WO2019111362A1 - Laser irradiation device, laser irradiation method, and projection mask - Google Patents

Laser irradiation device, laser irradiation method, and projection mask Download PDF

Info

Publication number
WO2019111362A1
WO2019111362A1 PCT/JP2017/043880 JP2017043880W WO2019111362A1 WO 2019111362 A1 WO2019111362 A1 WO 2019111362A1 JP 2017043880 W JP2017043880 W JP 2017043880W WO 2019111362 A1 WO2019111362 A1 WO 2019111362A1
Authority
WO
WIPO (PCT)
Prior art keywords
openings
predetermined direction
thin film
predetermined
projection mask
Prior art date
Application number
PCT/JP2017/043880
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
高仁 栗本
吉明 松島
優数 田中
隆夫 松本
伸武 野寺
剛史 宇野
Original Assignee
株式会社ブイ・テクノロジー
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー, 堺ディスプレイプロダクト株式会社 filed Critical 株式会社ブイ・テクノロジー
Priority to PCT/JP2017/043880 priority Critical patent/WO2019111362A1/en
Priority to TW107143920A priority patent/TW201937629A/en
Publication of WO2019111362A1 publication Critical patent/WO2019111362A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to the formation of a thin film transistor, and more particularly to a laser irradiation apparatus, a laser irradiation method, and a projection mask for forming a polysilicon thin film by irradiating an amorphous silicon thin film on a thin film transistor with laser light.
  • a thin film transistor having a reverse stagger structure there is one using an amorphous silicon thin film in a channel region.
  • the amorphous silicon thin film has a small electron mobility
  • using the amorphous silicon thin film for the channel region has a drawback that the mobility of the charge in the thin film transistor becomes small.
  • a polycrystalline silicon film is formed by instantaneously heating a predetermined region of an amorphous silicon thin film by laser light to form a polycrystalline silicon thin film having high electron mobility and the polysilicon thin film is used for a channel region.
  • Patent Document 1 an amorphous silicon thin film is formed in a channel region, and then the amorphous silicon thin film is irradiated with a laser beam such as an excimer laser and laser annealing is performed to melt polysilicon in a short time. It is disclosed to perform a process of crystallizing a thin film. According to Patent Document 1, by performing the process, the channel region between the source and the drain of the thin film transistor can be made to be a polysilicon thin film having high electron mobility, and it is possible to speed up the transistor operation. Have been described.
  • Patent Document 1 discloses that a predetermined region on a substrate is irradiated with laser light multiple times using a plurality of microlenses included in a microlens array. Then, in the technology described in Patent Document 1, the laser light is irradiated at the same position on the substrate, that is, each of a plurality of laser lights in the same region a plurality of times.
  • the energy density of a laser beam such as an excimer laser varies with each irradiation (shot), so that the electron mobility of a polysilicon thin film formed using the laser beam also varies. Therefore, the characteristics of the thin film transistor formed using the polysilicon thin film also depend on the dispersion of the energy density of the laser light.
  • the object of the present invention is made in view of such problems, and provides a laser irradiation apparatus, a laser irradiation method, and a projection mask that can suppress variations in the characteristics of a plurality of thin film transistors included in a substrate. It is.
  • a laser irradiation apparatus includes: a light source generating laser light; a projection lens irradiating the laser light onto an amorphous silicon thin film deposited on a substrate moving in a predetermined direction; A projection mask provided on a projection lens and provided with a plurality of openings so that the laser light is irradiated to the amorphous silicon thin film, in the projection mask, in a row in the predetermined direction
  • Each of the contained openings is characterized by being provided at a position different from each other with respect to the direction orthogonal to the predetermined direction.
  • each of the plurality of openings is provided at different positions within a predetermined range with respect to a direction orthogonal to the predetermined direction. It may be a feature.
  • the openings adjacent to each other in the orthogonal direction have positions of the openings within the predetermined range. It may be characterized by being different from each other.
  • each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from the reference position within the predetermined range. It may be a feature.
  • the sum of the distances from the reference position is the row of the predetermined direction. It may be characterized in that they are substantially the same.
  • the projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light
  • the projection mask is configured to transmit each of the plurality of microlenses.
  • the openings may be provided so that the irradiation range of the laser light through the laser beams differs from each other in the direction orthogonal to the predetermined direction.
  • the projection lens irradiates laser light to an amorphous silicon thin film deposited in a region corresponding to a region between a source electrode and a drain electrode included in a thin film transistor to form poly.
  • a silicon thin film may be formed.
  • the laser light is irradiated to the first step of generating the laser light and the amorphous silicon thin film deposited on the substrate moving in a predetermined direction.
  • each of the plurality of openings is provided at mutually different positions within a predetermined range with respect to a direction orthogonal to the predetermined direction. It may be a feature.
  • the projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light
  • the projection mask is configured to include each of the plurality of microlenses.
  • the openings may be provided so that the irradiation range of the laser light through the laser beams differs from each other in the direction orthogonal to the predetermined direction.
  • the projection mask in one embodiment of the present invention is a projection mask disposed on a projection lens that emits laser light generated from a light source, and the projection mask is deposited on a substrate that moves in a predetermined direction.
  • a plurality of openings are provided so that the laser light is irradiated to a predetermined region of the amorphous silicon thin film, and each of the openings included in one row of the predetermined direction is in a direction orthogonal to the predetermined direction. Alternatively, they may be provided at different positions.
  • each of the plurality of openings may be provided at mutually different positions within a predetermined range with respect to the direction orthogonal to the predetermined direction.
  • the openings adjacent to at least the orthogonal direction among the plurality of openings are characterized in that the positions of the openings in the predetermined range are different from each other. It is also good.
  • each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from a reference position within the predetermined range. It may be
  • the sum of the distances of deviations from the reference position is substantially the same in each of the rows in the predetermined direction. May be characterized.
  • FIG. 1 is a view showing an example of the arrangement of a laser irradiation apparatus 10 according to the first embodiment of the present invention.
  • the laser irradiation device 10 performs, for example, annealing treatment by irradiating the channel region formation planned region with laser light. It is an apparatus for polycrystallizing a channel region formation scheduled region.
  • the laser irradiation device 10 is used, for example, when forming a thin film transistor of a pixel such as a peripheral circuit of a liquid crystal display device.
  • a gate electrode made of a metal film such as Al is patterned on the substrate 30 by sputtering.
  • a gate insulating film made of a SiN film is formed on the entire surface of the substrate 30 by low temperature plasma CVD.
  • an amorphous silicon thin film 21 is formed on the gate insulating film, for example, by plasma CVD. That is, the amorphous silicon thin film 21 is formed (deposited) on the entire surface of the substrate 30.
  • a silicon dioxide (SiO 2 ) film is formed on the amorphous silicon thin film 21.
  • the laser irradiation device 10 illustrated in FIG. 1 applies a laser beam 14 to a predetermined region (a region to be a channel region in the thin film transistor 20) on the gate electrode of the amorphous silicon thin film 21 to perform annealing treatment.
  • the region is polycrystallized and polysiliconized.
  • the substrate 30 is, for example, a glass substrate, but the substrate 30 is not necessarily a glass material, and may be a substrate of any material such as a resin substrate formed of a material such as a resin.
  • the beam system of the laser light 14 emitted from the laser light source 11 is expanded by the coupling optical system 12, and the luminance distribution is made uniform.
  • the laser light source 11 is an excimer laser which emits, for example, laser light 14 having a wavelength of 308 nm or 248 nm at a predetermined repetition cycle.
  • the laser beam 14 is separated into a plurality of laser beams 14 by a plurality of openings (transmission regions) of a projection mask 15 (not shown) provided on the microlens array 13, and a predetermined amorphous silicon thin film 21 is formed.
  • the area is irradiated.
  • the microlens array 13 is provided with a projection mask 15, and the projection mask 15 irradiates a predetermined region with the laser light 14.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes a polysilicon thin film 22.
  • the projection mask 15 may be called a projection mask pattern.
  • the polysilicon thin film 22 has electron mobility higher than that of the amorphous silicon thin film 21 and is used in the thin film transistor 20 as a channel region for electrically connecting the source 23 and the drain 24.
  • the example using the micro lens array 13 is shown, it is not necessary to necessarily use the micro lens array 13, and the laser beam 14 may be irradiated using one projection lens. .
  • the case where the polysilicon thin film 22 is formed using the microlens array 13 will be described as an example.
  • FIG. 2 is a view showing a configuration example of the microlens array 13 used for the annealing process.
  • the microlens array 13 As shown in FIG. 2, in the microlens array 13, twenty microlenses 17 are disposed in one column (or one row) in the scanning direction.
  • the laser irradiation apparatus 10 uses at least a part of the twenty microlenses 17 included in one column (or one row) of the microlens array 13 with respect to a predetermined region of the amorphous silicon thin film 21 to form a laser beam 14. Irradiate.
  • the number of microlenses 17 in one column (or one row) included in the microlens array 13 is not limited to 20, but may be any number.
  • the microlens array 13 includes twenty microlenses 17 in one column (or row), but includes, for example, 165 microlenses 17 in one row (or one column). Needless to say, one hundred and sixty-five are merely examples, and any number such as 83 may be used.
  • FIG. 3 is a schematic view showing an example of the thin film transistor 20 in which a predetermined region is annealed.
  • the thin film transistor 20 is formed by first forming the polysilicon thin film 22 and then forming the source 23 and the drain 24 at both ends of the formed polysilicon thin film 22.
  • a polysilicon thin film 22 is formed between the source 23 and the drain 24.
  • the laser irradiation apparatus 10 uses, for example, twenty microlenses 17 included in one column (or one row) of the microlens array 13 shown in FIG. 3 with respect to a predetermined region of the amorphous silicon thin film 21. Irradiate. That is, the laser irradiation apparatus 10 irradiates 20 shots of laser light 14 to a predetermined region of the amorphous silicon thin film 21. As a result, in the region to be the thin film transistor 20, the predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted to form the polysilicon thin film 22.
  • FIG. 4 is a schematic view showing an example of the substrate 30 on which the laser irradiation apparatus 10 irradiates the laser light 14.
  • the substrate 30 is not necessarily a glass material, and may be a substrate of any material such as a resin substrate formed of a material such as a resin.
  • the substrate 30 includes a plurality of pixels 31, and each of the pixels 31 includes a thin film transistor 20.
  • the thin film transistor 20 executes transmission control of light in each of the plurality of pixels 31 by electrically turning ON / OFF.
  • An amorphous silicon thin film 21 is provided on the entire surface of the substrate 30.
  • the predetermined region of the amorphous silicon thin film 21 is a portion to be a channel region of the thin film transistor 20.
  • the laser irradiation apparatus 10 irradiates a predetermined region (a region to be a channel region in the thin film transistor 20) of the amorphous silicon thin film 21 with the laser light.
  • the laser irradiation device 10 irradiates the laser light 14 with a predetermined cycle, moves the substrate 30 during the time when the laser light 14 is not irradiated, and the laser light 14 is moved to a predetermined region of the next amorphous silicon thin film 21.
  • the amorphous silicon thin film 21 is disposed on the entire surface of the substrate 30.
  • the laser irradiation apparatus 10 irradiates the laser light 14 to a predetermined region of the amorphous silicon thin film 21 disposed on the substrate 30 at a predetermined cycle.
  • the laser irradiation apparatus 10 irradiates the laser light 14 to a predetermined region of the amorphous silicon thin film 21 on the substrate using the microlens array 13.
  • the laser irradiation apparatus 10 irradiates, for example, the region A of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30 as shown in FIG.
  • the laser irradiation apparatus 10 also irradiates the laser beam 14 to the region B shown in FIG. 4 of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 using each of the twenty microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. 2 in order to perform the annealing process. It is possible to do.
  • the region A in FIG. 4 of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30 is, first, the first micro of the row A of the microlens array 13 shown in FIG.
  • the laser beam 14 is irradiated using the lens 17.
  • the substrate 30 is moved by a predetermined interval "H".
  • the laser irradiation apparatus 10 may stop the irradiation of the laser light 14.
  • the region A of FIG. 4 in the amorphous silicon thin film 21 uses the second microlenses 17 of the B row of the microlens array 13 shown in FIG. It is irradiated with 14.
  • the laser irradiation apparatus 10 may stop the irradiation of the laser beam 14 while the substrate 30 is moving, or may irradiate the laser beam 14 to the substrate 30 which is moving continuously.
  • the irradiation head (that is, the laser light source 11, the coupling optical system 12, the microlens array 13, and the projection mask 15) of the laser irradiation apparatus 10 may move relative to the substrate 30.
  • the laser irradiation apparatus 10 repeatedly executes this, and finally, with respect to the region A of FIG. 4 in the amorphous silicon thin film 21, the microlenses 17 of T rows of the microlens array 13 shown in FIG.
  • the laser beam 14 is irradiated using the micro lens 17) of
  • the region A of the amorphous silicon thin film 21 is irradiated with the laser beam 14 using each of the twenty microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. become.
  • the laser irradiation apparatus 10 also applies to the region B in FIG. 4 of the amorphous silicon thin film 21 of the twenty microlenses 17 included in one column (or one row) of the microlens array 13 shown in FIG. Each is used to emit a laser beam 14.
  • the region B is different in position by “H” in the moving direction of the substrate 30 compared to the region A, the timing at which the laser light 14 is irradiated is delayed by one irradiation. That is, when the region A is irradiated with the laser beam 14 using the second microlens 17 in the B row in FIG. 2, the region B uses the first microlens 17 in the A row in FIG. 14 is irradiated.
  • the region A is irradiated with the laser light 14 using the twentieth microlens 17 (ie, the last microlens 17) of the T row in FIG.
  • Laser light is emitted using the lens 17.
  • the region B laser light is emitted using the micro-lenses 17 of the T-row (that is, the last micro-lenses 17) at the next irradiation timing of the laser light.
  • the predetermined range on the substrate 30 is irradiated with the laser beam 14 by the plurality of microlenses 17 (20 microlenses 17 in the example of FIG. 2).
  • each of the plurality of microlenses 17 included in the microlens array 13 may be shifted from each other. Therefore, although each of the plurality of microlenses 17 should normally irradiate the laser beam 14 to the same predetermined range on the substrate 30, each of the plurality of microlenses 17 is a substrate In some cases, the laser beam 14 may be irradiated to the mutually offset areas from the predetermined area on the area 30.
  • the positional deviation is corrected by finely moving the microlens array 13 (position correction), and each of the plurality of microlenses 17 is corrected.
  • the laser beam 14 can be irradiated to the same predetermined range on the substrate 30.
  • the micro lens array 13 finely moves in the direction to eliminate the position shift (position correction) Do.
  • 0.5 [ ⁇ m] is just an example, and fine movement (position correction) of the microlens array 13 is performed at any value such as 0.3 ⁇ m in positional deviation.
  • the laser irradiation device 10 measures the relative positional deviation between the microlens array 13 and the substrate 30 each time the substrate 30 moves. And if the deviation of the measured position is more than a predetermined value, the laser irradiation device 10 may
  • the micro lens array 13 is finely moved (position correction)
  • all the micro lenses 17 included in the micro lens array 13 are finely moved (position correction)
