WO2019111797A1 - Biomarker for diagnosing muscle disease - Google Patents

Biomarker for diagnosing muscle disease Download PDF

Info

Publication number
WO2019111797A1
WO2019111797A1 PCT/JP2018/043998 JP2018043998W WO2019111797A1 WO 2019111797 A1 WO2019111797 A1 WO 2019111797A1 JP 2018043998 W JP2018043998 W JP 2018043998W WO 2019111797 A1 WO2019111797 A1 WO 2019111797A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomarker
muscle
antibody
muscle disease
ddb1
Prior art date
Application number
PCT/JP2018/043998
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 細野
経世 三森
蘭 笹井
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2019111797A1 publication Critical patent/WO2019111797A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a biomarker for early diagnosis of muscle disease.
  • IM Inflammatory myopathy
  • Bohan Bohan and Peter's diagnostic criteria
  • diagnosis of myositis includes clinical symptoms including muscle symptoms, and laboratory findings (specifically, blood tests (myogenic enzyme levels such as creatine kinase and aldolase levels) and physiological tests (needle electromyography) Etc), imaging (MRI), histology (muscle biopsy)). Muscle biopsy plays an important role especially in the definitive diagnosis of IM.
  • MSA myositis-specific autoantibodies
  • MAA myositis-associated autoantibodies
  • DDB1 DNA damage-binding protein 1
  • Non-patent Documents 3 and 4 DNA damage-binding protein 1
  • Non-patent Documents 5 to 11 DNA damage-binding protein 1
  • MSA and MAA can be used as useful biomarkers for patients who are positive for them.
  • MSA and MAA can actually be measured at present clinical sites, and the positive rate is about 50% of the cases of myo-inflammatory cases. If these antibodies are judged to be negative and myositis is not positively suspected, it is often the case that early diagnosis is not achieved and treatment is delayed.
  • polymyositis unlike dermatomyositis, there are cases where typical skin findings are not shown and cases where interstitial pneumonia is not observed, this problem is made more serious.
  • the abnormalities may depend on individual circumstances such as the patient's lifestyle, living environment, muscle movement condition at the time of consultation, etc. It is difficult to make a positive diagnosis as it is a clear anomaly that originates. Even if the indication of diagnostic imaging is to be determined for further examination, the hurdle is high for the convenience of the equipment. In addition, even if a slight abnormal image is found when the imaging diagnosis is indicated, it is also invasive and therefore the patient's psychology to determine the indication of the muscle biopsy for the further examination. Above all the hurdles are significantly higher. For this reason, follow-up measures are often taken in cases where blood tests, physiological tests or imaging tests do not show clear abnormalities. If symptoms progress slowly, follow-up measures are further promoted. Under these circumstances, early diagnosis is extremely difficult.
  • inclusion body myositis treated mainly by neurology the presence of myofibers with bordered vacuoles (inclusions) is a major clue for diagnosis, but in cases where such a finding is not found, it is clear It is not diagnosed with various inclusion body myositis, and there are not a few cases treated according to inclusion body myositis with the course showing chronic muscle weakness and / or muscle atrophy.
  • the group of diseases that show muscle weakness that are not diagnosed as clear collagen disease and are treated in other departments such as neurology, those that progress chronically and slowly progress to effective diagnosis
  • no active treatment has been introduced because no treatment has been established. Even in cases such as these, cases where recovery of muscle strength can be expected by appropriate diagnosis and measures, that is, cases in which recovery of muscle strength can be expected if appropriate diagnosis and therapeutic intervention have been made are potential. It is thought that there are many.
  • Muscle weakness and / or muscle atrophy caused by the diagnosis of muscle disease and delayed action can not be returned to the original state because they are irreversible symptoms. Muscle weakness and / or muscle atrophy greatly affect the patient's QOL. Thus, the loss of lifelong health due to delayed diagnosis and action is very serious.
  • the present invention is broadly directed to muscle diseases which can not be detected by conventional MSA or MMA, or muscle diseases which have been missed not only in internal diseases of collagen diseases but also in general medicine or neurology.
  • the purpose is to provide a biomarker for early diagnosis.
  • another object of the present invention is to provide a measurement technique suitable for early diagnosis of muscle disease using a biomarker as described above.
  • the inventor conducted intensive studies, and based on serum samples and clinical information collected from the patients and healthy controls, there were only minor symptoms such as no or missed skin symptoms, blood tests, physiological tests, Or, in cases where there is no obvious abnormality derived from muscle disease on imaging examination and DDB1 protein is common in the cases in which a definitive diagnosis of muscle disease has been made by intentionally taking a muscle biopsy, DDB1 protein Were found to have antibodies against DDB1 protein is a protein that has not been known to be associated with muscle disease. The present invention has been completed by further studies based on this finding.
  • Item 1 A biomarker for muscle disease consisting of anti-DDB1 antibodies.
  • Item 2. The biomarker according to item 1, wherein the muscle disease is polymyositis.
  • Item 3. A method for detecting muscle disease, comprising the step of detecting an anti-DDB1 antibody in a blood sample derived from a subject.
  • Item 4. The detection method according to Item 3, wherein the blood sample is serum.
  • Item 5. The detection method according to Item 3 or 4, wherein the clinical finding of the subject does not substantially exhibit skin symptoms.
  • Item 6. The detection method according to any one of Items 3 to 5, wherein the myopathy is polymyositis.
  • a reagent for testing a muscle disease which comprises an antigen consisting of DDB1 protein or a partial peptide thereof.
  • Item 13 A diagnostic kit for muscle disease, comprising the test reagent according to Item 12.
  • Item 14 A method for diagnosing muscle disease, comprising: detecting an anti-DDB1 antibody of a blood sample collected from a subject; and diagnosing muscle disease based on the detection result obtained in the step.
  • Item 15. Use of an antigen consisting of DDB1 protein or a partial peptide thereof for the production of a reagent for testing a muscle disease.
  • biomarkers for early diagnosis of muscle diseases are provided, muscle diseases which can not be detected by conventional MSA or MMA, or collagen diseases as well as general medicine or neurology, etc. It is useful for early diagnosis of muscle disease, since screening for muscle diseases that have been missed in other families can be widely targeted. Furthermore, according to the present invention, a test reagent capable of easily detecting a biomarker as described above and a diagnostic kit comprising the test reagent are provided, so that screening for a wide range of subjects can be performed for early diagnosis of muscle disease. It is useful.
  • the electrophoresis result of the protein immunoprecipitated from the serum of the inflammatory myopathy patient is shown. Common to the patients (lanes 1 to 6), an anti-120 kDa antibody indicated by an arrow was detected.
  • Immunoaffinity chromatography from the serum of patients inflammatory myopathies by (immunoaffinity chromatography), 1M NaCl, 1M MgCl 2, and 3M antigens stepwise purified using MgCl 2 (antigen anti 120kDa antibody) as elution liquid The results of SDS-PAGE electrophoresis gel silver staining (FIG. 2 (A)) and the results of western blot analysis (FIG.
  • the lane 1 shows the 1 M NaCl elution fraction
  • the lane 2 shows the 1 M MgCl 2 elution fraction
  • the lane 3 shows the 3 M MgCl 2 elution fraction.
  • a band of about 120 kDa in lane 3 was identified as DDB1 by PMF.
  • the results of Western blot analysis for human DDB1 human recombinant protein are shown, using serum and normal control serum of inflammatory myopathic patients and commercially available anti-DDB1 antibody as primary antibody. It was confirmed that the target autoantigen of the anti-120 kDa antibody in the patient's serum is indeed DDB1 and the anti-120 kDa antibody is an anti-DDB1 antibody.
  • Biomarker The biomarker for muscle disease of the present invention is characterized by comprising an anti-DDB1 antibody.
  • an anti-DDB1 antibody the biomarker of the present invention will be described in detail.
  • muscle disease is a disease to be diagnosed when the biomarker of the present invention is positive, and specifically refers to a disease exhibiting muscle weakness and / or muscle atrophy as one of the symptoms. .
  • the myopathy in the present invention is not particularly limited, and examples thereof include both inflammatory myopathy and non-inflammatory myopathy.
  • Inflammatory myopathies include idiopathic inflammatory myopathy (IIM).
  • Idiopathic inflammatory myopathy includes polymyositis (PM), dermatomyositis (DM), and inclusion body myositis (Sporadic Inclusion Body Myositis; sIBM).
  • polymyositis is particularly effective because the biomarker of the present invention is effective since there is no skin symptom.
  • the biomarker of the present invention is effective when the dermatomyositis is overlooked because the degree of skin symptoms is extremely slight.
  • the biomarker of the present invention is effective when inclusion body myositis is overlooked because there is no inclusion body pathologically.
  • the biomarkers of the present invention enable early diagnosis of these myopathies.
  • Anti-DDB1 antibody is an autoantibody that specifically recognizes DDB1 protein as an antigen.
  • DDB1 DNA damage-binding protein 1
  • DDB1 DNA damage-binding protein 1
  • the specific amino acid sequence of DDB1 and the nucleotide sequence encoding it can be referred to the accession number Q16531 of UniProt (the universal protein resource) (http://www.uniprot.org/uniprot/Q16531 ).
  • the class of the antibody is not particularly limited as long as it can be detected, and may be any of IgG (including IgG1, IgG2, IgG3, and IgG4), IgD, IgE, IgA, sIgA, IgM and the like.
  • IgG is exemplified.
  • the biomarkers of the present invention are also used for binding fragments of antibodies (eg, F (ab ') 2 , Fab', Fab, Fv, sFv, dsFv, sdAb) etc. as long as they specifically bind to the antigen It can be used as
  • the present invention provides a method for detecting muscle disease.
  • the detection method of the present invention is characterized by comprising the step of detecting an anti-DDB1 antibody in a blood sample collected from a subject.
  • the detection target sample of the detection method of the present invention is a blood sample, and the detection target substance is the aforementioned biomarker (ie, anti-DDB1 antibody).
  • the muscle disease to be analyzed by the test method of the present invention corresponds to a muscle disease which affects a test subject from which a blood sample to be analyzed is derived.
  • the subject may be any animal, and specifically, experimental animals such as rodents such as mice, rats, hamsters and guinea pigs and rabbits; domestic animals such as pigs, cows, goats, horses and sheep; Examples include pets such as dogs and cats; and primates such as humans, monkeys, orangutans and chimpanzees.
  • the subject in the present invention is preferably a primate, more preferably a human.
  • internal diseases such as internal diseases of collagen diseases, neurology and general internal medicine, and any other departments, and all patients who receive medical examinations and the like correspond.
  • the present invention is a pathological condition which does not show a clear abnormality in clinical findings and laboratory findings (blood test, physiological test and imaging test) as objective symptoms even in light of conventional diagnostic criteria, It is effective for a pathological condition that can be definitively diagnosed by muscle biopsy, that is, a pathological condition that can not be definitively diagnosed without muscle biopsy.
  • the clinical findings include an embodiment in which skin symptoms are not substantially exhibited.
  • the skin symptoms referred to here include skin inflammation such as Heliotrope rash, Gottron papule, Gottron symptoms, nail erythema, polymorphic skin atrophy, Mechanics hand and the like.
  • the absence of substantial skin symptoms refers to the absence of skin symptoms (especially in the case of polymyositis and inclusion body myositis) and the case where skin symptoms are so slight as to be overlooked under normal diagnostic criteria ( In particular, dermatomyositis is applicable.
  • the value of myogenic enzymes depends not only on muscle disease but also on individual circumstances such as the patient's lifestyle, living environment, and exercise conditions of muscles at the time of medical examination, the value of blood test itself is normal. Even if it is not (that is, a value slightly above the normal value or showing an abnormal value beyond the normal value), it is difficult to make a judgment as a clear abnormality attributable to a muscle disease. Therefore, the biomarker of the present invention is effective even when the myogenic enzyme value is not normal. More specifically, creatine kinase is above the normal range (43 to 157 U / L for human) and / or the normal range of aldolase (for human, 2.1 to 6.1 IU / L).
  • the test subject is a human
  • the creatine kinase is 300 U / L or more, and / or the aldolase is 6.2 IU / L or more
  • the biomarker of the present invention is used It is also preferable to carry out the same detection method.
  • Physiological examination findings may be either in the absence of abnormal findings or in the case of findings of myogenic pattern.
  • findings of the myogenic pattern either the myogenic pattern alone or a mixture of the myogenic and neurogenic patterns may be used.
  • imaging examinations include nuclear magnetic resonance imaging (MRI), computed tomography (CT) and the like.
  • MRI nuclear magnetic resonance imaging
  • CT computed tomography
  • any mode may be used in the case where there is no abnormal finding and in the case where a finding of a muscle tissue inflammation image is found.
  • Blood sample In the present invention, a blood sample collected from a subject whose muscle disease is to be diagnosed is used.
  • the type of blood sample is not particularly limited as long as the biomarker can be detected, and examples include whole blood, serum, plasma and the like. Serum can be mentioned as a suitable example from a viewpoint of being able to prepare simply and detecting the said biomarker more correctly.
  • Collection and preparation of various blood samples can be performed according to known methods.
  • serum in the case of serum, it can be prepared by removing blood cells and collected blood coagulation factors such as fibrinogen (factor I), prothrombin (factor II), factor V, factor VIII and the like from collected blood (whole blood) Or the supernatant obtained after leaving the blood standing, or the supernatant obtained by subjecting the blood to centrifugation.
  • the blood sample is used after dilution to an appropriate concentration, as necessary.
  • anti-DDB1 antibody detection of anti-DDB1 antibody is carried out by using DDB1 protein or its partial peptide as an antigen, and specifically binding to the aforementioned biomarker (anti-DDB1 antibody) in a blood sample.
  • the antigen used to detect the biomarker in the blood sample in the detection method of the present invention is specifically recognized by the biomarker (anti-DDB1 antibody) present in the blood sample collected from the subject.
  • the biomarker anti-DDB1 antibody
  • an antigen derived from an animal belonging to the same species as the subject is preferred.
  • the antigen used for detection of the biomarker is of human origin.
  • the antigen used to detect the biomarker in the blood sample may be a full-length protein or a partial peptide thereof as long as it can be specifically recognized by an antibody.
  • the partial peptide used as an antigen is not particularly limited in its length as long as it contains an antigenic determinant that can be recognized by an anti-DDB1 antibody derived from a test subject, and is detected as the biomarker Can be appropriately set according to the type of antibody.
  • the partial peptide includes, for example, those composed of 5 or more amino acid residues.
  • Antigens can be obtained by known techniques. For example, an antigen can be collected from an animal such as a human exemplified above as a test subject. Harvesting can be performed according to a conventionally known method of isolating and purifying a protein or peptide from tissue or cultured cells, for example, cell lysate after disrupting the tissue or cells expressing the antigen with a homogenizer And the method of isolating and purifying the antigen in the extract by chromatography.
  • an antigen can be obtained by culturing a transformant into which an expression vector containing a nucleic acid encoding the antigen has been introduced, and isolating and purifying the antigen from the culture.
  • it can be prepared as a polypeptide by a conventionally known peptide synthesis method. Examples of peptide synthesis methods include solid phase synthesis and liquid phase synthesis, and any method may be used in the present invention.
  • partial peptides to be used as antigens may be prepared by cleaving each polypeptide produced by the above method with a peptidase.
  • the antigen may be modified by phosphate, sugar or sugar chain, phospholipid, lipid, nucleotide or the like.
  • the antigen may be one to which a known tag is linked in order to facilitate purification treatment and the like.
  • tags include, for example, glutathione-S-transferase (GST), FLAG tag, His tag and the like.
  • the detection method of the present invention may be carried out by detecting the presence or absence of the biomarker in a blood sample collected from a subject.
  • the detection of the biomarker may be performed by measuring the amount of the biomarker in a blood sample.
  • a more accurate analysis can be performed by measuring the amount of the biomarker and comparing the measured value to the value of the biomarker in a normal control group and / or a subject suffering from muscle disease.
  • the detection method of the present invention is preferably carried out by a method capable of quantifying said biomarker in a blood sample.
  • the antigen is brought into contact with the blood sample to specifically measure the antigen and the biomarker (antibody).
  • Methods include direct or indirect detection of binding.
  • Specific examples of such detection methods include immunoassays such as ELISA, Western blotting, immunoprecipitation, radioimmunoassay (RIA) and fluorescence immunoassay.
  • an antibody that specifically binds to the biomarker (antibody) is bound to a label such as an enzyme label, a chromogenic label, a radio label or a luminescent label, and this label is detected Or it can carry out by measuring.
  • the ELISA method is mentioned as a preferable detection method from the viewpoint of simplicity.
  • the conditions for carrying out the immunoassay are not particularly limited as long as specific binding between the biomarker and the antigen in the blood sample can be detected, and may be set based on conventionally known conditions.
  • a blood sample collected from a subject is added to each well of the multiwell plate on which the antigen or antigen is immobilized, and the antigen in the well and the bio in the blood sample are added. React with a marker (anti-DDB1 antibody).
  • a blood sample is obtained by detecting and / or quantifying the reaction product obtained by adding the enzyme substrate. Detection and / or quantification of the biomarkers in can be performed.
  • the labeled antibody that specifically binds to the antibody derived from the test subject may be appropriately selected based on the animal of the test subject from which a blood sample is collected, but for example, when the test subject is a human, Non-human labeled antibodies (for example, rabbit-derived anti-human IgG antibodies) that specifically bind human antibodies can be mentioned.
