WO2019110540A1 - Procédé destiné à déterminer un état de fonction d'un capteur à ultrasons, une tension étant détectée, et dispositif de capteur à ultrasons pourvu d'un capteur à ultrasons - Google Patents

Procédé destiné à déterminer un état de fonction d'un capteur à ultrasons, une tension étant détectée, et dispositif de capteur à ultrasons pourvu d'un capteur à ultrasons Download PDF

Info

Publication number
WO2019110540A1
WO2019110540A1 PCT/EP2018/083403 EP2018083403W WO2019110540A1 WO 2019110540 A1 WO2019110540 A1 WO 2019110540A1 EP 2018083403 W EP2018083403 W EP 2018083403W WO 2019110540 A1 WO2019110540 A1 WO 2019110540A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic sensor
test signal
electrical
electrical test
ultrasonic
Prior art date
Application number
PCT/EP2018/083403
Other languages
German (de)
English (en)
Inventor
Bastian Hafner
Fabian Haag
Mathieu BAICRY
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Publication of WO2019110540A1 publication Critical patent/WO2019110540A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to a method for determining a functional state of an ultrasonic sensor of an ultrasonic sensor device for a motor vehicle.
  • Ultrasonic sensor is designed for emitting an ultrasonic signal in an environment of the motor vehicle and / or for receiving an echo signal of the ultrasonic signal.
  • a sound transducer element of the ultrasonic sensor is excited with an electrical test signal, wherein the electrical test signal is defined by an electrical current, an electrical voltage and a frequency.
  • the functional state is determined depending on an evaluation of the electrical test signal.
  • the invention relates to an ultrasonic sensor device with at least one ultrasonic sensor.
  • Ultrasonic sensors on motor vehicles are designed in particular for the distance measurement of objects.
  • an electro-acoustic energy conversion takes place.
  • this energy conversion which may be, among others, mechanical-inductive, mechanical-capacitive, mechanical-restrictive, magnetic-restrictive or electrostrictive nature
  • each energy-transforming element has the potential to undergo internally or externally induced changes ever strength can lead to a falsification of the measurement result or a complete sensor failure.
  • a sensor failure is mostly detected by plausibility checks by the sensor-driven system. Sensor changes, however, are not detected.
  • Ultrasonic sensor device of a motor vehicle wherein in a measuring operation for detecting an object in an environmental region of the motor vehicle
  • Transducer of an ultrasonic sensor for emitting an ultrasonic signal by means of a transmission stage is excited with a transmission signal.
  • a measuring signal is provided based on a signal generated by the transducer.
  • a diagnostic device is used
  • Object of the present invention is to provide a method and a
  • Ultrasonic sensor device by means of which or by means of which at least one functional state of the ultrasonic sensor can be better determined.
  • One aspect of the invention relates to a method for determining a functional state of an ultrasonic sensor of an ultrasonic sensor device for a motor vehicle.
  • the ultrasonic sensor is designed to emit an ultrasonic signal in an environment of the motor vehicle and / or to receive an echo signal of the ultrasonic signal.
  • a sound transducer element of the ultrasonic sensor is excited with an electrical test signal.
  • the electrical test signal is defined by an electrical current, an electrical voltage and a frequency.
  • the functional state is determined depending on an evaluation of the electrical test signal.
  • the sound transducer element is excited with an electrical test signal having a predetermined known electric current and which is frequency modulated.
  • An electrical voltage dependent on this electrical test signal is detected at the sound transducer element and, depending on the detected voltage, at least one value of a parameter electrically characterizing the ultrasonic sensor is determined, which is compared with a value of a reference parameter value electrically characterizing a reference ultrasound sensor and depending on the comparison the functional state of Ultrasonic sensor determined.
  • an electrical test signal is generated, which is applied to the ultrasonic sensor, wherein at least one of the electrical test signal influenced voltage of the ultrasonic sensor is evaluated.
  • a parameter value of the ultrasonic sensor that electrically characterizes the ultrasonic sensor is determined, which is compared with a reference parameter value that electrically characterizes a reference ultrasound sensor. Depending on the comparison, the
  • the known current intensity can be variable, but preferably constant.