  • each of the micro lenses 17 causes the laser beam 14 to
  • the range in which the light is emitted will be greatly moved at one time.
  • the positional deviation between the micro lens array 13 and the substrate 30 is 0.5 [ ⁇ m] or more
  • the laser light 14 is The range to be irradiated differs by at least 0.5 ⁇ m or more before and after the fine movement (position correction).
  • the area on the substrate to which the laser light 14 is irradiated is defined as the area A by the micro-lenses 17 in one row included in the micro-lens array 13.
  • the area on the substrate to which the laser light 14 is irradiated is defined as the area B by the micro-lenses 17 in one row included in the micro-lens array 13.
  • Region A and region B are adjacent regions. In this case, since all of the microlenses 17 are finely moved at one time, the range to which the laser beam 14 is irradiated differs between the area A and the area B.
  • the electron mobility of the polysilicon thin film 22 formed by the irradiation of the laser beam 14 is different from each other. Therefore, the characteristics of the thin film transistor 20 formed in the region A and the characteristics of the thin film transistor 20 formed in the region B are different from each other.
  • the electron mobility of the formed polysilicon thin film 22 is substantially the same.
  • the electron mobility of the formed polysilicon thin film 22 is substantially the same. Therefore, with the regions A and B as boundaries, the polysilicon thin films 22 having different electron mobilities are adjacent in a row. That is, the thin film transistors 20 having different characteristics are adjacent to each other in a line at the boundary between the region A and the region B. Therefore, when the substrate 30 is used as a display, there arises a problem that the boundary between the area A and the area B appears as a "line".
  • the micro lens array 13 is finely moved (position correction) by shifting the irradiation range of the laser light 14 by the micro lens 17 in advance,
  • the irradiation range of the laser beam 14 is prevented from being greatly moved at a time by a large amount, and the “line” generated due to the micro operation of the microlens array 13 is reduced.
  • the range to which the laser light 14 is irradiated by each of the plurality of microlenses 17 included in one row of the microlens array 13 is shifted in advance. Therefore, when the micro lens array 13 is finely moved (position correction), the irradiation range of the laser beam 14 changed by the fine movement (position correction) is different for each of the plurality of micro lenses 17.
  • the microlens array 13 is zero in the predetermined direction. .5 [.mu.m]
  • the irradiation range of the laser beam 14 by the one microlens 17 becomes a range shifted by 0.6 [.mu.m] in a predetermined direction.
  • the microlens array 13 is in the predetermined direction.
  • the irradiation range of the laser beam 14 by the one microlens 17 is a range shifted by 0.2 [ ⁇ m] in the predetermined direction.
  • the plurality of microlenses 17 may be moved even if the microlens array 13 is slightly moved (corrected in position).
  • the amount of fine movement of the irradiation range of the laser beam 14 by each of the above may be different from each other.
  • the irradiation range of the laser light 14 can be prevented from being slightly moved at the same time by the same amount, and the micro lens array 13 is finely moved. It is possible to reduce the "streaks" that are caused due to the
  • irradiation from the microlens 17 is performed by “shifting” each of the positions of the openings 16 (passing areas) of the projection mask 15 provided on the microlens array 13 from the reference position.
  • shifting the irradiation position of the laser beam 14 the laser beam 14 is irradiated to different areas on the substrate 30.
  • FIG. 5 is a schematic view showing a configuration example of the projection mask 15 provided in the microlens array 13. As shown in FIG. 5, the projection mask 15 is provided with an opening 16 (transmission region) so that the laser beam 14 can be transmitted from each of twenty microlenses 17 in the scanning direction (predetermined direction). .
  • the opening 16 provided in the projection mask 15 shown in FIG. 5 has, for example, a rectangular shape with a long side of 20 ⁇ m and a short side of 10 ⁇ m. Note that the shape and size of the opening 16 of the projection mask 15 are merely examples, and any shape and size may be used.
  • the transmissive region 16 of the projection mask 15 is provided to be orthogonal to the scanning direction (predetermined direction) of the substrate 30.
  • the transmission region 16 of the projection mask 15 does not have to be orthogonal to the scanning direction (predetermined direction) of the substrate 30, and is provided parallel (substantially parallel) to the scanning direction (predetermined direction). It is also good.
  • FIG. 6 is a schematic view showing an enlarged view of the projection mask 15 provided in the microlens array 13.
  • each of the openings 16 included in one row of the scan direction (predetermined direction) of the substrate 30 is mutually different with respect to the direction orthogonal to the scan direction (predetermined direction). It is provided in different positions.
  • each of the openings 16 included in one line of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (a direction perpendicular to the scanning direction (predetermined direction)). In the range of W + ⁇ 0.5 ⁇ m), they are provided at different positions.
  • W is the width of the opening 16 and is, for example, 10 ⁇ m.
  • the predetermined range does not necessarily have to be within 0.5 [ ⁇ m], and may be any range such as 0.3 [ ⁇ m], for example. Further, the predetermined range may be, for example, the amount of fine movement (position correction) in the case of finely moving the microlens 17 when the alignment of the microlens 17 and the substrate 30 is performed.
  • each of the openings 16 included in "row 1" of the projection mask 15 is provided at different positions within a predetermined range (W + -0.5 [.mu.m]).
  • the opening 16a is provided on the right side within the predetermined range
  • the opening 16b is provided substantially at the center of the predetermined area
  • the opening 16c is provided on the left side within the predetermined area.
  • the opening 16 d is provided at a position shifted to the right within a predetermined range.
  • each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (W +) with respect to the direction orthogonal to the scanning direction (predetermined direction).
  • each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 is provided at mutually different positions in a direction orthogonal to the scanning direction (predetermined direction). As a result, the irradiation range of the microlens 17 is shifted in advance.
  • each of the openings 16 included in “row 1” of the projection mask 15 is provided at positions shifted by different distances from the reference position within a predetermined range (W + ⁇ 0.5 [ ⁇ m]). It may be done.
  • the reference position is, for example, the case where the opening 16 is on the reference line, as in the case of the opening 16b.
  • the reference line is a center line of a predetermined range (W + ⁇ 0.5 [ ⁇ m]).
  • the reference position may be any position, and the reference position may be a position at the right end or the left end of a predetermined range (W + ⁇ 0.5 ⁇ m).
  • Each of the plurality of openings 16 is provided at a position shifted by a different distance from the reference position.
  • the opening 16a is provided at a position shifted 0.20 [ ⁇ m] to the right from the reference line
  • the opening 16b is provided on the reference line
  • the opening 16c is provided 0.15 ⁇ m from the reference line.
  • the opening 16 d is provided at a position shifted to the left
  • the opening 16 d is provided at a position shifted 0.15 [ ⁇ m] to the right from the reference line.
  • the openings 16 adjacent to each other in the scanning direction (predetermined direction) are provided at positions shifted by at least different distances from the reference position, the openings 16 included in one row of the scanning direction (predetermined direction) It does not have to be all different from the reference position by different distances.
  • the opening 16a provided at a position shifted 0.20 [ ⁇ m] right from the reference line
  • the irradiation range of the laser beam 14 via the light source is a range shifted by 0.7 [ ⁇ m] in the predetermined direction.
  • the irradiation range of the laser beam 14 through the opening 16b provided at a position shifted 0.15 [ ⁇ m] left from the reference line is a range shifted by 0.35 [ ⁇ m] in the predetermined direction.
  • the openings 16 are formed for each of the plurality of openings 16.
  • the deviation of the irradiation range of the laser beam 14 through the center is different. Therefore, even when the micro lens array 13 is finely moved (corrected in position), the irradiation range of the laser beam 14 can be prevented from being finely moved at the same time by the same amount.
  • each of the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15 it is desirable that the sum of the distances of deviation from the reference position be substantially the same in each of the rows in the predetermined direction.
  • the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15 are provided corresponding to the number of the microlenses 17 included in one row of the microlens array 13, each of the 20 openings is provided.
  • the sum of “the distance of deviation from the reference position” is set to a predetermined value.
  • the predetermined value is, for example, “0”, “+1.0 [ ⁇ m]”, or “ ⁇ 2.0 [ ⁇ m]”, but may be any value.
  • the sum of “distance of deviation from the reference position” is set to a predetermined value for each row in the scanning direction (predetermined direction). Therefore, in each of the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15, the sum of the distances of deviation from the reference position is a predetermined value, and is substantially the same in each row in the predetermined direction. Become.
  • the rows are different. Even in this case, the range to be annealed in the amorphous silicon thin film 21 of the substrate 30 can be made substantially the same, and the range to be annealed by the columns can be prevented from being shifted.
  • the openings 16 adjacent in at least the direction orthogonal to the scan direction (predetermined direction) are within a predetermined range (W + ⁇ 0.
  • the positions of the openings 16 at 5 [ ⁇ m] differ from one another.
  • the openings 16 of the adjacent rows have different positions within a predetermined range, for example, the openings 16a are shifted to the right within the predetermined range of the row 1 While the opening 16e is disposed at the position, the opening 16e is disposed at a position shifted to the left within the predetermined range of the row 2.
  • the openings 16 of adjacent rows are separated by a distance different from the reference position within a predetermined range (W + -0.5 [ ⁇ m]).
  • the opening 16a is provided at a position shifted from the reference line by 0.20 ⁇ m to the right, whereas the opening 16e is located 0.15 ⁇ m from the reference line to the left It is provided at an offset position.
  • the openings 16 in adjacent rows are provided at positions shifted by different distances from the reference position within a predetermined range, so that in the adjacent rows, the amorphous silicon thin film 21 of the substrate 30 is It is possible to prevent the occurrence of “streaks” resulting from the irradiation of the laser beam 14 at the same timing.
  • the substrate 30 moves by a predetermined distance each time the laser beam 14 is irradiated to the microlens array 13.
  • the predetermined distance is the distance “H” between the plurality of thin film transistors 20 on the substrate 30.
  • the laser irradiation apparatus 10 stops the irradiation of the laser beam 14 while moving the substrate 30 by the predetermined distance.
  • the laser irradiation apparatus 10 irradiates the laser light 14 again using the microlenses 17 included in the microlens array 13.
  • the laser beam 14 is irradiated to one amorphous silicon thin film 21 by twenty microlenses 17 because the microlens array 13 shown in FIG. 2 is used.
  • the laser irradiation device 10 slightly moves the microlens array 13 in the direction to correct the positional deviation.
  • the source 23 and the drain 24 are formed in the thin film transistor 20.
  • each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 is orthogonal to the scanning direction (predetermined direction)
  • the irradiation ranges of the microlenses 17 are shifted in advance because they are provided at mutually different positions with respect to the direction.
  • the micro lens array 13 is finely moved (corrected in position)
  • the amount of fine movement of the irradiation range of the laser beam 14 by each of the plurality of micro lenses 17 can be different from each other.
  • the irradiation range of the laser light 14 can be prevented from being slightly moved at the same time by the same amount, and the micro lens array 13 is finely moved. It is possible to reduce the "streaks" that are caused due to the
  • the second embodiment of the present invention is an embodiment in which laser annealing is performed using one projection lens 18 instead of the microlens array 13.
  • FIG. 7 is a view showing an example of the arrangement of a laser irradiation apparatus 10 according to the second embodiment of the present invention.
  • the laser irradiation apparatus 10 according to the second embodiment of the present invention includes a laser light source 11, a coupling optical system 12, a projection mask 15, and a projection lens 18.
  • the laser light source 11 and the coupling optical system 12 have the same configuration as the laser light source 11 and the coupling optical system 12 in the first embodiment of the present invention shown in FIG. It is omitted.
  • the laser light passes through the opening 16 (transmission region) of the projection mask 15 illustrated in FIG. 5 and is irradiated onto a predetermined region of the amorphous silicon thin film 21 by the projection lens 18.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
  • the laser irradiation device 10 irradiates the laser light 14 with a predetermined cycle, moves the substrate 30 during the time when the laser light 14 is not irradiated, and the next amorphous silicon thin film 21 is formed.
  • the laser beam 14 is irradiated to the portion.
  • the amorphous silicon thin film 21 is disposed at a predetermined interval “H” in the moving direction. Then, the laser irradiation apparatus 10 irradiates the portion of the amorphous silicon thin film 21 disposed on the substrate 30 with the laser light 14 at a predetermined cycle.
  • the laser beam 14 is converted by the magnification of the optical system of the projection lens 18. That is, the pattern of the projection mask 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the substrate 30 is laser annealed.
  • the projection mask 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the substrate 30 is laser annealed.
  • the magnification of the optical system of the projection lens 18 is about twice
  • the mask pattern of the projection mask 15 is multiplied by about 1/2 (0.5) and the predetermined region of the substrate 30 is laser annealed.
  • the magnification of the optical system of the projection lens 18 is not limited to about twice, and may be any magnification.
  • the mask pattern of the projection mask 15 is laser-annealed in a predetermined region on the substrate 30 in accordance with the magnification of the optical system of the projection lens 18. For example, if the magnification of the optical system of the projection lens 18 is four times, the mask pattern of the projection mask 15 is multiplied by about 1 ⁇ 4 (0.25) and the predetermined area of the substrate 30 is laser annealed.
  • the reduced image of the projection mask 15 irradiated on the substrate 30 has a pattern rotated 180 degrees around the optical axis of the lens of the projection lens 18.
  • the projection lens 18 forms an erect image
  • the reduced image of the projection mask 15 irradiated onto the substrate 30 is the projection mask 15 as it is.
  • each of the openings 16 included in one line in the scanning direction (predetermined direction) of the substrate 30 is in the direction orthogonal to the scanning direction (predetermined direction) , Provided at different positions.
  • each of the openings 16 included in one line of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (a direction perpendicular to the scanning direction (predetermined direction)). In the range of W + ⁇ 0.5 ⁇ m), they are provided at different positions.
  • the laser irradiation apparatus 10 finely moves the projection lens 18 in the direction to correct the positional deviation.
  • the projection mask 15 used in the second embodiment is the same as the projection mask 15 illustrated in FIGS. 5 and 6, and thus the detailed description is omitted.
  • the irradiation range on the substrate 30 of the laser beam 14 irradiated by the projection lens 18 is shifted in advance.
  • the amount of movement of the irradiation range of the laser light 14 by the projection lens 18 can be made different from each other.
  • the projection lens 18 is finely moved (position corrected)
  • the irradiation range of the laser beam 14 can be prevented from being slightly moved at the same time by the same amount at one time, and the projection lens 18 is finely moved. It becomes possible to reduce the "line" which has been caused by the cause.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

The laser irradiation device in one embodiment of the present invention comprises a light source for generating laser light, a projection lens for irradiating laser light onto an amorphous silicon thin film deposited over a glass substrate moving in a predetermined direction, and a projection mask provided on the projection lens and having a plurality of open sections in such a manner that the laser light can be irradiated onto the amorphous silicon thin film, and said laser irradiation device is characterized in that the projection mask is configured such that each of the open sections included in one column along the predetermined direction is provided at a different position from one another in a direction that is orthogonal to the predetermined direction.

Description

レーザ照射装置、レーザ照射方法、および、投影マスクLaser irradiation apparatus, laser irradiation method, and projection mask
 本発明は、薄膜トランジスタの形成に関するものであり、特に、薄膜トランジスタ上のアモルファスシリコン薄膜にレーザ光を照射して、ポリシリコン薄膜を形成するためのレーザ照射装置、レーザ照射方法、および、投影マスクに関する。 The present invention relates to the formation of a thin film transistor, and more particularly to a laser irradiation apparatus, a laser irradiation method, and a projection mask for forming a polysilicon thin film by irradiating an amorphous silicon thin film on a thin film transistor with laser light.
 逆スタガ構造の薄膜トランジスタとして、アモルファスシリコン薄膜をチャネル領域に使用したものが存在する。ただ、アモルファスシリコン薄膜は電子移動度が小さいため、当該アモルファスシリコン薄膜をチャネル領域に使用すると、薄膜トランジスタにおける電荷の移動度が小さくなるという難点があった。 As a thin film transistor having a reverse stagger structure, there is one using an amorphous silicon thin film in a channel region. However, since the amorphous silicon thin film has a small electron mobility, using the amorphous silicon thin film for the channel region has a drawback that the mobility of the charge in the thin film transistor becomes small.
 そこで、アモルファスシリコン薄膜の所定の領域をレーザ光により瞬間的に加熱することで多結晶化し、電子移動度の高いポリシリコン薄膜を形成して、当該ポリシリコン薄膜をチャネル領域に使用する技術が存在する。 Therefore, there is a technology in which a polycrystalline silicon film is formed by instantaneously heating a predetermined region of an amorphous silicon thin film by laser light to form a polycrystalline silicon thin film having high electron mobility and the polysilicon thin film is used for a channel region. Do.
 例えば、特許文献1には、チャネル領域にアモルファスシリコン薄膜形成し、その後、このアモルファスシリコン薄膜にエキシマレーザ等のレーザ光を照射してレーザアニールすることにより、短時間での溶融凝固によって、ポリシリコン薄膜に結晶化させる処理を行うことが開示されている。特許文献1には、当該処理を行うことにより、薄膜トランジスタのソースとドレイン間のチャネル領域を、電子移動度の高いポリシリコン薄膜とすることが可能となり、トランジスタ動作の高速化が可能になる旨が記載されている。 For example, in Patent Document 1, an amorphous silicon thin film is formed in a channel region, and then the amorphous silicon thin film is irradiated with a laser beam such as an excimer laser and laser annealing is performed to melt polysilicon in a short time. It is disclosed to perform a process of crystallizing a thin film. According to Patent Document 1, by performing the process, the channel region between the source and the drain of the thin film transistor can be made to be a polysilicon thin film having high electron mobility, and it is possible to speed up the transistor operation. Have been described.
特開2016-100537号公報Unexamined-Japanese-Patent No. 2016-100537
 特許文献1には、基板上の所定の領域に対して、マイクロレンズアレイに含まれる複数のマイクロレンズを用いて、レーザ光を複数回照射することが開示されている。そして、特許文献1に記載の技術において、当該レーザ光は基板上の同じ位置、すなわち複数のレーザ光の各々は同一の領域に複数回照射されることになる。 Patent Document 1 discloses that a predetermined region on a substrate is irradiated with laser light multiple times using a plurality of microlenses included in a microlens array. Then, in the technology described in Patent Document 1, the laser light is irradiated at the same position on the substrate, that is, each of a plurality of laser lights in the same region a plurality of times.
 ここで、エキシマレーザ等のレーザ光のエネルギ密度は、その照射(ショット)ごとにばらつきが生じるため、当該レーザ光を用いて形成されるポリシリコン薄膜の電子移動度にもばらつきが生じる。そのため、当該ポリシリコン薄膜を用いて形成される薄膜トランジスタの特性も、レーザ光のエネルギ密度のばらつきに依存してしまう。 Here, the energy density of a laser beam such as an excimer laser varies with each irradiation (shot), so that the electron mobility of a polysilicon thin film formed using the laser beam also varies. Therefore, the characteristics of the thin film transistor formed using the polysilicon thin film also depend on the dispersion of the energy density of the laser light.
 その結果、特許文献1に記載の技術では、基板上の所定の領域に対して、エネルギ密度にばらつきがあるレーザ光が照射されるため、当該所定の領域に形成されるポリシリコン薄膜の電子移動度にもばらつきが生じてしまう。その結果、複数の薄膜トランジスタの特性には、ばらつきが生じてしまう可能性がある。 As a result, in the technique described in Patent Document 1, the laser light having a variation in energy density is irradiated to the predetermined region on the substrate, so the electron transfer of the polysilicon thin film formed in the predetermined region There will also be variations. As a result, variations may occur in the characteristics of the plurality of thin film transistors.
 本発明の目的は、かかる問題点に鑑みてなされたものであって、基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能なレーザ照射装置、レーザ照射方法、および、投影マスクを提供することである。 The object of the present invention is made in view of such problems, and provides a laser irradiation apparatus, a laser irradiation method, and a projection mask that can suppress variations in the characteristics of a plurality of thin film transistors included in a substrate. It is.
 本発明の一実施形態におけるレーザ照射装置は、レーザ光を発生する光源と、所定方向に移動する基板上に被着されたアモルファスシリコン薄膜に対して、前記レーザ光を照射する投影レンズと、前記投影レンズ上に設けられ、前記アモルファスシリコン薄膜に対して前記レーザ光が照射されるように、複数の開口部が設けられた投影マスクと、を備え、前記投影マスクにおいて、前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられることを特徴とする。 A laser irradiation apparatus according to an embodiment of the present invention includes: a light source generating laser light; a projection lens irradiating the laser light onto an amorphous silicon thin film deposited on a substrate moving in a predetermined direction; A projection mask provided on a projection lens and provided with a plurality of openings so that the laser light is irradiated to the amorphous silicon thin film, in the projection mask, in a row in the predetermined direction Each of the contained openings is characterized by being provided at a position different from each other with respect to the direction orthogonal to the predetermined direction.
 本発明の一実施形態におけるレーザ照射装置は、前記投影マスクにおいて、前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられることを特徴としてもよい。 In the laser irradiation apparatus according to one embodiment of the present invention, in the projection mask, each of the plurality of openings is provided at different positions within a predetermined range with respect to a direction orthogonal to the predetermined direction. It may be a feature.
 本発明の一実施形態におけるレーザ照射装置は、前記投影マスクにおいて、前記複数の開口部のうち、少なくとも前記直交する方向に隣接する開口部同士は、前記所定の範囲内における前記開口部の位置が互いに異なることを特徴としてもよい。 In the laser irradiation apparatus according to one embodiment of the present invention, in the projection mask, among the plurality of openings, at least the openings adjacent to each other in the orthogonal direction have positions of the openings within the predetermined range. It may be characterized by being different from each other.
 本発明の一実施形態におけるレーザ照射装置において、前記所定方向の一列に含まれる開口部の各々は、前記所定の範囲内において、基準となる位置から互いに異なる距離だけずれた位置に設けられることを特徴としてもよい。 In the laser irradiation apparatus according to an embodiment of the present invention, each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from the reference position within the predetermined range. It may be a feature.
 本発明の一実施形態におけるレーザ照射装置は、前記投影マスクにおいて、前記所定方向の一列に含まれる前記開口部において、前記基準となる位置からのずれの距離の総和は、前記所定方向の列の各々で略同一となることを特徴としてもよい。 In the laser irradiation apparatus according to one embodiment of the present invention, in the projection mask, in the openings included in one row of the predetermined direction, the sum of the distances from the reference position is the row of the predetermined direction. It may be characterized in that they are substantially the same.
 本発明の一実施形態におけるレーザ照射装置において、前記投影レンズは、前記レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、前記投影マスクは、前記複数のマイクロレンズの各々を介するレーザ光の照射範囲が、前記所定方向に直交する方向に対して互いに異なるように前記開口部が設けられることを特徴としてもよい。 In the laser irradiation apparatus according to one embodiment of the present invention, the projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light, and the projection mask is configured to transmit each of the plurality of microlenses. The openings may be provided so that the irradiation range of the laser light through the laser beams differs from each other in the direction orthogonal to the predetermined direction.
 本発明の一実施形態におけるレーザ照射装置において、前記投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に対応する領域に被着されたアモルファスシリコン薄膜にレーザ光を照射して、ポリシリコン薄膜を形成することを特徴としてもよい。 In the laser irradiation apparatus according to an embodiment of the present invention, the projection lens irradiates laser light to an amorphous silicon thin film deposited in a region corresponding to a region between a source electrode and a drain electrode included in a thin film transistor to form poly. A silicon thin film may be formed.
 本発明の一実施形態におけるレーザ照射方法は、レーザ光を発生する第1のステップと、所定方向に移動する基板上に被着されたアモルファスシリコン薄膜に対して前記レーザ光が照射されるように、複数の開口部が設けられた投影マスクを用いて、前記レーザ光を照射する第2ステップと、を含み、前記投影マスクにおいて、前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられることを特徴としてもよい。 In the laser irradiation method in one embodiment of the present invention, the laser light is irradiated to the first step of generating the laser light and the amorphous silicon thin film deposited on the substrate moving in a predetermined direction. And a second step of irradiating the laser beam using a projection mask provided with a plurality of openings, wherein each of the openings included in one row of the predetermined direction in the projection mask is the predetermined It may be characterized in that they are provided at mutually different positions with respect to the direction orthogonal to the direction.
 本発明の一実施形態におけるレーザ照射方法は、前記投影マスクにおいて、前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられることを特徴としてもよい。 In the laser irradiation method according to one embodiment of the present invention, in the projection mask, each of the plurality of openings is provided at mutually different positions within a predetermined range with respect to a direction orthogonal to the predetermined direction. It may be a feature.
 本発明の一実施形態におけるレーザ照射方法において、前記投影レンズは、前記レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、前記投影マスクは、前記複数のマイクロレンズの各々を介するレーザ光の照射範囲が、前記所定方向に直交する方向に対して互いに異なるように前記開口部が設けられることを特徴としてもよい。 In the laser irradiation method according to one embodiment of the present invention, the projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light, and the projection mask is configured to include each of the plurality of microlenses. The openings may be provided so that the irradiation range of the laser light through the laser beams differs from each other in the direction orthogonal to the predetermined direction.
 本発明の一実施形態における投影マスクは、光源から発生されたレーザ光を照射する投影レンズ上に配置される投影マスクであって、前記投影マスクは、所定の方向に移動する基板に被着されたアモルファスシリコン薄膜の所定の領域に対して前記レーザ光が照射されるように複数の開口部が設けられ、前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられることを特徴としてもよい。 The projection mask in one embodiment of the present invention is a projection mask disposed on a projection lens that emits laser light generated from a light source, and the projection mask is deposited on a substrate that moves in a predetermined direction. A plurality of openings are provided so that the laser light is irradiated to a predetermined region of the amorphous silicon thin film, and each of the openings included in one row of the predetermined direction is in a direction orthogonal to the predetermined direction. Alternatively, they may be provided at different positions.
 本発明の一実施形態における投影マスクにおいて、前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられることを特徴としてもよい。 In the projection mask according to an embodiment of the present invention, each of the plurality of openings may be provided at mutually different positions within a predetermined range with respect to the direction orthogonal to the predetermined direction.
 本発明の一実施形態における投影マスクにおいて、前記複数の開口部のうち、少なくとも前記直交する方向に隣接する開口部同士は、前記所定の範囲内における前記開口部の位置が互いに異なることを特徴としてもよい。 In the projection mask according to one embodiment of the present invention, the openings adjacent to at least the orthogonal direction among the plurality of openings are characterized in that the positions of the openings in the predetermined range are different from each other. It is also good.
 本発明の一実施形態における投影マスクにおいて、前記所定方向の一列に含まれる開口部の各々は、前記所定の範囲内において、基準となる位置から互いに異なる距離だけずれた位置に設けられることを特徴としてもよい。 In the projection mask in one embodiment of the present invention, each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from a reference position within the predetermined range. It may be
 本発明の一実施形態における投影マスクにおいて、前記所定方向の一列に含まれる前記開口部において、前記基準となる位置からのずれの距離の総和は、前記所定方向の列の各々で略同一となることを特徴としてもよい。 In the projection mask in one embodiment of the present invention, in the openings included in one row of the predetermined direction, the sum of the distances of deviations from the reference position is substantially the same in each of the rows in the predetermined direction. May be characterized.
 本発明によれば、基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能な、レーザ照射装置、レーザ照射方法、および、投影マスクを提供することである。 According to the present invention, it is an object of the present invention to provide a laser irradiation apparatus, a laser irradiation method, and a projection mask capable of suppressing variation in the characteristics of a plurality of thin film transistors included in a substrate.
レーザ照射装置の構成例を示す図である。It is a figure which shows the structural example of a laser irradiation apparatus. マイクロレンズアレイの構成例を示す図である。It is a figure which shows the structural example of a microlens array. 所定の領域がアニール化された薄膜トランジスタの例を示す模式図である。It is a schematic diagram which shows the example of the thin-film transistor by which the predetermined area | region was annealed. レーザ照射装置がレーザ光を照射するガラス基板の例を示す模式図である。It is a schematic diagram which shows the example of the glass substrate which a laser irradiation apparatus irradiates a laser beam. マイクロレンズアレイに設けられた投影マスクの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the projection mask provided in the microlens array. マイクロレンズアレイに設けられた投影マスクの拡大図を示す模式図である。It is a schematic diagram which shows the enlarged view of the projection mask provided in the microlens array. レーザ照射装置の他の構成例を示す図である。It is a figure which shows the other structural example of a laser irradiation apparatus.
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the attached drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態におけるレーザ照射装置10の構成例を示す図である。
First Embodiment
FIG. 1 is a view showing an example of the arrangement of a laser irradiation apparatus 10 according to the first embodiment of the present invention.
 本発明の第1の実施形態において、レーザ照射装置10は、薄膜トランジスタ(TFT)20のような半導体装置の製造工程において、例えば、チャネル領域形成予定領域にレーザ光を照射してアニール処理し、当該チャネル領域形成予定領域を多結晶化するための装置である。 In the first embodiment of the present invention, in the process of manufacturing a semiconductor device such as the thin film transistor (TFT) 20, the laser irradiation device 10 performs, for example, annealing treatment by irradiating the channel region formation planned region with laser light. It is an apparatus for polycrystallizing a channel region formation scheduled region.
 レーザ照射装置10は、例えば、液晶表示装置の周辺回路などの画素の薄膜トランジスタを形成する際に用いられる。このような薄膜トランジスタを形成する場合、まず、基板30上にAl等の金属膜からなるゲート電極を、スパッタによりパターン形成する。そして、低温プラズマCVD法により、基板30上の全面にSiN膜からなるゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法によりアモルファスシリコン薄膜21を形成する。すなわち、基板30の全面にアモルファスシリコン薄膜21が形成(被着)される。最後に、アモルファスシリコン薄膜21上に二酸化ケイ素(SiO)膜を形成する。そして、図1に例示するレーザ照射装置10により、アモルファスシリコン薄膜21のゲート電極上の所定の領域(薄膜トランジスタ20においてチャネル領域となる領域)にレーザ光14を照射してアニール処理し、当該所定の領域を多結晶化してポリシリコン化する。なお、基板30は、例えばガラス基板であるが、基板30は必ずしもガラス素材である必要はなく、樹脂などの素材で形成された樹脂基板など、どのような素材の基板であってもよい。 The laser irradiation device 10 is used, for example, when forming a thin film transistor of a pixel such as a peripheral circuit of a liquid crystal display device. In the case of forming such a thin film transistor, first, a gate electrode made of a metal film such as Al is patterned on the substrate 30 by sputtering. Then, a gate insulating film made of a SiN film is formed on the entire surface of the substrate 30 by low temperature plasma CVD. Thereafter, an amorphous silicon thin film 21 is formed on the gate insulating film, for example, by plasma CVD. That is, the amorphous silicon thin film 21 is formed (deposited) on the entire surface of the substrate 30. Finally, a silicon dioxide (SiO 2 ) film is formed on the amorphous silicon thin film 21. Then, the laser irradiation device 10 illustrated in FIG. 1 applies a laser beam 14 to a predetermined region (a region to be a channel region in the thin film transistor 20) on the gate electrode of the amorphous silicon thin film 21 to perform annealing treatment. The region is polycrystallized and polysiliconized. The substrate 30 is, for example, a glass substrate, but the substrate 30 is not necessarily a glass material, and may be a substrate of any material such as a resin substrate formed of a material such as a resin.