  • an enzyme used for labeling a labeled antibody that specifically binds to an antibody derived from a test subject can also be appropriately selected from those commonly used and used, for example, peroxidase, alkaline phosphatase, luciferase, Esterase, glucose oxidase, ⁇ -D-galactosidase, ⁇ -D-glucuronidase and the like can be mentioned.
  • the enzyme substrate may be appropriately selected from known substrates depending on the type of enzyme. For example, when the enzyme is peroxidase, 3,3 ', 5,5'-tetramethylbenzidine (TMB) Can be used as a substrate.
  • the detection and / or quantification of the reaction product generated by the reaction of the enzyme and the substrate can be carried out by measuring the absorbance of the reaction product, for example, 3,3 ', 5,5'-tetramethylbenzidine ( When TMB) is used as the enzyme substrate, it can be performed by measuring the absorbance at 450 nm.
  • TMB 3,3 ', 5,5'-tetramethylbenzidine
  • the antigen is labeled with a radioactive isotope, reacted with the biomarker in a blood sample to form an immune complex, and detected based on the radioactivity released from the radioactive isotope be able to.
  • RIA radioimmunoassay
  • the antigen is immobilized on a plate or the like, a blood sample is added thereto and reacted, and then an antibody which specifically binds to an antibody present in a blood sample to be tested is further reacted. Can be performed by detecting fluorescent coloring.
  • the antibody that specifically binds to the antibody derived from the test subject one that is as described in the above-mentioned ELISA method and labeled with a fluorescent dye is used. Examples of fluorescent dyes include FITC, PE, APC, Cy-3, Cy-5 and the like.
  • immunoprecipitation it can be detected by reacting the antigen with a blood sample to form an immune complex, and using an active adsorbent such as protein A or protein G to precipitate as an insoluble. Furthermore, immunoprecipitation and Western blotting can be combined and detected. More specifically, the antigen to which a tag such as FLAG is linked is reacted with a blood sample, and if the biomarker is present in the sample, an immune complex is formed, so that it is precipitated by the above-mentioned active adsorbent . The resulting precipitate is then subjected to Western blotting.
  • an active adsorbent such as protein A or protein G
  • the precipitate is separated and developed by SDS-PAGE, transferred to a nitrocellulose membrane, PVDF membrane or the like, and then the antibody against the tag and the antigen-antibody reaction on the transfer membrane cause the biomarker to be present in the blood sample. If it does, it can be detected as a band.
  • the amount of the biomarker of the present invention in the blood sample is significantly elevated as compared to the normal control group. Therefore, when quantitatively detecting the biomarker of the present invention, muscle disease is detected by comparing the amount of the biomarker in the blood sample of the normal control group with the amount of the biomarker in the blood sample from the subject. You can make a diagnosis.
  • the 95th percentile value of the normal control group is set as the cutoff value for the amount of biomarker in the test subject. And the case where it is more than the said cutoff value. If it is more than the said cutoff value, it can be judged that a subject is likely to suffer from muscle disease. In addition, if it is less than the cut-off value, it may be judged that the subject is unlikely to suffer from muscle disease. Also, the more the amount of the biomarker of the present invention in the blood sample, the more severe the symptoms of muscle disease can be predicted.
  • a biomarker of the invention is detected, the application of muscle biopsy can be determined.
  • the objective fact that the biomarkers of the present invention are positive can make it easier to make an open muscle biopsy, both clinically and psychologically. If a definitive diagnosis of muscle disease is made by performing a muscle biopsy, treatment of muscle disease and an appropriate dosing schedule and follow-up measures to suppress or ameliorate the progression of symptoms (patients with hospital admission without medication Can plan various measures, such as the period of time), including isolation from daily life.
  • the muscle biopsy should be performed because the site to be subjected to the muscle biopsy is a site that is difficult to remove or for other reasons, or for muscle biopsy.
  • the prognosis of a subject can also be predicted by detecting the biomarkers of the present invention.
  • the treatment effect can be monitored by performing the detection method of the present invention after treatment. In this case, the treatment can be terminated when the biomarker of the present invention is not detected or when the detected amount is less than the cut-off value.
  • the detection method of the present invention during follow-up, it is also possible to monitor the timing of start or resumption of treatment. In this case, treatment can be started or resumed when the biomarker of the present invention is detected, or when the detected amount reaches or exceeds the cut-off value.
  • Reagent for examination of muscle disease provides a reagent for examination of muscle disease, which comprises an antigen consisting of DDB1 protein or a partial peptide thereof.
  • the test reagent of the present invention can be used to carry out the above-described muscle disease detection method.
  • the antigen may be provided in an immobilized state on an insolubilizing carrier.
  • the material of the insolubilized carrier is not particularly limited as long as it does not interfere with the detection of the biomarker, and for example, polystyrene, polyethylene, polypropylene, polyester, polyacrylonitrile, polyvinyl chloride, fluorocarbon resin, crosslinked dextran, paper, silicon, glass, metal, Agarose etc. can be illustrated. In addition, two or more of these materials may be used in combination.
  • the shape of the insolubilized carrier may be any shape such as, for example, microplate, tray, sphere, fiber, rod, disc, container, cell, test tube and the like.
  • Immobilization of the antigen on the insolubilized carrier can be performed according to a conventionally known method.
  • the amount of the antigen immobilized on the insolubilizing carrier is not particularly limited as long as it is a sufficient amount to specifically bind to the antibody against the antigen, and for example, in the solution used when immobilized on the insolubilizing carrier Of 1 to 10 ⁇ g / mL.
  • the biomarker detected by the test reagent of the present invention is an antibody capable of recognizing a plurality of antigenic determinants, an antibody specifically recognizing a plurality of antigenic determinants present in each antigen (the above-mentioned biomarkers
  • Each antigen is preferably a full-length protein, from the viewpoint that detection sensitivity can be improved by comprehensively detecting
  • test reagent of the present invention may contain, in addition to the above-mentioned antigen, a buffer, a stabilizer, a preservative, etc., and may be formulated according to a conventionally known method.
  • Diagnostic kit for muscle disease The present invention provides a kit for diagnosing a muscle disease, which comprises the above-described reagent for testing for muscle disease.
  • the diagnostic kit of the present invention may further comprise a labeled antibody (eg, a human antibody) which specifically binds to an antibody derived from a subject animal, which may be required to carry out detection of the antibody, in addition to the above-mentioned reagents. It may contain a non-human labeled antibody to be bound, a detection agent for a labeling substance, a solubilizer, a detergent, a reaction stopping solution, a control sample, a test protocol and the like.
  • the test protocol includes information such as operations and procedures for performing the muscle disease detection method described above.
  • the present invention provides a method of diagnosing muscle disease.
  • the diagnostic method comprises the steps of detecting an anti-DDB1 antibody in a blood sample collected from a subject, and diagnosing a muscle disease based on the result obtained in the step.
  • the method for detecting an antibody, the criteria for determining that the subject is afflicted with muscle disease, etc. are as described above.
  • HeLa cells were labeled with 18.5 MBq of [ 35 S] methionine (Perkin Elmer, Waltham, Mass., USA) in 30 ml of methionine-free minimal essential medium and incubated at 37 ° C. for 18 hours. After washing four times with IPP buffer (10 mM Tris-HCl, 500 mM NaCl, 0.1% Nonidet P-40, pH 8.0), [ 35 S] methionine-labeled HeLa cells are Misonix Microson (Misonix, Farmingdale, NY, USA) Sonicated with. The soluble supernatant in IPP buffer was collected by centrifugation (10,000 ⁇ g for 10 minutes) to obtain [ 35 S] methionine labeled HeLa cell extract.
  • IPP buffer 10 mM Tris-HCl, 500 mM NaCl, 0.1% Nonidet P-40, pH 8.0
  • [ 35 S] methionine-labeled HeLa cells are Misonix Microson (Misonix, Farmingdale
  • the supernatant was fractionated by 10% SDS-polyacrylamide gel electrophoresis (PAGE). After drying the gel, radiolabeled polypeptide components were analyzed by autoradiography using Fuji Bio-Imaging Analyzer System-5000 (Fuji Photo-Film, Tokyo, Japan).
  • IgG immunoaffinity chromatography and electrophoresis
  • IgG purification kit ImmunoPure (G) IgG Purification Kit, Pierce, Rockford, IL, USA.
  • the purified IgG was dialyzed and coupled to cyanogen bromide (CNBr) activated Sepharose 4B beads (GE Healthcare, Uppsala, Sweden) (procedure was according to the product's protocol).
  • CBr cyanogen bromide
  • the IgG bound Sepharose 4B beads are poured onto a glass column (Bio Rad, Hercules, CA, USA) to make an immunoaffinity column, and the extracted 6 ⁇ 10 8 HeLa cell extract is added to the column at 4 ° C. After filtering over time, IgG was bound to HeLa cell protein (antigen).
  • the antigen bound to the IgG was 1 M NaCl, 1 M MgCl 2 and Elution was carried out with 3 M MgCl 2 (adjusted to pH 7.0 with Tris) using a step-wise gradient of ionic strength.
  • the eluate is dialyzed against TBS containing 0.05% Tween-20 to purify the protein, concentrated with an Amicon Centriprep concentrator (Millipore, Billerica, Mass., USA), and subjected to SDS-PAGE electrophoresis for analysis of antigen identification. went.
  • PMF Peptide mass fingerprinting
  • Spectra were collected from 300 shots per spectrum in the m / z range 600-3000 and calibrated by two-point internal calibration with tryptic autodigestion peaks (m / z 842.5099, 2211.1046). Peak lists were created using Flex Analysis 3.0 software. The threshold used for peak picking was 500 with a minimum resolution of monoisotopic mass and 5 with a S / N ratio. The search program MASCOT developed by Matrixscience (http://www.matrixscience.com/) was used for protein identification by PMF.
  • the membrane After blocking and washing 3 times with Bullet Blocking One for Western Blotting (13779-01, Nakalai Tesque, Kyoto, Japan), the membrane is used as a primary antibody in 6 patient sera, healthy control sera and commercial Incubated with available anti-DDB1 antibody (GTX100129, GENETEX, CA, USA). The membrane was washed 5 times with Bullet Blocking One for Western Blotting for Western blotting and incubated with a secondary antibody against human IgG (H + L) (anti-human IgG (H + L) AP Conjugate, Promega, WI, USA) . After washing 5 times with Bullet Blocking One for Western Blotting for Western blotting, the blots were visualized using BCIP / NBT chromogenic substrate (S3771, Promega, WI, USA).
  • a band indicated by an arrow indicates a 120 kDa common immunoprecipitated protein
  • lanes 1-6 have 6 patients (anti-120 kDa antibody-positive patients)
  • lane 7 has a healthy control (HC)
  • lane MM Indicates a molecular marker.
  • Patient No. 1 had gradually progressed in muscle weakness for 20 years.
  • the patient had been examined at several other hospitals but had not been unambiguously diagnosed. Thereafter, when the inventor examined the patient, no skin symptoms were observed in the patient, but an increase in serum myogenic enzyme was observed, showing a finding of muscle weakness accompanied by atrophy.
  • Magnetic resonance imaging (MRI) T2-weighted imaging shows findings of muscle inflammation and electromyography (EMG) shows a mixture of myogenic and neurogenic patterns consistent with the diagnosis of myositis.
  • EMG electromyography
  • the examination confirmed pathological findings consistent with the diagnosis of myositis. Therefore, this patient was diagnosed with polymyositis (PM). Although treatment with an immunosuppressant drug was recommended, the patient refused treatment and observed the clinical course without medication, although the elevated myogenic enzyme levels diminished over time, but muscle weakness and atrophy progressed I kept doing it.
  • Patient No. 2 had a subjective symptom of muscle weakness for one year with a marked rise in myogenic enzymes. Myositis was strongly suspected but further testing was done. Although no skin symptoms were observed in the patient, T2-weighted MRI images show muscle inflammation and EMG show myogenic patterns, so when a muscle biopsy was performed based on MRI findings, myositis was noted. Supporting pathological findings were shown. Therefore, this patient was diagnosed with polymyositis (PM). Treatment with high doses of glucocorticoid rapidly improved clinical findings and symptoms.
  • PM polymyositis
  • Patient No. 3 showed an acute onset of myalgia, muscle weakness and fatigue and a marked increase in myogenic enzymes. Interestingly, despite the marked rise in myogenic enzymes, no skin symptoms were noted and MRI showed only slight muscle edema. When a muscle biopsy was performed, pathological findings showed muscle disease. Therefore, this patient was diagnosed with polymyositis (PM). Thereafter, without medication, the patient's symptoms gradually improved, and the CK level decreased to less than 1,000 IU / l within one month. After discharge, there was no apparent recurrence of symptoms and CK levels spontaneously improved to the normal range.
  • PM polymyositis
  • Patient No. 4 showed elevated CK and had muscle pain and fatigue for 10 years, but was considered to be a secondary symptom of fibromyalgia or chronic fatigue syndrome.
  • the patient was referred for myalgia and muscle weakness with elevated CK, mild fever (> 37.0 degrees), dyspnea, and tracheal aspiration.
  • MRI findings showed slight inflammation at a localized site of the right inguinal muscle, but it was a very difficult site to perform a muscle biopsy. Therefore, the patient was diagnosed with suspected polymyositis (PM). No further examinations or medications were performed as resting at the hospital spontaneously improved the symptoms and myogenic enzymes elevation.
  • PM polymyositis
  • Patient No. 5 has been coughing for over 1 year and muscle weakness and myogenic enzymes have been rising for 3 months.
  • the patient became treatment-introduced (inhaled bronchodilator, leukotriene receptor antagonist, carbocystin, macrolide antibiotic) based on the diagnosis of asthma due to respiratory symptoms, but none showed any effect. Exacerbation of urinary symptoms was noted. For this reason, it was thought that close examination for myositis was required, but prior to that, treatment hospitalization with glucocorticoid started.
  • the patient had no skin symptoms, but he was suspected of having polymyositis (PM) because of exacerbation of respiratory symptoms and myalgia.
  • Treatment with glucocorticoids improved muscle weakness, respiratory symptoms, and elevation of myogenic enzymes within one week and ended treatment two weeks later without further inflammation. EMG was performed three months after admission and no apparent abnormalities were noted.
  • Figure 2 shows the results of SDS-PAGE electrophoresis of antigens purified stepwise by elution with a buffer of different ionic strength by immunoaffinity chromatography to determine the antigen required for autoantigen analysis. Show.
  • HeLa cell extract (protein) is bound to immunoaffinity chromatography prepared by binding IgG of 6 patient sera (anti-120 kDa antibody positive sera) to CNBr-activated Sepharose 4B beads, Proteins eluted with a buffer (1 M NaCl, 1 M MgCl 2 , and 3 M MgCl 2 ) of increasing ionic strength on a dynamic gradient are electrophoresed on an 8% SDS-polyacrylamide gel (lane 1: 1 M NaCl elution) Fraction, lane 2: 1 M MgCl 2 elution fraction, lane 3: 3 M MgCl 2 elution fraction), results of visualization with silver staining are shown. The band corresponding to the autoantigen band detected in the above-described immunoblot analysis (indicated by the arrow in lane 3) was cleaved and used for PMF analysis.
  • polypeptides of six patient sera eluted with buffer (1 M NaCl, 1 M MgCl 2 , and 3 M MgCl 2 ) respectively using the above-mentioned immunoaffinity column
  • buffer 1 M NaCl, 1 M MgCl 2 , and 3 M MgCl 2
  • the immunoaffinity chromatography was carried out by Western blotting.
  • the antigen protein was extracted from the approximately 120 kDa silver-stained gel band cleaved in FIG. 2 (A) and subjected to PMF, and as a result, it was identified as DDB1 (coverage: 21%). Therefore, it was identified that the antigen protein that reacts with anti-120 kDa antibody positive serum is DDB1.
  • DDB1 human recombinant protein H00001642-P01, Abnova, Taipei, Taiwan
  • GTX 100 129 6 patients' anti-120 kDa antibody positive serum samples and normal control sera as primary antibodies, and commercially available anti-DDB1 antibody (GTX 100 129)
  • the immunoblotting for DDB1 protein was carried out using GENETEX, CA, USA), and the results of further examination for specific reactivity with DDB1 human recombinant protein are shown in FIG. In FIG.
  • lane 1 shows the results of using the anti-DDB1 antibody
  • lanes 2 to 7 show the anti-120 kDa antibody positive sera of 6 patients
  • lane 8 shows the results of using a healthy subject (HC) as the primary antibody.
  • DDB1 human recombinant protein was recognized by anti-DDB1 antibody and all anti-120 kDa antibody positive sera but not by HC sera. Therefore, it was confirmed that the antigen protein (target autoantigen of anti-120 kDa antibody) that reacts with the patient's anti-120 kDa antibody-positive serum is indeed DDB1, and the anti-120 kDa antibody in patient serum is an anti-DDB1 antibody.
  • anti-DDB1 antibody is useful as a biomarker for detecting muscle disease.
  • muscle diseases that can not be detected by conventional MSA and MMA, and muscle diseases that do not substantially exhibit skin symptoms can be effectively detected, which makes it possible to diagnose early and take appropriate measures early.
