanned along the cutting line C of the polarizing plate FX ′ Yes (called the second scan).
 このとき、偏光板FX’を構成する各層(フィルム)S2,S3,S5,S4,S2のうち、第2のレーザー光L2の吸収により光分解反応を示す下層側の保護層(COP層)S3を第2のレーザー光L2で切断する。第2のレーザー光L2による2回目の走査では、第2のレーザー光L2の焦点位置U2を下層側の保護層(COP層)S3よりも深い位置に設定することが好ましい。 At this time, among the layers (films) S2, S3, S5, S4 and S2 constituting the polarizing plate FX ′, the lower protective layer (COP layer) S3 exhibiting a photolytic reaction by absorption of the second laser beam L2. Is cut with a second laser beam L2. In the second scan with the second laser beam L2, it is preferable to set the focal position U2 of the second laser beam L2 to a position deeper than the protective layer (COP layer) S3 on the lower layer side.
 これにより、切断溝V’は、偏光子層(PVA層)S5を分断する位置から更に深さ方向に、下層側の保護層(COP層)S3を分断する深さで形成される。 Thereby, cutting groove V 'is formed by the depth which divides lower layer side protective layer (COP layer) S3 in the depth direction from the position which divides light polarizer layer (PVA layer) S5 further.
 次に、図9(c)に示すように、偏光板FX’に対して第1のレーザー光L1を照射しながら、偏光板FX’の切断ラインCに沿って第1のレーザー光L1を走査する(3回目の走査という。)。 Next, as shown in FIG. 9C, while irradiating the first laser light L1 to the polarizing plate FX ′, the first laser light L1 is scanned along the cutting line C of the polarizing plate FX ′ Yes (called the third scan).
 このとき、偏光板FX’を構成する各層(フィルム)S2,S3,S5,S4,S2のうち、第1のレーザー光L1の吸収により光分解反応を示す下層側の表面保護フィルム(PETフィルム)S2を第1のレーザー光L1で切断する。第1のレーザー光L1による3回目の走査では、第1のレーザー光L1の焦点位置U3を下層側の表面保護フィルム(PETフィルム)S2よりも深い位置に設定することが好ましい。 At this time, of the layers (films) S2, S3, S5, S4 and S2 constituting the polarizing plate FX ′, the lower surface-side surface protective film (PET film) showing photodegradation reaction by absorption of the first laser beam L1. S2 is cut by the first laser beam L1. In the third scan with the first laser beam L1, it is preferable to set the focal position U3 of the first laser beam L1 to a position deeper than the surface protection film (PET film) S2 on the lower layer side.
 これにより、切断溝V’は、下層側の保護層(COP層)S3を分断する位置から更に深さ方向に、下層側の表面保護フィルム(PETフィルム)S2を分断する深さで形成される。したがって、本切断工程では、3回目の走査で偏光板FX’を切断ラインCに沿って切断することが可能である。 Thereby, cutting groove V 'is formed in the depth which divides surface protection film (PET film) S2 by the side of a lower layer in the depth direction from the position which divides protective layer (COP layer) S3 by the side of a lower layer. . Therefore, in the main cutting step, it is possible to cut the polarizing plate FX ′ along the cutting line C in the third scan.
 以上のように、本実施形態の切断方法では、波長の異なる第1及び第2のレーザー光L1,L2を用いて、偏光板FX’を熱の発生が少ない光分解加工により切断することで、偏光板FX’を切断ラインCに沿って精度良く切断することを可能である。また、切断された偏光板FX’の断面品位を良好に保つことが可能である。 As described above, in the cutting method of the present embodiment, the first and second laser beams L1 and L2 having different wavelengths are used to cut the polarizing plate FX ′ by light decomposition processing with less heat generation. It is possible to cut the polarizing plate FX ′ precisely along the cutting line C. In addition, it is possible to keep the cross-sectional quality of the cut polarizing plate FX 'in a good condition.
 なお、本実施形態では、3回目の走査で用いるレーザー光を第3のレーザー光とした場合、第3のレーザー光については、上述した第1のレーザー光L1を用いているが、下層側の表面保護フィルム(PETフィルム)S2を光分解反応により切断できるレーザー光であれば、第1及び第2のレーザー光L1,L2とは異なる波長のレーザー光を用いることも可能である。また、4回目以降の走査においても同様である。 In the present embodiment, when the laser light used in the third scan is the third laser light, the first laser light L1 described above is used for the third laser light. If it is a laser beam which can cut | disconnect surface protection film (PET film) S2 by a photolytic reaction, it is also possible to use the laser beam of a wavelength different from 1st and 2nd laser beams L1 and L2. The same applies to the fourth and subsequent scans.
 すなわち、本発明を適用した積層フィルムの切断方法では、積層フィルムを構成する複数の樹脂層のうち、切断する樹脂層に合わせて、光分解反応により切断できる波長のレーザー光を適宜選択して用いるようにすればよい。 That is, in the method for cutting a laminated film to which the present invention is applied, a laser beam having a wavelength that can be cut by a photolysis reaction is appropriately selected and used according to the resin layer to be cut among the plurality of resin layers constituting the laminated film. Just do it.