 図1に示すように、レーザ照射装置10において、レーザ光源11から出射されたレーザ光14は、カップリング光学系12によりビーム系が拡張され、輝度分布が均一化される。レーザ光源11は、例えば、波長が308nmや248nmなどのレーザ光14を、所定の繰り返し周期で放射するエキシマレーザである。 As shown in FIG. 1, in the laser irradiation apparatus 10, the beam system of the laser light 14 emitted from the laser light source 11 is expanded by the coupling optical system 12, and the luminance distribution is made uniform. The laser light source 11 is an excimer laser which emits, for example, laser light 14 having a wavelength of 308 nm or 248 nm at a predetermined repetition cycle.
 その後、レーザ光14は、マイクロレンズアレイ13上に設けられた投影マスク15(図示しない)の複数の開口部(透過領域)により、複数のレーザ光14に分離され、アモルファスシリコン薄膜21の所定の領域に照射される。マイクロレンズアレイ13には、投影マスク15が設けられ、当該投影マスク15によって所定の領域にレーザ光14が照射される。そして、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。なお、投影マスク15は、投影マスクパターンと呼称されてもよい。 Thereafter, the laser beam 14 is separated into a plurality of laser beams 14 by a plurality of openings (transmission regions) of a projection mask 15 (not shown) provided on the microlens array 13, and a predetermined amorphous silicon thin film 21 is formed. The area is irradiated. The microlens array 13 is provided with a projection mask 15, and the projection mask 15 irradiates a predetermined region with the laser light 14. Then, a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes a polysilicon thin film 22. The projection mask 15 may be called a projection mask pattern.
 ポリシリコン薄膜22は、アモルファスシリコン薄膜21に比べて電子移動度が高く、薄膜トランジスタ20において、ソース23とドレイン24とを電気的に接続させるチャネル領域に用いられる。なお、図1の例では、マイクロレンズアレイ13を用いた例を示しているが、必ずしもマイクロレンズアレイ13を用いる必要はなく、1個の投影レンズを用いてレーザ光14を照射してもよい。なお、実施形態1では、マイクロレンズアレイ13を用いて、ポリシリコン薄膜22を形成する場合を例にして説明する。 The polysilicon thin film 22 has electron mobility higher than that of the amorphous silicon thin film 21 and is used in the thin film transistor 20 as a channel region for electrically connecting the source 23 and the drain 24. In the example of FIG. 1, although the example using the micro lens array 13 is shown, it is not necessary to necessarily use the micro lens array 13, and the laser beam 14 may be irradiated using one projection lens. . In the first embodiment, the case where the polysilicon thin film 22 is formed using the microlens array 13 will be described as an example.
 図2は、アニール処理に用いるマイクロレンズアレイ13の構成例を示す図である。図2に示すように、マイクロレンズアレイ13において、スキャン方向の1列(又は1行)には、20個のマイクロレンズ17が配置される。レーザ照射装置10は、アモルファスシリコン薄膜21の所定の領域に対して、マイクロレンズアレイ13の1列(又は1行)に含まれる20個のマイクロレンズ17の少なくとも一部を用いて、レーザ光14を照射する。なお、なお、マイクロレンズアレイ13に含まれる一列(又は一行)のマイクロレンズ17の数は、20個に限られず、いくつであってもよい。 FIG. 2 is a view showing a configuration example of the microlens array 13 used for the annealing process. As shown in FIG. 2, in the microlens array 13, twenty microlenses 17 are disposed in one column (or one row) in the scanning direction. The laser irradiation apparatus 10 uses at least a part of the twenty microlenses 17 included in one column (or one row) of the microlens array 13 with respect to a predetermined region of the amorphous silicon thin film 21 to form a laser beam 14. Irradiate. Note that the number of microlenses 17 in one column (or one row) included in the microlens array 13 is not limited to 20, but may be any number.
 図2に示すように、マイクロレンズアレイ13は、その一列(または一行)にマイクロレンズ17を20個含むが、一行(または一列)には例えば165個含む。なお、165個は例示であって、83個などいくつであってもよいことは言うまでもない。 As shown in FIG. 2, the microlens array 13 includes twenty microlenses 17 in one column (or row), but includes, for example, 165 microlenses 17 in one row (or one column). Needless to say, one hundred and sixty-five are merely examples, and any number such as 83 may be used.
 図3は、所定の領域がアニール処理された薄膜トランジスタ20の例を示す模式図である。なお、薄膜トランジスタ20は、最初にポリシリコン薄膜22を形成し、その後、形成されたポリシリコン薄膜22の両端にソース23とドレイン24を形成することで、作成される。 FIG. 3 is a schematic view showing an example of the thin film transistor 20 in which a predetermined region is annealed. The thin film transistor 20 is formed by first forming the polysilicon thin film 22 and then forming the source 23 and the drain 24 at both ends of the formed polysilicon thin film 22.
 図3に示すように、薄膜トランジスタ20は、ソース23とドレイン24との間に、ポリシリコン薄膜22が形成されている。レーザ照射装置10は、アモルファスシリコン薄膜21の所定の領域に対して、図3に示したマイクロレンズアレイ13の一列(または一行)に含まれる例えば20個のマイクロレンズ17を用いて、レーザ光14を照射する。すなわち、レーザ照射装置10は、アモルファスシリコン薄膜21の所定の領域に対して、20ショットのレーザ光14を照射する。その結果、薄膜トランジスタ20となる領域において、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、ポリシリコン薄膜22となる。 As shown in FIG. 3, in the thin film transistor 20, a polysilicon thin film 22 is formed between the source 23 and the drain 24. The laser irradiation apparatus 10 uses, for example, twenty microlenses 17 included in one column (or one row) of the microlens array 13 shown in FIG. 3 with respect to a predetermined region of the amorphous silicon thin film 21. Irradiate. That is, the laser irradiation apparatus 10 irradiates 20 shots of laser light 14 to a predetermined region of the amorphous silicon thin film 21. As a result, in the region to be the thin film transistor 20, the predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted to form the polysilicon thin film 22.
 図4は、レーザ照射装置10がレーザ光14を照射する基板30の例を示す模式図である。なお、基板30は、必ずしもガラス素材である必要はなく、樹脂などの素材で形成された樹脂基板など、どのような素材の基板であってもよい。図4に示すように、基板30は、複数の画素31を含み、当該画素31の各々に薄膜トランジスタ20を備える。薄膜トランジスタ20は、複数の画素31の各々における光の透過制御を、電気的にON/OFFすることにより実行するものである。基板30には、その全面にアモルファスシリコン薄膜21が設けられている。当該アモルファスシリコン薄膜21の所定の領域は、薄膜トランジスタ20のチャネル領域となる部分である。 FIG. 4 is a schematic view showing an example of the substrate 30 on which the laser irradiation apparatus 10 irradiates the laser light 14. The substrate 30 is not necessarily a glass material, and may be a substrate of any material such as a resin substrate formed of a material such as a resin. As shown in FIG. 4, the substrate 30 includes a plurality of pixels 31, and each of the pixels 31 includes a thin film transistor 20. The thin film transistor 20 executes transmission control of light in each of the plurality of pixels 31 by electrically turning ON / OFF. An amorphous silicon thin film 21 is provided on the entire surface of the substrate 30. The predetermined region of the amorphous silicon thin film 21 is a portion to be a channel region of the thin film transistor 20.
 レーザ照射装置10は、アモルファスシリコン薄膜21の所定の領域(薄膜トランジスタ20においてチャネル領域となる領域)にレーザ光14を照射する。ここで、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間に基板30を移動させ、次のアモルファスシリコン薄膜21の所定の領域に当該レーザ光14が照射されるようにする。図4に示すように、基板30は、その全面にアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、基板30上に配置されたアモルファスシリコン薄膜21の所定の領域に、レーザ光14を照射する。 The laser irradiation apparatus 10 irradiates a predetermined region (a region to be a channel region in the thin film transistor 20) of the amorphous silicon thin film 21 with the laser light. Here, the laser irradiation device 10 irradiates the laser light 14 with a predetermined cycle, moves the substrate 30 during the time when the laser light 14 is not irradiated, and the laser light 14 is moved to a predetermined region of the next amorphous silicon thin film 21. To be irradiated. As shown in FIG. 4, the amorphous silicon thin film 21 is disposed on the entire surface of the substrate 30. Then, the laser irradiation apparatus 10 irradiates the laser light 14 to a predetermined region of the amorphous silicon thin film 21 disposed on the substrate 30 at a predetermined cycle.
 そして、レーザ照射装置10は、マイクロレンズアレイ13を用いて、基板上のアモルファスシリコン薄膜21の所定の領域に対して、レーザ光14を照射する。レーザ照射装置10は、例えば、基板30の全面に設けられている(被着している)アモルファスシリコン薄膜21のうち図4に示す領域Aに対して、レーザ光14を照射する。また、レーザ照射装置10は、基板30の全面に設けられている(被着している)アモルファスシリコン薄膜21のうち図4に示す領域Bに対しても、レーザ光14を照射する。 Then, the laser irradiation apparatus 10 irradiates the laser light 14 to a predetermined region of the amorphous silicon thin film 21 on the substrate using the microlens array 13. The laser irradiation apparatus 10 irradiates, for example, the region A of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30 as shown in FIG. The laser irradiation apparatus 10 also irradiates the laser beam 14 to the region B shown in FIG. 4 of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30.
 ここで、レーザ照射装置10は、アニール処理を行うために、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射することが考えられる。 Here, the laser irradiation apparatus 10 irradiates the laser beam 14 using each of the twenty microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. 2 in order to perform the annealing process. It is possible to do.
 この場合、基板30の全面に設けられている(被着している)アモルファスシリコン薄膜21のうち図4の領域Aは、まず、図2に示すマイクロレンズアレイ13のA列の第1のマイクロレンズ17を用いて、レーザ光14を照射される。その後、基板30を所定の間隔「H」だけ移動させる。基板30が移動している間、レーザ照射装置10は、レーザ光14の照射を停止してもよい。そして、基板30が「H」だけ移動した後、アモルファスシリコン薄膜21のうち図4の領域Aは、図2に示すマイクロレンズアレイ13のB列の第2のマイクロレンズ17を用いて、レーザ光14を照射される。なお、レーザ照射装置10は、基板30が移動している間レーザ光14の照射を停止してもよいし、移動し続けている当該基板30に対してレーザ光14を照射してもよい。 In this case, the region A in FIG. 4 of the amorphous silicon thin film 21 provided (deposited) on the entire surface of the substrate 30 is, first, the first micro of the row A of the microlens array 13 shown in FIG. The laser beam 14 is irradiated using the lens 17. Thereafter, the substrate 30 is moved by a predetermined interval "H". While the substrate 30 is moving, the laser irradiation apparatus 10 may stop the irradiation of the laser light 14. Then, after the substrate 30 has moved by “H”, the region A of FIG. 4 in the amorphous silicon thin film 21 uses the second microlenses 17 of the B row of the microlens array 13 shown in FIG. It is irradiated with 14. The laser irradiation apparatus 10 may stop the irradiation of the laser beam 14 while the substrate 30 is moving, or may irradiate the laser beam 14 to the substrate 30 which is moving continuously.
 なお、レーザ照射装置10の照射ヘッド(すなわち、レーザ光源11、カップリング光学系12、マイクロレンズアレイ13及び投影マスク15)が、基板30に対して移動してもよい。 The irradiation head (that is, the laser light source 11, the coupling optical system 12, the microlens array 13, and the projection mask 15) of the laser irradiation apparatus 10 may move relative to the substrate 30.
 レーザ照射装置10は、これを繰り返し実行して、最後に、アモルファスシリコン薄膜21のうち図4の領域Aに対して、図2に示すマイクロレンズアレイ13のT列のマイクロレンズ17(すなわち、最後のマイクロレンズ17)を用いて、レーザ光14を照射する。その結果、アモルファスシリコン薄膜21のうち領域Aは、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射されることになる。 The laser irradiation apparatus 10 repeatedly executes this, and finally, with respect to the region A of FIG. 4 in the amorphous silicon thin film 21, the microlenses 17 of T rows of the microlens array 13 shown in FIG. The laser beam 14 is irradiated using the micro lens 17) of As a result, the region A of the amorphous silicon thin film 21 is irradiated with the laser beam 14 using each of the twenty microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. become.
 同様にして、レーザ照射装置10は、アモルファスシリコン薄膜21のうち図4の領域Bに対しても、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射する。ただ、領域Bは、領域Aに比べて基板30の移動方向に対して「H」だけ位置が異なるため、レーザ光14が照射されるタイミングが、1照射分だけ遅れる。すなわち、領域Aが図2のB列の第2のマイクロレンズ17を用いてレーザ光14を照射される時に、領域Bは、図2のA列の第1のマイクロレンズ17を用いてレーザ光14が照射される。そして、領域Aが図2のT列の第20のマイクロレンズ17(すなわち、最後のマイクロレンズ17)を用いてレーザ光14を照射される時には、領域Bは、一つ前のS列のマイクロレンズ17を用いて、レーザ光が照射されることになる。そして、領域Bは、次のレーザ光の照射のタイミングで、T列のマイクロレンズ17(すなわち、最後のマイクロレンズ17)を用いて、レーザ光が照射されることになる。 Similarly, the laser irradiation apparatus 10 also applies to the region B in FIG. 4 of the amorphous silicon thin film 21 of the twenty microlenses 17 included in one column (or one row) of the microlens array 13 shown in FIG. Each is used to emit a laser beam 14. However, since the region B is different in position by “H” in the moving direction of the substrate 30 compared to the region A, the timing at which the laser light 14 is irradiated is delayed by one irradiation. That is, when the region A is irradiated with the laser beam 14 using the second microlens 17 in the B row in FIG. 2, the region B uses the first microlens 17 in the A row in FIG. 14 is irradiated. Then, when the region A is irradiated with the laser light 14 using the twentieth microlens 17 (ie, the last microlens 17) of the T row in FIG. Laser light is emitted using the lens 17. Then, in the region B, laser light is emitted using the micro-lenses 17 of the T-row (that is, the last micro-lenses 17) at the next irradiation timing of the laser light.
 上記の通り、基板30上の所定の範囲に対して、一のマイクロレンズ17によってレーザ光14が照射されると、当該所定の範囲に対して、当該一のマイクロレンズ17に隣接する他のマイクロレンズ17によってレーザ光14が照射可能な位置まで、基板30が移動する。これを繰り返すことによって、基板30上の所定の範囲は、複数のマイクロレンズ17(図2の例では、20個のマイクロレンズ17)によって、レーザ光14が照射される。 As described above, when the laser light 14 is irradiated to one of the predetermined areas on the substrate 30 by one microlens 17, the other micro lenses adjacent to the one micro lens 17 are irradiated to the predetermined area. The substrate 30 is moved to a position where the laser light 14 can be irradiated by the lens 17. By repeating this, the predetermined range on the substrate 30 is irradiated with the laser beam 14 by the plurality of microlenses 17 (20 microlenses 17 in the example of FIG. 2).
 ここで、基板30が移動すると、その影響により、マイクロレンズアレイ13と基板30の相対的な位置がずれる場合がある。そのため、当該マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々によってレーザ光14を照射される範囲が、互いにずれる場合がある。そのため、本来であれば、複数のマイクロレンズ17の各々が基板30上の同一の所定の範囲にレーザ光14を照射すべきであるにもかかわらず、当該複数のマイクロレンズ17の各々は、基板30上の所定の領域から互いにずれた範囲にレーザ光14を照射する場合が生じる。その結果、基板30上の所定の領域の各々において、レーザ光14の照射によって形成されるポリシリコン薄膜22の電子移動度にばらつきが生じ、ひいては、複数の薄膜トランジスタの特性にも、ばらつきが生じてしまう可能性がある。 Here, when the substrate 30 moves, the relative position between the microlens array 13 and the substrate 30 may shift due to the influence. Therefore, the range irradiated with the laser beam 14 by each of the plurality of microlenses 17 included in the microlens array 13 may be shifted from each other. Therefore, although each of the plurality of microlenses 17 should normally irradiate the laser beam 14 to the same predetermined range on the substrate 30, each of the plurality of microlenses 17 is a substrate In some cases, the laser beam 14 may be irradiated to the mutually offset areas from the predetermined area on the area 30. As a result, in each of the predetermined regions on the substrate 30, the electron mobility of the polysilicon thin film 22 formed by the irradiation of the laser light 14 varies, and in turn, the characteristics of the plurality of thin film transistors also vary. There is a possibility of
 そこで、マイクロレンズアレイ13と基板30の相対的な位置のズレを解消するため、マイクロレンズアレイ13を微動(位置補正)させることにより、当該位置のズレを補正し、複数のマイクロレンズ17の各々が基板30上の同一の所定の範囲にレーザ光14を照射可能とすることが考えられる。マイクロレンズアレイ13は、例えば、当該マイクロレンズアレイ13と基板30の相対的な位置のズレが0.5[μm]以上になった場合、当該位置のズレを解消する方向に微動(位置補正)する。なお、0.5[μm]はあくまでも例示であって、マイクロレンズアレイ13の微動(位置補正)が実行されるのは、位置のズレが0.3[μm]など、どのような値であってもよい。レーザ照射装置10は、基板30が移動するごとに、マイクロレンズアレイ13と当該基板30との相対的な位置のズレを計測する。そして、レーザ照射装置10は、計測した位置のズレが所定値以上であれば、当該位置のズ Therefore, in order to eliminate the relative positional deviation between the microlens array 13 and the substrate 30, the positional deviation is corrected by finely moving the microlens array 13 (position correction), and each of the plurality of microlenses 17 is corrected. However, it is conceivable that the laser beam 14 can be irradiated to the same predetermined range on the substrate 30. For example, when the relative position shift between the micro lens array 13 and the substrate 30 becomes 0.5 [μm] or more, the micro lens array 13 finely moves in the direction to eliminate the position shift (position correction) Do. In addition, 0.5 [μm] is just an example, and fine movement (position correction) of the microlens array 13 is performed at any value such as 0.3 μm in positional deviation. May be The laser irradiation device 10 measures the relative positional deviation between the microlens array 13 and the substrate 30 each time the substrate 30 moves. And if the deviation of the measured position is more than a predetermined value, the laser irradiation device 10 may
 しかしながら、マイクロレンズアレイ13を微動(位置補正)させた場合、当該マイクロレンズアレイ13に含まれる全てのマイクロレンズ17が微動(位置補正)することになり、当該マイクロレンズ17の各々によってレーザ光14が照射される範囲が、一度に大きく微動することになる。例えば、マイクロレンズアレイ13と基板30の位置のズレが0.5[μm]以上の場合に、マイクロレンズアレイ13を微動(位置補正)させるとすれば、マイクロレンズ17の各々によってレーザ光14が照射される範囲は、当該微動(位置補正)の前後で少なくとも0.5[μm]以上異なることになる。 However, when the micro lens array 13 is finely moved (position correction), all the micro lenses 17 included in the micro lens array 13 are finely moved (position correction), and each of the micro lenses 17 causes the laser beam 14 to The range in which the light is emitted will be greatly moved at one time. For example, when the positional deviation between the micro lens array 13 and the substrate 30 is 0.5 [μm] or more, if the micro lens array 13 is finely moved (corrected in position), the laser light 14 is The range to be irradiated differs by at least 0.5 μm or more before and after the fine movement (position correction).
 ここで、マイクロレンズアレイ13を微動(位置補正)させる直前に、当該マイクロレンズアレイ13に含まれる一列のマイクロレンズ17によって、レーザ光14が照射される基板上の範囲を領域Aとする。一方、マイクロレンズアレイ13を微動(位置補正)させた直後に、当該マイクロレンズアレイ13に含まれる一列のマイクロレンズ17によって、レーザ光14が照射される基板上の範囲を領域Bとする。領域Aと領域Bとは、隣接する領域である。この場合、マイクロレンズ17の全てが一度に微動しているため、領域Aと領域Bとでは、レーザ光14が照射される範囲が互いに異なる。その結果、領域Aと領域Bとでは、当該レーザ光14の照射によって形成されるポリシリコン薄膜22の電子移動度が互いに異なる。そのため、領域Aに形成される薄膜トランジスタ20の特性と、領域Bに形成される薄膜トランジスタ20の特性とが、互いに異なることになる。 Here, immediately before the micro-lens array 13 is finely moved (corrected in position), the area on the substrate to which the laser light 14 is irradiated is defined as the area A by the micro-lenses 17 in one row included in the micro-lens array 13. On the other hand, immediately after the micro-lens array 13 is finely moved (corrected in position), the area on the substrate to which the laser light 14 is irradiated is defined as the area B by the micro-lenses 17 in one row included in the micro-lens array 13. Region A and region B are adjacent regions. In this case, since all of the microlenses 17 are finely moved at one time, the range to which the laser beam 14 is irradiated differs between the area A and the area B. As a result, in the region A and the region B, the electron mobility of the polysilicon thin film 22 formed by the irradiation of the laser beam 14 is different from each other. Therefore, the characteristics of the thin film transistor 20 formed in the region A and the characteristics of the thin film transistor 20 formed in the region B are different from each other.
 一方、領域A内では、一列に含まれるマイクロレンズ17の各々を介して照射されるレーザ光14は同一であるから、形成されるポリシリコン薄膜22の電子移動度は略同一となる。また、領域B内でも、領域Aと同様に、形成されるポリシリコン薄膜22の電子移動度は略同一となる。そのため、領域Aと領域Bとを境界にして、互いに異なる電子移動度のポリシリコン薄膜22が一列に隣接することになる。すなわち、領域Aと領域Bとを境界にして、互いに異なる特性の薄膜トランジスタ20が一列に隣接することになる。そのため、基板30をディスプレイとした際に、領域Aと領域Bとの境界が、“スジ”として映るという問題が生じてしまう。 On the other hand, in the region A, since the laser beams 14 irradiated through each of the microlenses 17 included in one row are the same, the electron mobility of the formed polysilicon thin film 22 is substantially the same. Also in the region B, as in the region A, the electron mobility of the formed polysilicon thin film 22 is substantially the same. Therefore, with the regions A and B as boundaries, the polysilicon thin films 22 having different electron mobilities are adjacent in a row. That is, the thin film transistors 20 having different characteristics are adjacent to each other in a line at the boundary between the region A and the region B. Therefore, when the substrate 30 is used as a display, there arises a problem that the boundary between the area A and the area B appears as a "line".
 そこで、本発明の第1の実施形態では、マイクロレンズ17によるレーザ光14の照射範囲を、予めずらしておくことにより、マイクロレンズアレイ13を微動(位置補正)させた場合であっても、当該レーザ光14の照射範囲が一度に大きく微動することを低減させ、マイクロレンズアレイ13を微動させることが原因で生じていた“スジ”を低減する。 Therefore, in the first embodiment of the present invention, even when the micro lens array 13 is finely moved (position correction) by shifting the irradiation range of the laser light 14 by the micro lens 17 in advance, The irradiation range of the laser beam 14 is prevented from being greatly moved at a time by a large amount, and the “line” generated due to the micro operation of the microlens array 13 is reduced.
 すなわち、本発明の第1の実施形態では、マイクロレンズアレイ13の一列に含まれる複数のマイクロレンズ17の各々によってレーザ光14が照射される範囲が予めずれている。そのため、マイクロレンズアレイ13が微動(位置補正)された場合、当該微動(位置補正)によって変更されるレーザ光14の照射範囲が、複数のマイクロレンズ17の各々によって、互いに異なることになる。 That is, in the first embodiment of the present invention, the range to which the laser light 14 is irradiated by each of the plurality of microlenses 17 included in one row of the microlens array 13 is shifted in advance. Therefore, when the micro lens array 13 is finely moved (position correction), the irradiation range of the laser beam 14 changed by the fine movement (position correction) is different for each of the plurality of micro lenses 17.
 例えば、一のマイクロレンズ17は、基準値から所定方向に0.1[μm]ずれた範囲にレーザ光14が照射されるように予め設定されている場合、マイクロレンズアレイ13が所定方向に0.5[μm]微動すると、当該一のマイクロレンズ17によるレーザ光14の照射範囲は所定方向に0.6[μm]ずれた範囲となる。一方、他のマイクロレンズ17は、基準値から所定方向に-0.3[μm]ずれた範囲にレーザ光14が照射されるように予め設定されている場合、マイクロレンズアレイ13が所定方向に0.5[μm]微動すると、当該一のマイクロレンズ17によるレーザ光14の照射範囲は所定方向に0.2[μm]ずれた範囲となる。 For example, in the case where one microlens 17 is set in advance so that the laser light 14 is irradiated in a range shifted by 0.1 [μm] in the predetermined direction from the reference value, the microlens array 13 is zero in the predetermined direction. .5 [.mu.m] When it is finely moved, the irradiation range of the laser beam 14 by the one microlens 17 becomes a range shifted by 0.6 [.mu.m] in a predetermined direction. On the other hand, when the other microlenses 17 are set in advance so that the laser beam 14 is irradiated in the range shifted by -0.3 [μm] in the predetermined direction from the reference value, the microlens array 13 is in the predetermined direction. When the fine movement of 0.5 [μm] is performed, the irradiation range of the laser beam 14 by the one microlens 17 is a range shifted by 0.2 [μm] in the predetermined direction.
 上記のように、一のマイクロレンズ17による照射範囲と、他のマイクロレンズ17による照射範囲が予め異なるため、マイクロレンズアレイ13が微動(位置補正)した場合であっても、複数のマイクロレンズ17の各々によるレーザ光14の照射範囲の微動量が、互いに異なるものとすることができる。その結果、マイクロレンズアレイ13が微動(位置補正)された場合であっても、レーザ光14の照射範囲が一度に同じ量だけ微動することを防止することができ、マイクロレンズアレイ13を微動させることが原因で生じていた“スジ”を低減することが可能となる。 As described above, since the irradiation range of one microlens 17 and the irradiation range of the other microlens 17 differ in advance, the plurality of microlenses 17 may be moved even if the microlens array 13 is slightly moved (corrected in position). The amount of fine movement of the irradiation range of the laser beam 14 by each of the above may be different from each other. As a result, even when the micro lens array 13 is finely moved (corrected in position), the irradiation range of the laser light 14 can be prevented from being slightly moved at the same time by the same amount, and the micro lens array 13 is finely moved. It is possible to reduce the "streaks" that are caused due to the
 本発明の第1の実施形態では、マイクロレンズアレイ13上に設けられる投影マスク15の開口部16(通過領域)の位置の各々を、基準の位置から“ずらす”ことにより、マイクロレンズ17から照射されるレーザ光14の照射位置をずらずことによって、レーザ光14が基板30上の異なる範囲に照射されるようにする。 In the first embodiment of the present invention, irradiation from the microlens 17 is performed by “shifting” each of the positions of the openings 16 (passing areas) of the projection mask 15 provided on the microlens array 13 from the reference position. By shifting the irradiation position of the laser beam 14, the laser beam 14 is irradiated to different areas on the substrate 30.
 図5は、マイクロレンズアレイ13に設けられた投影マスク15の構成例を示す模式図である。図5に示すように、投影マスク15は、スキャン方向(所定方向)の20個のマイクロレンズ17の各々から、レーザ光14が透過するように、開口部16(透過領域)が設けられている。 FIG. 5 is a schematic view showing a configuration example of the projection mask 15 provided in the microlens array 13. As shown in FIG. 5, the projection mask 15 is provided with an opening 16 (transmission region) so that the laser beam 14 can be transmitted from each of twenty microlenses 17 in the scanning direction (predetermined direction). .
 図5に示す投影マスク15に設けられる開口部16は、例えば、その形状が長方形であり、長辺が20[μm]であり、短辺が10[μm]である。なお、投影マスク15の開口部16の形状や大きさは例示であって、どのような形状や大きさであってもよい。 The opening 16 provided in the projection mask 15 shown in FIG. 5 has, for example, a rectangular shape with a long side of 20 μm and a short side of 10 μm. Note that the shape and size of the opening 16 of the projection mask 15 are merely examples, and any shape and size may be used.
 図5の例では、基板30のスキャン方向(所定方向)に対して、投影マスク15の透過領域16は、直交するように設けられる。なお、投影マスク15の透過領域16は、基板30のスキャン方向(所定方向)に対して必ずしも直交する必要はなく、該スキャン方向(所定方向)に対して平行(略平行)に設けられていてもよい。 In the example of FIG. 5, the transmissive region 16 of the projection mask 15 is provided to be orthogonal to the scanning direction (predetermined direction) of the substrate 30. The transmission region 16 of the projection mask 15 does not have to be orthogonal to the scanning direction (predetermined direction) of the substrate 30, and is provided parallel (substantially parallel) to the scanning direction (predetermined direction). It is also good.
 図6は、マイクロレンズアレイ13に設けられた投影マスク15の拡大図を示す模式図である。図6に例示するように、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々は、当該スキャン方向(所定方向)に直交する方向に対して、互いに異なる位置に設けられる。具体的には、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々は、当該スキャン方向(所定方向)に直交する方向に対して、所定の範囲(W+-0.5[μm])の範囲)で、互いに異なる位置に設けられる。ここで、Wは、開口部16の幅であり、例えば、10[μm]である。また、所定の範囲は、必ずしも0.5[μm]以内のずれである必要はなく、例えば、0.3[μm]などどのような範囲であってもよい。また、所定の範囲は、例えば、マイクロレンズ17と基板30の位置合わせを行うとした場合に、当該マイクロレンズ17を微動させる場合の微動(位置補正)の量であってもよい。 FIG. 6 is a schematic view showing an enlarged view of the projection mask 15 provided in the microlens array 13. As illustrated in FIG. 6, in the projection mask 15, each of the openings 16 included in one row of the scan direction (predetermined direction) of the substrate 30 is mutually different with respect to the direction orthogonal to the scan direction (predetermined direction). It is provided in different positions. Specifically, in the projection mask 15, each of the openings 16 included in one line of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (a direction perpendicular to the scanning direction (predetermined direction)). In the range of W + −0.5 μm), they are provided at different positions. Here, W is the width of the opening 16 and is, for example, 10 μm. Moreover, the predetermined range does not necessarily have to be within 0.5 [μm], and may be any range such as 0.3 [μm], for example. Further, the predetermined range may be, for example, the amount of fine movement (position correction) in the case of finely moving the microlens 17 when the alignment of the microlens 17 and the substrate 30 is performed.
 図6を用いて説明すると、例えば、投影マスク15の“列1”に含まれる開口部16の各々は、所定の範囲(W+-0.5[μm])内において、互いに異なる位置に設けられる。例えば、開口部16aは、所定の範囲内の右側にずれた位置に設けられ、開口部16bは、所定の範囲内のほぼ中央に設けられ、開口部16cは、所定の範囲内の左側にずれた位置に設けられ、開口部16dは、所定の範囲内の右側にずれた位置に設けられる。このように、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々は、当該スキャン方向(所定方向)に直交する方向に対して、所定の範囲(W+-0.5[μm])の範囲)で、互いに“ずれた”位置に設けられる。なお、スキャン方向(所定方向)に隣接する開口部16同士が、少なくとも互いに異なる位置に設けられれば、スキャン方向(所定方向)の一列に含まれる開口部16の全てが、互いに異なる位置に設けられる必要はない。 Referring to FIG. 6, for example, each of the openings 16 included in "row 1" of the projection mask 15 is provided at different positions within a predetermined range (W + -0.5 [.mu.m]). . For example, the opening 16a is provided on the right side within the predetermined range, the opening 16b is provided substantially at the center of the predetermined area, and the opening 16c is provided on the left side within the predetermined area. The opening 16 d is provided at a position shifted to the right within a predetermined range. As described above, in the projection mask 15, each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (W +) with respect to the direction orthogonal to the scanning direction (predetermined direction). (In the range of −0.5 μm)), they are provided at “misaligned” positions. If the openings 16 adjacent to each other in the scan direction (predetermined direction) are provided at least at mutually different positions, all the openings 16 included in one row of the scan direction (predetermined direction) are provided at mutually different positions. There is no need.
 上記の通り、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々が、当該スキャン方向(所定方向)に直交する方向に対して、互いに異なる位置に設けられるため、マイクロレンズ17の照射範囲が、予めずれることになる。 As described above, in the projection mask 15, each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 is provided at mutually different positions in a direction orthogonal to the scanning direction (predetermined direction). As a result, the irradiation range of the microlens 17 is shifted in advance.
 また、投影マスク15の“列1”に含まれる開口部16の各々は、所定の範囲内(W+-0.5[μm])において、基準となる位置から互いに異なる距離だけずれた位置に設けられてもよい。図6の例では、基準となる位置は、例えば、開口部16bのように、開口部16が基準線上にある場合である。なお、図6の例では、基準線は、所定の範囲(W+-0.5[μm])の中心線である。なお、基準となる位置は、どのような位置であってもよく、所定の範囲(W+-0.5[μm])の右端や左端に位置する場合を、当該基準となる位置としてもよい。複数の開口部16の各々は、基準となる位置から互いに異なる距離だけずれた位置に設けられる。例えば、開口部16aは、基準線から0.20[μm]右にずれた位置に設けられ、開口部16bは、基準線上に設けられ、開口部16cは、基準線から0.15[μm]左にずれた位置に設けられ、開口部16dは、基準線から0.15[μm]右にずれた位置に設けられる。なお、スキャン方向(所定方向)に隣接する開口部16同士が、少なくとも基準となる位置から互いに異なる距離だけずれた位置に設けられれば、スキャン方向(所定方向)の一列に含まれる開口部16の全てが、基準となる位置から互いに異なる距離だけずれている必要はない。 In addition, each of the openings 16 included in “row 1” of the projection mask 15 is provided at positions shifted by different distances from the reference position within a predetermined range (W + −0.5 [μm]). It may be done. In the example of FIG. 6, the reference position is, for example, the case where the opening 16 is on the reference line, as in the case of the opening 16b. In the example of FIG. 6, the reference line is a center line of a predetermined range (W + −0.5 [μm]). The reference position may be any position, and the reference position may be a position at the right end or the left end of a predetermined range (W + −0.5 μm). Each of the plurality of openings 16 is provided at a position shifted by a different distance from the reference position. For example, the opening 16a is provided at a position shifted 0.20 [μm] to the right from the reference line, the opening 16b is provided on the reference line, and the opening 16c is provided 0.15 μm from the reference line. The opening 16 d is provided at a position shifted to the left, and the opening 16 d is provided at a position shifted 0.15 [μm] to the right from the reference line. If the openings 16 adjacent to each other in the scanning direction (predetermined direction) are provided at positions shifted by at least different distances from the reference position, the openings 16 included in one row of the scanning direction (predetermined direction) It does not have to be all different from the reference position by different distances.
 ここで、マイクロレンズアレイ13が所定方向(基準線に対して右方向)に0.5[μm]微動すると、基準線から0.20[μm]右にずれた位置に設けられた開口部16aを介するレーザ光14の照射範囲は、所定方向に0.7[μm]ずれた範囲となる。一方、基準線から0.15[μm]左にずれた位置に設けられた開口部16bを介するレーザ光14の照射範囲は、所定方向に0.35[μm]ずれた範囲となる。このように、マイクロレンズアレイ13が所定方向(基準線に対して右方向)に0.5[μm]微動した場合であっても、複数の開口部16の各々ごとに、当該開口部16を介するレーザ光14の照射範囲のずれが異なる。そのため、マイクロレンズアレイ13が微動(位置補正)された場合であっても、レーザ光14の照射範囲が一度に同じ量だけ微動することを防止することができる。 Here, when the micro lens array 13 is slightly moved 0.5 [μm] in the predetermined direction (right direction with respect to the reference line), the opening 16a provided at a position shifted 0.20 [μm] right from the reference line The irradiation range of the laser beam 14 via the light source is a range shifted by 0.7 [μm] in the predetermined direction. On the other hand, the irradiation range of the laser beam 14 through the opening 16b provided at a position shifted 0.15 [μm] left from the reference line is a range shifted by 0.35 [μm] in the predetermined direction. As described above, even when the micro lens array 13 slightly moves by 0.5 [μm] in the predetermined direction (the right direction with respect to the reference line), the openings 16 are formed for each of the plurality of openings 16. The deviation of the irradiation range of the laser beam 14 through the center is different. Therefore, even when the micro lens array 13 is finely moved (corrected in position), the irradiation range of the laser beam 14 can be prevented from being finely moved at the same time by the same amount.
 また、投影マスク15のスキャン方向(所定方向)に含まれる開口部16の各々において、基準となる位置からのずれの距離の総和は、当該所定方向の列の各々で略同一とすることが望ましい。投影マスク15のスキャン方向(所定方向)に含まれる開口部16は、マイクロレンズアレイ13の一列に含まれるマイクロレンズ17の個数に対応して20個設けられるが、当該20個の開口部の各々の“基準となる位置からのずれの距離”の総和は、所定値に設定される。所定値は、例えば、“0”や“+1.0[μm]”、“-2.0[μm]”であるが、どのような値であってもよい。そして、投影マスク15において、スキャン方向(所定方向)の列の各々に対して、“基準となる位置からのずれの距離”の総和は、所定値に設定される。そのため、投影マスク15のスキャン方向(所定方向)に含まれる開口部16の各々において、基準となる位置からのずれの距離の総和は、所定値となり、当該所定方向の列の各々で略同一となる。 Further, in each of the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15, it is desirable that the sum of the distances of deviation from the reference position be substantially the same in each of the rows in the predetermined direction. . Although the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15 are provided corresponding to the number of the microlenses 17 included in one row of the microlens array 13, each of the 20 openings is provided. The sum of “the distance of deviation from the reference position” is set to a predetermined value. The predetermined value is, for example, “0”, “+1.0 [μm]”, or “−2.0 [μm]”, but may be any value. Then, in the projection mask 15, the sum of “distance of deviation from the reference position” is set to a predetermined value for each row in the scanning direction (predetermined direction). Therefore, in each of the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15, the sum of the distances of deviation from the reference position is a predetermined value, and is substantially the same in each row in the predetermined direction. Become.