  • the biomarker is easily detectable by DDB1 protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention aims to provide a biomarker for early diagnosis of muscle disease. In addition, the present invention aims to provide a measurement technology that facilitates early diagnosis of muscle disease using said biomarker. The biomarker for muscle disease and comprising anti-DDB1 antibodies is useful as a biomarker for early diagnosis of muscle disease. A muscle disease detection method including a step in which anti-DDB1 antibodies in a blood sample derived from a test subject are detected is useful for the early detection of muscle disease. Ideally said muscle disease is polymyositis.

Description

筋疾患の診断のためのバイオマーカーBiomarkers for the diagnosis of muscle disease
 本発明は、筋疾患を早期に診断するためのバイオマーカーに関する。 The present invention relates to a biomarker for early diagnosis of muscle disease.
 炎症性筋疾患(Inflammatory Myopathy;IM)は、筋肉だけでなく、皮膚、並びに、肺、心臓、および関節等の器官も含む全身性の自己免疫疾患である。IMには、1975年に提唱されたBohan及びPeterの診断基準(非特許文献1)に基づいて分類される多発性筋炎及び皮膚筋炎が含まれている。 Inflammatory myopathy (IM) is a systemic autoimmune disease that includes not only muscle but also skin and organs such as lung, heart and joints. The IM includes polymyositis and dermatomyositis classified according to Bohan and Peter's diagnostic criteria (Non-Patent Document 1) proposed in 1975.
 一般に筋炎の診断は、筋症状をはじめとする臨床所見、及び検査所見(具体的には、血液検査(クレアチンキナーゼ値、アルドラーゼ値等の筋原性酵素値)、生理学的検査(針筋電図等)、画像検査(MRI)、組織学的検査(筋生検))によって行われる。特にIMの確定診断において、筋生検は重要な役割を果たす。 In general, diagnosis of myositis includes clinical symptoms including muscle symptoms, and laboratory findings (specifically, blood tests (myogenic enzyme levels such as creatine kinase and aldolase levels) and physiological tests (needle electromyography) Etc), imaging (MRI), histology (muscle biopsy)). Muscle biopsy plays an important role especially in the definitive diagnosis of IM.
 最近、多くの筋炎特異的自己抗体(myositis-specific autoantibodies;MSA)および筋炎関連自己抗体(myositis-associated autoantibodies;MAA)が報告されている。これらのMSAおよびMAAは、臨床的特徴と密接に関連している点で注目に値する。これまでのところ、患者の血清中にMSAおよびMAAが検出された場合には、病気の診断、臨床経過予測、および疾患の初期段階における治療決定が容易となった。このような自己抗体は、筋力低下や検査所見の異常などの症状の原因を判別しやすくし、早期にMRIや筋生検などの積極的な検査実施を決定する基準となる点で有用である。 Recently, many myositis-specific autoantibodies (MSA) and myositis-associated autoantibodies (MAA) have been reported. These MSAs and MAAs are noteworthy in that they are closely related to the clinical features. So far, detection of MSA and MAA in the serum of patients has facilitated disease diagnosis, clinical course prediction, and treatment decisions in the early stages of the disease. Such autoantibodies are useful in that they make it easy to determine the cause of symptoms such as muscle weakness or abnormalities in laboratory findings, and serve as a basis for determining the implementation of aggressive examinations such as MRI and muscle biopsy at an early stage. .
 一方で、DNA損傷結合タンパク質1(DNA damage-binding protein 1;DDB1)がDNA修復の過程に関与するタンパク質として見出されている。DDB1は、紫外線との関連性(非特許文献3及び4)、及びウイルス感染との関連性(非特許文献5~11)も報告されている。 On the other hand, DNA damage-binding protein 1 (DDB1) has been found as a protein involved in the process of DNA repair. DDB1 has also been reported to be associated with ultraviolet light (Non-patent Documents 3 and 4) and with viral infection (Non-patent Documents 5 to 11).
 MSA及びMAAは、それらが陽性である患者に対しては有用なバイオマーカーとして利用することができる。しかしながら、現在の臨床現場で実際に測定可能なMSA及びMAAは数種類に過ぎず、陽性率は筋炎症例の50%程度である。これらの抗体が陰性と判断され積極的に筋炎が疑われない場合には、早期の確定診断に至らず治療が後手に回る場合が多い。特に多発性筋炎に関しては、皮膚筋炎とは異なり典型的な皮膚所見を呈さない症例、及び間質性肺炎の合併が認められない症例があるため、この問題をより深刻にする。 MSA and MAA can be used as useful biomarkers for patients who are positive for them. However, there are only a few types of MSA and MAA that can actually be measured at present clinical sites, and the positive rate is about 50% of the cases of myo-inflammatory cases. If these antibodies are judged to be negative and myositis is not positively suspected, it is often the case that early diagnosis is not achieved and treatment is delayed. Especially in the case of polymyositis, unlike dermatomyositis, there are cases where typical skin findings are not shown and cases where interstitial pneumonia is not observed, this problem is made more serious.
 たとえば血液検査又は生理学的検査で多少の異常があったとしても、当該異常が患者の生活習慣、生活環境、受診の際の筋肉の運動状況等の個別事情に依存することもあり、筋疾患に由来する明確な異常であるとして積極的に診断を下すことは難しい。さらなる検査のために画像診断の適応を決定するとしても、設備の都合上そのハードルは高い。また、画像診断を適応された場合に、わずかに異常像の所見が認められたとしても、さらなる検査のために筋生検の適応を決定することは、その侵襲性ゆえ、臨床上でも患者心理上でもそのハードルは顕著に高くなる。このため、血液検査、生理学的検査又は画像検査で明瞭な異常を示さないケースでは経過観察措置となることが多い。症状の進行が緩慢であったりすると、経過観察措置はさらに助長される。このような現状において、早期診断は極めて困難となっている。 For example, even if there are some abnormalities in a blood test or a physiological test, the abnormalities may depend on individual circumstances such as the patient's lifestyle, living environment, muscle movement condition at the time of consultation, etc. It is difficult to make a positive diagnosis as it is a clear anomaly that originates. Even if the indication of diagnostic imaging is to be determined for further examination, the hurdle is high for the convenience of the equipment. In addition, even if a slight abnormal image is found when the imaging diagnosis is indicated, it is also invasive and therefore the patient's psychology to determine the indication of the muscle biopsy for the further examination. Above all the hurdles are significantly higher. For this reason, follow-up measures are often taken in cases where blood tests, physiological tests or imaging tests do not show clear abnormalities. If symptoms progress slowly, follow-up measures are further promoted. Under these circumstances, early diagnosis is extremely difficult.
 また、内科が細分化されている昨今において、患者は、上述のような多発性筋炎を取り扱う膠原病内科とは別の科(特に一般内科)で受診することが多い。そのような科においては、血液検査、生理学的検査又は画像検査で明瞭な異常を示さないケースは、精査及び診断に至らずに経過観察される傾向がより強い。その経過観察の間に筋力低下及び/又は筋萎縮を招来した例は、膠原病内科の受診患者に比べて圧倒的に多いと考えられる。 In addition, in recent years where internal medicine has been subdivided, patients are often referred to a department other than internal medicine for treating polymyositis (especially general internal medicine) as described above. In such families, cases that do not show clear abnormalities in blood tests, physiological tests or imaging tests are more likely to be followed up without scrutiny and diagnosis. It is thought that the cases that caused muscle weakness and / or muscle atrophy during the follow-up are overwhelmingly more frequent than the patients who visited the department of internal diseases of collagen diseases.
 また、主に神経内科で取り扱われる封入体筋炎の場合、縁取り空胞(封入体)を伴う筋線維が認められることが診断の大きな手がかりとなるが、そのような所見が認められない症例では明確な封入体筋炎と診断されず、慢性的な筋力低下及び/又は筋萎縮を呈する経過をもって、封入体筋炎に準じて加療される症例も少なくない。或いは、明確な膠原病と診断されず、神経内科を始めとする他科で加療されている筋力低下を呈する疾患群の中で、慢性かつ緩徐に進行するものにあっては、有効な診断・治療法が確立されていないため積極的な治療が導入されていない場合も存在する。それらのような症例であっても、適切な診断及び措置により筋力の回復が期待できるケース、つまり、仮に適切な診断及び治療介入がなされていたとすれば筋力の回復が期待できたケースは潜在的に多く存在すると考えられる。 In addition, in the case of inclusion body myositis treated mainly by neurology, the presence of myofibers with bordered vacuoles (inclusions) is a major clue for diagnosis, but in cases where such a finding is not found, it is clear It is not diagnosed with various inclusion body myositis, and there are not a few cases treated according to inclusion body myositis with the course showing chronic muscle weakness and / or muscle atrophy. Alternatively, in the group of diseases that show muscle weakness that are not diagnosed as clear collagen disease and are treated in other departments such as neurology, those that progress chronically and slowly progress to effective diagnosis In some cases, no active treatment has been introduced because no treatment has been established. Even in cases such as these, cases where recovery of muscle strength can be expected by appropriate diagnosis and measures, that is, cases in which recovery of muscle strength can be expected if appropriate diagnosis and therapeutic intervention have been made are potential. It is thought that there are many.
 筋疾患の診断及び措置の遅れにより招来する筋力低下及び/又は筋萎縮は、不可逆的な症状であるため、元の状態に戻すことができない。筋力低下及び/又は筋萎縮は患者のQOLに大きく影響する。したがって、診断及び措置の遅れによる生涯健康の損失は非常に深刻である。 Muscle weakness and / or muscle atrophy caused by the diagnosis of muscle disease and delayed action can not be returned to the original state because they are irreversible symptoms. Muscle weakness and / or muscle atrophy greatly affect the patient's QOL. Thus, the loss of lifelong health due to delayed diagnosis and action is very serious.
 そこで本発明は、これまでのMSA又はMMAでは検出できない筋疾患、若しくは、膠原病内科だけでなく一般内科又は神経内科等の他の科で見逃されてきた筋疾患を広く対象とし、筋疾患を早期に診断するためのバイオマーカーを提供することを目的とする。さらに本発明は、上述のようなバイオマーカーを用いて、筋疾患の早期診断に適した測定技術を提供することも目的とする。 Therefore, the present invention is broadly directed to muscle diseases which can not be detected by conventional MSA or MMA, or muscle diseases which have been missed not only in internal diseases of collagen diseases but also in general medicine or neurology. The purpose is to provide a biomarker for early diagnosis. Furthermore, another object of the present invention is to provide a measurement technique suitable for early diagnosis of muscle disease using a biomarker as described above.
 本発明者は鋭意検討を行い、受診患者と健常対照とから収集した血清サンプル及び臨床情報をもとに、皮膚症状が無い又は見逃される程度の軽微な症状しかなく、血液検査、生理学的検査、又は画像検査では筋疾患に由来する明らかな異常が認められない症例であって、敢えて筋生検に踏み切ったことで筋疾患の確定診断が下った症例に共通して、血清中に、DDB1タンパク質に対する抗体を有することを見出した。DDB1タンパク質は、これまで筋疾患との関連が知られていないタンパク質である。本発明は、この知見に基づいてさらに検討を重ねることにより完成したものである。 The inventor conducted intensive studies, and based on serum samples and clinical information collected from the patients and healthy controls, there were only minor symptoms such as no or missed skin symptoms, blood tests, physiological tests, Or, in cases where there is no obvious abnormality derived from muscle disease on imaging examination and DDB1 protein is common in the cases in which a definitive diagnosis of muscle disease has been made by intentionally taking a muscle biopsy, DDB1 protein Were found to have antibodies against DDB1 protein is a protein that has not been known to be associated with muscle disease. The present invention has been completed by further studies based on this finding.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 抗DDB1抗体からなる、筋疾患のバイオマーカー。
項2. 前記筋疾患が多発性筋炎である、項1に記載のバイオマーカー。
項3. 被験対象に由来する血液試料中の抗DDB1抗体の検出を行う工程を含む、筋疾患の検出方法。
項4. 前記血液試料が血清である、項3に記載の検出方法。
項5. 前記被験対象の臨床所見が、皮膚症状を実質的に呈さない、項3又は4に記載の検出方法。
項6. 前記筋疾患が多発性筋炎である、項3~5のいずれかに記載の検出方法。
項7. 前記被験対象の血液検査所見が、筋原性酵素について正常値である、項3~6のいずれかに記載の検出方法。
項8. 前記被験対象の血液検査所見が、クレアチンキナーゼ300U/L以上である、項3~6のいずれかに記載の検出方法。
項9. 前記被験対象の血液検査所見が、アルドラーゼ6.2IU/L以上である、項3~6及び8のいずれかに記載の検出方法。
項10. 前記検出を、DDB1タンパク質又はその部分ペプチドからなる抗原を用いて行う、項3~9のいずれかに記載の検出方法。
項11. 前記検出をELISA法によって行う、項10に記載の検出方法。
項12. DDB1タンパク質又はその部分ペプチドからなる抗原を含む、筋疾患の検査用試薬。
項13. 項12に記載の検査用試薬を含む、筋疾患の診断キット。
項14. 被験対象から採取された血液試料の抗DDB1抗体を検出する工程、及び前記工程で得られた検出結果に基づいて筋疾患を診断する工程を含む、筋疾患の診断方法。
項15. DDB1タンパク質又はその部分ペプチドからなる抗原の、筋疾患の検査用試薬の製造のための使用。
That is, the present invention provides the invention of the aspects listed below.
Item 1. A biomarker for muscle disease consisting of anti-DDB1 antibodies.
Item 2. The biomarker according to item 1, wherein the muscle disease is polymyositis.
Item 3. A method for detecting muscle disease, comprising the step of detecting an anti-DDB1 antibody in a blood sample derived from a subject.
Item 4. Item 4. The detection method according to Item 3, wherein the blood sample is serum.
Item 5. Item 5. The detection method according to Item 3 or 4, wherein the clinical finding of the subject does not substantially exhibit skin symptoms.
Item 6. The detection method according to any one of Items 3 to 5, wherein the myopathy is polymyositis.
Item 7. 7. The detection method according to any one of items 3 to 6, wherein the blood test findings of the test subject have normal values for myogenic enzymes.
Item 8. 7. The detection method according to any one of Items 3 to 6, wherein the blood test findings of the subject are creatine kinase 300 U / L or more.
Item 9. Item 9. The detection method according to any one of Items 3 to 6 and 8, wherein the blood test findings of the subject are aldolase 6.2 IU / L or more.
Item 10. The detection method according to any one of Items 3 to 9, wherein the detection is performed using an antigen consisting of DDB1 protein or a partial peptide thereof.
Item 11. Item 11. The detection method according to Item 10, wherein the detection is performed by ELISA.
Item 12. A reagent for testing a muscle disease, which comprises an antigen consisting of DDB1 protein or a partial peptide thereof.
Item 13. A diagnostic kit for muscle disease, comprising the test reagent according to Item 12.
Item 14. A method for diagnosing muscle disease, comprising: detecting an anti-DDB1 antibody of a blood sample collected from a subject; and diagnosing muscle disease based on the detection result obtained in the step.
Item 15. Use of an antigen consisting of DDB1 protein or a partial peptide thereof for the production of a reagent for testing a muscle disease.
 本発明によれば、筋疾患を早期に診断するためのバイオマーカーが提供されるため、これまでのMSA又はMMAでは検出できない筋疾患、若しくは、膠原病内科だけでなく一般内科又は神経内科等の他の科で見逃されてきた筋疾患を広く対象としたスクリーニングが可能となるため、筋疾患の早期診断に有用である。さらに、本発明によれば、上述のようなバイオマーカーを容易に検出できる検査用試薬、及び当該検査用試薬を含む診断キットが提供されるため、幅広い対象に対するスクリーニングと共に、筋疾患の早期診断に有用である。 According to the present invention, since biomarkers for early diagnosis of muscle diseases are provided, muscle diseases which can not be detected by conventional MSA or MMA, or collagen diseases as well as general medicine or neurology, etc. It is useful for early diagnosis of muscle disease, since screening for muscle diseases that have been missed in other families can be widely targeted. Furthermore, according to the present invention, a test reagent capable of easily detecting a biomarker as described above and a diagnostic kit comprising the test reagent are provided, so that screening for a wide range of subjects can be performed for early diagnosis of muscle disease. It is useful.