  • the functional state of the ultrasonic sensor can thus be determined directly and thus not falsified by, for example, environmental influences.
  • this makes it possible to carry out a more precise determination of the functional state of the ultrasound sensor, so that the ultrasound sensor can not only be checked for failure or functional capability, but also further functional states such as, for example, a degree of contamination or an extent of icing of the ultrasound sensor can be determined.
  • the determination of the functional state is thus performed inside the sensor, which also means that no echo signal to be evaluated has to be received for this functional test.
  • a functional state determination model is provided for the ultrasound sensor device.
  • a corresponding action is performed. For example, in the case of a defect in the ultrasonic sensor, a warning message can be generated so that a person in the motor vehicle is informed that the ultrasonic sensor is at least limited in its functionality. It is also possible that, for example, if a heating of the ultrasonic sensor is detected, a heating element of the
  • Ultrasonic sensor is controlled to remove the icing. Should,
  • the power can be increased accordingly, so that a reliable continued operation of the ultrasonic sensor can still be realized.
  • the current intensity of the electrical test signal is measured and set or regulated to a desired value.
  • the voltage is detected at the sound transducer element.
  • the voltage can then be transmitted in particular to an evaluation unit, which is used to determine the functional state of the sound transducer element, for example by extraction of the electrical parameters. Alternatively, however, this can also be done by the sensor-internal signal processing by means of a sensor-internal Evaluation be performed.
  • the sound transducer element may in particular be a piezoelectric element.
  • Compensation measures to the parameters such as transmission current, the reception gain, the transmission frequency, receive filter, pickup pulse duration, etc. are initiated with or without information for the driver of the system degeneration.
  • the at least one further sensor may be part of the ultrasound sensor and / or the ultrasound sensor device and / or of the motor vehicle.
  • Operating modes of the motor vehicle in particular in the ferry operation of the motor vehicle can be performed.
  • the determination of the functional state can be carried out in a plurality of operating modes of the motor vehicle.
  • the ultrasonic sensor can be reliably and reliably operated in ferry mode and other modes.
  • a transfer function of the ultrasonic sensor is defined by the electrically characterizing parameter.
  • the ultrasonic sensor transfer function describes the mathematical relationship between the input and output signals of the ultrasonic sensor.
  • the corresponding output signal that is to say the reaction of the ultrasonic sensor to the frequency-modulated input signal
  • the transfer function of the ultrasonic sensor in the vicinity of the resonance frequency is of particular importance. It is further preferred if a reference transfer function is defined and / or defined by the reference ultrasound sensor characterizing the reference parameter
  • Parameter values of the reference transmission function resulting reference ultrasonic sensor for a plurality of potential functional states are stored on a storage medium of the ultrasonic sensor device.
  • Aging influences or sensor influences or the change in the transfer function due to these influences are stored on the storage medium, so that the functional state of the ultrasonic sensor can be precisely determined for a variety of potential situations in everyday life. As a result, in particular the ultrasonic sensor can be operated safely and reliably.
  • an electrical model or an equivalent circuit diagram of the ultrasonic sensor can be generated with a plurality of electrical components, wherein the electrical model electrically describes the mechanical ultrasonic sensor, wherein parameter values of the electric model are characterized by the parameter value electrically characterizing the ultrasonic sensor (5a) ,
  • the plurality of electrical components with a plurality of electrical components that electrically describe the reference ultrasound transducer
  • Functional state of the ultrasonic sensor can be determined.
  • a quantification of the functional state of the ultrasound sensor based on electrical components can be carried out in a simple and accurate manner.
  • Capacitor separate second capacitor, a first inductor, a second inductance to separate the first inductance, a first ohmic resistance and a second ohmic resistor to the first ohmic resistance is formed, wherein the first capacitor, the first inductance and the first resistive
  • Inductance and the second ohmic resistance are respectively connected in parallel with the series circuit. This is by means of a simple equivalent circuit diagram of
  • Ultrasound sensor described sufficiently accurate.
  • the electrical components of this equivalent circuit diagram are simple electrical components whose values can be easily determined, thereby indicating the functional state of the electronic components Ultrasonic sensor can be drawn inference. Because each of the electrical components behaves electrically differently, a multiplicity of functional states, which is dependent on a large number of influences, of the ultrasound sensor can thus be imaged, so that a precise determination of the current functional state of the ultrasound sensor can be realized. Also, by the present model, a review of the control electronics, which
  • the ultrasonic sensor is formed, for example, for evaluating the transmitted and received ultrasonic signals and, for example, on a circuit board of the ultrasonic sensor
  • a physical capacity of the ultrasonic sensor by means of the second capacitor, a mechanical compliance of a membrane of the ultrasonic sensor by means of the first capacitor, a moving mass of the membrane by the first inductance and a damping of the sound signal by means of the ohmic resistance described become.
  • the at least one functional state of the ultrasonic sensor can be determined by means of the physical capacitance, the mechanical compliance, the moving mass and the damping.
  • a defect of the piezoelectric ceramic can be determined by means of a change of the second capacitor, that is to say the physical capacitance.
  • the second capacitor of the second capacitor may be such a defect.
  • the first capacitor, the first inductance and the first ohmic resistance describe the electro-acoustic model of the sound conversion of the
  • Ultrasonic sensor By changing the capacitance of the first capacitor, in other words the mechanical compliance or the reciprocal of the stiffness, it is possible, for example, to conclude that the ultrasonic sensor is icing, since the yield decreases as soon as ice is on a membrane of the ultrasonic sensor.
  • the moving mass of the membrane which is represented by the first inductance, also changes, so that in particular in the case of ice, the first inductance also changes.
  • contamination of the ultrasonic sensor in other words dirt on the membrane of the
  • Ultrasonic sensor an additional mass is arranged on the membrane of the ultrasonic sensor, so that also changes the first inductance.
  • the first ohmic resistance in particular the attenuation of the ultrasonic signal in the environment can be detected, the attenuation in particular by a Airborne damping takes place, which depends in particular on a
  • respective parameter values of the first capacitance, the second capacitance, the first inductance, the second inductance, the first ohmic resistance and the second ohmic resistance of the ultrasonic sensor can be determined by means of a
  • Parameter value adjustment in particular by means of a numerical optimization, are determined such that with these adjusted parameter values
  • Transfer function model results.
  • a parameter fit which is the parameter adaptation, in the form of the numerical optimization of the parameter fit, it is very easily possible to determine the parameter values of the corresponding electrical components, thereby quickly and easily determining the
  • the sound transducer element can be excited by means of a positive frequency chirp as an electrical test signal.
  • a positive frequency chirp is a frequency-modulated signal, which is modulated in time, in particular from a low frequency to a high frequency.
  • Voltages can be reliably checked at several frequencies and thus a conclusion can be drawn reliably on the functional state of the ultrasonic sensor.
  • the excitation with the positive frequency chirp is performed by frequencies of a same frequency band.
  • the frequency band is defined in particular by predetermined limits. In particular, this indicates
  • Frequency band has a lower limit and an upper limit. Since, in particular, the ultrasound sensor is operated within a frequency band, it is thus advantageous to check the voltage only in this frequency band so as to be able to determine the functional state, in particular around the resonant frequency.
  • Ultrasonic sensor also over the working frequencies, in particular on the Resonance frequency away, can be checked. Thus, a more complete overall picture of the functional state of the ultrasonic sensor can be realized.
  • the sound transducer element is excited by means of a negative frequency chirp as an electrical test signal.
  • the negative frequency chirp is a frequency modulated signal whose frequency is modulated from a high frequency to a lower frequency over time.
  • the ultrasonic sensor can be checked for its functional state over a larger frequency range.
  • Voltages are determined at different frequencies, so that the functional state can be reliably determined.
  • the frequency band is defined in particular by predetermined limits.
  • the frequency band has a lower limit and an upper limit.
  • the ultrasonic sensor is operated within a frequency band, it is thus advantageous to check the voltage only in this frequency band so as to be able to determine the functional state, in particular around the resonance frequency.
  • the excitation with the negative frequency chirp is performed by frequencies of at least two different frequency bands. This can be realized that the ultrasonic sensor and the
  • the sound transducer element can be excited by means of two electrical test signals, wherein a first electrical test signal is different frequency modulated than the second electrical test signal.
  • the first electrical test signal may be a positive frequency chirp and, for example, the second first electrical test signal may be a negative frequency chirp.
  • the two electrical test signals are two positive or two negative frequency chirps. The two different electrical test signals need only be different frequency modulated. This can be a more accurate
  • the transmission element may be, for example, a
  • the sound transducer element is excited with the electrical test signal. This can be component-reduced, in particular, as a
  • Sound transducer element is excited on a secondary side of the transmission element with the electrical test signal.
  • energy losses can be prevented within the transmission element, so that the sound transducer element can be excited with an energy-reduced electrical test signal.
  • the electrical test signal can also be used in ultrasound sensor devices in which the sound transducer element is controlled directly, ie without transformer / transformer.
  • a time profile or an amount or a real part of the voltage or an envelope of the voltage waveform of the voltage can be detected and depending on the value of the ultrasound sensor electrically characterizing parameter transfer function is determined.
  • the transmission function of the ultrasonic sensor and thus the functional state of the ultrasonic sensor can be reliably determined by different electrical properties of the detected voltage.
  • the invention relates to an ultrasonic sensor device having at least one ultrasonic sensor for a motor vehicle, with a transmitting device for transmitting ultrasonic signals, with a receiving device for receiving an echo signal of the ultrasonic signals and with a control device of the ultrasonic sensor, which is adapted to a previously described method or an advantageous Execute embodiment thereof.
  • the ultrasonic sensor device can have an evaluation device, by means of which the evaluation can be carried out.
  • the evaluation unit can be arranged ultrasound-wise or ultrasound-sensor-internally.
  • the invention also relates to a motor vehicle with an ultrasonic sensor device.
  • the motor vehicle is designed in particular as a passenger car.
  • Ultrasonic sensor device and the motor vehicle to have objective features that enable implementation of the method or an advantageous embodiment thereof.
  • Fig. 1 is a schematic plan view of an embodiment of a
  • FIG. 2 is a schematic time-frequency diagram of an embodiment of an electrical test signal
  • FIG. 3 is a schematic time-voltage diagram of a detected voltage in an embodiment of the electrical test signal.
  • Fig. 4 is a schematic equivalent circuit diagram of an embodiment of a
  • FIG. 1 shows a motor vehicle 1 according to an embodiment of the present invention
  • the motor vehicle 1 is in the present embodiment as
  • the motor vehicle 1 comprises a
  • Driver assistance system 2 With the driver assistance system 2, for example, an object 3, which is located in the environment 4 of the motor vehicle 1 are detected. In particular, a distance between the motor vehicle 1 and the object 3 can be determined by means of the driver assistance system 2.
  • the driver assistance system 2 comprises at least one ultrasound sensor device 5.
  • the ultrasound sensor device 5 in turn has at least one ultrasound sensor 5a.
  • the ultrasonic sensor 5a comprises a transmitting device 6, by means of which at least one ultrasonic signal 8, in particular a plurality of ultrasonic signals 8, can be emitted.
  • an ultrasound sensor device 5 having an ultrasound sensor 5 a in a front region of the motor vehicle 1 is designed purely by way of example.
  • a further ultrasonic sensor device 5 is arranged on a rear region of the motor vehicle 1 purely by way of example.
  • the ultrasound sensor device 5 at the rear region has, purely by way of example, four ultrasound sensors 5 a.
  • predetermined detection range E or a predetermined angle range by means of a membrane, are emitted.
  • the membrane is in particular to a
  • Sound transducer element 1 1 coupled, by means of which during the transmission electrical signals in ultrasonic signals 8 and the reception process, the echo signals 9 in electrical signals are convertible. For example, it may be at the
  • Sound transducer element 1 1 to act a piezoelectric element.
  • the ultrasonic sensor device 5 comprises a receiving device 7, by means of which reflected ultrasonic signals can be received as echo signals 9, which were reflected by the object 3, in particular via the membrane. With the receiving device 7 so reflected from the object 3 ultrasonic signals 9 can be received as a received signal.
  • the ultrasonic sensor device 5 may have a control device S, which may be formed for example by a microcontroller and / or a digital signal processor.
  • the driver assistance system 2 further comprises a control device 10, which may be formed for example by an electronic control unit (ECU-electronic control unit) of the motor vehicle 1.
  • the control device 10 is connected to the ultrasonic sensor device 5 for data transmission.
  • the data transmission can, for example, via the data bus of the
  • Fig. 2 shows schematically a time-frequency diagram. On the abscissa is A
  • FIG. 1 shows how an electrical test signal P is applied to the sound transducer element 11.
  • the electrical test signal P excites the sound transducer element 1 1, wherein the electrical test signal P has a predetermined known electrical current intensity I (FIG. 4) and which is frequency-modulated.
  • the sound transducer element 1 1 can be excited by means of a positive frequency chirp 12 as an electrical test signal P.
  • the positive frequency chirp 12 is, in particular, a frequency-modulated signal whose frequency increases over time t.
  • the positive Frequenzchirp 12 is emitted at the time tO, for example, with a frequency f1 and is modulated over the time t such that this at a time t2 to the first frequency f1 higher
  • Frequency f2 has.
  • Excitation with the positive frequency chirp 12 can be carried out by frequencies of a same frequency band.
  • the excitation with the positive frequency chirp 12 is performed by frequencies of at least two different frequency bands.
  • Frequency chirp 13 is excited as electrical test signal P.
  • Frequency chirp 13 may in particular be a frequency modulated signal, whose frequency decreases over time t.
  • the negative frequency chirp 13 can be emitted with a frequency f2 and decrease over the time t, so that it has, for example, a lower frequency f1 different from the frequency f2 at the time t2.
  • the exciting with the negative frequency chirp 13 can be carried out by frequencies of a same frequency band, it is alternatively also possible that the excitation with the negative frequency chirp 13 by frequencies of at least two different
  • the sound transducer element 1 1 is excited by means of two electrical test signals P, wherein a first electrical test signal P is different frequency modulated than the second electrical test signal P.
  • the first electrical test signal P may be formed as a positive frequency chirp 12 and the second electrical test signal P may be negative
  • Frequency chirp 13 may be formed.
  • the electrical test signal P is frequency-modulated such that at least one resonance frequency f res is included at the frequency of the electrical test signal P. Since, in particular, the functional state around the resonant frequency is important, this has the advantage that the functional state can be checked in particular around this frequency. In the present example, for example, the resonance frequency f res can be achieved at time t1.
  • Fig. 3 shows schematically a time-voltage diagram.
  • the time t is plotted and on the ordinate O is in particular the
  • the electrical test signal P which has a predetermined known electric current I and which is frequency-modulated, is applied to the sound transducer element 1 1.
  • An electrical voltage curve Vi dependent on this electrical test signal P is detected and at least one value of a parameter characterizing the ultrasonic sensor 5a, in particular a
  • Transfer function of the ultrasonic sensor 5a thereby determined.
  • This parameter in particular this transfer function, is given a value of one
  • FIG. 3 shows, in particular, the voltage curve Vi from time t0 to time t2 from FIG. 2.
  • the sound transducer element 1 1 is excited by the frequency-modulated electrical test signal P and the voltage curve Vi to at time t2 at which the electrical test signal P is completed detected.
  • the functional state of the ultrasonic sensor 5a can then be determined.
  • a time profile or an amount or a real part of the electrical voltages V or an envelope 14 of the voltage profile Vi of the voltage V is detected and depending on the
  • Transfer function is determined. At time t1, at which the electrical test signal P reaches the resonance frequency f res , in particular the envelope 14 has a low voltage, since here the ultrasonic sensor 5 a can be operated particularly efficiently.
  • the acoustic electrical behavior of the ultrasonic sensor 5a can be represented by means of the transfer function.
  • each ultrasonic sensor 5a has a specific transfer function. Due to external influences, such as environmental influences, aging or sensor-related influences, it may happen that the ultrasonic sensor 5a has a different transfer function compared to a reference transfer function of a reference ultrasound sensor. In particular, the transfer function is different from the reference transfer function. On the basis of the transfer function with respect to the reference transfer function, in particular a functional state of the
  • Ultrasonic sensor 5a can be determined. For example, it can be determined whether the ultrasonic sensor 5a is dirty or iced. The transfer function is determined depending on the electrical test signal P, wherein the ultrasonic sensor 5a is excited with the electrical test signal P. The voltage Vi is evaluated and, depending on this, the transfer function of the ultrasonic sensor 5a is determined. The transfer function is compared with the reference transfer function, and depending on the comparison, the functional state of the ultrasonic sensor 5a can then be determined.
  • the determination of the functional state of the ultrasonic sensor 5 a can be carried out in a plurality of operating modes of the motor vehicle 1, in particular during a ferry operation of the motor vehicle 1. Thus, currently the functional state of the ultrasonic sensor 5a can be determined.
  • FIG. 4 shows a schematic equivalent circuit diagram of an embodiment of the invention
  • Ultrasonic sensor 5a as an electric model 15 of the ultrasonic sensor 5a.
  • the electrical model 15 describes the mechanical ultrasonic transducer 5a electrically.
  • the electrical model 15 has a plurality
  • the electrical model 15 has a first capacitor 17, a second capacitor 20, a first inductance 18, a second inductance 21, a first ohmic resistance 19 and a second ohmic resistance 22.
  • parameter values of the components 16 are designed such that they are characterized by the transfer function.
  • the first capacitor 17, the first inductor 18 and the first ohmic resistor 19 are connected in series and parallel to this
  • the second capacitor 20, the second inductance 21 and the second ohmic resistance form the electrical, in particular parasitic, properties of the components of the ultrasonic sensor 5a. These properties are taken into account in the electric model 15.
  • the first capacitor 17 for example, a mechanical compliance, which corresponds to the reciprocal of the rigidity, a membrane of the ultrasonic sensor 5a are described.
  • Inductance 18 may be described in particular a moving mass of the membrane.
  • first ohmic resistor 19 in particular a damping of the ultrasonic signal 8 can be described.
  • the parameter values of the components 16 are determined by means of a parameter value adaptation, in particular by means of a numerical optimization, in such a way that they match the adjusted parameter values
  • the reference transfer function and / or parameter values of a reference ultrasound sensor resulting in the reference transfer function can then be stored on a storage medium of the ultrasound sensor device 5 for a plurality of potential functional states.
  • the individual parameter values of the components 16 can then be compared with the parameter values of the components of the reference ultrasound sensor and thereby conclusions on the environmental conditions, the
  • information of at least one further sensor such as a temperature sensor and / or a
  • Humidity sensors and / or other types of sensors in the
  • the at least one further sensor may be part of the ultrasound sensor 5a and / or the ultrasound sensor device 5 and / or the motor vehicle 1.
  • the ultrasonic sensor 5a is excited by means of the electrical test signal P.
  • the voltage V of the ultrasonic sensor 5a is then influenced and evaluated by the ultrasonic sensor 5a.
  • the transfer function is determined.
  • the provided electric model 15 with its components 16 is determined by parameter value matching to the particular
  • Adjusted transfer function so that the components 16 characterize the transfer function.
  • the adjusted parameter values are then used with
  • Sound transducer element 1 1 is excited on a primary side 23 a of the transmission element 23 with the electrical test signal P. Furthermore, it can be provided that the electrical test signal P is excited on a secondary side 23b of the transmission element 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé destiné à déterminer un état de fonction d'un capteur à ultrasons (5a) d'un dispositif de capteur à ultrasons (5) pour un véhicule automobile (1), un élément convertisseur de son (11) du capteur à ultrasons (5a) étant excité avec un signal électrique de contrôle (P), le signal électrique de contrôle (P) étant défini par une intensité de courant électrique (I), une tension électrique (V) et une fréquence (f), et l'état de fonction étant déterminé en fonction d'une évaluation du signal électrique de contrôle (P), l'élément convertisseur de son (11) étant excité avec un signal électrique de contrôle (P), lequel comporte une intensité de courant électrique (I) connue et dont la fréquence est modulée, et une tension électrique (V) dépendant de ce signal électrique de contrôle (P) étant détectée au niveau de l'élément convertisseur de son (11) et au moins une valeur d'un paramètre caractérisant électriquement le capteur à ultrasons (5a) étant déterminée en fonction de la tension (V) détectée, ledit paramètre étant comparé à une valeur d'un paramètre de référence caractérisant électriquement un capteur à ultrasons de référence, et l'état de fonction du capteur à ultrasons (5a) étant déterminé en fonction de la comparaison. L'invention concerne en outre un dispositif de capteur à ultrasons (5).
PCT/EP2018/083403 2017-12-05 2018-12-04 Procédé destiné à déterminer un état de fonction d'un capteur à ultrasons, une tension étant détectée, et dispositif de capteur à ultrasons pourvu d'un capteur à ultrasons WO2019110540A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017128837.6 2017-12-05
DE102017128837.6A DE102017128837A1 (de) 2017-12-05 2017-12-05 Verfahren zum Bestimmen eines Funktionszustands eines Ultraschallsensors, wobei eine Spannung erfasst wird sowie Ultraschallsensorvorrichtung mit einem Ultraschallsensor

Publications (1)

Publication Number Publication Date
WO2019110540A1 true WO2019110540A1 (fr) 2019-06-13

Family

ID=64606990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083403 WO2019110540A1 (fr) 2017-12-05 2018-12-04 Procédé destiné à déterminer un état de fonction d'un capteur à ultrasons, une tension étant détectée, et dispositif de capteur à ultrasons pourvu d'un capteur à ultrasons

Country Status (2)

Country Link
DE (1) DE102017128837A1 (fr)
WO (1) WO2019110540A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018124024A1 (de) 2018-09-28 2020-04-02 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit reduzierter Diagnose in einem Messbetrieb des Ultraschallsensors sowie Ultraschallsensorvorrichtung
DE102018129044A1 (de) 2018-11-19 2020-05-20 Valeo Schalter Und Sensoren Gmbh Verfahren und Analysesystem zum Bestimmen eines Zustands einer Membran eines Ultraschallsensors
DE102021112996A1 (de) * 2021-05-19 2022-11-24 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Funktionszustands eines Ultraschallsensors für ein Fahrzeug
DE102022127998A1 (de) * 2022-10-24 2024-04-25 Valeo Schalter Und Sensoren Gmbh Steuereinrichtung und betriebsverfahren für einen ultraschallsensor, ultraschallsensor, satz aus steuereinrichtung und ultraschallsensor und kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042820A1 (de) * 2008-10-14 2010-04-15 Robert Bosch Gmbh Sensorvorrichtung sowie Verfahren für den Betrieb einer Sensorvorrichtung
DE102014201482A1 (de) * 2014-01-28 2015-07-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Fehlfunktion eines Ultraschallwandlers durch Auswerten einer Impedanz-Hüllkurve
DE102014213122A1 (de) * 2014-07-07 2016-01-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur schallbasierten Umfelddetektion
DE102014115000A1 (de) 2014-10-15 2016-04-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042820A1 (de) * 2008-10-14 2010-04-15 Robert Bosch Gmbh Sensorvorrichtung sowie Verfahren für den Betrieb einer Sensorvorrichtung
DE102014201482A1 (de) * 2014-01-28 2015-07-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Fehlfunktion eines Ultraschallwandlers durch Auswerten einer Impedanz-Hüllkurve
DE102014213122A1 (de) * 2014-07-07 2016-01-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur schallbasierten Umfelddetektion
DE102014115000A1 (de) 2014-10-15 2016-04-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug

Also Published As

Publication number Publication date
DE102017128837A1 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018162659A1 (fr) Procédé de détermination d'un état fonctionnel d'un capteur à ultrasons au moyen d'une fonction de transfert du capteur à ultrasons, dispositif à capteur à ultrasons et véhicule automobile
WO2019110540A1 (fr) Procédé destiné à déterminer un état de fonction d'un capteur à ultrasons, une tension étant détectée, et dispositif de capteur à ultrasons pourvu d'un capteur à ultrasons
EP2430474B1 (fr) Procédé d'essai de fonctionnement d'un capteur à ultrasons sur un véhicule à moteur, procédé permettant de faire fonctionner un capteur à ultrasons sur un véhicule à moteur, et dispositif de mesure de distance présentant au moins un capteur à ultrasons pour l'utilisation dans un véhicule à moteur
DE102008042820A1 (de) Sensorvorrichtung sowie Verfahren für den Betrieb einer Sensorvorrichtung
DE102016105153A1 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs mit Bestimmung der Luftfeuchtigkeit, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102011121092A1 (de) Sensor für ein Kraftfahrzeug, Fahrerassistenzeinrichtung, Kraftfahrzeug, System mit einer Fahrerassistenzeinrichtung sowie Verfahren zum Betreiben eines Sensors in einem Kraftfahrzeug
DE102014115000B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017118883A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Anpassung eines zeitlichen Verlaufs einer Amplitude bei frequenzmodulierten Anregungssignalen
DE102018124024A1 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit reduzierter Diagnose in einem Messbetrieb des Ultraschallsensors sowie Ultraschallsensorvorrichtung
DE112019002414T5 (de) Objekterfassungsvorrichtung
DE102018119266B3 (de) Verfahren zum Betreiben eines Ultraschallsensors durch Anregung mit einem frequenz-kodierten Signal, Computerprogrammprodukt sowie Ultraschallsensor
DE102019115132A1 (de) Verfahren zum Überwachen eines Unterbodenbereichs unterhalb eines Fahrzeugs mittels einer Ultraschallsensorvorrichtung mit Erkennung von schwach reflektierenden Objekten, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102020132634A1 (de) Ultraschallsensorsystem für ein kraftfahrzeug und verfahren zum betreiben des ultraschallsensorsystems
DE102017128983A1 (de) Verfahren zur Abschätzung einer Höhe eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mittels eines Ultraschallsensors mit statistischer Auswertung eines Empfangssignals, Steuergerät sowie Fahrerassistenzsystem
DE102017122383B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Bestimmung eines Zustands eines Schallwandlerelements, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102015110960A1 (de) Verfahren zum Auswerten eines Empfangssignals eines Ultraschallsensors, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102018129044A1 (de) Verfahren und Analysesystem zum Bestimmen eines Zustands einer Membran eines Ultraschallsensors
WO2020239450A1 (fr) Procédé d'identification d'un objet dans une zone proche d'un environnement d'un véhicule par évaluation de paramètres statiques d'une enveloppe d'un signal de capteur d'un capteur à ultrasons et système capteur à ultrasons
WO2019219420A1 (fr) Procédé d'estimation d'une hauteur d'un objet dans une zone environnante d'un véhicule automobile au moyen d'un capteur à ultrasons par détermination de valeurs de probabilité et extraction de paramètres
DE102020129060B3 (de) Verfahren zum Bestimmen einer Schwellwertkurve einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Computerprogrammprodukt, computerlesbares Speichermedium sowie Ultraschallsensorvorrichtung
DE102019120351B4 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Fahrzeug mit Bestimmung einer Luftschalldämpfung, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102016214571A1 (de) Verfahren zum Betrieb einer Ultraschall-Messeinrichtung
DE102017105987B4 (de) Verfahren zum Betreiben eines Ultraschallsensors, wobei zur Laufzeitmessung das Empfangssignal mit einem Schätzsignal verglichen wird, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102019120650A1 (de) Verfahren zum Erkennen eines blockierten Zustands einer Membran eines Ultraschallsensors eines Fahrzeugs durch Auswertung von statistischen Momenten einer Amplitudenverteilung, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102019220042A1 (de) Betriebsverfahren und Steuereinheit für eine Ultraschallsendeempfangseinrichtung, Temperaturbestimmungsverfahren, Ultraschallsendeempfangseinrichtung und Arbeitsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814859

Country of ref document: EP

Kind code of ref document: A1