 投影マスク15のスキャン方向(所定方向)に含まれる開口部16の各々において、基準となる位置からのずれの距離の総和が、当該所定方向の列の各々で略同一であるため、列が異なったとしても、基板30のアモルファスシリコン薄膜21においてアニール処理される範囲は略同一とすることができ、列によってアニール処理される範囲がずれてしまうことを防止できる。 In each of the openings 16 included in the scanning direction (predetermined direction) of the projection mask 15, since the sum of the distances of deviation from the reference position is substantially the same in each of the rows in the predetermined direction, the rows are different. Even in this case, the range to be annealed in the amorphous silicon thin film 21 of the substrate 30 can be made substantially the same, and the range to be annealed by the columns can be prevented from being shifted.
 また、投影マスク15において、複数の開口部16のうち、少なくともスキャン方向(所定方向)に直交する方向に隣接する開口部同士(例えば、16aと16e)は、所定の範囲内(W+-0.5[μm])における開口部16の位置が互いに異なる。言い換えると、隣り合う列(例えば、列1と列2)の開口部16同士は、所定の範囲内における位置が異なり、例えば、開口部16aは、列1の所定の範囲内の右側にずれた位置に配置されるのに対して、開口部16eは、列2の所定の範囲内の左側にずれた位置に配置される。より具体的には、隣り合う列(例えば、列1と列2)の開口部16同士は、所定の範囲内(W+-0.5[μm])において、基準となる位置から互いに異なる距離だけずれた位置に設けられ、開口部16aは、基準線から0.20[μm]右にずれた位置に設けられるのに対して、開口部16eは、基準線から0.15[μm]左にずれた位置に設けられる。 Further, in the projection mask 15, among the plurality of openings 16, the openings (for example, 16 a and 16 e) adjacent in at least the direction orthogonal to the scan direction (predetermined direction) are within a predetermined range (W + −0. The positions of the openings 16 at 5 [μm] differ from one another. In other words, the openings 16 of the adjacent rows (for example, the row 1 and the row 2) have different positions within a predetermined range, for example, the openings 16a are shifted to the right within the predetermined range of the row 1 While the opening 16e is disposed at the position, the opening 16e is disposed at a position shifted to the left within the predetermined range of the row 2. More specifically, the openings 16 of adjacent rows (for example, row 1 and row 2) are separated by a distance different from the reference position within a predetermined range (W + -0.5 [μm]). The opening 16a is provided at a position shifted from the reference line by 0.20 μm to the right, whereas the opening 16e is located 0.15 μm from the reference line to the left It is provided at an offset position.
 投影マスク15において、隣り合う列の開口部16どうしは、所定の範囲内において、基準となる位置から互いに異なる距離だけずれた位置に設けられるため、隣り合う列において、基板30のアモルファスシリコン薄膜21においてアニール処理される範囲が異なることになり、同じタイミングでレーザ光14が照射されることに起因する“スジ”の発生を防止することができる。 In the projection mask 15, the openings 16 in adjacent rows are provided at positions shifted by different distances from the reference position within a predetermined range, so that in the adjacent rows, the amorphous silicon thin film 21 of the substrate 30 is It is possible to prevent the occurrence of “streaks” resulting from the irradiation of the laser beam 14 at the same timing.
 ここで、本発明の第1の実施形態におけるレーザ照射装置10の動作例について説明する。まず、基板30は、マイクロレンズアレイ13に対してレーザ光14が照射されるごとに、所定の距離だけ移動する。所定の距離は、基板30における複数の薄膜トランジスタ20間の距離「H」である。レーザ照射装置10は、基板30を当該所定の距離移動させる間、レーザ光14の照射を停止する。 Here, an operation example of the laser irradiation apparatus 10 according to the first embodiment of the present invention will be described. First, the substrate 30 moves by a predetermined distance each time the laser beam 14 is irradiated to the microlens array 13. The predetermined distance is the distance “H” between the plurality of thin film transistors 20 on the substrate 30. The laser irradiation apparatus 10 stops the irradiation of the laser beam 14 while moving the substrate 30 by the predetermined distance.
 基板30が所定の距離「H」を移動した後、レーザ照射装置10は、マイクロレンズアレイ13に含まれるマイクロレンズ17を用いて、レーザ光14を再度照射する。なお、本発明の第1の実施形態では、図2に示すマイクロレンズアレイ13を用いるため、1つのアモルファスシリコン薄膜21に対して、20個のマイクロレンズ17によりレーザ光14が照射される。なお、レーザ照射装置10は、マイクロレンズアレイ13と基板30との相対的な位置のズレが所定値以上になった場合に、当該位置のズレを補正する方向に、当該マイクロレンズアレイ13を微動させる。 After the substrate 30 moves the predetermined distance “H”, the laser irradiation apparatus 10 irradiates the laser light 14 again using the microlenses 17 included in the microlens array 13. In the first embodiment of the present invention, the laser beam 14 is irradiated to one amorphous silicon thin film 21 by twenty microlenses 17 because the microlens array 13 shown in FIG. 2 is used. When the relative positional deviation between the microlens array 13 and the substrate 30 exceeds a predetermined value, the laser irradiation device 10 slightly moves the microlens array 13 in the direction to correct the positional deviation. Let
 そして、基板30のアモルファスシリコン薄膜21の所定の領域に、レーザアニールを用いてポリシリコン薄膜22を形成した後、別の工程において、当該薄膜トランジスタ20に、ソース23とドレイン24とが形成される。 Then, after a polysilicon thin film 22 is formed on a predetermined region of the amorphous silicon thin film 21 of the substrate 30 using laser annealing, in another process, the source 23 and the drain 24 are formed in the thin film transistor 20.
 上記の通り、本発明の第1の実施形態では、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々が、当該スキャン方向(所定方向)に直交する方向に対して、互いに異なる位置に設けられるため、マイクロレンズ17の照射範囲が、予めずれることになる。その結果、マイクロレンズアレイ13が微動(位置補正)した場合であっても、複数のマイクロレンズ17の各々によるレーザ光14の照射範囲の微動量が、互いに異なるものとすることができる。その結果、マイクロレンズアレイ13が微動(位置補正)された場合であっても、レーザ光14の照射範囲が一度に同じ量だけ微動することを防止することができ、マイクロレンズアレイ13を微動させることが原因で生じていた“スジ”を低減することが可能となる。 As described above, in the first embodiment of the present invention, in the projection mask 15, each of the openings 16 included in one row of the scanning direction (predetermined direction) of the substrate 30 is orthogonal to the scanning direction (predetermined direction) The irradiation ranges of the microlenses 17 are shifted in advance because they are provided at mutually different positions with respect to the direction. As a result, even when the micro lens array 13 is finely moved (corrected in position), the amount of fine movement of the irradiation range of the laser beam 14 by each of the plurality of micro lenses 17 can be different from each other. As a result, even when the micro lens array 13 is finely moved (corrected in position), the irradiation range of the laser light 14 can be prevented from being slightly moved at the same time by the same amount, and the micro lens array 13 is finely moved. It is possible to reduce the "streaks" that are caused due to the
 (第2の実施形態)
 本発明の第2の実施形態は、マイクロレンズアレイ13の代わりに、1個の投影レンズ18を用いて、レーザアニールを行う場合の実施形態である。
Second Embodiment
The second embodiment of the present invention is an embodiment in which laser annealing is performed using one projection lens 18 instead of the microlens array 13.
 図7は、本発明の第2の実施形態におけるレーザ照射装置10の構成例を示す図である。図7に示すように、本発明の第2の実施形態におけるレーザ照射装置10は、レーザ光源11と、カップリング光学系12と、投影マスク15と、投影レンズ18とを含む。なお、レーザ光源11と、カップリング光学系12とは、図1に示す本発明の第1の実施形態におけるレーザ光源11と、カップリング光学系12と同様の構成であるため、詳細な説明は省略される。 FIG. 7 is a view showing an example of the arrangement of a laser irradiation apparatus 10 according to the second embodiment of the present invention. As shown in FIG. 7, the laser irradiation apparatus 10 according to the second embodiment of the present invention includes a laser light source 11, a coupling optical system 12, a projection mask 15, and a projection lens 18. The laser light source 11 and the coupling optical system 12 have the same configuration as the laser light source 11 and the coupling optical system 12 in the first embodiment of the present invention shown in FIG. It is omitted.
 レーザ光は、図5に例示する投影マスク15の開口部16(透過領域)を透過し、投影レンズ18により、アモルファスシリコン薄膜21の所定の領域に照射される。その結果、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。 The laser light passes through the opening 16 (transmission region) of the projection mask 15 illustrated in FIG. 5 and is irradiated onto a predetermined region of the amorphous silicon thin film 21 by the projection lens 18. As a result, a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
 本発明の第2の実施形態においても、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間に基板30を移動させ、次のアモルファスシリコン薄膜21の箇所に当該レーザ光14が照射されるようにする。第2の実施形態においても、図3に示すように、基板30は、移動方向に対して、所定の間隔「H」でアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、基板30上に配置されたアモルファスシリコン薄膜21の部分に、レーザ光14を照射する。 Also in the second embodiment of the present invention, the laser irradiation device 10 irradiates the laser light 14 with a predetermined cycle, moves the substrate 30 during the time when the laser light 14 is not irradiated, and the next amorphous silicon thin film 21 is formed. The laser beam 14 is irradiated to the portion. Also in the second embodiment, as shown in FIG. 3, in the substrate 30, the amorphous silicon thin film 21 is disposed at a predetermined interval “H” in the moving direction. Then, the laser irradiation apparatus 10 irradiates the portion of the amorphous silicon thin film 21 disposed on the substrate 30 with the laser light 14 at a predetermined cycle.
 ここで、投影レンズ18を用いる場合、レーザ光14が、当該投影レンズ18の光学系の倍率で換算される。すなわち、投影マスク15のパターンが、投影レンズ18の光学系の倍率で換算され、基板30上の所定の領域がレーザアニールされる。 Here, when the projection lens 18 is used, the laser beam 14 is converted by the magnification of the optical system of the projection lens 18. That is, the pattern of the projection mask 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the substrate 30 is laser annealed.
 すなわち、投影マスク15は、投影レンズ18の光学系の倍率で換算され、基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が約2倍であると、投影マスク15のマスクパターンは、約1/2(0.5)倍され、基板30の所定の領域がレーザアニールされる。なお、投影レンズ18の光学系の倍率は、約2倍に限られず、どのような倍率であってもよい。投影マスク15のマスクパターンは、投影レンズ18の光学系の倍率に応じて、基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が4倍であれば、投影マスク15のマスクパターンは、約1/4(0.25)倍され、基板30の所定の領域がレーザアニールされる。 That is, the projection mask 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the substrate 30 is laser annealed. For example, when the magnification of the optical system of the projection lens 18 is about twice, the mask pattern of the projection mask 15 is multiplied by about 1/2 (0.5) and the predetermined region of the substrate 30 is laser annealed. The magnification of the optical system of the projection lens 18 is not limited to about twice, and may be any magnification. The mask pattern of the projection mask 15 is laser-annealed in a predetermined region on the substrate 30 in accordance with the magnification of the optical system of the projection lens 18. For example, if the magnification of the optical system of the projection lens 18 is four times, the mask pattern of the projection mask 15 is multiplied by about 1⁄4 (0.25) and the predetermined area of the substrate 30 is laser annealed.
 また、投影レンズ18が倒立像を形成する場合、基板30に照射される投影マスク15の縮小像は、投影レンズ18のレンズの光軸を中心に180度回転したパターンとなる。一方、投影レンズ18が正立像を形成する場合、基板30に照射される投影マスク15の縮小像は、当該投影マスク15そのままとなる。 When the projection lens 18 forms an inverted image, the reduced image of the projection mask 15 irradiated on the substrate 30 has a pattern rotated 180 degrees around the optical axis of the lens of the projection lens 18. On the other hand, when the projection lens 18 forms an erect image, the reduced image of the projection mask 15 irradiated onto the substrate 30 is the projection mask 15 as it is.
 投影レンズ18は、図6に拡大図が例示されている図5の投影マスク15を用いて、基板30にレーザ光14を照射する。そして、図6に例示するように、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々は、当該スキャン方向(所定方向)に直交する方向に対して、互いに異なる位置に設けられる。具体的には、投影マスク15において、基板30のスキャン方向(所定方向)の一列に含まれる開口部16の各々は、当該スキャン方向(所定方向)に直交する方向に対して、所定の範囲(W+-0.5[μm])の範囲)で、互いに異なる位置に設けられる。一方、レーザ照射装置10は、投影レンズ18と基板30との相対的な位置のズレが所定値以上になった場合に、当該位置のズレを補正する方向に、当該投影レンズ18を微動させる。なお、第2の実施形態において用いられる投影マスク15は、図5及び図6に例示する投影マスク15と同様であるため、詳細な説明は省略される。 The projection lens 18 irradiates the substrate 30 with the laser beam 14 using the projection mask 15 of FIG. 5 whose enlarged view is illustrated in FIG. Then, as illustrated in FIG. 6, in the projection mask 15, each of the openings 16 included in one line in the scanning direction (predetermined direction) of the substrate 30 is in the direction orthogonal to the scanning direction (predetermined direction) , Provided at different positions. Specifically, in the projection mask 15, each of the openings 16 included in one line of the scanning direction (predetermined direction) of the substrate 30 has a predetermined range (a direction perpendicular to the scanning direction (predetermined direction)). In the range of W + −0.5 μm), they are provided at different positions. On the other hand, when the relative positional deviation between the projection lens 18 and the substrate 30 becomes equal to or greater than a predetermined value, the laser irradiation apparatus 10 finely moves the projection lens 18 in the direction to correct the positional deviation. The projection mask 15 used in the second embodiment is the same as the projection mask 15 illustrated in FIGS. 5 and 6, and thus the detailed description is omitted.
 その結果、投影レンズ18によって照射されるレーザ光14の基板30上での照射範囲が、予めずれることになる。その結果、投影レンズ18が微動(位置補正)した場合であっても、投影レンズ18によるレーザ光14の照射範囲の微動量が、互いに異なるものとすることができる。その結果、投影レンズ18が微動(位置補正)された場合であっても、レーザ光14の照射範囲が一度に同じ量だけ微動することを防止することができ、投影レンズ18を微動させることが原因で生じていた“スジ”を低減することが可能となる。 As a result, the irradiation range on the substrate 30 of the laser beam 14 irradiated by the projection lens 18 is shifted in advance. As a result, even when the projection lens 18 is slightly moved (corrected in position), the amount of movement of the irradiation range of the laser light 14 by the projection lens 18 can be made different from each other. As a result, even when the projection lens 18 is finely moved (position corrected), the irradiation range of the laser beam 14 can be prevented from being slightly moved at the same time by the same amount at one time, and the projection lens 18 is finely moved. It becomes possible to reduce the "line" which has been caused by the cause.
 なお、以上の説明において、「垂直」「平行」「平面」「直交」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「垂直」「平行」「平面」「直交」とは、設計上や製造上等における公差や誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」「実質的に直交」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。 In the above description, when there are descriptions such as “vertical”, “parallel”, “plane”, “orthogonal”, etc., each of these descriptions does not have a strict meaning. That is, “perpendicular”, “parallel”, “plane” and “orthogonal” mean that tolerances and errors in design and manufacture are allowed, “substantially perpendicular”, “substantially parallel”, “substantially plane” It means "substantially orthogonal". Here, the tolerance and the error mean a unit in the range which does not deviate from the configuration, operation and effect of the present invention.
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「同一」「等しい」「異なる」とは、設計上や製造上等における公差や誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。 Further, in the above description, when there are descriptions such as “same”, “equal”, “different” and the like in terms of size and size in appearance, these respective descriptions do not have a strict meaning. That is, “identical” “equal” “different” means that “substantially identical” “substantially equal” “substantially different” as tolerances or errors in design, manufacture, etc. are allowed. . Here, the tolerance and the error mean a unit in the range which does not deviate from the configuration, operation and effect of the present invention.
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、上記実施の形態に示す構成を適宜組み合わせることとしてもよい。 Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, each means, functions included in each step, etc. can be rearranged so as not to be logically contradictory, and it is possible to combine or divide a plurality of means, steps, etc. into one. . Further, the structures described in the above embodiments may be combined as appropriate.
 10 レーザ照射装置
 11 レーザ光源
 12 カップリング光学系
 13 マイクロレンズアレイ
 14 レーザ光
 15 投影マスク
 16 開口部(透過領域)
 17 マイクロレンズ
 18 投影レンズ
 20 薄膜トランジスタ
 21 アモルファスシリコン薄膜
 22 ポリシリコン薄膜
 23 ソース
 24 ドレイン
 30 基板
DESCRIPTION OF SYMBOLS 10 Laser irradiation apparatus 11 Laser light source 12 Coupling optical system 13 Micro lens array 14 Laser beam 15 Projection mask 16 Opening part (transmission area)
17 micro lens 18 projection lens 20 thin film transistor 21 amorphous silicon thin film 22 polysilicon thin film 23 source 24 drain 30 substrate