炎症性筋疾患患者の血清から免疫沈降したタンパク質の電気泳動結果を示す。当該患者(レーン1~6)に共通して、矢印で示される抗120kDa抗体が検出された。The electrophoresis result of the protein immunoprecipitated from the serum of the inflammatory myopathy patient is shown. Common to the patients (lanes 1 to 6), an anti-120 kDa antibody indicated by an arrow was detected. イムノアフィニティークロマトグラフィー(immunoaffinity chromatography)により炎症性筋疾患患者の血清から、溶出用液として1M NaCl、1M MgCl2、及び3M MgCl2を用いて段階的に精製された抗原(抗120kDa抗体の抗原)の、SDS-PAGE電気泳動ゲル銀染色結果(図2(A))、及び同じ患者血清を一次抗体として対応タンパク質の確認を行ったウェスタンブロット分析結果(図2(B))を示す。いずれも、レーン1が1M NaCl溶出画分、レーン2が1M MgCl2溶出画分、レーン3が3M MgCl2溶出画分を示す。レーン3における約120kDaのバンドがPMFによりDDB1と同定された。Immunoaffinity chromatography from the serum of patients inflammatory myopathies by (immunoaffinity chromatography), 1M NaCl, 1M MgCl 2, and 3M antigens stepwise purified using MgCl 2 (antigen anti 120kDa antibody) as elution liquid The results of SDS-PAGE electrophoresis gel silver staining (FIG. 2 (A)) and the results of western blot analysis (FIG. 2 (B)) were carried out using the same patient serum as the primary antibody to confirm the corresponding protein. The lane 1 shows the 1 M NaCl elution fraction, the lane 2 shows the 1 M MgCl 2 elution fraction, and the lane 3 shows the 3 M MgCl 2 elution fraction. A band of about 120 kDa in lane 3 was identified as DDB1 by PMF. 炎症性筋疾患患者の血清及び正常対照血清、並びに商業的に入手可能な抗DDB1抗体を一次抗体として用いた、ヒトDDB1ヒト組換えタンパク質についてのウェスタンブロット分析した結果を示す。患者血清中の抗120kDa抗体の標的自己抗原が確かにDDB1であり、抗120kDa抗体が抗DDB1抗体であることを確認した。The results of Western blot analysis for human DDB1 human recombinant protein are shown, using serum and normal control serum of inflammatory myopathic patients and commercially available anti-DDB1 antibody as primary antibody. It was confirmed that the target autoantigen of the anti-120 kDa antibody in the patient's serum is indeed DDB1 and the anti-120 kDa antibody is an anti-DDB1 antibody.
1.バイオマーカー
 本発明の筋疾患のバイオマーカーは、抗DDB1抗体からなることを特徴とする。以下、本発明のバイオマーカーについて詳述する。
1. Biomarker The biomarker for muscle disease of the present invention is characterized by comprising an anti-DDB1 antibody. Hereinafter, the biomarker of the present invention will be described in detail.
 本発明において「筋疾患」とは、本発明のバイオマーカーが陽性である場合に診断される疾病であり、具体的には、筋力低下及び/又は筋萎縮を症状の1つとして呈する疾病をいう。この限りにおいて、本発明における筋疾患としては特に限定されず、炎症性筋疾患及び非炎症性筋疾患のいずれも挙げられる。炎症性筋疾患としては、特発性炎症性筋疾患(Idiopathic Inflammatory Myopathy;IIM)が挙げられる。特発性炎症性筋疾患としては、多発性筋炎(polymyositis;PM)、皮膚筋炎(dermatomyositis;DM)、封入体筋炎(Sporadic Inclusion Body Myositis;sIBM)が挙げられる。このうち、多発性筋炎は、皮膚症状がないことから、本発明のバイオマーカーが特に有効である。また、皮膚筋炎は、皮膚症状の程度が極めて僅かであるために見過ごされる場合に、本発明のバイオマーカーが有効である。封入体筋炎は、病理学的に封入体が認められないために見過ごされる場合に、本発明のバイオマーカーが有効である。本発明のバイオマーカーは、これらの筋疾患の早期診断を可能にする。 In the present invention, “muscle disease” is a disease to be diagnosed when the biomarker of the present invention is positive, and specifically refers to a disease exhibiting muscle weakness and / or muscle atrophy as one of the symptoms. . As far as this is done, the myopathy in the present invention is not particularly limited, and examples thereof include both inflammatory myopathy and non-inflammatory myopathy. Inflammatory myopathies include idiopathic inflammatory myopathy (IIM). Idiopathic inflammatory myopathy includes polymyositis (PM), dermatomyositis (DM), and inclusion body myositis (Sporadic Inclusion Body Myositis; sIBM). Among these, polymyositis is particularly effective because the biomarker of the present invention is effective since there is no skin symptom. In addition, when the dermatomyositis is overlooked because the degree of skin symptoms is extremely slight, the biomarker of the present invention is effective. The biomarker of the present invention is effective when inclusion body myositis is overlooked because there is no inclusion body pathologically. The biomarkers of the present invention enable early diagnosis of these myopathies.
 抗DDB1抗体は、DDB1タンパク質を抗原として特異的に認識する自己抗体である。DDB1(DNA damage-binding protein 1)は、DNA修復の過程に関与し、さらに、紫外線やウイルス感染と関連性があることが知られている。DDB1の具体的なアミノ酸配列及びそれをコードする塩基配列については、UniProt(the universal protein resource)のアクセッション番号Q16531に記載のものが挙げられる(http://www.uniprot.org/uniprot/Q16531)。 Anti-DDB1 antibody is an autoantibody that specifically recognizes DDB1 protein as an antigen. DDB1 (DNA damage-binding protein 1) is involved in the process of DNA repair, and is further known to be associated with ultraviolet light and viral infection. The specific amino acid sequence of DDB1 and the nucleotide sequence encoding it can be referred to the accession number Q16531 of UniProt (the universal protein resource) (http://www.uniprot.org/uniprot/Q16531 ).
 本発明において抗体のクラスは、検出可能である限り特に限定されず、IgG(IgG1、IgG2、IgG3、IgG4等を含む)、IgD、IgE、IgA、sIgA、IgM等のいずれであってもよい。本発明において好ましい抗体のクラスとしては、IgGが例示される。また、前記抗原に対して特異的に結合する限り、抗体の結合性断片(例えば、F(ab')2、Fab'、Fab、Fv、sFv、dsFv、sdAb)等についても本発明のバイオマーカーとして使用することができる。 In the present invention, the class of the antibody is not particularly limited as long as it can be detected, and may be any of IgG (including IgG1, IgG2, IgG3, and IgG4), IgD, IgE, IgA, sIgA, IgM and the like. As a preferred class of antibodies in the present invention, IgG is exemplified. Furthermore, the biomarkers of the present invention are also used for binding fragments of antibodies (eg, F (ab ') 2 , Fab', Fab, Fv, sFv, dsFv, sdAb) etc. as long as they specifically bind to the antigen It can be used as
2.筋疾患の検出方法
 本発明は、筋疾患の検出方法を提供する。本発明の検出方法は、被験対象から採取された血液試料中の、抗DDB1抗体の検出を行う工程を含むことを特徴とする。
2. Method for detecting muscle disease The present invention provides a method for detecting muscle disease. The detection method of the present invention is characterized by comprising the step of detecting an anti-DDB1 antibody in a blood sample collected from a subject.
2-1.対象
 本発明の検出方法の検出対象試料は血液試料であり、検出対象物質は前記バイオマーカー(即ち、抗DDB1抗体)である。
2-1. Subject The detection target sample of the detection method of the present invention is a blood sample, and the detection target substance is the aforementioned biomarker (ie, anti-DDB1 antibody).
2-2.被験対象
 本発明の検査方法で分析される筋疾患は、分析対象である血液試料の由来元となる被験対象が罹患する筋疾患に相当する。被験対象としては、任意の動物であってよく、具体的には、マウス、ラット、ハムスター、モルモット等のげっ歯類及びウサギ等の実験動物;ブタ、ウシ、ヤギ、ウマ、ヒツジ等の家畜;イヌ、ネコ等のペット;ヒト、サル、オランウータン、チンパンジー等の霊長類が挙げられる。本発明における被験対象は、好ましくは霊長類、更に好ましくはヒトである。さらに、被験対象としては、膠原病内科、神経内科、一般内科などの内科、及びその他任意の科、並びに健康診断等を受診するあらゆる患者が該当する。
2-2. Test subject The muscle disease to be analyzed by the test method of the present invention corresponds to a muscle disease which affects a test subject from which a blood sample to be analyzed is derived. The subject may be any animal, and specifically, experimental animals such as rodents such as mice, rats, hamsters and guinea pigs and rabbits; domestic animals such as pigs, cows, goats, horses and sheep; Examples include pets such as dogs and cats; and primates such as humans, monkeys, orangutans and chimpanzees. The subject in the present invention is preferably a primate, more preferably a human. Furthermore, as the test subjects, internal diseases such as internal diseases of collagen diseases, neurology and general internal medicine, and any other departments, and all patients who receive medical examinations and the like correspond.
 被験対象が有する病態としては、自覚症状及び他覚症状、並びにそれらの有無を問わない。特に、本発明は、他覚症状として、臨床所見及び検査所見(血液検査、生理学的検査、及び画像検査)において、これまでの診断基準に照らしても明瞭な異常を示さない病態であって、筋生検によって確定診断可能となるような病態、つまり、筋生検でなければ確定診断ができなかったような病態に対して有効である。 As a pathological condition which a test subject has, a subjective symptom and an objective symptom, and those presence or absence do not ask. In particular, the present invention is a pathological condition which does not show a clear abnormality in clinical findings and laboratory findings (blood test, physiological test and imaging test) as objective symptoms even in light of conventional diagnostic criteria, It is effective for a pathological condition that can be definitively diagnosed by muscle biopsy, that is, a pathological condition that can not be definitively diagnosed without muscle biopsy.
 具体的には、臨床所見において、皮膚症状を実質的に呈さない態様が挙げられる。ここでいう皮膚症状としては、ヘリオトロープ疹、ゴットロン丘疹、ゴットロン徴候、爪囲紅斑、多形皮膚萎縮、メカニックスハンド等の皮膚の炎症が挙げられる。皮膚症状を実質的に呈さないとは、皮膚症状を呈さない場合(特に多発性筋炎及び封入体筋炎が該当する)と、通常の診断基準では見過ごされ得る程度に僅かな皮膚症状を呈する場合(特に皮膚筋炎が該当する)とを含む意である。 Specifically, the clinical findings include an embodiment in which skin symptoms are not substantially exhibited. The skin symptoms referred to here include skin inflammation such as Heliotrope rash, Gottron papule, Gottron symptoms, nail erythema, polymorphic skin atrophy, Mechanics hand and the like. The absence of substantial skin symptoms refers to the absence of skin symptoms (especially in the case of polymyositis and inclusion body myositis) and the case where skin symptoms are so slight as to be overlooked under normal diagnostic criteria ( In particular, dermatomyositis is applicable.
 検査所見のうち血液検査においては、例えば、クレアチンキナーゼ(CK)及びアルドラーゼ(ALD)等の筋原性酵素の値が正常値であるもの;それら筋原性酵素の値が正常値よりも上昇しているものの、上昇の程度が僅かであり、明確な異常とする判断を下すことが難しいもの;及び筋原性酵素の値が正常値を超えて異常値を示すもののいずれの態様であってもよい。 Among the laboratory findings, in blood tests, for example, those with normal values of myogenic enzymes such as creatine kinase (CK) and aldolase (ALD); those with myogenic enzymes are higher than normal values Although the degree of increase is slight, it is difficult to make a clear abnormal judgment; and even if the value of the myogenic enzyme shows an abnormal value beyond the normal value Good.
 筋原性酵素の値が正常値であっても、筋生検を行えば筋疾患の確定診断が下る場合もある。従って、筋原性酵素の値が正常値である場合であっても、本発明のバイオマーカーを用いた検出方法が有効である。 Even if the value of myogenic enzyme is normal, muscle biopsy may lead to a definitive diagnosis of muscle disease. Therefore, even when the myogenic enzyme value is normal, the detection method using the biomarker of the present invention is effective.
 また、筋原性酵素の値は、筋疾患のみならず、患者の生活習慣、生活環境、受診の際の筋肉の運動状況等の個別事情に依存するため、たとえ、血液検査の値自体が正常でない場合(つまり、正常値から僅かに上昇した値又は正常値を超えて異常値を示している場合)であっても、筋疾患に起因する明確な異常とする判断を下すことは難しい。従って、筋原性酵素の値が正常値でない場合も、本発明のバイオマーカーが有効である。より具体的には、クレアチンキナーゼが正常値の範囲(ヒトの場合、43~157U/L)を超える値、及び/又はアルドラーゼが正常値の範囲(ヒトの場合、2.1~6.1IU/L)を超える値、好ましくは、被験対象がヒトの場合、クレアチンキナーゼが300U/L以上である場合、及び/又はアルドラーゼが6.2IU/L以上である場合に、本発明のバイオマーカーを用いた検出方法を行うことも好ましい。 In addition, because the value of myogenic enzymes depends not only on muscle disease but also on individual circumstances such as the patient's lifestyle, living environment, and exercise conditions of muscles at the time of medical examination, the value of blood test itself is normal. Even if it is not (that is, a value slightly above the normal value or showing an abnormal value beyond the normal value), it is difficult to make a judgment as a clear abnormality attributable to a muscle disease. Therefore, the biomarker of the present invention is effective even when the myogenic enzyme value is not normal. More specifically, creatine kinase is above the normal range (43 to 157 U / L for human) and / or the normal range of aldolase (for human, 2.1 to 6.1 IU / L). L), preferably when the test subject is a human, when the creatine kinase is 300 U / L or more, and / or the aldolase is 6.2 IU / L or more, the biomarker of the present invention is used It is also preferable to carry out the same detection method.
 検査所見のうち生理学的検査としては、針筋電図等が挙げられる。生理学的検査の所見としては、異常所見が無い場合、及び筋原性パターンの所見が見られる場合のいずれであってもよい。また、筋原性パターンの所見が見られる場合にあっては、筋原性パターンのみの場合、並びに、筋原性及び神経原性のパターンの混合である場合のいずれであってもよい。 Among the laboratory findings, as a physiological examination, needle electromyography etc. may be mentioned. Physiological examination findings may be either in the absence of abnormal findings or in the case of findings of myogenic pattern. In addition, in the case where findings of the myogenic pattern are observed, either the myogenic pattern alone or a mixture of the myogenic and neurogenic patterns may be used.
 検査所見のうち画像検査としては、核磁気共鳴画像法(MRI)、コンピュータ断層撮影(CT)等が挙げられる。画像検査の所見としては、異常所見が無い場合、及び筋組織炎症像の所見が見られる場合のいずれの態様であってもよい。 Among the examination findings, imaging examinations include nuclear magnetic resonance imaging (MRI), computed tomography (CT) and the like. As the findings of the imaging examination, any mode may be used in the case where there is no abnormal finding and in the case where a finding of a muscle tissue inflammation image is found.
2-3.血液試料
 本発明においては、筋疾患を診断すべき被験対象から採取した血液試料を用いる。血液試料の種類は前記バイオマーカーを検出し得る限り特に限定されないが、例えば全血、血清、血漿等が挙げられる。簡便に調製することができ、より正確に前記バイオマーカーを検出するという観点から血清が好適な例として挙げられる。
2-3. Blood sample In the present invention, a blood sample collected from a subject whose muscle disease is to be diagnosed is used. The type of blood sample is not particularly limited as long as the biomarker can be detected, and examples include whole blood, serum, plasma and the like. Serum can be mentioned as a suitable example from a viewpoint of being able to prepare simply and detecting the said biomarker more correctly.
  各種血液試料の採取及び調製は公知の手法に従って行うことができる。例えば、血清であれば、採取された血液(全血)から血球と、フィブリノーゲン(I因子)、プロトロンビン(II因子)、V因子、VIII因子等の血液凝固因子を除去して調製することができ、血液を静置した後に得られる上清、あるいは血液を遠心分離に供して得られる上清として得ることができる。血液試料は、必要に応じて、適切な濃度に希釈して使用される。 Collection and preparation of various blood samples can be performed according to known methods. For example, in the case of serum, it can be prepared by removing blood cells and collected blood coagulation factors such as fibrinogen (factor I), prothrombin (factor II), factor V, factor VIII and the like from collected blood (whole blood) Or the supernatant obtained after leaving the blood standing, or the supernatant obtained by subjecting the blood to centrifugation. The blood sample is used after dilution to an appropriate concentration, as necessary.
2-4.抗原
 本発明の検出方法において、抗DDB1抗体の検出は、DDB1タンパク質又はその部分ペプチドを抗原として使用し、血液試料中の前記バイオマーカー(抗DDB1抗体)と特異的結合させることにより行われる。
2-4. Antigen In the detection method of the present invention, detection of anti-DDB1 antibody is carried out by using DDB1 protein or its partial peptide as an antigen, and specifically binding to the aforementioned biomarker (anti-DDB1 antibody) in a blood sample.
  本発明の検出方法において血液試料中の前記バイオマーカーを検出するために使用される抗原は、被験対象から採取された血液試料中に存在する前記バイオマーカー(抗DDB1抗体)によって特異的に認識され得る限り特に限定されないが、被験対象と同じ種に属する動物に由来する抗原が好ましい。例えば、被験対象がヒトである場合には、バイオマーカーの検出に使用する抗原はヒト由来であることが好ましい。 The antigen used to detect the biomarker in the blood sample in the detection method of the present invention is specifically recognized by the biomarker (anti-DDB1 antibody) present in the blood sample collected from the subject. Although it is not particularly limited as long as it can be obtained, an antigen derived from an animal belonging to the same species as the subject is preferred. For example, when the test subject is a human, it is preferable that the antigen used for detection of the biomarker is of human origin.
 また、血液試料中の前記バイオマーカーを検出するために使用される抗原は、全長タンパク質であってもよく、抗体に特異的に認識され得る限りその部分ペプチドであってもよい。本発明において、抗原として使用される部分ペプチドとしては、被験対象に由来する抗DDB1抗体によって認識され得る抗原決定基を含むものであればその長さは特に限定されず、前記バイオマーカーとして検出される抗体の種類によって適宜設定され得る。一般に、抗原決定基を構成するアミノ酸残基数が5~20個程度とされていることから、部分ペプチドとしては、例えば5個以上のアミノ酸残基により構成されるものが挙げられる。 Also, the antigen used to detect the biomarker in the blood sample may be a full-length protein or a partial peptide thereof as long as it can be specifically recognized by an antibody. In the present invention, the partial peptide used as an antigen is not particularly limited in its length as long as it contains an antigenic determinant that can be recognized by an anti-DDB1 antibody derived from a test subject, and is detected as the biomarker Can be appropriately set according to the type of antibody. In general, since the number of amino acid residues constituting an antigenic determinant is about 5 to 20, the partial peptide includes, for example, those composed of 5 or more amino acid residues.
 抗原は、公知の手法によって得ることができる。例えば、抗原は、被験対象として上記例示されるヒト等の動物から採取することができる。採取は、組織や培養細胞からタンパク質又はペプチドを単離、精製する従来公知の方法に従って行うことができ、例えば、前記抗原を発現している組織又は細胞をホモジナイザーによって破砕した後、細胞可溶化物中の抗原をクロマトグラフィーによって単離精製する方法が挙げられる。 Antigens can be obtained by known techniques. For example, an antigen can be collected from an animal such as a human exemplified above as a test subject. Harvesting can be performed according to a conventionally known method of isolating and purifying a protein or peptide from tissue or cultured cells, for example, cell lysate after disrupting the tissue or cells expressing the antigen with a homogenizer And the method of isolating and purifying the antigen in the extract by chromatography.
 また、抗原は、当該抗原をコードする核酸を含む発現ベクターを導入した形質転換体を培養し、培養物から当該抗原を単離、精製して得ることもできる。或いは、当該抗原のアミノ酸配列に基づいて、従来公知のペプチド合成法によりポリペプチドとして調製することもできる。ペプチド合成法としては、例えば、固相合成、液相合成が挙げられ、本発明においてはいずれの方法を用いてもよい。 Alternatively, an antigen can be obtained by culturing a transformant into which an expression vector containing a nucleic acid encoding the antigen has been introduced, and isolating and purifying the antigen from the culture. Alternatively, based on the amino acid sequence of the antigen, it can be prepared as a polypeptide by a conventionally known peptide synthesis method. Examples of peptide synthesis methods include solid phase synthesis and liquid phase synthesis, and any method may be used in the present invention.
 更に、抗原として使用される部分ペプチドについては、上記方法により製造される各ポリペプチドを、ペプチダーゼで切断することで調製してもよい。 Furthermore, partial peptides to be used as antigens may be prepared by cleaving each polypeptide produced by the above method with a peptidase.
 また、抗原は、リン酸、糖又は糖鎖、リン脂質、脂質、ヌクレオチド等によって修飾されていてもよい。また、抗原は、精製処理等を容易に行うために、公知のタグが連結されるものであってもよい。このようなタグとしては、例えば、グルタチオン-S-トランスフェラーゼ(GST)、FLAGタグ、Hisタグ等挙げられる。 In addition, the antigen may be modified by phosphate, sugar or sugar chain, phospholipid, lipid, nucleotide or the like. In addition, the antigen may be one to which a known tag is linked in order to facilitate purification treatment and the like. Such tags include, for example, glutathione-S-transferase (GST), FLAG tag, His tag and the like.
2-5.バイオマーカーの検出
 本発明の検出方法は、被験対象から採取された血液試料中の前記バイオマーカーの存在の有無を検出することにより行ってよい。また、本発明の検出方法においては、前記バイオマーカーの検出を、血液試料中の前記バイオマーカーの量を測定することにより行ってもよい。前記バイオマーカーの量を測定し、当該測定値を、正常対照群及び/又は筋疾患に罹患した被験対象における前記バイオマーカーの値と比較することで、より精度の高い分析を行うことができる。従って、本発明の検出方法は、好ましくは、血液試料中の前記バイオマーカーを定量できる方法によって行われる。
2-5. Detection of Biomarker The detection method of the present invention may be carried out by detecting the presence or absence of the biomarker in a blood sample collected from a subject. In the detection method of the present invention, the detection of the biomarker may be performed by measuring the amount of the biomarker in a blood sample. A more accurate analysis can be performed by measuring the amount of the biomarker and comparing the measured value to the value of the biomarker in a normal control group and / or a subject suffering from muscle disease. Thus, the detection method of the present invention is preferably carried out by a method capable of quantifying said biomarker in a blood sample.
 前記抗原を使用して血液試料中に存在する前記バイオマーカーを検出する方法としては、具体的には、前記抗原と血液試料を接触させて、前記抗原と前記バイオマーカー(抗体)との特異的結合を直接的又は間接的に検出する方法が挙げられる。このような検出方法としては、具体的には、ELISA法、ウェスタンブロット法、免疫沈降法、ラジオイムノアッセイ(RIA)法、蛍光イムノアッセイ法等のイムノアッセイが例示される。これらのイムノアッセイにより前記バイオマーカーを検出する場合には、前記バイオマーカー(抗体)に特異的に結合する抗体に酵素標識、発色標識、放射標識又は発光標識などの標識を結合し、この標識を検出又は測定することにより行うことができる。 Specifically, as a method of detecting the biomarker present in a blood sample using the antigen, specifically, the antigen is brought into contact with the blood sample to specifically measure the antigen and the biomarker (antibody). Methods include direct or indirect detection of binding. Specific examples of such detection methods include immunoassays such as ELISA, Western blotting, immunoprecipitation, radioimmunoassay (RIA) and fluorescence immunoassay. When the biomarker is detected by these immunoassays, an antibody that specifically binds to the biomarker (antibody) is bound to a label such as an enzyme label, a chromogenic label, a radio label or a luminescent label, and this label is detected Or it can carry out by measuring.
 本発明においては、いずれの検出方法を採用しても筋疾患の分析を行うことができるが、簡便性の観点から例えばELISA法が好ましい検出方法として挙げられる。 In the present invention, although any of the detection methods can be used to analyze muscle diseases, the ELISA method is mentioned as a preferable detection method from the viewpoint of simplicity.
 前記イムノアッセイを実施する際の条件については、血液試料中の前記バイオマーカーと前記抗原との特異的結合を検出し得る限り特に限定されず、従来公知の条件に基づいて設定される。例えば、ELISA法により本発明のバイオマーカーを検出する場合、前記抗原又が固定されたマルチウェルプレートの各ウェルに被験対象から採取した血液試料を添加し、ウェル中の抗原と血液試料中のバイオマーカー(抗DDB1抗体)とを反応させる。そして、被験対象由来の抗体に特異的に結合する標識化抗体を各ウェル添加して反応させた後、酵素基質を添加して得られる反応生成物を検出及び/又は定量することによって、血液試料中の前記バイオマーカーの検出及び/又は定量を行うことができる。 The conditions for carrying out the immunoassay are not particularly limited as long as specific binding between the biomarker and the antigen in the blood sample can be detected, and may be set based on conventionally known conditions. For example, when the biomarker of the present invention is detected by ELISA, a blood sample collected from a subject is added to each well of the multiwell plate on which the antigen or antigen is immobilized, and the antigen in the well and the bio in the blood sample are added. React with a marker (anti-DDB1 antibody). Then, after adding a labeled antibody that specifically binds to the antibody derived from the test subject and reacting each well, a blood sample is obtained by detecting and / or quantifying the reaction product obtained by adding the enzyme substrate. Detection and / or quantification of the biomarkers in can be performed.
 ここで、被験対象由来の抗体に特異的に結合する標識化抗体としては、血液試料を採取する被験対象の動物に基づいて適宜選択され得るが、例えば、被験対象がヒトである場合には、ヒト抗体を特異的に結合する非ヒト標識化抗体(例えば、ウサギ由来抗ヒトIgG抗体)等が挙げられる。 Here, the labeled antibody that specifically binds to the antibody derived from the test subject may be appropriately selected based on the animal of the test subject from which a blood sample is collected, but for example, when the test subject is a human, Non-human labeled antibodies (for example, rabbit-derived anti-human IgG antibodies) that specifically bind human antibodies can be mentioned.
 また、被験対象由来の抗体に特異的に結合する標識化抗体の標識に使用される酵素についても、通常使用されるものから適宜選択して用いることができ、例えば、ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ、エステラーゼ、グルコースオキシダーゼ、β-D-ガラクトシダーゼ、β-D-グルクロニダーゼ等が挙げられる。また、酵素基質としては、酵素の種類に応じて公知の基質から適宜選択され得るが、例えば、酵素がペルオキシダーゼの場合であれば、3,3',5,5'-テトラメチルベンジジン(TMB)を基質として使用することができる。 In addition, an enzyme used for labeling a labeled antibody that specifically binds to an antibody derived from a test subject can also be appropriately selected from those commonly used and used, for example, peroxidase, alkaline phosphatase, luciferase, Esterase, glucose oxidase, β-D-galactosidase, β-D-glucuronidase and the like can be mentioned. The enzyme substrate may be appropriately selected from known substrates depending on the type of enzyme. For example, when the enzyme is peroxidase, 3,3 ', 5,5'-tetramethylbenzidine (TMB) Can be used as a substrate.
 酵素と基質との反応により生じた反応生成物の検出及び/又は定量は、反応生成物の吸光度を測定することによって行うことができ、例えば3,3',5,5'-テトラメチルベンジジン(TMB)を酵素基質として用いた場合には、450nmにおける吸光度を測定することによって実施され得る。 The detection and / or quantification of the reaction product generated by the reaction of the enzyme and the substrate can be carried out by measuring the absorbance of the reaction product, for example, 3,3 ', 5,5'-tetramethylbenzidine ( When TMB) is used as the enzyme substrate, it can be performed by measuring the absorbance at 450 nm.
 ラジオイムノアッセイ(RIA)であれば、前記抗原を放射性同位元素で標識し、血液試料中の前記バイオマーカーと反応させ免疫複合体を形成させ、放射性同位元素から放出される放射能に基づいて検出することができる。 In the case of radioimmunoassay (RIA), the antigen is labeled with a radioactive isotope, reacted with the biomarker in a blood sample to form an immune complex, and detected based on the radioactivity released from the radioactive isotope be able to.
 蛍光イムノアッセイであれば、前記抗原をプレート等に固相化し、そこに血液試料を加えて反応させた後、被験対象の血液試料中に存在する抗体に特異的に結合する抗体を更に反応させて、蛍光発色を検出することにより行うことができる。被験対象由来の抗体に特異的に結合する抗体としては、前記ELISA法において記載される通りであり、蛍光色素により標識化されたものを用いる。蛍光色素としては、FITC、PE、APC、Cy-3、Cy-5等が例示される。 In the case of a fluorescent immunoassay, the antigen is immobilized on a plate or the like, a blood sample is added thereto and reacted, and then an antibody which specifically binds to an antibody present in a blood sample to be tested is further reacted. Can be performed by detecting fluorescent coloring. As the antibody that specifically binds to the antibody derived from the test subject, one that is as described in the above-mentioned ELISA method and labeled with a fluorescent dye is used. Examples of fluorescent dyes include FITC, PE, APC, Cy-3, Cy-5 and the like.
 免疫沈降法であれば、前記抗原と血液試料を反応させて免疫複合体を形成させ、プロテインA、プロテインG等の活性吸着剤を用いて、不溶化物として沈降させることによって検出することができる。更に、免疫沈降法とウェスタンブロット法を組合せて検出することもできる。より具体的には、FLAG等のタグが連結された前記抗原と血液試料を反応させ、試料中に前記バイオマーカーが存在すれば免疫複合体が形成されるため、前述の活性吸着剤によって沈降させる。そして、得られた沈降物をウェスタンブロット法に供する。即ち、沈降物をSDS-PAGEによって分離展開し、ニトロセルロース膜、PVDF膜等に転写した後、タグに対する抗体と転写膜上で抗原抗体反応を行うことにより血液試料中に前記バイオマーカーが存在していた場合にはバンドとして検出することができる。 In the case of immunoprecipitation, it can be detected by reacting the antigen with a blood sample to form an immune complex, and using an active adsorbent such as protein A or protein G to precipitate as an insoluble. Furthermore, immunoprecipitation and Western blotting can be combined and detected. More specifically, the antigen to which a tag such as FLAG is linked is reacted with a blood sample, and if the biomarker is present in the sample, an immune complex is formed, so that it is precipitated by the above-mentioned active adsorbent . The resulting precipitate is then subjected to Western blotting. That is, the precipitate is separated and developed by SDS-PAGE, transferred to a nitrocellulose membrane, PVDF membrane or the like, and then the antibody against the tag and the antigen-antibody reaction on the transfer membrane cause the biomarker to be present in the blood sample. If it does, it can be detected as a band.
2-6.筋疾患の罹患可能性の判定
 本発明の検出方法によって、被験対象から採取された血液試料中に前記バイオマーカーが検出された場合、被験対象が筋疾患に罹患していると判断することができる。
2-6. Determination of morbidity of muscle disease According to the detection method of the present invention, when the biomarker is detected in a blood sample collected from the subject, it can be judged that the subject is suffering from muscle disease .
 筋疾患に罹患した被験対象では、血液試料中の本発明のバイオマーカーの量が正常対照群に比較して顕著に上昇している。従って、本発明のバイオマーカーを定量的に検出する場合には、正常対照群の血液試料中のバイオマーカーの量と被験対象由来の血液試料中のバイオマーカー量を比較することによって、筋疾患の診断を行うことができる。 In subjects suffering from muscle disease, the amount of the biomarker of the present invention in the blood sample is significantly elevated as compared to the normal control group. Therefore, when quantitatively detecting the biomarker of the present invention, muscle disease is detected by comparing the amount of the biomarker in the blood sample of the normal control group with the amount of the biomarker in the blood sample from the subject. You can make a diagnosis.
 本発明において、血液試料中に含まれるバイオマーカー量が正常対照群に比較して多いとは、具体的には被験対象のバイオマーカー量が正常対照群の95パーセンタイル値をカットオフ値と設定し、当該カットオフ値以上である場合が挙げられる。当該カットオフ値以上であれば被験対象が筋疾患に罹患している可能性が高いと判断することができる。また、カットオフ値未満であれば、被験対象が筋疾患に罹患している可能性が低いと判断してもよい。また、血液試料中の本発明のバイオマーカーの量が多いほど、筋疾患の症状が重篤であると予測され得る。 In the present invention, when the amount of biomarker contained in the blood sample is larger than that in the normal control group, specifically, the 95th percentile value of the normal control group is set as the cutoff value for the amount of biomarker in the test subject. And the case where it is more than the said cutoff value. If it is more than the said cutoff value, it can be judged that a subject is likely to suffer from muscle disease. In addition, if it is less than the cut-off value, it may be judged that the subject is unlikely to suffer from muscle disease. Also, the more the amount of the biomarker of the present invention in the blood sample, the more severe the symptoms of muscle disease can be predicted.
 本発明のバイオマーカーが検出された場合には、筋生検の適用を決定することができる。本発明のバイオマーカーが陽性であるという客観的事実により、臨床上でも患者心理上でも侵襲性の筋生検への踏み切りをより容易にすることができる。筋生検を行うことによって、筋疾患の確定診断が下されれば、筋疾患の治療、並びに症状の進行を抑制又は改善するための適切な投薬スケジュール及び経過措置(投薬無しで入院安静により患者を日常生活から隔離することを含む)期間等の各種措置の立案を行うことができる。あるいは、本発明のバイオマーカーが検出された場合には、筋生検を行うべき部位が摘出困難な部位であること又はその他の理由により筋生検を留保する場合や、筋生検のための手術を行うよりも速やかに治療を開始させる必要があると判断される場合などは、筋生検を行うことなく、筋疾患の可能性が非常に高いと診断し、筋疾患の治療、並びに症状の進行を抑制又は改善するための適切な投薬スケジュール及び経過措置(投薬無しで入院安静により患者を日常生活から隔離することを含む)期間等の各種措置の立案を行うこともできる。 If a biomarker of the invention is detected, the application of muscle biopsy can be determined. The objective fact that the biomarkers of the present invention are positive can make it easier to make an open muscle biopsy, both clinically and psychologically. If a definitive diagnosis of muscle disease is made by performing a muscle biopsy, treatment of muscle disease and an appropriate dosing schedule and follow-up measures to suppress or ameliorate the progression of symptoms (patients with hospital admission without medication Can plan various measures, such as the period of time), including isolation from daily life. Alternatively, if the biomarker of the present invention is detected, the muscle biopsy should be performed because the site to be subjected to the muscle biopsy is a site that is difficult to remove or for other reasons, or for muscle biopsy. If it is judged that the treatment needs to be started sooner than the operation, etc., the possibility of muscle disease is judged to be extremely high without muscle biopsy, and treatment of muscle disease and symptoms It is also possible to design various measures such as appropriate dosing schedule and transitional measures (including isolation of patients from daily life by hospitalization and rest without medication) to control or improve the progression of
 また、本発明のバイオマーカーを検出するによって、被験対象の予後を予測することもできる。例えば、治療後に本発明の検出方法を行うことで、治療効果をモニターすることができる。この場合、本発明のバイオマーカーが検出されなくなった時点、又は検出量がカットオフ値未満となった時点で、治療を終了することができる。また、経過観察中に本発明の検出方法を行うことで、治療の開始又は再開のタイミングをモニターすることもできる。この場合、本発明のバイオマーカーが検出された時点、又は検出量がカットオフ値以上となった時点で、治療を開始又は再開することができる。 The prognosis of a subject can also be predicted by detecting the biomarkers of the present invention. For example, the treatment effect can be monitored by performing the detection method of the present invention after treatment. In this case, the treatment can be terminated when the biomarker of the present invention is not detected or when the detected amount is less than the cut-off value. In addition, by performing the detection method of the present invention during follow-up, it is also possible to monitor the timing of start or resumption of treatment. In this case, treatment can be started or resumed when the biomarker of the present invention is detected, or when the detected amount reaches or exceeds the cut-off value.