 なお、本発明を適用した積層フィルムの切断方法は、上述した偏光板FX,FX’を切断する場合に限らず、材質の異なる複数の樹脂層が積層された積層フィルムを切断する切断工程において、本発明を幅広く適用することが可能である。 In addition, the cutting method of the laminated film to which the present invention is applied is not limited to the case of cutting the above-described polarizing plates FX and FX ′, but in the cutting step of cutting the laminated film in which a plurality of resin layers of different materials are laminated, It is possible to apply the invention widely.
 また、本発明を適用した積層フィルムの製造方法は、材質の異なる複数の樹脂層が積層された積層フィルムを製造する際に、上述した切断工程を含むものに対して、本発明を幅広く適用することが可能である。 In addition, the method for producing a laminated film to which the present invention is applied widely applies the present invention to one including the above-described cutting step when producing a laminated film in which a plurality of resin layers of different materials are laminated. It is possible.
 本発明を適用して製造される積層フィルムについては、上述した偏光板FX,FX’以外にも、例えば位相差フィルムや輝度向上フィルム等の光学フィルムを挙げることができる。また、これらの光学フィルムを積層した積層フィルムを切断する場合にも、本発明の切断方法を適用することが可能である。また、これら積層フィルムを貼り付ける光学表示パネルとしては、液晶パネル以外にも、例えば有機ELパネル等であってもよい。 As the laminated film manufactured by applying the present invention, optical films such as a retardation film and a brightness enhancement film can be mentioned besides the above-mentioned polarizing plates FX and FX '. Moreover, also when cut | disconnecting the laminated | multilayer film which laminated | stacked these optical films, it is possible to apply the cutting method of this invention. Moreover, as an optical display panel which sticks these laminated | multilayer film, other than a liquid crystal panel, an organic electroluminescent panel etc. may be sufficient, for example.
 なお、積層フィルムの材質や厚み、積層数等によっては、レーザー光の走査回数を増やしたり、レーザー光の出力や走査速度を調整したりすることも可能である。また、切断ラインに対するレーザー光の走査方法としては、切断ラインに沿ってレーザー光を繰り返し一方向に走査させる方法や、切断ラインの始点と終点との間でレーザー光を繰り返し往復走査させる方法などを挙げることができる。さらに、複数のレーザー光Lを同時に切断ラインに沿って走査させる方法などを挙げることができる。 In addition, depending on the material and thickness of the laminated film, the number of laminations, etc., it is also possible to increase the number of times of scanning of the laser light, or to adjust the output and scanning speed of the laser light. Further, as a method of scanning the laser light with respect to the cutting line, a method of repeatedly scanning the laser light in one direction along the cutting line, a method of repeatedly reciprocatingly scanning the laser light between the start point and the end point of the cutting line, etc. It can be mentioned. Further, a method of simultaneously scanning a plurality of laser beams L along the cutting line can be mentioned.
 30…レーザー加工装置 31…レーザー照射装置(照射手段) 32…レーザー走査装置(走査手段) 33…駆動制御装置(駆動制御手段) 34A…第1のレーザー光源 34B…第2のレーザー光源 35…ダイクロイックミラー(光路変換手段) 36…集光レンズ(集光光学系) 37A…第1の位置調整機構 37B…第2の位置調整機構 FX,FX’…偏光板(積層フィルム) S2…表面保護フィルム(PETフィルム) S3…下層側の保護層(COP層) S4…上層側の保護層(TAC層) S5…偏光子層(PVC層) L…レーザー光 L1…第1のレーザー光(第3のレーザー光) L2…第2のレーザー光 C…切断ライン U1,U2,U3…焦点位置 V,V’…切断溝 DESCRIPTION OF SYMBOLS 30 Laser processing apparatus 31 Laser irradiation apparatus (irradiation means) 32 Laser scanning apparatus (scanning means) 33 Drive control apparatus (drive control means) 34A 1st laser light source 34B 2nd laser light source 35 dichroic Mirror (optical path conversion means) 36 ... condensing lens (condensing optical system) 37A ... first position adjustment mechanism 37B ... second position adjustment mechanism FX, FX '... polarizing plate (laminated film) S2 ... surface protective film ( PET film) S3: Protective layer on the lower layer side (COP layer) S4: Protective layer on the upper layer side (TAC layer) S5: Polarizer layer (PVC layer) L: Laser light L1: First laser light (third laser light Light) L2 ... second laser light C ... cutting line U1, U2, U3 ... focal position V, V '... cutting groove

Claims (8)

  1.  材質の異なる複数の樹脂層が積層された積層フィルムを切断ラインに沿って切断する積層フィルムの切断方法であって、
     前記積層フィルムの切断ラインを波長の異なる複数のレーザー光で走査することによって、前記複数の樹脂層を切断する
     積層フィルムの切断方法。
    It is a cutting method of a lamination film which cuts a lamination film on which a plurality of resin layers from which materials differ differed along a cutting line,
    A method of cutting a laminated film, which cuts the plurality of resin layers by scanning a cutting line of the laminated film with a plurality of laser beams having different wavelengths.
  2.  前記積層フィルムの切断ラインを第1のレーザー光と、前記第1のレーザー光とは波長が異なる第2のレーザー光とで走査することによって、前記複数の樹脂層のうち、前記第1のレーザー光の吸収により光分解反応を示す樹脂層を前記第1のレーザー光で切断し、前記複数の樹脂層のうち、前記第2のレーザー光の吸収により光分解反応を示す樹脂層を前記第2のレーザー光で切断する
     請求項1に記載の積層フィルムの切断方法。
    The first laser of the plurality of resin layers is scanned by scanning the cutting line of the laminated film with a first laser beam and a second laser beam having a wavelength different from that of the first laser beam. The resin layer showing a photolytic reaction by absorption of light is cut by the first laser light, and the resin layer showing a photolytic reaction by absorption of the second laser light among the plurality of resin layers is said second The cutting method of the laminated | multilayer film of Claim 1 cut | disconnected by the laser beam.
  3.  前記第1のレーザー光が炭酸ガスレーザーにより励起されたレーザー光であり、
     前記第2のレーザー光がYAGレーザー、エキシマレーザー又は半導体レーザーにより励起されたレーザー光である
     請求項1又は2に記載の積層フィルムの切断方法。
    The first laser beam is a laser beam excited by a carbon dioxide gas laser,
    The method for cutting a laminated film according to claim 1, wherein the second laser beam is a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser.
  4.  材質の異なる複数の樹脂層が積層された積層フィルムの製造方法であって、
     前記複数の樹脂層を切断ラインに沿って切断する切断工程を含み、
     前記切断工程において、請求項1~3の何れか一項に記載の切断方法を用いることを特徴とする積層フィルムの製造方法。
    A manufacturing method of a laminated film in which a plurality of resin layers of different materials are laminated,
    Cutting the plurality of resin layers along a cutting line;
    A method for producing a laminated film, wherein the cutting method according to any one of claims 1 to 3 is used in the cutting step.
  5.  前記積層フィルムは、少なくともシクロオレフィンポリマー(COP)層と、ポリビニルアルコール(PVA)層とが積層された偏光板であり、
     前記PVA層を前記第1のレーザー光により切断し、
     前記COP層を前記第2のレーザー光により切断する
     請求項4に記載の積層フィルムの製造方法。
    The laminated film is a polarizing plate in which at least a cycloolefin polymer (COP) layer and a polyvinyl alcohol (PVA) layer are laminated,
    Cutting the PVA layer with the first laser light;
    The method for producing a laminated film according to claim 4, wherein the COP layer is cut by the second laser beam.
  6.  前記積層フィルムは、更にトリアセチルセルロース(TAC)層を含み、前記COP層と、前記PVA層と、前記TAC層とが、この順に積層された偏光板であり、
     前記TAC層及び前記PVA層を前記第1のレーザー光により切断し、
     前記COP層を前記第2のレーザー光により切断する
     請求項5に記載の積層フィルムの製造方法。
    The laminated film is a polarizing plate further including a triacetylcellulose (TAC) layer, and the COP layer, the PVA layer, and the TAC layer are laminated in this order,
    Cutting the TAC layer and the PVA layer with the first laser beam;
    The method for producing a laminated film according to claim 5, wherein the COP layer is cut by the second laser beam.
  7.  前記第2のレーザー光がYAGレーザー、エキシマレーザー又は半導体レーザーにより励起されたレーザー光である
     請求項5記載の積層フィルムの製造方法。
    The method according to claim 5, wherein the second laser beam is a laser beam excited by a YAG laser, an excimer laser or a semiconductor laser.
  8.  前記積層フィルムは、円偏光板と、ウィンドウフィルムと、タッチセンサとの中から選ばれる少なくとも2つ以上を含むフレキシブル画像表示装置用積層フィルムである
     請求項4に記載の積層フィルムの製造方法。
    The method for manufacturing a laminated film according to claim 4, wherein the laminated film is a laminated film for a flexible image display including at least two selected from a circularly polarizing plate, a window film, and a touch sensor.
PCT/JP2018/044899 2017-12-07 2018-12-06 Method for cutting and method for manufacturing laminate film WO2019112000A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207015578A KR102657288B1 (en) 2017-12-07 2018-12-06 Cutting method and manufacturing method of laminated film
CN201880077112.3A CN111432979A (en) 2017-12-07 2018-12-06 Method for cutting laminated film and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-235351 2017-12-07
JP2017235351 2017-12-07
JP2018208864A JP7260993B2 (en) 2017-12-07 2018-11-06 LAMINATED FILM CUTTING METHOD AND MANUFACTURING METHOD
JP2018-208864 2018-11-06

Publications (1)

Publication Number Publication Date
WO2019112000A1 true WO2019112000A1 (en) 2019-06-13

Family

ID=66751489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044899 WO2019112000A1 (en) 2017-12-07 2018-12-06 Method for cutting and method for manufacturing laminate film

Country Status (1)

Country Link
WO (1) WO2019112000A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810970A (en) * 1994-06-22 1996-01-16 Sony Corp Method and equipment of laser beam machining
WO2011016572A1 (en) * 2009-08-06 2011-02-10 住友化学株式会社 Method for manufacturing polarizing plate
JP2017531813A (en) * 2014-09-30 2017-10-26 エルジー・ケム・リミテッド Cutting method of polarizing plate and polarizing plate cut using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810970A (en) * 1994-06-22 1996-01-16 Sony Corp Method and equipment of laser beam machining
WO2011016572A1 (en) * 2009-08-06 2011-02-10 住友化学株式会社 Method for manufacturing polarizing plate
JP2017531813A (en) * 2014-09-30 2017-10-26 エルジー・ケム・リミテッド Cutting method of polarizing plate and polarizing plate cut using the same

Similar Documents

Publication Publication Date Title
KR102657288B1 (en) Cutting method and manufacturing method of laminated film
JP6605682B2 (en) Circular polarizer
JP6837460B2 (en) Manufacturing method and manufacturing equipment for optical members
JP6589033B2 (en) Display device
WO2019093474A1 (en) Circularly polarizing plate and display device
JP2019197234A (en) Circularly polarizing plate
WO2020121965A1 (en) Laminate and image display device using same
WO2019070033A1 (en) Method and apparatus for manufacturing optical member
JP2020118989A (en) Optical film
KR20220088414A (en) Optical laminate and display device
WO2019112000A1 (en) Method for cutting and method for manufacturing laminate film
JP7462597B2 (en) Circularly polarizing plate, optical laminate and image display device
WO2019093476A1 (en) Circularly polarizing plate and display device
CN114144823B (en) Optical laminate and method for producing same
KR20200107583A (en) Optical laminate
WO2019093501A1 (en) Circularly polarizing plate and display device
JP2020093397A (en) Stacked body, and image display device employing same
JP2023022022A (en) Circularly polarizing plate, optical laminate, and image display device
JP2021196576A (en) Circularly polarizing plate, optical laminate, image display panel using them, and image display device
JP2020093396A (en) Stacked body, and image display device employing the same
JP2023122144A (en) Circular polarizing plate and image display device
KR20230023610A (en) Polarizing film and ellipsoidal polarizer
KR20220092409A (en) Optical laminate and display device
CN116004134A (en) Laminate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885734

Country of ref document: EP

Kind code of ref document: A1