Claims (15)

  1.  レーザ光を発生する光源と、
     所定方向に移動する基板上に被着されたアモルファスシリコン薄膜に対して、前記レーザ光を照射する投影レンズと、
     前記投影レンズ上に設けられ、前記アモルファスシリコン薄膜に対して前記レーザ光が照射されるように、複数の開口部が設けられた投影マスクと、を備え、
     前記投影マスクにおいて、前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられる
    ことを特徴とするレーザ照射装置。
    A light source generating laser light;
    A projection lens for irradiating the laser beam to an amorphous silicon thin film deposited on a substrate moving in a predetermined direction;
    A projection mask provided on the projection lens and provided with a plurality of openings so that the laser light is irradiated to the amorphous silicon thin film;
    In the projection mask, each of the openings included in one row of the predetermined direction is provided at mutually different positions in a direction orthogonal to the predetermined direction.
  2.  前記投影マスクにおいて、前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられる
    ことを特徴とする請求項1に記載のレーザ照射装置。
    The laser irradiation apparatus according to claim 1, wherein in the projection mask, each of the plurality of openings is provided at a position different from each other within a predetermined range with respect to a direction orthogonal to the predetermined direction. .
  3.  前記投影マスクにおいて、前記複数の開口部のうち、少なくとも前記直交する方向に隣接する開口部同士は、前記所定の範囲内における前記開口部の位置が互いに異なる
    ことを特徴とする請求項1又は2に記載のレーザ照射装置。
    The projection mask according to claim 1 or 2, wherein among the plurality of openings, at least the openings adjacent in the orthogonal direction have different positions of the openings within the predetermined range. The laser irradiation apparatus as described in.
  4.  前記所定方向の一列に含まれる開口部の各々は、前記所定の範囲内において、基準となる位置から互いに異なる距離だけずれた位置に設けられる
    ことを特徴とする請求項1乃至3のいずれか一項に記載のレーザ照射装置。
    4. Each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from the reference position within the predetermined range. The laser irradiation apparatus as described in a term.
  5.  前記投影マスクにおいて、前記所定方向の一列に含まれる前記開口部において、前記基準となる位置からのずれの距離の総和は、前記所定方向の列の各々で略同一となる
    ことを特徴とする請求項4に記載のレーザ照射装置。
    In the projection mask, in the openings included in one row of the predetermined direction, a sum of distances of deviations from the reference position is substantially the same in each row of the predetermined direction. The laser irradiation apparatus of claim 4.
  6.  前記投影レンズは、前記レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、
     前記投影マスクは、前記複数のマイクロレンズの各々を介するレーザ光の照射範囲が、前記所定方向に直交する方向に対して互いに異なるように前記開口部が設けられる
    ことを特徴とする請求項1乃至5のいずれかに記載のレーザ照射装置。
    The projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light,
    2. The projection mask according to claim 1, wherein the opening is provided such that the irradiation range of the laser light through each of the plurality of microlenses is different from each other in a direction orthogonal to the predetermined direction. The laser irradiation apparatus in any one of 5.
  7.  前記投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に対応する領域に被着されたアモルファスシリコン薄膜にレーザ光を照射して、ポリシリコン薄膜を形成する
    ことを特徴とする請求項1乃至6のいずれか一項に記載のレーザ照射装置。
    The projection lens is characterized in that an amorphous silicon thin film deposited in a region corresponding to a region between a source electrode and a drain electrode included in a thin film transistor is irradiated with laser light to form a polysilicon thin film. The laser irradiation apparatus according to any one of 1 to 6.
  8.  レーザ光を発生する第1のステップと、
     所定方向に移動する基板上に被着されたアモルファスシリコン薄膜に対して前記レーザ光が照射されるように、複数の開口部が設けられた投影マスクを用いて、前記レーザ光を照射する第2ステップと、を含み、
     前記投影マスクにおいて、前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられる
    ことを特徴とするレーザ照射方法。
    A first step of generating a laser beam,
    A second method of irradiating the laser light using a projection mask provided with a plurality of openings so that the laser light is irradiated to the amorphous silicon thin film deposited on the substrate moving in a predetermined direction Including steps,
    In the projection mask, each of the openings included in one row of the predetermined direction is provided at mutually different positions in a direction orthogonal to the predetermined direction.
  9.  前記投影マスクにおいて、前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられる
    ことを特徴とする請求項8に記載のレーザ照射方法。
    The laser irradiation method according to claim 8, wherein in the projection mask, each of the plurality of openings is provided at a position different from each other within a predetermined range with respect to a direction orthogonal to the predetermined direction. .
  10.  前記投影レンズは、前記レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、
     前記投影マスクは、前記複数のマイクロレンズの各々を介するレーザ光の照射範囲が、前記所定方向に直交する方向に対して互いに異なるように前記開口部が設けられる
    ことを特徴とする請求項8又は9に記載のレーザ照射方法。
    The projection lens is a plurality of microlenses included in a microlens array capable of separating the laser light,
    9. The projection mask according to claim 8, wherein the opening is provided such that the irradiation range of the laser light through each of the plurality of microlenses is different in a direction orthogonal to the predetermined direction. The laser irradiation method as described in 9.
  11.  光源から発生されたレーザ光を照射する投影レンズ上に配置される投影マスクであって、
     前記投影マスクは、
     所定の方向に移動する基板に被着されたアモルファスシリコン薄膜の所定の領域に対して前記レーザ光が照射されるように複数の開口部が設けられ、
     前記所定方向の一列に含まれる開口部の各々は、前記所定方向に直交する方向に対して、互いに異なる位置に設けられる
    ことを特徴とする投影マスク。
    What is claimed is: 1. A projection mask disposed on a projection lens for emitting laser light generated from a light source, the projection mask comprising:
    The projection mask is
    A plurality of openings are provided to irradiate the laser light to a predetermined region of the amorphous silicon thin film deposited on the substrate moving in a predetermined direction.
    Each of the openings included in one row of the predetermined direction is provided at mutually different positions with respect to a direction orthogonal to the predetermined direction.
  12.  前記複数の開口部の各々は、前記所定方向に直交する方向に対して、所定の範囲内で互いに異なる位置に設けられる
    ことを特徴とする請求項11に記載の投影マスク。
    The projection mask according to claim 11, wherein each of the plurality of openings is provided at a position different from each other within a predetermined range with respect to a direction orthogonal to the predetermined direction.
  13.  前記複数の開口部のうち、少なくとも前記直交する方向に隣接する開口部同士は、前記所定の範囲内における前記開口部の位置が互いに異なる
    ことを特徴とする請求項11又は12に記載の投影マスク。
    13. The projection mask according to claim 11, wherein among the plurality of openings, at least the openings adjacent to each other in the orthogonal direction have different positions of the openings within the predetermined range. .
  14.  前記所定方向の一列に含まれる開口部の各々は、前記所定の範囲内において、基準となる位置から互いに異なる距離だけずれた位置に設けられる
    ことを特徴とする請求項11乃至13のいずれか一項に記載の投影マスク。
    14. Each of the openings included in one row of the predetermined direction is provided at a position shifted by a different distance from the reference position within the predetermined range. Projection mask described in the section.
  15.  前記所定方向の一列に含まれる前記開口部において、前記基準となる位置からのずれの距離の総和は、前記所定方向の列の各々で略同一となる
    ことを特徴とする請求項14に記載の投影マスク。
    The said opening part contained in 1 row of said predetermined direction WHEREIN: The sum total of the distance of the shift | offset | difference from the position used as the said reference becomes substantially the same in each of the row of the said predetermined direction. Projection mask.
PCT/JP2017/043880 2017-12-06 2017-12-06 Laser irradiation device, laser irradiation method, and projection mask WO2019111362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/043880 WO2019111362A1 (en) 2017-12-06 2017-12-06 Laser irradiation device, laser irradiation method, and projection mask
TW107143920A TW201937629A (en) 2017-12-06 2018-12-06 Laser projecting device, laser projecting method and projection mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043880 WO2019111362A1 (en) 2017-12-06 2017-12-06 Laser irradiation device, laser irradiation method, and projection mask