3.筋疾患の検査用試薬
 本発明は、DDB1タンパク質又はその部分ペプチドからなる抗原を含む、筋疾患の検査用試薬を提供する。本発明の検査用試薬は、上述の筋疾患の検出方法を行うために用いることができる。
3. Reagent for examination of muscle disease The present invention provides a reagent for examination of muscle disease, which comprises an antigen consisting of DDB1 protein or a partial peptide thereof. The test reagent of the present invention can be used to carry out the above-described muscle disease detection method.
 本発明の検査用試薬に用いられる前記抗原については、前述の通りである。 About the said antigen used for the test reagent of this invention, it is as above-mentioned.
 本発明の検査用試薬において、抗原は、不溶化担体上に固定化された状態で提供されてよい。不溶化担体の素材としては、バイオマーカーの検出を妨げない限り特に限定されず、例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリアクリルニトリル、ポリビニルクロライド、フッ素樹脂、架橋デキストラン、紙、シリコン、ガラス、金属、アガロース等を例示することができる。また、これらの材料を2種以上組合せて用いてもよい。不溶化担体の形状としては、例えばマイクロプレート、トレイ状、球状、繊維状、棒状、盤状、容器状、セル、試験管等のいずれの形状であってもよい。 In the test reagent of the present invention, the antigen may be provided in an immobilized state on an insolubilizing carrier. The material of the insolubilized carrier is not particularly limited as long as it does not interfere with the detection of the biomarker, and for example, polystyrene, polyethylene, polypropylene, polyester, polyacrylonitrile, polyvinyl chloride, fluorocarbon resin, crosslinked dextran, paper, silicon, glass, metal, Agarose etc. can be illustrated. In addition, two or more of these materials may be used in combination. The shape of the insolubilized carrier may be any shape such as, for example, microplate, tray, sphere, fiber, rod, disc, container, cell, test tube and the like.
 不溶化担体上への前記抗原の固定化は、従来公知の方法に従って行うことができる。 Immobilization of the antigen on the insolubilized carrier can be performed according to a conventionally known method.
 不溶化担体上に固定化される抗原の量は、抗原に対する抗体と特異的に結合するために十分な量であれば特に限定されないが、例えば、不溶化担体に固定化する際に使用される溶液中の抗原の濃度が、1~10μg/mLが挙げられる。 The amount of the antigen immobilized on the insolubilizing carrier is not particularly limited as long as it is a sufficient amount to specifically bind to the antibody against the antigen, and for example, in the solution used when immobilized on the insolubilizing carrier Of 1 to 10 μg / mL.
 本発明の検査用試薬によって検出される前記バイオマーカーが複数の抗原決定基を認識し得る抗体である場合、各抗原に存在する複数の抗原決定基をそれぞれ特異的に認識する抗体(前記バイオマーカー)を網羅的に検出することによって検出感度を向上させ得るという観点から、各抗原は全長タンパク質であることが好ましい。 When the biomarker detected by the test reagent of the present invention is an antibody capable of recognizing a plurality of antigenic determinants, an antibody specifically recognizing a plurality of antigenic determinants present in each antigen (the above-mentioned biomarkers Each antigen is preferably a full-length protein, from the viewpoint that detection sensitivity can be improved by comprehensively detecting
  また、本発明の検査用試薬は、前記抗原の他に、緩衝液、安定化剤、防腐剤等を含んでいてもよく、また、従来公知の方法に従って製剤化されていてもよい。 The test reagent of the present invention may contain, in addition to the above-mentioned antigen, a buffer, a stabilizer, a preservative, etc., and may be formulated according to a conventionally known method.
4.筋疾患の診断キット
 本発明は、上述の筋疾患の検査用試薬を含む、筋疾患の診断キットを提供する。
4. Diagnostic kit for muscle disease The present invention provides a kit for diagnosing a muscle disease, which comprises the above-described reagent for testing for muscle disease.
 本発明の診断キットには、前記試薬の他に、抗体の検出を実施するために必要とされ得る、被験動物由来の抗体に特異的に結合する標識化抗体(例えば、ヒト抗体を特異的に結合する非ヒト標識化抗体)、標識物質の検出剤、溶解剤、洗浄剤、反応停止液、コントロール試料、検査プロトコル等を含んでいてもよい。検査プロトコルには、上述の筋疾患の検出方法を実施するための操作及び手順等の情報が含まれる。 The diagnostic kit of the present invention may further comprise a labeled antibody (eg, a human antibody) which specifically binds to an antibody derived from a subject animal, which may be required to carry out detection of the antibody, in addition to the above-mentioned reagents. It may contain a non-human labeled antibody to be bound, a detection agent for a labeling substance, a solubilizer, a detergent, a reaction stopping solution, a control sample, a test protocol and the like. The test protocol includes information such as operations and procedures for performing the muscle disease detection method described above.
5.筋疾患の診断方法
 本発明は、筋疾患の診断方法を提供する。当該診断方法は、被験対象から採取された血液試料における、抗DDB1抗体を検出する工程、ならびに前記工程で得られた結果に基づいて筋疾患を診断する工程、を含むことを特徴とする。
5. Method of diagnosing muscle disease The present invention provides a method of diagnosing muscle disease. The diagnostic method comprises the steps of detecting an anti-DDB1 antibody in a blood sample collected from a subject, and diagnosing a muscle disease based on the result obtained in the step.
 本発明の診断方法において、抗体の検出方法、及び被験対象が筋疾患に罹患していると判定する基準等については、上述の通りである。 In the diagnostic method of the present invention, the method for detecting an antibody, the criteria for determining that the subject is afflicted with muscle disease, etc. are as described above.
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be more specifically described below by way of Examples, but the present invention is not limited thereto.
[1.患者背景]
 診察を受けた370人の自己免疫疾患患者と20人の健常対照(HC)とから血清サンプル及び臨床情報を収集した。これらの患者には、多発性筋炎(n=100)、皮膚筋炎(n=60)、封入体筋炎(n=5)、全身性エリテマトーデス(n=88)、特発性肺線維症(n=21)、IgG4関連疾患(n=20)、関節リウマチ(n=20)、強皮症(n=20)、シェーグレン症候群(n=10)、抗好中球細胞質抗体関連血管炎症候群(n=3)、乾癬性関節炎(n=3)および強直性脊椎炎(n=2)といった疾患が含まれる。全ての結合組織病(CTD)は、最も一般的に認められている基準(Ann Neurol. 1995;38:705-13、Arthritis Rheum. 199740:1725、Am J Respir Crit Care Med. 2011;183:788-824、Mod Rheumatol. 2012;22:1-14、Arthritis Rheum. 2010;62:2569-81/ Ann Rheum Dis. 2010;69:1580-8、Ann Rheum Dis. 2013;72:1747-55、Ann Rheum Dis. 2002;61:554-8、Ann Rheum Dis. 2007; 66:222-227、Arthritis Rheum. 54:2665-73,2006、及びArthritis Rheum. 1984;27:361-8)に基づいて診断された。その他の患者はCTD疑いと診断されなかった。間質性肺疾患(ILD)の罹患は、American Thoracic Societyの臨床診療公式ガイドライン:乳児期の小児期間質性肺疾患の分類、評価、および管理(Am J Respir Crit Care Med. 2013;188:376-94)に提唱されている集学的アプローチに基づいて診断された。臨床データは、すべての患者の臨床チャートレビューからレトロスペクティブに収集された。なお、血清サンプルを採取する前に、すべての患者と健常対照から、ヘルシンキ宣言に従ってインフォームド・コンセントを得た。この研究は、京都大学大学院医学研究科の医学倫理委員会の承認を得たものである。
[1. Patient background]
Serum samples and clinical information were collected from 370 patients with autoimmune disease and 20 healthy controls (HC). These patients may have polymyositis (n = 100), dermatomyositis (n = 60), inclusion body myositis (n = 5), systemic lupus erythematosus (n = 88), idiopathic pulmonary fibrosis (n = 21) ), IgG4-related disease (n = 20), rheumatoid arthritis (n = 20), scleroderma (n = 20), Sjögren's syndrome (n = 10), anti-neutrophil cytoplasmic antibody related vasculitis syndrome (n = 3) And diseases such as psoriatic arthritis (n = 3) and ankylosing spondylitis (n = 2). All connective tissue diseases (CTD) are most commonly accepted criteria (Ann Neurol. 1995; 38: 705-13, Arthritis Rheum. 1997 40: 1725, Am J Respir Crit Care Med. 2011; 183: 788). 2010: 62: 2569-81 / Ann Rheum Dis. 2010; 69: 1580-8, Ann Rheum Dis. 2013; 72: 1747-55, Ann-824, Mod Rheumatol. 2012; 22: 1-14, Arthritis Rheum. Rheum Dis. 2002; 61: 554-8, Ann Rheum Dis. 2007; 66: 222-227, Arthritis Rheum. 54: 2665-73, 2006, and Arthritis Rheum. 1984; 27: 361-8). It was done. Other patients were not diagnosed with suspected CTD. Intervention of Interstitial Lung Disease (ILD), Official Clinical Practice Guidelines of the American Thoracic Society: Classification, Evaluation, and Management of Infant Periodontologic Lung Disease (Am J Respir Crit Care Med. 2013; 188: 376 The diagnosis was made based on the multidisciplinary approach proposed in -94). Clinical data were collected retrospectively from the clinical chart review of all patients. Before taking serum samples, informed consent was obtained from all patients and healthy controls according to the Helsinki Declaration. This study was approved by the Medical Ethics Committee of Kyoto University Graduate School of Medicine.
[2.方法]
[2-1.自己抗体の検出-免疫沈降及びオートラジオグラフィー]
 自己抗体のスクリーニングを、放射性標識したHeLa細胞抽出物を用いた免疫沈降(IPP)によって、以下のように行った。以下の方法は、J Biol Chem. 1986;261:2274-8に記載された方法に基づいている。
[2. Method]
[2-1. Detection of autoantibodies-immunoprecipitation and autoradiography]
Screening for autoantibodies was performed by immunoprecipitation (IPP) with radiolabeled HeLa cell extract as follows. The following method is based on the method described in J Biol Chem. 1986; 261: 2274-8.
 1×107のHeLa細胞を、30mlのメチオニン不含最小必須培地中、18.5MBqの[35S]メチオニン(Perkin Elmer、Waltham、MA、USA)で標識し、37℃で18時間インキュベートした。IPP緩衝液(10mM Tris-HCl、500mM NaCl、0.1%Nonidet P-40、pH8.0)で4回洗浄した後、[35S]メチオニン標識HeLa細胞をMisonix Microson(Misonix、Farmingdale、NY、USA))により超音波処理した。 IPP緩衝液中の可溶性上清を遠心分離(10,000×gで10分間)によって回収し、[35 S]メチオニン標識HeLa細胞抽出物を得た。 1 × 10 7 HeLa cells were labeled with 18.5 MBq of [ 35 S] methionine (Perkin Elmer, Waltham, Mass., USA) in 30 ml of methionine-free minimal essential medium and incubated at 37 ° C. for 18 hours. After washing four times with IPP buffer (10 mM Tris-HCl, 500 mM NaCl, 0.1% Nonidet P-40, pH 8.0), [ 35 S] methionine-labeled HeLa cells are Misonix Microson (Misonix, Farmingdale, NY, USA) Sonicated with. The soluble supernatant in IPP buffer was collected by centrifugation (10,000 × g for 10 minutes) to obtain [ 35 S] methionine labeled HeLa cell extract.
 15マイクロリットルの血清を、IPP緩衝液中、室温で2時間撹拌しながら2mgのプロテインA CL-4Bセファロースビーズ(GE Healthcare、Uppsala、Sweden)と接触させ、血清サンプルのIgGをセファロースビーズと結合させた。IgG結合セファロースビーズをIPP緩衝液中で4回洗浄し、[35 S]メチオニン標識HeLa細胞抽出物と4℃で2時間混合した。ビーズを500μlのIPP緩衝液で4回洗浄し、500μlの蒸留水で1回洗浄した。次いで、ビーズをドデシル硫酸ナトリウム(SDS)サンプル緩衝液中に再懸濁し、5分間100℃に加熱した。上清を10%SDS-ポリアクリルアミドゲル電気泳動(PAGE)によって分画した。ゲルを乾燥させた後、Fuji Bio-Imaging Analyzer System-5000(Fuji Photo-Film、Tokyo、Japan)を用いて、放射性標識ポリペプチド成分をオートラジオグラフィーにより分析した。 15 microliters of serum is contacted with 2 mg of Protein A CL-4 B sepharose beads (GE Healthcare, Uppsala, Sweden) in IPP buffer with stirring for 2 hours at room temperature to bind serum sample IgG to Sepharose beads The The IgG conjugated Sepharose beads were washed four times in IPP buffer and mixed with [ 35 S] methionine labeled HeLa cell extract for 2 hours at 4 ° C. The beads were washed 4 times with 500 μl of IPP buffer and once with 500 μl of distilled water. The beads were then resuspended in sodium dodecyl sulfate (SDS) sample buffer and heated to 100 ° C. for 5 minutes. The supernatant was fractionated by 10% SDS-polyacrylamide gel electrophoresis (PAGE). After drying the gel, radiolabeled polypeptide components were analyzed by autoradiography using Fuji Bio-Imaging Analyzer System-5000 (Fuji Photo-Film, Tokyo, Japan).
[2-2.自己抗体の同定]
[2-2-1.イムノアフィニティークロマトグラフィー及び電気泳動]
 IgG精製キット(ImmunoPure(G)IgG Purification Kit、Pierce、Rockford、IL、USA)を用いて患者血清5mlからIgGを精製した。精製IgGを透析し、臭化シアン(CNBr)活性化セファロース4Bビーズ(GE Healthcare、Uppsala、Sweden)に結合させた(手順は当該製品のプロトコルに従った)。IgG結合したセファロース4Bビーズをガラスカラム(Bio Rad、Hercules、CA、USA)に注いでイムノアフィニティーカラムを作製し、抽出された6×108個のHeLa細胞抽出物を、カラムに4℃で16時間かけてろ過し、IgGにHeLa細胞のタンパク質(抗原)を結合させた。0.05%Tween-20を含む200mlのTris緩衝生理食塩水(TBS、10mM Tris-HCl、150mM NaCl、pH7.5)でカラムを洗浄した後、IgGに結合した抗原を、1M NaCl、1M MgCl 2および3M MgCl 2(Trisを用いてpH7.0に調整)でイオン強度の段階的勾配を利用して溶出させた。溶出液を0.05%Tween-20を含むTBSで透析してタンパク質を精製し、Amicon Centriprep濃縮器(Millipore、Billerica、MA、USA)で濃縮し、抗原同定の分析のためにSDS-PAGE電気泳動を行った。
[2-2. Identification of autoantibodies]
[2-2-1. Immunoaffinity chromatography and electrophoresis]
IgG was purified from 5 ml of patient serum using an IgG purification kit (ImmunoPure (G) IgG Purification Kit, Pierce, Rockford, IL, USA). The purified IgG was dialyzed and coupled to cyanogen bromide (CNBr) activated Sepharose 4B beads (GE Healthcare, Uppsala, Sweden) (procedure was according to the product's protocol). The IgG bound Sepharose 4B beads are poured onto a glass column (Bio Rad, Hercules, CA, USA) to make an immunoaffinity column, and the extracted 6 × 10 8 HeLa cell extract is added to the column at 4 ° C. After filtering over time, IgG was bound to HeLa cell protein (antigen). After washing the column with 200 ml of Tris-buffered saline (TBS, 10 mM Tris-HCl, 150 mM NaCl, pH 7.5) containing 0.05% Tween-20, the antigen bound to the IgG was 1 M NaCl, 1 M MgCl 2 and Elution was carried out with 3 M MgCl 2 (adjusted to pH 7.0 with Tris) using a step-wise gradient of ionic strength. The eluate is dialyzed against TBS containing 0.05% Tween-20 to purify the protein, concentrated with an Amicon Centriprep concentrator (Millipore, Billerica, Mass., USA), and subjected to SDS-PAGE electrophoresis for analysis of antigen identification. went.
[2-2-2.ペプチドマスフィンガープリンティング(PMF)]
 上記2-2-1でイムノアフィニティーカラムから溶出したタンパク質をSDS-PAGE電気泳動に供した後、銀染色により可視化したタンパク質バンドをゲルから切り出した。切り出したバンドをトリプシン(Promega、Madison、WI、USA)で消化して抽出し、50%アセトニトリル/0.1%TFA中のα-シアノ-4-ヒドロキシ桂皮酸で処理し、Electrophoresis. 1998;19:1036-45(MALDI-TOF-MSを用いたSDS-PAGEゲル又はPVDFメンブレンからのタンパク質同定方法)に記載された一般的手順に基づき、MALDI-TOF分析(Microflex LRF 20、Flex Analysis 3.0ソフトウェア、Bruker Daltonics、米国マサチューセッツ州ビルリカ)を行いPMFによりタンパク質を同定した。
2-2-2. Peptide mass fingerprinting (PMF)]
The proteins eluted from the immunoaffinity column in 2-2-1 above were subjected to SDS-PAGE electrophoresis, and then the protein bands visualized by silver staining were excised from the gel. The excised band is extracted by digestion with trypsin (Promega, Madison, WI, USA) and treated with α-cyano-4-hydroxycinnamic acid in 50% acetonitrile / 0.1% TFA, Electrophoresis. 1998; 19: 1036 MALDI-TOF analysis (Microflex LRF 20, Flex Analysis 3.0 software, Bruker Daltonics) based on the general procedure described in -45 (Method for protein identification from SDS-PAGE gel or PVDF membrane using MALDI-TOF-MS) (Billrica, Mass., USA) to identify proteins by PMF.
 スペクトルはm / z範囲600~3000のスペクトル当たり300ショットから収集し、トリプシン自動消化ピーク(m / z 842.5099,2211.1046)を用いた2点内部較正により較正した。Flex Analysis 3.0ソフトウェアを使用してピークリストを作成した。ピークピッキングに使用した閾値は、モノアイソトピック質量の最小分解能で500、S / N比で5であった。Matrixscience(http://www.matrixscience.com/)によって開発された検索プログラムMASCOTは、PMFによるタンパク質同定に使用した。データベース検索には以下のパラメータを使用した:EnzymeとしてTrypsin、maximum of one missed cleavage;complete modificationとしてiodoacetamide(cys)、partial modificaitonとしてoxidation(Mrt)、monoisotopic masses;mass tolerance として±0.1Da。 Spectra were collected from 300 shots per spectrum in the m / z range 600-3000 and calibrated by two-point internal calibration with tryptic autodigestion peaks (m / z 842.5099, 2211.1046). Peak lists were created using Flex Analysis 3.0 software. The threshold used for peak picking was 500 with a minimum resolution of monoisotopic mass and 5 with a S / N ratio. The search program MASCOT developed by Matrixscience (http://www.matrixscience.com/) was used for protein identification by PMF. The following parameters were used for database search: Trypsin as Enzyme, maximum of one missed cleavage; iodoacetate (cys) as complete modification, oxidation (Mrt) as partial modificaiton, monoisotopic masses; ± 0.1 Da as mass tolerance.
[2-2-3.免疫ブロッティング(ウェスタンブロッティング)]
 上記2-2-2で抽出したタンパク質を電気泳動し、ウエスタンブロッティングによって分析した。ウェスタンブロッティングは、Towbin H, Staehelin T, Gordon J. Proc Natl Acad Sci U S A. 1979;76:4350-4.(アクリルアミドゲルからニトロセルロース膜へのタンパク質の電気的転写:方法と応用)に記載された一般的方法を改変して行った。具体的には、抽出したタンパク質を10%Mini-PROTEAN(R)TGXTMゲル(BIO RAD、カリフォルニア州、米国)によるSDS-PAGEで電気泳動的に分離した後、タンパク質をニトロセルロース膜に転写した。Bullet Blocking One for Western Blotting(13779-01、Nakalai tesque、Kyoto、Japan)を用いて3回ブロッキングおよび洗浄した後、メンブレンを、一次抗体としての、6人の患者血清、健常対照血清、及び商業的入手可能な抗DDB1抗体(GTX100129、GENETEX、CA、USA)と共にインキュベートした。メンブレンをウェスタンブロッティング用のBullet Blocking One for Western Blottingで5回洗浄し、ヒトIgG(H + L)に対する二次抗体(抗ヒトIgG(H + L)AP Conjugate、Promega、WI、USA)と共にインキュベートした。ウエスタンブロッティングのためにBullet Blocking One for Western Blottingで5回洗浄した後、ブロットをBCIP / NBT発色基質(S3771、Promega、WI、USA)を用いて可視化した。
2-2-3. Immunoblotting (Western blotting)]
The proteins extracted in 2-2-2 above were electrophoresed and analyzed by western blotting. Western blotting is described in Towbin H, Staehelin T, Gordon J. Proc Natl Acad Sci US A. 1979; 76: 4350-4. (Electrical transfer of proteins from acrylamide gel to nitrocellulose membrane: method and application) This is done by modifying the general method. Specifically, the extracted proteins 10% Mini-PROTEAN (R) TGXTM gel (BIO RAD, California, USA) was electrophoretically separated on SDS-PAGE by, proteins were transferred to nitrocellulose membranes. After blocking and washing 3 times with Bullet Blocking One for Western Blotting (13779-01, Nakalai Tesque, Kyoto, Japan), the membrane is used as a primary antibody in 6 patient sera, healthy control sera and commercial Incubated with available anti-DDB1 antibody (GTX100129, GENETEX, CA, USA). The membrane was washed 5 times with Bullet Blocking One for Western Blotting for Western blotting and incubated with a secondary antibody against human IgG (H + L) (anti-human IgG (H + L) AP Conjugate, Promega, WI, USA) . After washing 5 times with Bullet Blocking One for Western Blotting for Western blotting, the blots were visualized using BCIP / NBT chromogenic substrate (S3771, Promega, WI, USA).
[3.結果]
[3-1.抗120kDa抗体のスクリーニング(自己抗体の検出)]
 370人の患者および20人の健常対照タンパク質から採血した血清の免疫沈降物に[35S]標識HeLa細胞抽出物を結合させたサンプルの電気泳動ゲルをオートラジオグラフィーで分析した結果、6人のIIM患者に共通して120kDaのタンパク質の結合が認められたため、抗120kDa抗体の存在が確認された。つまり、これら6人のIIM患者は共通して抗120kDa抗体陽性であると考えられる。改めて当該6人のIIM患者について同様にオートラジオグラフィーを行い、可視化したメンブレン(電気泳動ゲル)の写真を図1に示す。図1中、矢印で示したバンドが120kDaの共通して免疫沈降したタンパク質を示し、レーン1~6は6人の患者(抗120kDa抗体陽性患者)、レーン7は健常対照(HC)、レーンMMは分子マーカーを示す。
[3. result]
3-1. Screening of anti-120 kDa antibody (detection of autoantibody)]
Analysis of the electrophoresis gel of a sample in which [ 35 S] -labeled HeLa cell extract was bound to immunoprecipitates of serum collected from 370 patients and 20 healthy control proteins was analyzed by autoradiography. The 120 kDa protein binding was commonly observed in IIM patients, confirming the presence of anti-120 kDa antibodies. Thus, these six IIM patients are commonly considered to be anti-120 kDa antibody positive. Again, autoradiography was similarly performed on the six IIM patients, and a photo of the visualized membrane (electrophoretic gel) is shown in FIG. In FIG. 1, a band indicated by an arrow indicates a 120 kDa common immunoprecipitated protein, lanes 1-6 have 6 patients (anti-120 kDa antibody-positive patients), lane 7 has a healthy control (HC), lane MM Indicates a molecular marker.
 このように6人のIIM患者の血清では共通して120kDa(図1)タンパク質を免疫沈降した(つまり抗120kDa抗体陽性であった)一方、データには示していないが、他の自己抗体であるMSA及びMAAはいずれも有していなかった(つまり他の自己抗体は陰性であった)。また、データには示していないが、他の自己抗体(MSAまたはMAA)が陽性の他の患者及びHCの血清では、いずれも当該タンパク質を免疫沈降しなかった(つまり抗120kDa抗体陰性であった)。したがって、当該6人の患者が特異的に抗120kDa抗体を有していること、及び他の自己抗体(MSAまたはMAA)を有していなかったことから抗120kDa抗体が筋疾患の新たな自己抗体であることを確認した。 Thus, while the sera of six IIM patients commonly immunoprecipitated the 120 kDa (FIG. 1) protein (that is, they were anti 120 kDa antibody positive), although not shown in the data, they are other autoantibodies. Neither MSA nor MAA had (ie other autoantibodies were negative). Also, although not shown in the data, other patients positive for other autoantibodies (MSA or MAA) and sera from HC did not immunoprecipitate the protein (ie, anti-120 kDa antibody negative) ). Therefore, the anti-120 kDa antibody is a new autoantibody for muscle disease since the six patients specifically have the anti-120 kDa antibody and no other auto-antibodies (MSA or MAA). It confirmed that it was.
[3-2.抗120kDa抗体を有する患者の臨床的及び検査的所見並びに経過]
 抗120kDa抗体陽性であった6人(4名は女性)の患者の臨床的および検査的プロファイルを評価した(表1)。すべての患者が筋肉痛を呈し、83%(5/6症例)が筋力低下を呈していた。筋力低下は67%(4/6症例)、筋萎縮は17%(1/6症例)、関節炎は50%(3/6症例)、慢性ILDは17%(1/6症例)で認められた。癌関連筋炎が認められた患者はいなかった。1人の患者のみが低力価でANA陽性であった。すべての患者で筋原性酵素が上昇していた。筋電図検査を受けた5人の患者のうち3人は、特発性筋疾患を示した。 MRIまたは筋生検を受けたすべての患者は、それぞれ浮腫および炎症を示した。また、いずれの患者も、皮膚症状が実質的に呈されていなかった。以下に、個別の臨床的及び検査的所見並びに経過を示す。
[3-2. Clinical and laboratory findings and course of patients with anti-120 kDa antibody]
The clinical and laboratory profiles of 6 (4 women) patients who were anti-120 kDa antibody positive were evaluated (Table 1). All patients had muscle soreness, and 83% (5/6 cases) had muscle weakness. Muscle weakness was observed in 67% (4/6 cases), muscle atrophy in 17% (1/6 cases), arthritis in 50% (3/6 cases), and chronic ILD in 17% (1/6 cases) . None of the patients had cancer-related myositis. Only one patient was low titer and ANA positive. Myogenic enzymes were elevated in all patients. Three out of five patients who received electromyography showed idiopathic myopathy. All patients who received MRI or muscle biopsy showed edema and inflammation respectively. Also, none of the patients exhibited substantially skin symptoms. Below, individual clinical and laboratory findings and courses are shown.
 患者No.1は筋力低下が20年間徐々に進行していた。当該患者は他のいくつかの病院で診察を受けていたが、明確な診断がなされていなかった。その後本発明者が診察した時、当該患者では皮膚症状は認められなかったが、血清筋原性酵素の上昇が認められ、萎縮を伴う筋力低下の所見を示した。磁気共鳴画像法(MRI)のT2強調画像では筋肉炎症の所見を示し、筋電図(EMG)では、筋炎の診断と一致する筋原性および神経原性のパターンの混合を示したため、筋生検を行ったところ、筋炎の診断と一致する病理所見を確定した。よって、本患者は多発性筋炎(polymyositis:PM)と診断された。免疫抑制薬による治療を勧めたものの、患者が治療を拒否したため、投薬なしで臨床経過を観察したところ、上昇した筋原性酵素の値は時間の経過とともに減衰したが、筋力低下および萎縮は進行し続けた。 Patient No. 1 had gradually progressed in muscle weakness for 20 years. The patient had been examined at several other hospitals but had not been unambiguously diagnosed. Thereafter, when the inventor examined the patient, no skin symptoms were observed in the patient, but an increase in serum myogenic enzyme was observed, showing a finding of muscle weakness accompanied by atrophy. Magnetic resonance imaging (MRI) T2-weighted imaging shows findings of muscle inflammation and electromyography (EMG) shows a mixture of myogenic and neurogenic patterns consistent with the diagnosis of myositis. The examination confirmed pathological findings consistent with the diagnosis of myositis. Therefore, this patient was diagnosed with polymyositis (PM). Although treatment with an immunosuppressant drug was recommended, the patient refused treatment and observed the clinical course without medication, although the elevated myogenic enzyme levels diminished over time, but muscle weakness and atrophy progressed I kept doing it.
 患者NO.2は、筋原性酵素の顕著な上昇と共に1年間筋力低下の自覚症状を有した。筋炎が強く疑われたが、さらなる検査が行われた。当該患者では皮膚症状は認められなかったが、MRIのT2強調画像では筋肉の炎症を示し、EMGでは筋原性パターンを示しことから、MRI所見に基づいて筋生検を行ったところ、筋炎を支持する病理所見を示した。よって、本患者は多発性筋炎(polymyositis:PM)と診断された。高用量のグルココルチコイドで治療したところ、速やかに臨床所見及び症状が改善した。 Patient No. 2 had a subjective symptom of muscle weakness for one year with a marked rise in myogenic enzymes. Myositis was strongly suspected but further testing was done. Although no skin symptoms were observed in the patient, T2-weighted MRI images show muscle inflammation and EMG show myogenic patterns, so when a muscle biopsy was performed based on MRI findings, myositis was noted. Supporting pathological findings were shown. Therefore, this patient was diagnosed with polymyositis (PM). Treatment with high doses of glucocorticoid rapidly improved clinical findings and symptoms.
 患者NO.3は、筋肉痛、筋力低下および疲労の急性発症を示し、筋原性酵素が著しい上昇を示した。興味深いことに、筋原性酵素の著しい上昇にもかかわらず、皮膚症状は認められず、MRIはわずかな筋肉浮腫しか示さなかった。筋生検を施行すると、病理所見が筋疾患を示した。よって、本患者は多発性筋炎(polymyositis:PM)と診断された。その後、投薬なしで当該患者の症状は徐々に改善し、CKレベルは1ヶ月以内に1,000IU / l以下に減少した。退院後、明確な症状の再発はなく、CKレベルは自発的に正常範囲に改善した。 Patient No. 3 showed an acute onset of myalgia, muscle weakness and fatigue and a marked increase in myogenic enzymes. Interestingly, despite the marked rise in myogenic enzymes, no skin symptoms were noted and MRI showed only slight muscle edema. When a muscle biopsy was performed, pathological findings showed muscle disease. Therefore, this patient was diagnosed with polymyositis (PM). Thereafter, without medication, the patient's symptoms gradually improved, and the CK level decreased to less than 1,000 IU / l within one month. After discharge, there was no apparent recurrence of symptoms and CK levels spontaneously improved to the normal range.
 患者No.4は、CK上昇を示し、筋肉痛および疲労を10年間有していたが、線維筋痛または慢性疲労症候群の二次的な症状と考えられていた。当該患者は、CK上昇を伴う筋肉痛及び筋力低下、軽度の発熱(37.0度以上)、呼吸困難、並びに気管吸引のために受診した。皮膚症状は認められなかったが、MRI所見は右臀筋の限局された部位に僅かな炎症を示したが、筋生検を行うことが非常に困難な部位であった。したがって、当該患者は多発性筋炎(polymyositis:PM)疑いと診断された。入院での安静により症状および筋原性酵素の上昇が自発的に改善されたため、さらなる検査または投薬は行われなかった。 Patient No. 4 showed elevated CK and had muscle pain and fatigue for 10 years, but was considered to be a secondary symptom of fibromyalgia or chronic fatigue syndrome. The patient was referred for myalgia and muscle weakness with elevated CK, mild fever (> 37.0 degrees), dyspnea, and tracheal aspiration. Although no skin symptoms were noted, MRI findings showed slight inflammation at a localized site of the right inguinal muscle, but it was a very difficult site to perform a muscle biopsy. Therefore, the patient was diagnosed with suspected polymyositis (PM). No further examinations or medications were performed as resting at the hospital spontaneously improved the symptoms and myogenic enzymes elevation.
 患者No.5は1年以上咳が続いており、筋力低下及び筋原性酵素の上昇が3か月続いていた。当該患者は呼吸器症状から喘息と診断されたことに基づいて治療導入(吸入気管支拡張薬、ロイコトリエン受容体拮抗薬、カルボシスチン、マクロライド系抗菌薬)となったがいずれも効果を示さず呼吸器症状の増悪が認められた。このため、筋炎に対する精査を要すると考えられたものの、それに先立ちグルココルチコイドによる治療入院が開始となった。当該患者は、皮膚症状は認められなかったが、呼吸器症状の憎悪に加え、筋痛を認めたことから多発性筋炎(polymyositis:PM)が疑われた。グルココルチコイドによる治療を行うと、筋力低下、呼吸器症状、及び筋原性酵素の上昇が1週間以内で改善され、さらなる炎症も無く2週間後に治療を終了した。入院の3ヶ月後にEMGを行ったところ、明らかな異常は認められなかった。 Patient No. 5 has been coughing for over 1 year and muscle weakness and myogenic enzymes have been rising for 3 months. The patient became treatment-introduced (inhaled bronchodilator, leukotriene receptor antagonist, carbocystin, macrolide antibiotic) based on the diagnosis of asthma due to respiratory symptoms, but none showed any effect. Exacerbation of urinary symptoms was noted. For this reason, it was thought that close examination for myositis was required, but prior to that, treatment hospitalization with glucocorticoid started. The patient had no skin symptoms, but he was suspected of having polymyositis (PM) because of exacerbation of respiratory symptoms and myalgia. Treatment with glucocorticoids improved muscle weakness, respiratory symptoms, and elevation of myogenic enzymes within one week and ended treatment two weeks later without further inflammation. EMG was performed three months after admission and no apparent abnormalities were noted.
 患者No.6は、1ヶ月間上肢の疲労および重度の関節炎が続いていた。わずかにゴットロン丘疹かもしれないと思われる皮膚症状があったため、表1中、Dermatologic symptomを敢えて厳しく「+」と記載しているが、皮膚症状としては極めて軽微であり、通常は膠原病内科でも皮膚科でも皮膚症状有りと診断するレベルではなく事実上は「-」であり、病気を疑うほどではなかった(つまり、本発明において皮膚症状を実質的に示さない態様に該当する。)。血液検査では、CK値は正常範囲であったが、アルドラーゼがやや高いだけであった。CTでは、フェリチン濃度の上昇に伴うILDを示した。筋生検を行った結果、当該患者は皮膚筋炎(dermatomyositis:DM)と診断された。当該患者の全ての症状は、治療無しで1週間以内に改善したため、さらなる検査無しで退院した。 Patient No. 6 had continued upper arm fatigue and severe arthritis for one month. Dermatologic symptom in Table 1 is daringly described as "+" because there was a skin symptom that may be slightly Gottron papules, but the skin symptom is extremely slight, and usually it is usually taken as an internal medicine of collagen disease. Even in dermatology, it was not a level at which it was diagnosed that there was a skin symptom, but it was "-" in fact, and it was not enough to doubt the disease (that is, it corresponds to the embodiment that does not show skin symptoms substantially in the present invention). In blood tests, CK values were in the normal range, but only a little higher in aldolase. CT showed ILD with increasing ferritin concentration. As a result of the muscle biopsy, the patient was diagnosed with dermatomyositis (DM). All symptoms of the patient improved within one week without treatment and were discharged without further examination.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、Bohan & Peterの診断基準をこれらの抗120kDa抗体陽性患者に当てはめた場合(患者No.6の皮膚症状は敢えて厳しく定型的皮膚症状に該当するとして当てはめた。)、確実例は僅か33%(2/6症例)に留まり、67%(4/6症例)は確実例に至らなかった。なお、通常の診断レベルでは、患者No.6の皮膚症状は通常は定型的皮膚症状に該当するとしては診断されないことから、通常の診断レベルでBohan & Peterの診断基準を当てはめると、確実例はさらに少なくなり17%(1/6症例)となる。 When Bohan & Peter's diagnostic criteria were applied to these anti-120 kDa antibody-positive patients (the skin symptoms of patient No. 6 were daringly applied as being a standard skin symptom), only 33% of positive cases were applied. Staying in (2/6 cases), 67% (4/6 cases) did not lead to sure cases. It should be noted that, at the normal diagnostic level, the skin symptoms of the patient No. 6 are not usually diagnosed as falling under the standard skin symptoms, so when applying Bohan & Peter's diagnostic criteria at the normal diagnostic level, certain cases The number is further reduced to 17% (1/6 cases).
[3-3.抗120kDa抗体によって認識される自己抗原の同定]
 自己抗原分析に必要な抗原を決定するために、イムノアフィニティークロマトグラフィーでイオン強度が異なる緩衝液を用いた溶出により段階的に精製した抗原の、SDS-PAGE電気泳動結果を図2(A)に示す。具体的には、6人の患者血清(抗120kDa抗体陽性血清)のIgGをCNBr活性化セファロース4Bビーズと結合させて作成したイムノアフィニティークロマトグラフィーに、HeLa細胞抽出物(タンパク質)を結合させ、段階的勾配でイオン強度が増加する緩衝液(1M NaCl、1M MgCl2、及び3M MgCl2)を用いてそれぞれ溶出させたタンパク質を8%SDS-ポリアクリルアミドゲルで電気泳動し(レーン1:1M NaCl溶出画分、レーン2:1M MgCl2溶出画分、レーン3:3M MgCl2溶出画分)、銀染色で可視化した結果を示す。前述の免疫ブロット分析で検出された自己抗原のバンドと対応するバンド(レーン3の矢印で示される)を切断し、PMF分析に利用した。
[3-3. Identification of Autoantigen Recognized by Anti-120 kDa Antibody]
Figure 2 (A) shows the results of SDS-PAGE electrophoresis of antigens purified stepwise by elution with a buffer of different ionic strength by immunoaffinity chromatography to determine the antigen required for autoantigen analysis. Show. Specifically, HeLa cell extract (protein) is bound to immunoaffinity chromatography prepared by binding IgG of 6 patient sera (anti-120 kDa antibody positive sera) to CNBr-activated Sepharose 4B beads, Proteins eluted with a buffer (1 M NaCl, 1 M MgCl 2 , and 3 M MgCl 2 ) of increasing ionic strength on a dynamic gradient are electrophoresed on an 8% SDS-polyacrylamide gel (lane 1: 1 M NaCl elution) Fraction, lane 2: 1 M MgCl 2 elution fraction, lane 3: 3 M MgCl 2 elution fraction), results of visualization with silver staining are shown. The band corresponding to the autoantigen band detected in the above-described immunoblot analysis (indicated by the arrow in lane 3) was cleaved and used for PMF analysis.
 なお、このイムノアフィニティークロマトグラフィーによって得られた120kDaタンパク質が患者血清に含まれる抗体によって捕らえられたタンパク質であることを確認するために、イムノアフィニティークロマトグラフィーに使用した同じ血清を用いて免疫ブロット分析を行った結果を図2(B)に示す。具体的には、6人の患者血清(抗120kDa抗体陽性血清)を上述のイムノアフィニティーカラムを用いて緩衝液(1M NaCl、1M MgCl2、及び3M MgCl2)でそれぞれ溶出させたポリペプチドを、上述と同様に電気泳動に供した(レーン1:1M NaCl溶出画分、レーン2:1M MgCl2溶出画分、レーン3:3M MgCl2溶出画分)後、ウェスタンブロッティングにより、当該イムノアフィニティークロマトグラフィーに使用したものと同じ患者血清と反応させた結果を示す。約120kDaのバンドが3M MgCl2溶出物(レーン3)において患者血清と反応したことを確認した。つまり、約120kDaのバンドが、確かに患者血清に含まれる抗体と反応する抗原タンパク質であることを確認した。 In order to confirm that the 120 kDa protein obtained by this immunoaffinity chromatography is a protein captured by the antibody contained in patient serum, immunoblot analysis was carried out using the same serum used for immunoaffinity chromatography. The result is shown in FIG. 2 (B). Specifically, polypeptides of six patient sera (anti-120 kDa antibody positive sera) eluted with buffer (1 M NaCl, 1 M MgCl 2 , and 3 M MgCl 2 ) respectively using the above-mentioned immunoaffinity column, After subjecting to electrophoresis in the same manner as described above (Lane 1: 1 M NaCl eluted fraction, Lane 2: 1 M MgCl 2 eluted fraction, Lane 3: 3 M MgCl 2 eluted fraction), the immunoaffinity chromatography was carried out by Western blotting. The results of the reaction with the same patient serum as used in It was confirmed that a band of about 120 kDa reacted with patient serum in the 3 M MgCl 2 eluate (lane 3). That is, it was confirmed that a band of about 120 kDa was indeed an antigen protein that reacts with an antibody contained in patient serum.
 図2(A)で切断した約120kDaの銀染色ゲルバンドから抗原タンパク質を抽出し、PMFに供した結果、DDB1と同定した(coverage:21%)。したがって、抗120kDa抗体陽性血清と反応する抗原タンパク質がDDB1であることを同定した。 The antigen protein was extracted from the approximately 120 kDa silver-stained gel band cleaved in FIG. 2 (A) and subjected to PMF, and as a result, it was identified as DDB1 (coverage: 21%). Therefore, it was identified that the antigen protein that reacts with anti-120 kDa antibody positive serum is DDB1.
[3-4.抗120kDa抗体が抗DDB1抗体であることの確認]
 DDB1ヒト組換えタンパク質(H00001642-P01, Abnova, Taipei, Taiwan)を電気泳動し、一次抗体として6患者の抗120kDa抗体陽性血清サンプルおよび正常対照血清、並びに商業的に入手可能な抗DDB1抗体(GTX100129、GENETEX、CA、USA)を用いてDDB1タンパク質についての免疫ブロッティングを行い、DDB1ヒト組換えタンパク質との特異的反応性についてさらに調べた結果を図3に示す。図3では、レーン1が抗DDB1抗体、レーン2~7が6患者それぞれの抗120kDa抗体陽性血清、レーン8が健常対象(HC)を一次抗体に用いた結果を示す。DDB1ヒト組換えタンパク質は、抗DDB1抗体および全ての抗120kDa抗体陽性血清によって認識されたが、HC血清では認識されなかった。したがって、患者の抗120kDa抗体陽性血清と反応する抗原タンパク質(抗120kDa抗体の標的自己抗原)が確かにDDB1であり、患者血清中の抗120kDa抗体が抗DDB1抗体であることを確認した。
[3-4. Confirmation that anti-120 kDa antibody is anti-DDB1 antibody]
DDB1 human recombinant protein (H00001642-P01, Abnova, Taipei, Taiwan) was electrophoresed, and 6 patients' anti-120 kDa antibody positive serum samples and normal control sera as primary antibodies, and commercially available anti-DDB1 antibody (GTX 100 129) The immunoblotting for DDB1 protein was carried out using GENETEX, CA, USA), and the results of further examination for specific reactivity with DDB1 human recombinant protein are shown in FIG. In FIG. 3, lane 1 shows the results of using the anti-DDB1 antibody, lanes 2 to 7 show the anti-120 kDa antibody positive sera of 6 patients, and lane 8 shows the results of using a healthy subject (HC) as the primary antibody. DDB1 human recombinant protein was recognized by anti-DDB1 antibody and all anti-120 kDa antibody positive sera but not by HC sera. Therefore, it was confirmed that the antigen protein (target autoantigen of anti-120 kDa antibody) that reacts with the patient's anti-120 kDa antibody-positive serum is indeed DDB1, and the anti-120 kDa antibody in patient serum is an anti-DDB1 antibody.
 以上より、抗DDB1抗体は、筋疾患を検出するバイオマーカーとして有用であることが示された。特に、これまでのMSA及びMMAでは検出できない筋疾患、及び皮膚症状を実質的に呈さない筋疾患を有効に検出することができ、これによって、早期に診断が可能であり、早期に適切な措置を図ることができる。また、当該バイオマーカーは、DDB1タンパク質によって容易に検出可能であることも示された。 From the above, it was shown that anti-DDB1 antibody is useful as a biomarker for detecting muscle disease. In particular, muscle diseases that can not be detected by conventional MSA and MMA, and muscle diseases that do not substantially exhibit skin symptoms can be effectively detected, which makes it possible to diagnose early and take appropriate measures early. Can be It has also been shown that the biomarker is easily detectable by DDB1 protein.

Claims (13)

  1.  抗DDB1抗体からなる、筋疾患のバイオマーカー。 A biomarker for muscle disease consisting of anti-DDB1 antibodies.
  2.  前記筋疾患が多発性筋炎である、請求項1に記載のバイオマーカー。 The biomarker according to claim 1, wherein the myopathy is polymyositis.
  3.  被験対象に由来する血液試料中の抗DDB1抗体の検出を行う工程を含む、筋疾患の検出方法。 A method for detecting muscle disease, comprising the step of detecting an anti-DDB1 antibody in a blood sample derived from a subject.
  4.  前記血液試料が血清である、請求項3に記載の検出方法。 The detection method according to claim 3, wherein the blood sample is serum.
  5.  前記被験対象の臨床所見が、皮膚症状を実質的に呈さない、請求項3又は4に記載の検出方法。 The detection method according to claim 3 or 4, wherein the clinical finding of the subject does not substantially exhibit skin symptoms.
  6.  前記筋疾患が多発性筋炎である、請求項3~5のいずれかに記載の検出方法。 The detection method according to any one of claims 3 to 5, wherein the myopathy is polymyositis.
  7.  前記被験対象の血液検査所見が、筋原性酵素について正常値である、請求項3~6のいずれかに記載の検出方法。 The detection method according to any one of claims 3 to 6, wherein the blood test findings of the test subject have normal values for myogenic enzymes.
  8.  前記被験対象の血液検査所見が、クレアチンキナーゼ300U/L以上である、請求項3~6のいずれかに記載の検出方法。 The detection method according to any one of claims 3 to 6, wherein the blood test findings of the subject are creatine kinase 300 U / L or more.
  9.  前記被験対象の血液検査所見が、アルドラーゼ6.2IU/L以上である、請求項3~6及び8のいずれかに記載の検出方法。 The detection method according to any one of claims 3 to 6 and 8, wherein the blood test findings of the subject are aldolase 6.2 IU / L or more.
  10.  前記検出を、DDB1タンパク質又はその部分ペプチドからなる抗原を用いて行う、請求項3~9のいずれかに記載の検出方法。 The detection method according to any one of claims 3 to 9, wherein the detection is performed using an antigen consisting of DDB1 protein or a partial peptide thereof.
  11.  前記検出をELISA法によって行う、請求項10に記載の検出方法。 The detection method according to claim 10, wherein the detection is performed by ELISA.
  12.  DDB1タンパク質又はその部分ペプチドからなる抗原を含む、筋疾患の検査用試薬。 A reagent for testing a muscle disease, which comprises an antigen consisting of DDB1 protein or a partial peptide thereof.
  13.  請求項12に記載の検査用試薬を含む、筋疾患の診断キット。 A diagnostic kit for muscle disease, comprising the test reagent according to claim 12.
PCT/JP2018/043998 2017-12-05 2018-11-29 Biomarker for diagnosing muscle disease WO2019111797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233758A JP2021028573A (en) 2017-12-05 2017-12-05 Biomarker for diagnosing muscle disease
JP2017-233758 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111797A1 true WO2019111797A1 (en) 2019-06-13

Family

ID=66750192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043998 WO2019111797A1 (en) 2017-12-05 2018-11-29 Biomarker for diagnosing muscle disease

Country Status (2)

Country Link
JP (1) JP2021028573A (en)
WO (1) WO2019111797A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008930A1 (en) * 2011-07-13 2013-01-17 国立大学法人 金沢大学 Inspection method for dermatomyositis
JP2016153736A (en) * 2015-02-20 2016-08-25 一三 西野 Inflammatory myopathy differentiation markers and method of differentiating inflammatory myopathy and non-inflammatory myopathy using same
CN107643405A (en) * 2017-09-19 2018-01-30 上海市肺科医院 A kind of pulmonary cancer diagnosis kit for detecting the blood autoantibodies such as anti-TSC22D3 and detection method and its application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008930A1 (en) * 2011-07-13 2013-01-17 国立大学法人 金沢大学 Inspection method for dermatomyositis
JP2016153736A (en) * 2015-02-20 2016-08-25 一三 西野 Inflammatory myopathy differentiation markers and method of differentiating inflammatory myopathy and non-inflammatory myopathy using same
CN107643405A (en) * 2017-09-19 2018-01-30 上海市肺科医院 A kind of pulmonary cancer diagnosis kit for detecting the blood autoantibodies such as anti-TSC22D3 and detection method and its application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIMORI ET AL: "Polymyositis , Dermatomyositis, Inclusion Body Myositis, Necrotising Myopathy: Autoantibodies in myositis", NIPPON RINSHO, vol. 73, no. Suppl. 7, pages 554 - 560 *

Also Published As

Publication number Publication date
JP2021028573A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP4838140B2 (en) Immunosorbent blood test to assess paroxysmal brain firing
EP2729810B1 (en) Myositis
JP5607719B2 (en) Metabolic profile
JP5090332B2 (en) Measurement of short chain SRL alcohol dehydrogenase (DHRS4) as a biomarker for inflammation and infection
US20180120328A1 (en) Biomarker for psychiatric and neurological disorders
JP2015500464A (en) Biomarker-based methods and biochips to assist in the diagnosis of stroke
US20150133322A1 (en) Method for the diagnosis of early rheumatoid arthritis
US9417247B2 (en) Human autoantibodies specific for PAD3 which are cross-reactive with PAD4 and their use in the diagnosis and treatment of rheumatoid arthritis and related diseases
JP6046053B2 (en) SRM / MRM assay of Bcl-2 like protein 11
WO2019111797A1 (en) Biomarker for diagnosing muscle disease
AU2013285362B2 (en) Tropomyosin isoforms related to Alzheimers disease and Mild Cognitive Impairment
WO2010005077A1 (en) Disease-related protein for parkinson’s disease, and use thereof
JP2009294096A (en) Diagnostic method of takayasu's arteritis and diagnostic kit used therein
Ponikau et al. An immunologic test for chronic rhinosinusitis based on free intranasal eosinophilic major basic protein
JP6315832B2 (en) Biomarkers for diagnosis of nonspecific interstitial pneumonia
JP5120843B2 (en) Test method and test reagent for autoimmune pancreatitis
JP5413863B2 (en) Test method and test reagent for fulminant type 1 diabetes
JP3706913B2 (en) Diagnostic Kit for Schizophrenia
WO2022091793A1 (en) Development of pancreatic cancer biomarker using feces-derived protein
US11435368B2 (en) Biomarker for senescence and anti-senescence and use thereof
WO2018212261A1 (en) Specific binding reagent for detecting qualitative difference of 4-repeat tau, and detection method, detection kit, and medication screening method using same
JP2016151442A (en) Biomarker for slow progress type 1 diabetes, and its utilization
US20150309053A1 (en) Test method and test kit for psychiatric ailments
WO2019098328A1 (en) KIT FOR IgA NEPHROPATHY DIAGNOSIS
Hentschel et al. Highly sensitive therapeutic drug monitoring of infliximab in serum by targeted mass spectrometry in comparison to ELISA data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP