WO2019111195A1 - Pièce de micromécanique horlogère - Google Patents

Pièce de micromécanique horlogère Download PDF

Info

Publication number
WO2019111195A1
WO2019111195A1 PCT/IB2018/059706 IB2018059706W WO2019111195A1 WO 2019111195 A1 WO2019111195 A1 WO 2019111195A1 IB 2018059706 W IB2018059706 W IB 2018059706W WO 2019111195 A1 WO2019111195 A1 WO 2019111195A1
Authority
WO
WIPO (PCT)
Prior art keywords
micromechanical
contact
striations
component
micromechanical component
Prior art date
Application number
PCT/IB2018/059706
Other languages
English (en)
Inventor
Julien PERRET
Original Assignee
Patek Philippe Sa Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe Sa Geneve filed Critical Patek Philippe Sa Geneve
Priority to EP18830527.0A priority Critical patent/EP3721298A1/fr
Publication of WO2019111195A1 publication Critical patent/WO2019111195A1/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots

Definitions

  • a first embodiment of the present invention relates to a watchmaking micromechanical component arranged to interact mechanically with another micromechanical component in a timepiece, the two micromechanical parts comprising respective contact zones that are arranged to slide against each other. other during the mechanical interactions between the micromechanical watchmaking piece and the other micromechanical part.
  • a second embodiment of the present invention concerns a mechanical timepiece which comprises a first and a second micromechanical component which are arranged to interact mechanically, the first and second micromechanical components comprising respective contact zones arranged to slide against each other. the other during the mechanical interactions between the first and the second micromechanical component, and at least the first micromechanical component being constituted by a watchmaking micromechanical component according to the first embodiment of the invention.
  • the invention relates in particular to a micromechanical watchmaking piece which conforms to the above definition and which forms part of an anchor escapement.
  • the exhaust is the mechanism that provides the interface between the wheel and the regulating member (the pendulum or pendulum) of a timepiece.
  • the exhaust has particular function to maintain the oscillations of the regulating member.
  • escapes of this type include an anchor whose two arms each end with a pallet.
  • the anchor is arranged to pivot alternately in one direction and the other so that the pallets come one after another block and release, one of the teeth of the escape wheel.
  • the escape wheel turns a short time before a next tooth falls against the other pallet.
  • the escapement wheel therefore advances in jerks, and we can note that it is the successive falls of the teeth of this wheel (once on two against the outside of the entry pallet, the other time against the inside the exit pallet) that are responsible for the ticking of the watch.
  • the movement of the escapement during each half-period of the pendulum can be broken down into three phases. These three phases are the disengagement phase during which the anchor pivots to disengage one of its vanes from the tooth of the escapement wheel with which it was engaged.
  • the anchor pivots the pallet is released by sliding against the front flank of the tooth, so that it deviates a little from the escape wheel. Once the pallet released from the front flank of the tooth, the escape wheel is no longer completely blocked, and then we move to the impulse phase during which it is the pulse plane of the tooth that grows in bias against the pulse plane of the pallet.
  • the tangential component of this force causes the pulse plane of the tooth to slide against that of the pallet, and simultaneously, the normal component of this force propels the anchor , rotating it so as to briefly drive the pendulum.
  • the anchor pivots until the pallet is finally outside the path of the tooth, ending the impulse phase.
  • the escape wheel is then completely free to rotate until a next tooth falls on the other pallet, causing a new stop of the escape wheel.
  • This third phase is called the fall phase.
  • the sliding of the vanes against the teeth of the escape wheel necessarily generates friction forces.
  • a friction force opposes the sliding of the rest plane of the pallet against the leading edge of the tooth of the escape wheel.
  • the anchor must provide some work to overcome this force.
  • a friction force opposes the sliding of the pulse plane of the pallet against the pulse plane of the tooth.
  • the escape wheel must provide some work to overcome this force.
  • the existence of these relatively intense friction forces between the pallets of the anchor and the teeth of the escape wheel causes a decrease in both the precision and the life of the watch movement.
  • the energy lost by the balance in the form of friction during the disengagement phase must then be compensated for by the escapement during the pulse phase.
  • the escapement must also compensate for lost energy in the form of friction during the impulse phase itself, and the amount of energy spent for this purpose reduces the amount of energy that the exhaust can actually provide the pendulum.
  • n is the coefficient of dynamic friction
  • F N is the normal component of the application force.
  • the force of application and its normal component F N are more similar to data of the problem than to parameters on which it would be possible to play.
  • this coefficient depends on several factors such as the pairing of the materials in contact, the roughness of the contact surfaces, the surface treatments, the lubrication, etc.
  • the use of oil as a lubricant is widespread in watchmaking.
  • the use of lubrication has a number of problems. In particular, it requires regular services to be given to the watch, so as to be able to put oil back in or clean the wheels. It would therefore be advantageous to have watch micromechanical parts that comply with the definition given in the preamble and that do not require the use of a lubricant.
  • An object of the present invention is to overcome the disadvantages of the prior art which have just been explained.
  • the present invention achieves this and other objects by providing, on the one hand, a watchmaking micromechanical component according to the appended claim 1, and by providing, on the other hand, a mechanical timepiece according to the claim 8 annexed.
  • contact zone can designate both a plane contact zone (in other words a contact surface) and a linear contact zone (in other words an edge formed by the meeting of two surfaces).
  • the contact surfaces of the micromechanical part have rectilinear and parallel ridges.
  • a first effect of the presence of ridges formed in a contact surface is to reduce the area of the portion of the contact surface, which is effectively in friction when the contact surface slides against a contact area of another room .
  • the area of contact does not appear in the formula of the dynamic friction force (given above). Indeed, it is generally accepted that the friction force is independent of the contact area.
  • the tests carried out by the Applicant show that the presence of streaks on the contact surface leads to a reduction in the friction forces even in the case of a relatively large contact surface (130 micron component height).
  • the micromechanical watchmaking piece is made of a fragile material.
  • fragment material refers to materials which, in the context of a use in watchmaking micromechanics, are characterized by a brittle fracture, that is to say a break without plastic deformation. beforehand, during an elastic loading, as soon as the stress reaches the critical threshold locally.
  • a fragile material is therefore by definition a material that easily breaks by its very nature.
  • a brittle material may show some elasticity. However, when subjected to constraints of a certain intensity, it breaks without prior plastic deformations.
  • Examples of fragile materials that can be used with the invention are glasses, ceramics, silicon, polymers, in particular quartz, sapphire and mono- or polycrystalline silicon, as well as amorphous quartz.
  • glasses include vitreous silica, soda-lime glasses, borosilicates, non-alkaline glasses, vitreous silica, alumino-silicates and fluorinated glasses.
  • oxides, non-oxides and composites Three families of ceramics can also be identified: oxides, non-oxides and composites. These three families of ceramics include: silicon oxide, zirconium oxide, alumina, silicon carbides or nitrides, silinvar® for composites.
  • polymers there may be mentioned, for example, polymers with high mechanical performance, such as PEEK or polyamides.
  • the resistance of fragile materials in case of shocks is not very high either. This is probably the reason why, to the knowledge of the plaintiff, it has never been proposed until now to realize components for an escape mechanism in the form of monolithic parts each made from a single piece of glass.
  • the person skilled in the art knows, indeed, that the lenses intended to withstand shocks are usually laminated glasses. That is to say laminated glasses which consist of a plurality of glass sheets bonded to each other by interlayer films whose behavior is plastic.
  • the mechanical timepiece comprises a first and a second micromechanical component which comprise respective contact zones arranged to slide against each other during the mechanical interactions between the first and the second component.
  • second micromechanical component constituted by a watch micromechanical component according to the first embodiment of the invention.
  • the first component is in accordance with the first embodiment of the invention; the rectilinear and parallel ridges of the contact zones of the second component being inclined or perpendicular to the direction of sliding.
  • Figure 1 is a schematic plan view showing a Swiss lever escapement of the prior art
  • Figure 2 is a schematic perspective view of an escape wheel corresponding to a first exemplary embodiment of the micromechanical component of the invention
  • Figure 3A is a schematic plan view showing the pulse plane of one of the teeth of the escape wheel of Figure 2;
  • Figure 3B is a sectional view along B-B of Figure 3A;
  • Figure 4 is a perspective view of an anchor corresponding to a second exemplary embodiment of the micromechanical component of the invention;
  • Fig. 5 is a close-up showing in more detail the pulse plan of the entry pallet of the anchor of Fig. 4;
  • FIG. 6 is a diagrammatic plan view showing a pulse plane which may belong to one of the pallets of an anchor according to a third embodiment of the invention, or alternatively belong to one of the teeth of FIG. an escape wheel according to a fourth embodiment of the invention;
  • FIG. 7 is a schematic plan view of an embodiment of a contact zone of the second micromechanical component of a timepiece, said contact zone being arranged to slide against a contact zone of the first micromechanical component. of the timepiece, and the first component being constituted by a micromechanical watchmaking piece according to one embodiment of the invention.
  • FIG 1 is a schematic plan view showing a Swiss lever escapement of the prior art.
  • the mechanism represented comprises in particular an escape wheel 3, an anchor 5 and a large plate 7 by the center of which the axis of the balance 9 passes.
  • the two arms of the anchor each end with a pallet 11, 13.
  • the pallets are arranged to cooperate with the teeth 15 of the escape wheel 3.
  • the escape wheel is connected to the barrel (not shown) via a gear train (not shown) which engages with the gear wheel. exhaust (referenced 17).
  • the escape wheel is thus urged continuously forward (that is, clockwise as shown in Figure 1). It will be noted that at the instant shown, one of the teeth 15 of the escape wheel 3 is immobilized against the rest plane of the entry pallet 11 of the anchor 5.
  • the anchor 5 starts a pivoting movement around the axis 19 in the clockwise direction. Pivoting the anchor clockwise causes the entry pallet to slide upward (in the drawing) against the leading edge of tooth 15. This release phase will end when the rest of the pallet will have ceased to hinder the advance of the front flank of the tooth. Then, it is the flattened top of the tooth 15 (called the tooth impulse plane) which will slide against the underside of the pallet 11 (the impulse plane of the pallet). The angled contact between the two pulse planes will also have the effect of pushing the input pallet 11 upwards, so that the pivoting movement of the anchor 5 in the clockwise direction will be accentuated. This pulse phase will end when the input pallet 11 has been pushed far enough to provide a completely clear passage to the tooth 15.
  • the two successive phases which have just been described during which a tooth 15 of the wheel of exhaust 3 slides against the surfaces of one of the pallets 11, 13 of the anchor 5, each generate considerable friction.
  • FIG 2 is a schematic perspective view of an escape wheel 53 corresponding to a first particular embodiment of the invention.
  • the escape wheel of this example is a monolithic piece made from a single piece of glass.
  • the escape wheel may not be glass, but be made of another fragile material.
  • the escape wheel may not be monolithic, but may consist of several assembled parts.
  • FIGS. 3A and 3B are diagrammatic views respectively in plan and in section of the pulse plane 67 of one of the teeth 65 of FIG.
  • the escape wheel 53 is distinguished from the exhaust wheels of the prior art in that the impulse planes 67 of each of the teeth 65 bear streaks (or crenellations) rectilinear and parallel to the sliding direction.
  • each of the pulse planes 67 comprises seven parallel ribs (or merlons) (each represented by a thick white line), and that each rib is separated from each other. its neighbors by a streak (represented by a thick black line).
  • the ribs and ridges are each 10 microns wide, so that the total width of the pulse plane 67 is 130 microns.
  • the escape wheel 53 is of constant thickness and that its thickness is equal to the width of the pulse planes; that is to say 130 microns. It can also be calculated that the effective contact area during the pulse phase is reduced by 46.2% with respect to an escape wheel of the same size having smooth pulse planes.
  • the applicant has carried out tests which show that the use of a streaked escape wheel such as that of the present example can lead to a significant reduction in the proportion of the energy which is dissipated because of the friction forces. .
  • the particular angular shape of the crenellations and merlons is simple to produce by laser. This makes it possible to obtain a very precise line and to control the depth of the slots thanks to an easy tool to parameterize. This shape also makes it possible to easily control the degree of wear of the watchmaking micromechanical component. As a witness of wear, the shape in merlons and slots allows to know at a glance if, yes or no, the friction has altered the mechanical properties of the micromechanical part by deteriorating the shape of the contact zone.
  • FIG. 4 is a perspective view of an anchor 105 which corresponds to a second particular embodiment of the invention.
  • FIG. 5, for its part, is a close-up showing in more detail the pulse plane 121 of the entry pallet 1 1 1 of the anchor 105.
  • the anchor shown is a monolithic piece manufactured from a single piece of glass. However, it will be understood that according to other variants of the invention, the anchor may not be made of glass, but be made of another fragile material. In addition, the anchor could not be monolithic, but be formed of several pieces assembled. According to the invention, the anchor 105 is distinguished from the anchors of the prior art because the pulse planes 121, 123 of its two pallets 1 1 1, 1 13 have rectilinear striations and are parallel to the direction of rotation. sliding.
  • the surface of the pulse plane 121 has seven merlons (or ribs) parallel, and each coast is separated from its neighbors by a slot (or streak).
  • the merlons have a width of 12 microns
  • the slots have a width of 8 microns, so that the total width of the pulse plane 121 is 132 microns.
  • the illustrated anchor is of constant thickness. Its thickness is therefore substantially equal to 132 microns. It can also be calculated that the effective contact area during the impulse phase is reduced by 36.4% with respect to an anchor of the same dimension having smooth impulse planes.
  • Figure 6 is a schematic plan view similar to Figure 3A.
  • the impulse plane that it represents may be that of one of the pallets of an anchor according to a third embodiment of the invention, or alternatively, that of one of the teeth of an escape wheel according to a fourth embodiment of the invention.
  • the pulse plane comprises five parallel rows of eleven lugs each. It will be understood that these five rows are separated from each other by four first grooves which are oriented parallel to the sliding direction. It can further be seen that the pulse plane also has two lateral striations (or shoulders) which are parallel to the first striations, and ten second striations which separate the eleven pins from each row from each other.
  • the second grooves are oriented perpendicular to the direction of sliding, so that they cut the first four ridges and the two lateral striations at right angles and form with them a rectangular network.
  • the ridges all have a width of 13 microns
  • the lugs have the shape of squares of 10 microns on one side, so that the total width of the pulse plane is equal to 128 microns is that its length is slightly greater than 240 microns.
  • the micromechanical watchmaking component of the invention may be manufactured using any method that the skilled person deems appropriate.
  • the part can be made by 3D machining of a piece of silica glass (amorphous quartz).
  • the part is manufactured from a piece of transparent silica glass by a femtosecond laser machining process. This method consists in providing a laser producing pulses whose duration is of the order of the femtosecond; focusing the laser beam so as to selectively expose in a desired pattern the volume of a piece of transparent glass; and finally etch the exposed piece of glass with fluoridic acid.
  • a second embodiment of the invention concerns a mechanical timepiece which comprises a first and a second micromechanical component which are arranged to interact mechanically, the first and second micromechanical components comprising respective contact zones arranged to sliding against each other during the mechanical interactions between the first and the second micromechanical component, and at least the first micromechanical component being constituted by a watch micromechanical component according to the first embodiment of the invention.
  • the first component is in accordance with the first embodiment of the invention.
  • the second component it comprises contact zones whose rectilinear and parallel ridges are inclined or perpendicular to the direction of sliding.
  • FIG. 7 is a schematic plan view of an exemplary embodiment of a contact zone of the second micromechanical component of a timepiece, said contact zone being arranged to slide against a contact zone of the first component micromechanical timepiece, and the first component being constituted by a watch micromechanical part according to an embodiment of the invention.
  • the contact zone represented in FIG. 7 is very similar to that of FIG. 6.
  • the rows of pins of the contact zone of the second micromechanical component are inclined by 30 ° relative to the sliding direction. The inclination can vary from 10 ° to 45 °, this advantageously allows a reduction in friction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

La pièce de micromécanique horlogère comprend des surfaces de contact prévues pour glisser contre des zones de contact correspondantes d'une autre pièce de micromécanique dans une pièce d'horlogerie; - la pièce de micromécanique étant fabriquée à partir d'un matériau fragile; - lesdites surfaces de contact de la pièce de micromécanique étant striées, les stries étant rectilignes et parallèles à la direction de glissement; - lesdites stries étant séparées par des intervalles pleins dont la largeur est comprise entre 0.5 et 50 microns; et - l'aire occupée par les intervalles pleins, dite aire de contact effective, étant comprise entre 2 et 70% de l'aire totale de la surface de contact.

Description

Pièce de micromécanique horlogère
Une première modalité de la présente invention concerne une pièce de micromécanique horlogère agencée pour interagir mécaniquement avec une autre pièce micromécanique dans une pièce d’horlogerie, les deux pièces micromécaniques comprenant des zones de contact respectives qui sont agencées pour glisser l’une contre l’autre lors des interactions mécaniques entre la pièce de micromécanique horlogère et l’autre pièce micromécanique. Un seconde modalité de la présente invention concerne une pièce d’horlogerie mécanique qui comporte un premier et un deuxième composant micromécanique qui sont agencés pour interagir mécaniquement, le premier et le deuxième composant micromécanique comprenant des zones de contact respectives agencées pour glisser l’une contre l’autre lors des interactions mécaniques entre le premier et le deuxième composant micromécanique, et au moins le premier composant micromécanique étant constitué par une pièce de micromécanique horlogère selon la première modalité de l’invention. L’invention concerne notamment une pièce de micromécanique horlogère qui est conforme à la définition ci-dessus et qui fait partie d’un échappement à ancre. A cet égard, on rappellera que l’échappement est le mécanisme qui assure l’interface entre le rouage et l’organe régulateur (le balancier ou le pendule) d’une pièce d’horlogerie. L’échappement a notamment pour fonction d’entretenir les oscillations de l’organe régulateur.
ART ANTERIEUR
Les mécanismes d’échappement connus sont divers et nombreux. Toutefois, à l’heure actuelle, les mécanismes d’échappement qui équipent la très grande majorité des montres mécaniques sont du type échappement à ancre suisse. Les échappements de ce type comprennent une ancre dont les deux bras se terminent chacun par une palette. L’ancre est agencée pour pivoter alternativement dans un sens et dans l’autre de manière à ce que les palettes viennent l’une après l’autre bloquer puis libérer, une des dents de la roue d’échappement. Lorsqu’une des palettes libère une dent qu’elle bloquait jusque-là, la roue d’échappement tourne un bref instant avant qu’une prochaine dent chute contre l’autre palette. La roue d’échappement avance donc par à-coups, et on peut noter que ce sont les chutes successives des dents de cette roue (une fois sur deux contre l’extérieur de la palette d’entrée, l’autre fois contre l’intérieur de la palette de sortie) qui sont responsables du « tic-tac » de la montre. On comprendra de ce qui précède que les palettes sont continuellement soumises à des chocs et à des frottements. C’est la raison pour laquelle les palettes sont le plus souvent réalisées en rubis.
Le mouvement de l’échappement durant chaque demi-période du balancier peut se décomposer en trois phases. Ces trois phases sont la phase de dégagement durant laquelle l’ancre pivote pour dégager une de ses palettes de la dent de la roue d’échappement avec laquelle elle était en prise. Lorsque l’ancre pivote, la palette se dégage en glissant contre le flanc avant de la dent, de sorte qu’elle s’écarte un peu de la roue d’échappement. Une fois la palette dégagée du flanc avant de la dent, la roue d’échappement n’est plus complètement bloquée, et on passe alors à la phase d’impulsion durant laquelle c’est le plan d’impulsion de la dent qui pousse en biais contre le plan d’impulsion de la palette. Comme la force exercée par la dent sur la palette est orientée en biais, la composante tangentielle de cette force fait glisser le plan d’impulsion de la dent contre celui de la palette, et simultanément, la composante normale de cette force propulse l’ancre, la faisant pivoter de manière à entraîner brièvement le balancier. L’ancre pivote jusqu’à ce que la palette se trouve finalement en dehors de la trajectoire de la dent, mettant fin à la phase d’impulsion. La roue d’échappement est alors complètement libre de tourner jusqu’à ce qu’une dent suivante chute sur l’autre palette, entraînant un nouvel arrêt de la roue d’échappement. Cette troisième phase est appelée la phase de chute. Le glissement des palettes contre les dents de la roue d’échappement engendre nécessairement des forces de frottement. Ainsi, durant la phase de dégagement, une force de frottement s’oppose au glissement du plan de repos de la palette contre le flanc avant de la dent de la roue d’échappement. L’ancre doit fournir un certain travail pour vaincre cette force. De même, durant la phase d’impulsion qui suit, une force de frottement s’oppose au glissement du plan d’impulsion de la palette contre le plan d’impulsion de la dent. La roue d’échappement doit fournir un certain travail pour vaincre cette force. L’existence de ces forces de frottements relativement intenses entre les palettes de l’ancre et les dents de la roue d’échappement entraîne une diminution tout à la fois de la précision et de la durée de vie du mouvement horloger. En particulier, l’énergie perdue par le balancier sous forme de frottement durant la phase de dégagement doit ensuite être compensée par l’échappement durant la phase d’impulsion. De plus, l’échappement doit également compenser l’énergie perdue sous forme de frottement durant la phase d’impulsion elle-même, et la quantité d’énergie dépensée dans ce but réduit d’autant la quantité d’énergie que l’échappement peut effectivement fournir au balancier. Encore un autre problème est que les frottements accélèrent l’usure au niveau des surfaces de contact entre les pièces de l’échappement. Les pièces finissent par se déformer et elles doivent donc être remplacées plus souvent.
Conformément à une relation bien connue, la force de frottement qu’il faut vaincre pour qu’un solide glisse sur une surface à vitesse constante est donnée par la formule suivante :
Fd = A FN
où Fd est la force de frottement dynamique ;
m est le coefficient de frottement dynamique ;
FN est la composante normale de la force d’application. Dans la plupart des situations concrètes, la force d’application et sa composante normale FN s’apparentent d’avantage à des données du problème qu’à des paramètres sur lesquels il serait possible de jouer. Ainsi, dans le but de réduire les frottements, on a plutôt cherché à faire diminuer le coefficient de frottement m. On sait que ce coefficient dépend de plusieurs facteurs comme l’appariement des matériaux en contact, la rugosité des surfaces de contact, les traitements de surface, la lubrification, etc. En particulier, l’utilisation d’huile comme lubrifiant est très répandue en horlogerie. Le recours à la lubrification présente toutefois un certain nombre de problèmes. Il impose en particulier de faire passer des services réguliers à la montre, de façon notamment à pouvoir remettre de l’huile ou nettoyer les rouages. Il serait donc avantageux de disposer de pièces de micromécanique horlogère conformes à la définition donnée en préambule et qui ne nécessitent pas d’utiliser un lubrifiant. BREF EXPOSE DE L’INVENTION
Un but de la présente invention est de remédier aux inconvénients de l’art antérieur qui viennent d’être expliqués. La présente invention atteint ce but ainsi que d’autres en fournissant, d’une part, une pièce de micromécanique horlogère conforme à la revendication 1 annexée, et en fournissant, d’autre part, une pièce d’horlogerie mécanique conforme à la revendication 8 annexée.
On comprendra que l’expression « zone de contact » peut désigner aussi bien une zone de contact plane (autrement dit une surface de contact) qu’une zone de contact linéaire (autrement dit une arrête formée par la rencontre de deux surfaces).
Conformément à l’invention, les surfaces de contact de la pièce de micromécanique présentent des stries rectilignes et parallèles. Un premier effet de la présence de stries formées dans une surface de contact est de réduire l’aire de la partie de la surface de contact, qui est effectivement en frottement lorsque la surface de contact glisse contre une zone de contact d’une autre pièce. A cet égard, on peut remarquer que l’aire de contact n’apparaît pas dans la formule de la force de frottement dynamique (donnée plus haut). En effet, on admet en général que la force de frottement est indépendante de l’aire de contact. Les essais réalisés par la demanderesse montrent toutefois que la présence de stries sur la surface de contact conduit à une diminution des forces de frottement même dans le cas d’une surface de contact relativement grande (hauteur de composant de 130 microns).
Conformément à l’invention, la pièce de micromécanique horlogère est réalisée en un matériau fragile. On comprendra que dans le présent texte, l’expression « matériau fragile » désigne les matériaux qui, dans le cadre d’une utilisation en micromécanique horlogère, sont caractérisés par une rupture fragile, c'est-à-dire une rupture sans déformation plastique préalable, au cours d'un chargement élastique, dès que la contrainte atteint localement le seuil critique. Un matériau fragile est donc par définition un matériau qui se casse facilement de par sa nature même. Un matériau fragile peut faire preuve d’une certaine élasticité. Toutefois, lorsqu’il est soumis à des contraintes d’une certaine intensité, il se casse sans déformations plastiques préalables. Des exemples de matériaux fragiles pouvant être utilisés avec l’invention sont les verres, les céramiques, le silicium, les polymères, en particulier le quartz, le saphir et le silicium mono- ou poly-cristallin, ainsi que le quartz amorphe. Des exemples de verres, on peut citer la silice vitreuse, les verres sodocalciques, les borosilicates, les verres non alcalins, la silice vitreuse, les alumino-silicates et les verres fluorés. On peut identifier également trois familles de céramiques : les oxydes, les non-oxydes et les composites. Font partie de ces trois familles de céramiques : l’oxyde de silicium, l’oxyde de zirconium, l’alumine, les carbures ou nitrures de silicium, le silinvar® pour les composites. Enfin, parmi les polymères, on peut citer par exemple des polymères à haute performance mécanique, tels que les PEEK ou les polyamides.
D’une manière générale, la résistance des matériaux fragiles en cas de chocs n’est pas non plus très élevée. C’est probablement la raison pour laquelle, à la connaissance de la demanderesse, il n’a jamais été proposé jusqu’ici de réaliser des composants destinés à un mécanisme d’échappement sous forme de pièces monolithiques fabriquées chacune à partir d’un unique morceau de verre. L’homme du métier sait bien, en effet, que les verres destinés à résister aux chocs sont habituellement des verres feuilletés. C’est-à-dire des verres laminés qui sont constitués d'une pluralité de feuilles de verre collées les unes aux autres par des films intercalaires dont le comportement est plastique.
Conformément à la seconde modalité de l’invention, la pièce d’horlogerie mécanique comporte un premier et un deuxième composant micromécanique qui comprennent des zones de contact respectives agencées pour glisser l’une contre l’autre lors des interactions mécaniques entre le premier et le deuxième composant micromécanique. Le premier composant micromécanique, au moins, est constitué par une pièce de micromécanique horlogère conforme à la première modalité de l’invention.
Selon un mode de réalisation particulier de la seconde modalité de l’invention, seul le premier composant est conforme à la première modalité de l’invention ; les stries rectilignes et parallèles des zones de contact du deuxième composant étant inclinées ou perpendiculaires à la direction de glissement. Un avantage de ce mode de réalisation est de réduire le risque que les zones de contact respectives ne s’accrochent l’une à l’autre.
BREVE DESCRIPTION DES FIGURES
D’autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés dans lesquels :
la figure 1 est une vue schématique en plan représentant un échappement à ancre suisse de l’art antérieur ;
la figure 2 est une vue schématique en perspective d’une roue d’échappement correspondant à un premier mode de réalisation exemplaire de la pièce de micromécanique de l’invention ; la figure 3A est une vue schématique en plan représentant le plan d’impulsion d’une des dents de la roue d’échappement de la figure 2 ;
la figure 3B est une vue en coupe selon B-B de la figure 3A ; la figure 4 est une vue en perspective d’une ancre correspondant à un deuxième mode de réalisation exemplaire de la pièce de micromécanique de l’invention ;
la figure 5 est un gros plan montrant plus en détail le plan d’impulsion de la palette d’entrée de l’ancre de la figure 4 ;
la figure 6 est une vue schématique en plan représentant un plan d’impulsion qui peut appartenir à l’une des palettes d’une ancre conforme à un troisième mode de réalisation de l’invention, ou alternativement, appartenir à une des dents d’une roue d’échappement conforme à un quatrième mode de réalisation de l’invention ;
la figure 7 est une vue schématique en plan d’une forme de réalisation d’une zone de contact du deuxième composant micromécanique d’une pièce d’horlogerie, ladite zone de contact étant agencée pour glisser contre une zone de contact du premier composant micromécanique de la pièce d’horlogerie, et le premier composant étant constitué par une pièce de micromécanique horlogère conforme à un mode de réalisation de l’invention.
DESCRIPTION DETAILLEE DE MODES DE REALISATION
L’invention sera décrite ci-après dans le contexte d’un échappement à ancre suisse. On comprendra toutefois que l’invention ne se limite pas à ce domaine d’application restreint, mais qu’elle concerne au contraire tous les mécanismes d’échappement, et plus généralement, tous les dispositifs de micromécanique horlogère dans lesquels deux composants sont amenés à frotter l’un contre l’autre.
La figure 1 est une vue schématique en plan représentant un échappement à ancre suisse de l’art antérieur. Le mécanisme représenté comporte notamment une roue d’échappement 3, une ancre 5 et un grand plateau 7 par le centre duquel passe l’axe du balancier 9. Les deux bras de l’ancre se terminent chacun par une palette 11 , 13. Les palettes sont agencées pour coopérer avec les dents 15 de la roue d’échappement 3. De façon conventionnelle, la roue d’échappement est reliée au barillet (non représenté) par l’intermédiaire d’un rouage (non représenté) qui vient en prise avec le pignon d’échappement (référencé 17). La roue d’échappement est ainsi sollicitée en permanence vers l’avant (autrement dit, dans le sens horaire tel que représenté à la figure 1 ). On remarquera qu’à l’instant représenté, une des dents 15 de la roue d’échappement 3 est immobilisée contre le plan de repos de la palette d’entrée 11 de l’ancre 5. Entraînée par le balancier, l’ancre 5 entame un mouvement de pivotement autour de l’axe 19 dans le sens horaire. Le pivotement de l’ancre dans le sens horaire conduit la palette d’entrée à glisser en direction du haut (sur le dessin) contre le flanc avant de la dent 15. Cette phase de dégagement se terminera à l’instant où le plan de repos de la palette aura cessé de faire obstacle à l’avancée du flanc avant de la dent. Ensuite, c’est le sommet aplati de la dent 15 (appelé plan d’impulsion de la dent) qui sera amené à glisser contre la face inférieure de la palette 11 (le plan d’impulsion de la palette). Le contact en biais entre les deux plans d’impulsion aura également pour effet de repousser la palette d’entrée 11 vers le haut, de sorte que le mouvement de pivotement de l’ancre 5 dans le sens horaire sera accentué. Cette phase d’impulsion se terminera lorsque la palette d’entrée 11 aura été repoussée suffisamment loin pour offrir un passage complètement dégagé à la dent 15. Les deux phases successives qui viennent d’être décrites durant lesquelles une dent 15 de la roue d’échappement 3 glisse contre les surfaces d’une des palettes 11 , 13 de l’ancre 5, sont chacune génératrices de frottements considérables.
La figure 2 est une vue schématique en perspective d’une roue d’échappement 53 correspondant à un premier mode de réalisation particulier de l’invention. La roue d’échappement du présent exemple est une pièce monolithique fabriquée à partir d’un unique morceau de verre. On comprendra toutefois que selon d’autres variantes de l’invention, la roue d’échappement pourrait ne pas être en verre, mais être réalisée en un autre matériau fragile. De plus, la roue d’échappement pourrait ne pas être monolithique, mais être formées de plusieurs pièces assemblées, Les figures 3A et 3B sont des vues schématiques respectivement en plan et en coupe du plan d’impulsion 67 d’une des dents 65 de la roue d’échappement 53. Conformément à l’invention, la roue d’échappement 53 se distingue des roues d’échappement de l’art antérieur du fait que les plans d’impulsion 67 de chacune des dents 65 portent des stries (ou créneaux) rectilignes et parallèles à la direction de glissement. En se référant plus particulièrement aux figures 3A et 3B, on peut voir que la surface de chacun des plan d’impulsion 67 comporte sept côtes (ou merlons) parallèles (représentées chacune par un trait blanc épais), et que chaque côte est séparée de ses voisines par une strie (représentée par un trait noir épais). Dans l’exemple illustré, les côtes et les stries ont chacune une largeur de 10 microns, de sorte que la largeur totale du plan d’impulsion 67 est de 130 microns. On notera au passage que la roue d’échappement 53 est d’épaisseur constante et que son épaisseur est donc égale à la largeur des plans d’impulsion ; c’est-à-dire à 130 microns. On peut également calculer que l’aire de contact effective durant la phase d’impulsion est réduite de 46,2% par rapport à une roue d’échappement de même dimension ayant des plans d’impulsion lisses. Comme déjà mentionné, la demanderesse a réalisé des essais qui montrent que l’utilisation d’une roue d’échappement striée comme celle du présent exemple peut entraîner une réduction significative de la proportion de l’énergie qui est dissipée en raison des forces de frottement. Par ailleurs, la forme anguleuse particulière des créneaux et des merlons est simple à produire par laser. Cela permet d’obtenir un trait très précis et de contrôler la profondeur des créneaux grâce à un outil facile à paramétrer. Cette forme permet en outre de contrôler facilement le degré d’usure de la pièce de micromécanique horlogère. Tel un témoin d’usure, la forme en merlons et créneaux permet de savoir d’un simple coup d’œil si, oui ou non, les frottements ont altéré les propriétés mécaniques de la pièce de micromécanique en détériorant la forme de la zone de contact.
La figure 4 est une vue en perspective d’une ancre 105 qui correspond à une deuxième mode de réalisation particulier de l’invention. La figure 5, quant à elle, est un gros plan montrant plus en détail le plan d’impulsion 121 de la palette d’entrée 1 1 1 de l’ancre 105. L’ancre représentée est une pièce monolithique fabriquée à partir d’un unique morceau de verre. On comprendra toutefois que selon d’autres variantes de l’invention, l’ancre pourrait ne pas être en verre, mais être réalisée en un autre matériau fragile. De plus, l’ancre pourrait ne pas être monolithique, mais être formées de plusieurs pièces assemblées. Conformément à l’invention, l’ancre 105 se distingue des ancres de l’art antérieur du fait que les plans d’impulsion 121 , 123 de ses deux palettes 1 1 1 , 1 13 portent des stries rectilignes et parallèles à la direction de glissement. En se référant plus particulièrement à la figure 5, on peut voir que la surface du plan d’impulsion 121 comporte sept merlons (ou côtes) parallèles, et que chaque côte est séparée de ses voisines par un créneau (ou strie). Dans l’exemple illustré, les merlons ont une largeur de 12 microns, alors que les créneaux ont une largeur de 8 microns, de sorte que la largeur totale du plan d’impulsion 121 est de 132 microns. De façon semblable à ce qui était déjà le cas avec la roue d’échappement de l’exemple précédent, l’ancre illustrée est d’épaisseur constante. Son épaisseur est donc sensiblement égale à 132 microns. On peut également calculer que l’aire de contact effective durant la phase d’impulsion est réduite de 36,4% par rapport à une ancre de même dimension ayant des plans d’impulsion lisses.
La figure 6 est une vue schématique en plan semblable à la figure 3A. Le plan d’impulsion qu’elle représente peut être celui d’une des palettes d’une ancre selon un troisième mode de réalisation de l’invention, ou alternativement, être celui d’une des dents d’une roue d’échappement selon un quatrième mode de réalisation de l’invention. Dans l’exemple représenté, le plan d’impulsion comporte cinq rangées parallèles de onze ergots chacune. On comprendra que ces cinq rangées sont séparées les unes des autres par quatre premières stries qui sont orientées parallèlement à la direction de glissement. On peut observer de plus que le plan d’impulsion comporte également deux stries latérales (ou épaulements) qui sont parallèles aux premières stries, et dix deuxièmes stries qui séparent les onze ergots de chaque rangée les uns des autres. Les deuxièmes stries sont orientées perpendiculairement à la direction de glissement, de sorte qu’elles coupent les quatre premières stries et les deux stries latérales à angle droit et forment avec celles-ci un réseau rectangulaire. Dans l’exemple illustré, les stries ont toutes une largeur de 13 microns, et les ergots ont la forme de carrés de 10 microns de côté, de sorte que la largeur totale du plan d’impulsion est égale à 128 microns est que sa longueur est légèrement supérieure à 240 microns.
La pièce de micromécanique horlogère de l’invention peut être fabriquée à l’aide de tout procédé que l’homme du métier jugera adéquat. Toutefois, de manière avantageuse, la pièce peut être réalisée par usinage 3D d’un morceau de verre de silice (quartz amorphe). De façon préférée, la pièce est fabriquée à partir d’un morceau de verre de silice transparent par un procédé d’usinage laser femtoseconde. Ce procédé consiste à se munir d’un laser produisant des impulsions dont la durée est de l’ordre de la femtoseconde ; de focaliser le faisceau laser de manière à exposer sélectivement selon un motif voulu le volume d’un morceau de verre transparent ; et finalement de graver chimiquement le morceau de verre exposé avec de l’acide fluoridrique.
On a vu qu’une seconde modalité de l’invention concerne une pièce d’horlogerie mécanique qui comporte un premier et un deuxième composant micromécanique qui sont agencés pour interagir mécaniquement, le premier et le deuxième composant micromécanique comprenant des zones de contact respectives agencées pour glisser l’une contre l’autre lors des interactions mécaniques entre le premier et le deuxième composant micromécanique, et au moins le premier composant micromécanique étant constitué par une pièce de micromécanique horlogère selon la première modalité de l’invention. Selon un mode de réalisation exemplaire de cette seconde modalité de l’invention, seul le premier composant est conforme à la première modalité de l’invention. Quant au deuxième composant, il comporte de zones de contact dont les stries rectilignes et parallèles sont inclinées ou perpendiculaire à la direction de glissement.
La figure 7 est une vue schématique en plan d’une forme de réalisation exemplaire d’une zone de contact du deuxième composant micromécanique d’une pièce d’horlogerie, ladite zone de contact étant agencée pour glisser contre une zone de contact du premier composant micromécanique de la pièce d’horlogerie, et le premier composant étant constitué par une pièce de micromécanique horlogère conforme à un mode de réalisation de l’invention. On peut voir que la zone de contact représentée dans la figure 7 est très semblable à celle de la figure 6. Toutefois, on peut voir que les rangées d’ergots de la zone de contact du deuxième composant micromécanique sont inclinées de 30° relativement à la direction de glissement. L’inclinaison peut varier de 10° à 45°, cela permet avantageusement une réduction des frottements.
On comprendra en outre que diverses modifications et/ou améliorations évidentes pour un homme du métier peuvent être apportées aux modes de réalisation qui font l’objet de la présente description sans sortir du cadre de la présente invention définie par les revendications annexées. En particulier, bien que l’invention ait été décrite en relation avec une roue d’échappement et une ancre, il est clair que l’invention ne concerne pas uniquement les composants des échappements, mais qu’elle concerne de manière tout à fait générale l’ensemble des pièces de micromécanique horlogère.

Claims

REVENDICATIONS
1. Pièce de micromécanique horlogère comprenant des surfaces de contact prévues pour glisser contre des zones de contact correspondantes d’une autre pièce de micromécanique dans une pièce d’horlogerie, caractérisée en ce que
- la pièce de micromécanique est fabriquée à partir d’un matériau fragile ;
- lesdites surfaces de contact de la pièce de micromécanique sont striées, les stries étant rectilignes et parallèles à la direction de glissement ;
- les stries sont séparées par des intervalles pleins dont la largeur est comprise entre 0.5 et 50 microns ; de préférence entre 0.5 et 25 microns ;
- l’aire occupée par les intervalles pleins, dite aire de contact effective, est comprise entre 2 et 70% de l’aire totale de la surface de contact.
2. Pièce de micromécanique horlogère conforme à la revendication 1 , caractérisée en ce, qu’en section transversale, les stries rectilignes et parallèles ont une forme de créneau, et les intervalles pleins ont une forme de merlon.
3. Pièce de micromécanique horlogère conforme à la revendication 1 ou 2, caractérisée en ce qu’il s’agit d’une pièce monolithique fabriquée à partir d’un unique morceau d’un matériau fragile.
4. Pièce de micromécanique horlogère conforme à la revendication 3, caractérisée en ce que le matériau fragile est choisi parmi les verres, le silicium, les céramiques et les polymères.
5. Pièce de micromécanique horlogère conforme à la revendication 3, caractérisée en ce que le matériau fragile est du verre de silice.
6. Pièce de micromécanique horlogère conforme à l’une quelconque des revendications précédentes, caractérisée en ce que lesdites surfaces de contact de la pièce de micromécanique présentent des premières stries parallèles à la direction de glissement, et des deuxièmes stries d’orientation différentes de celles des premières stries, les premières et les deuxièmes stries formant ensemble un reseau.
7. Pièce de micromécanique horlogère conforme à la revendication 6, caractérisée en ce que les deuxièmes stries sont orientées perpendiculairement à la direction de glissement.
8. Pièce d’horlogerie mécanique comportant un premier et un deuxième composant micromécanique agencés pour interagir mécaniquement, le premier et le deuxième composant micromécanique comprenant des zones de contact respectives agencées pour glisser l’une contre l’autre lors des interactions mécaniques entre le premier et le deuxième composant micromécanique ; caractérisée en ce que
- au moins le premier composant micromécanique est réalisé à partir d’un matériau fragile ;
- les zones de contact du premier composant micromécanique sont des surfaces striées, les stries étant rectilignes et parallèles à la direction de glissement.
- lesdites stries sont séparées par des intervalles pleins dont la largeur est comprise entre 0.5 et 50 microns ; de préférence entre 0.5 et 25 microns ;
- l’aire occupée par les intervalles pleins, dite aire de contact effective, est comprise entre 2 et 70% de l’aire totale de la surface de contact.
9. Pièce d’horlogerie mécanique conforme à la revendication 8, caractérisée en ce, qu’en section transversale, les stries rectilignes et parallèles des zones de contact du premier composant mécanique ont une forme de créneau, les intervalles entre les stries ayant une forme de merlon.
10. Pièce d’horlogerie mécanique conforme à la revendication 8 ou 9, caractérisée en ce que les zones de contact du deuxième composant micromécanique sont striées, les stries étant rectilignes et faisant un angle avec la direction de glissement.
PCT/IB2018/059706 2017-12-06 2018-12-06 Pièce de micromécanique horlogère WO2019111195A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18830527.0A EP3721298A1 (fr) 2017-12-06 2018-12-06 Pièce de micromécanique horlogère

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17205752.3 2017-12-06
EP17205752 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111195A1 true WO2019111195A1 (fr) 2019-06-13

Family

ID=60627496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/059706 WO2019111195A1 (fr) 2017-12-06 2018-12-06 Pièce de micromécanique horlogère

Country Status (2)

Country Link
EP (1) EP3721298A1 (fr)
WO (1) WO2019111195A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650826A (zh) * 2020-03-23 2020-09-11 飞亚达精密科技股份有限公司 擒纵叉及其制造方法、擒纵组件及其制造方法
EP3865955A1 (fr) * 2020-02-17 2021-08-18 The Swatch Group Research and Development Ltd Procédé de fabrication d'une pièce mécanique d'horlogerie monobloc

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH290042A (fr) * 1951-03-10 1953-04-15 Jeanmairet Andre Roue d'échappement.
CH690013A5 (fr) * 1995-10-06 2000-03-15 Laesser Alain Palette d'ancre pour mouvement d'horlogerie et procédé de fabrication.
JP2010077528A (ja) * 2008-08-28 2010-04-08 Seiko Instruments Inc 機械部品、機械部品の製造方法および時計
CH704206A2 (fr) * 2010-12-14 2012-06-15 Chopard Technologies Sa Ancre et échappement muni d'une telle ancre.
EP2579104A2 (fr) * 2011-10-07 2013-04-10 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procédé de réalisation d'une pièce d'horlogerie composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH290042A (fr) * 1951-03-10 1953-04-15 Jeanmairet Andre Roue d'échappement.
CH690013A5 (fr) * 1995-10-06 2000-03-15 Laesser Alain Palette d'ancre pour mouvement d'horlogerie et procédé de fabrication.
JP2010077528A (ja) * 2008-08-28 2010-04-08 Seiko Instruments Inc 機械部品、機械部品の製造方法および時計
CH704206A2 (fr) * 2010-12-14 2012-06-15 Chopard Technologies Sa Ancre et échappement muni d'une telle ancre.
EP2579104A2 (fr) * 2011-10-07 2013-04-10 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procédé de réalisation d'une pièce d'horlogerie composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865955A1 (fr) * 2020-02-17 2021-08-18 The Swatch Group Research and Development Ltd Procédé de fabrication d'une pièce mécanique d'horlogerie monobloc
CN111650826A (zh) * 2020-03-23 2020-09-11 飞亚达精密科技股份有限公司 擒纵叉及其制造方法、擒纵组件及其制造方法

Also Published As

Publication number Publication date
EP3721298A1 (fr) 2020-10-14

Similar Documents

Publication Publication Date Title
EP3182213B1 (fr) Mécanisme de réglage d'une vitesse moyenne dans un mouvement d'horlogerie et mouvement d'horlogerie
EP2553532B1 (fr) Echappement d'horlogerie a protection contre les chocs
CH705944A2 (fr) Procédé de réalisation d'un composant et composant horloger fabriqué par un tel procédé
EP2952971B1 (fr) Ancre pour mécanisme d'échappement d'un mouvement de montre
CH709082A2 (fr) Procédé de fabrication d’un composant horloger.
WO2019111195A1 (fr) Pièce de micromécanique horlogère
EP3435172B1 (fr) Procede de realisation d'un mecanisme de guidage flexible pour oscillateur mecanique d'horlogerie
EP2801868B1 (fr) Roue d'échappement
EP2413202A1 (fr) Procédé d'amélioration de tenue à l'usure et aux chocs d'un composant de mouvement d'horlogerie. Ancre pour mouvement d'horlogerie résistante à l'usure et aux chocs
EP4018268A1 (fr) Procédé de fabrication d'un palier horloger
EP3430478B1 (fr) Mécanisme pour pièce d'horlogerie et pièce d'horlogerie comprenant un tel mécanisme
EP3401740B1 (fr) Composant horloger pour chassage sans bavure
CH715419A2 (fr) Palier pour pièce horlogère et procédé pour la fabrication d'un tel palier.
EP3407143A1 (fr) Dispositif de liaison mécanique
EP3182214A1 (fr) Oscillateur mécanique pour pièce d'horlogerie, mécanisme de réglage comportant cet oscillateur mécanique, et mouvement d'horlogerie
CH716692A2 (fr) Procédé de fabrication d'un composant en silicium, typiquement horloger.
WO2014114379A1 (fr) Pièce d'horlogerie oscillante
CH709903A2 (fr) Ensemble démontable d'horlogerie.
EP3432080A1 (fr) Composant horloger
CH717409A2 (fr) Pièce en silicium pour l'horlogerie et procédé de fabrication d'une telle pièce.
WO2024074517A1 (fr) Axe horloger
EP3644129A1 (fr) Organe de guidage flexible
EP3273311A1 (fr) Dispostif d'affichage
EP3707564A1 (fr) Ensemble horloger comprenant un composant horloger et un dispositif pour le guidage en translation d'un element mobile
CH712108B1 (fr) Masse oscillante, notamment pour pièce d'horlogerie.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18830527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018830527

Country of ref document: EP

Effective date: 20200706