Publications (1)

Publication Number Publication Date
WO2019111362A1 true WO2019111362A1 (en) 2019-06-13

Family

ID=66750467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043880 WO2019111362A1 (en) 2017-12-06 2017-12-06 Laser irradiation device, laser irradiation method, and projection mask

Country Status (2)

Country Link
TW (1) TW201937629A (en)
WO (1) WO2019111362A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051445A (en) * 2001-05-11 2003-02-21 Lg Philips Lcd Co Ltd Method of crystallizing silicon
JP2003100653A (en) * 2001-09-26 2003-04-04 Sharp Corp Apparatus and method for working
JP2004520715A (en) * 2001-04-19 2004-07-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method and system for single scan, continuous operation, sequential lateral crystallization
JP2006519492A (en) * 2003-02-25 2006-08-24 サムスン エレクトロニクス カンパニー リミテッド Silicon crystallization system and silicon crystallization method
JP2008227077A (en) * 2007-03-12 2008-09-25 Sharp Corp Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
JP2009032903A (en) * 2007-07-27 2009-02-12 Sharp Corp Laser irradiation apparatus, laser irradiation method, crystal material and functional element
JP2009032969A (en) * 2007-07-27 2009-02-12 Sharp Corp Apparatus of manufacturing semiconductor thin film, method of the same, and semiconductor thin film and semiconductor device produced by the method
JP2016100537A (en) * 2014-11-25 2016-05-30 株式会社ブイ・テクノロジー Thin film transistor, thin film transistor manufacturing method and laser annealing device
JP2016219581A (en) * 2015-05-19 2016-12-22 株式会社ブイ・テクノロジー Laser annealing method, laser annealing apparatus, and manufacturing method of thin film transistor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520715A (en) * 2001-04-19 2004-07-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method and system for single scan, continuous operation, sequential lateral crystallization
JP2003051445A (en) * 2001-05-11 2003-02-21 Lg Philips Lcd Co Ltd Method of crystallizing silicon
JP2003100653A (en) * 2001-09-26 2003-04-04 Sharp Corp Apparatus and method for working
JP2006519492A (en) * 2003-02-25 2006-08-24 サムスン エレクトロニクス カンパニー リミテッド Silicon crystallization system and silicon crystallization method
JP2008227077A (en) * 2007-03-12 2008-09-25 Sharp Corp Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
JP2009032903A (en) * 2007-07-27 2009-02-12 Sharp Corp Laser irradiation apparatus, laser irradiation method, crystal material and functional element
JP2009032969A (en) * 2007-07-27 2009-02-12 Sharp Corp Apparatus of manufacturing semiconductor thin film, method of the same, and semiconductor thin film and semiconductor device produced by the method
JP2016100537A (en) * 2014-11-25 2016-05-30 株式会社ブイ・テクノロジー Thin film transistor, thin film transistor manufacturing method and laser annealing device
JP2016219581A (en) * 2015-05-19 2016-12-22 株式会社ブイ・テクノロジー Laser annealing method, laser annealing apparatus, and manufacturing method of thin film transistor

Also Published As

Publication number Publication date
TW201937629A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
US10608115B2 (en) Laser beam irradiation device, thin-film transistor, and method of manufacturing thin-film transistor
US20200176284A1 (en) Laser irradiation device, method of manufacturing thin film transistor, and projection mask
US20190287790A1 (en) Laser irradiation apparatus and method of manufacturing thin film transistor
US10896817B2 (en) Laser irradiation apparatus, thin film transistor, and method of manufacturing thin film transistor
US10840095B2 (en) Laser irradiation device, thin-film transistor and thin-film transistor manufacturing method
WO2019111362A1 (en) Laser irradiation device, laser irradiation method, and projection mask
WO2019138674A1 (en) Laser irradiation device and laser irradiation method
WO2018155455A1 (en) Laser irradiation device, thin-film transistor manufacturing method, program, and projection mask
WO2019146354A1 (en) Laser irradiating apparatus, projection mask, and laser irradiating method
US20200194260A1 (en) Laser irradiation device, laser irradiation method and projection mask
WO2019107108A1 (en) Laser irradiation device, laser irradiation method, and projection mask
WO2018101154A1 (en) Laser irradiation device and method for manufacturing thin film transistor
US20200171601A1 (en) Laser irradiation device, method of manufacturing thin film transistor, program, and projection mask
WO2018092213A1 (en) Laser irradiation device and thin-film transistor manufacturing method
US20200168642A1 (en) Laser irradiation device, projection mask, laser irradiation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP