WO2019109844A1 - 一种直接液体燃料电池发电装置 - Google Patents

一种直接液体燃料电池发电装置 Download PDF

Info

Publication number
WO2019109844A1
WO2019109844A1 PCT/CN2018/118058 CN2018118058W WO2019109844A1 WO 2019109844 A1 WO2019109844 A1 WO 2019109844A1 CN 2018118058 W CN2018118058 W CN 2018118058W WO 2019109844 A1 WO2019109844 A1 WO 2019109844A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
liquid fuel
auxiliary
stack
Prior art date
Application number
PCT/CN2018/118058
Other languages
English (en)
French (fr)
Inventor
孙海
麻胜南
秦兵
孙公权
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711262551.5A external-priority patent/CN109873183B/zh
Priority claimed from CN201711372610.4A external-priority patent/CN109935866B/zh
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US16/621,354 priority Critical patent/US11302939B2/en
Priority to EP18887054.7A priority patent/EP3624242A4/en
Publication of WO2019109844A1 publication Critical patent/WO2019109844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a direct liquid fuel cell power generation device activated in a low temperature environment, in particular to a direct methanol fuel cell system and a low temperature auxiliary starting component, in particular to be required to be started in a low temperature environment of -20 ° C to -40 ° C.
  • Direct methanol fuel cell system activated in a low temperature environment, in particular to a direct methanol fuel cell system and a low temperature auxiliary starting component, in particular to be required to be started in a low temperature environment of -20 ° C to -40 ° C.
  • Direct methanol fuel cells are chemical reaction devices that convert chemical energy directly from methanol into electrical energy.
  • DMFC has the advantages of simple structure, no need for reforming of fuel, main products of water and carbon dioxide, environmentally friendly green energy, etc. It is considered to be one of the ideal miniaturized mobile power sources in transportation, communication, military and aerospace. Other aspects have broad application prospects.
  • DMFCs use high-concentration or pure methanol as fuel, but the reaction in the electrode catalytic layer is a lower concentration of methanol solution, which is easy to freeze in an environment below 0 °C.
  • Pure methanol has a freezing point of -97 ° C and can be stored directly in a low temperature environment.
  • the DMFC is started in a low temperature environment of -20 ° C ⁇ -40 ° C, if the cold air directly enters the cathode of the fuel cell stack, not only the temperature distribution of the stack will be uneven, but also the cathode gas that first contacts the cold air will be easily diffused. Local icing in the layer affects performance.
  • the DMFC In the low temperature environment, although the methanol solution in the DMFC system is emptied, the damage of the gas-liquid separator and the like due to the freezing of the methanol solution can be avoided, but if there is no methanol solution in the gas-liquid separation module when used again, the DMFC is Can't start normally.
  • the auxiliary solution used to start the system in the environment of -20 ° C ⁇ -40 ° C has already formed ice cubes and cannot be added to the DMFC.
  • the secondary batteries integrated in the DMFC mostly use lithium batteries, and the capacity is generally small.
  • the discharge capacity of a common lithium battery is greatly reduced, and it is difficult to provide more electric energy for heating.
  • U.S. Patent 6,034,410 discloses the introduction of a small amount of oxidant with a small amount of a fuel, such as hydrogen, to the cathode of the stack. Under the action of the cathode catalyst, the fuel reacts with the oxidant to release heat while generating water. The ice inside the stack can be melted and the stack can be raised to a temperature that can be started. However, such an operation also tends to reduce the activity of the cathode catalyst, and it is also liable to cause some damage to the electrode structure. Moreover, this method requires mixing hydrogen and an oxidant, and improper operation is prone to a safety accident. If pure methanol is introduced into the cathode of a direct methanol fuel cell, a violent reaction occurs, damaging the electrode. The methanol solution has frozen in a lower temperature environment.
  • a fuel such as hydrogen
  • Chinese invention patent 200910012179.1 discloses a low-temperature starting system and a starting method for a proton exchange membrane fuel cell, which uses a heat storage bag made of a phase change material placed in a coolant to store waste heat generated during operation of the fuel cell, when When starting at low temperature, the heat storage bag is first released, the coolant is heated, and then the coolant is heated by the coolant. After the fuel cell is working properly, the heat is stored again in the tropics.
  • the direct methanol fuel cell has no coolant and is cooled by the air generated by the cathode or the methanol solution of the anode to control the temperature of the stack.
  • Chinese invention patent 201510741934.5 discloses a low temperature start fuel cell system and a utilization method thereof, and the low temperature cold start system includes a fuel cell system, a low temperature cold start heating device, a fuel cell control system and a power terminal.
  • the fuel cell control system includes a control board and a control power source.
  • the low temperature cold start heating device is used to heat the cathode inlet pipe, the anode inlet pipe and the cooling circuit of the stack by electric heating or water gas heating, and the fuel terminal is heated to increase the temperature of the fuel cell.
  • the fuel cell system is provided with a heating controller, and temperature sensors are respectively disposed at the anode circuit, the cathode circuit, the cooling circuit, and the heating circuit connection end.
  • the method can accelerate the cold start of the fuel cell at a low temperature under the premise of ensuring the safety of the electrode, the required electric energy is more. If the electric energy of the heater is from the control power source in the system, the capacity of the control power source is large enough. And the discharge capacity cannot be greatly affected by low temperature. Moreover, it is necessary to provide a heating controller to detect and control the temperature of each pipeline.
  • the existing low-temperature starting systems and methods may cause damage to the electrodes, or may not be used for the structure of a direct methanol fuel cell, or a large-capacity battery for heating in the system has certain limitations.
  • a liquid fuel cell is a chemical reaction device that converts the chemical energy of a liquid fuel into electrical energy. Due to the advantages of high theoretical energy density and simple system, such batteries have broad application prospects in the field of portable mobile power.
  • liquid fuel cells need to have good stability and environmental adaptability in addition to high discharge performance.
  • the electrode reactivity is low, and the battery performance is significantly degraded.
  • water is generated during the reaction of the battery.
  • the ambient temperature is lower than 0 ° C, the water retained in the battery will freeze quickly, making the liquid fuel cell generally difficult to start.
  • US7901823 discloses a hydrogen-fueled proton exchange membrane fuel cell (PEMFC) low temperature start-up method.
  • the method is provided with two mutually independent liquid channels. At low temperature start-up, the liquid in one of the channels is heated by an external heating device.
  • PEMFC proton exchange membrane fuel cell
  • US7122259 discloses a hydrogen-fueled proton exchange membrane fuel cell (PEMFC) low temperature start-up method.
  • the method uses dry hot gas through the hydrogen channel, the oxygen channel and the coolant channel to melt the ice to achieve PEMFC startup.
  • PEMFC proton exchange membrane fuel cell
  • CN106992307A discloses a liquid circulation subsystem of a fuel cell stack power generation system that uses deionized water.
  • the liquid circulation subsystem includes a low temperature start preheating subsystem, but is not further described for the low temperature start preheating subsystem.
  • US2004003397 discloses a method of adding dimethoxymethane to prevent freezing of a solution in a methanol fuel cell at a low temperature.
  • US20060112613 discloses a method of adding (OH) m -R 1 -R 2 -(OH) n to prevent freezing of a solution in a methanol fuel cell at a low temperature, wherein R1 and R2 are free radicals of indane or ruthenium structure.
  • US20100310954 discloses a method of preventing the freezing of a solution by adding a unit alcohol or a polyol or an inert gas purge.
  • WO2012103537 discloses a method for keeping a methanol fuel cell from shutting down in a low temperature environment to maintain the internal temperature of the battery system to prevent freezing of the solution.
  • the present invention is directed to the deficiencies of the above prior art, and provides a direct liquid fuel cell power generation device, a direct methanol fuel cell system and a low temperature auxiliary starting component that are activated in a low temperature environment, and particularly suitable for use at a low temperature of -20 ° C to -40 ° C.
  • Direct methanol fuel cell system activated in the environment.
  • the organic small molecular raw materials such as methanol and ethanol can be directly used as the system heating heat source, which has the advantages of easy protection of raw materials and easy operation.
  • a direct liquid fuel cell power generation device comprising a direct liquid fuel cell system, the direct liquid fuel cell system comprising a fuel cell stack, an air pump, a gas-liquid separator, a liquid pump, a condenser; the gas pump gas outlet and the stack
  • the cathode inlet pipeline is connected, and the cathode outlet of the stack is connected to the cathode material recovery port of the gas-liquid separator through a condenser; the liquid outlet of the gas-liquid separator is connected to the anode inlet pipeline of the stack via a fuel circulation pump.
  • the anode outlet of the stack is connected to an anode material recovery port on the gas-liquid separator; the gas-liquid separator is provided with a cathode material recovery port, an anode material recovery port, an auxiliary solution inlet and a liquid outlet.
  • the gas-liquid separator is a closed container, and a middle part is provided with a lateral partition plate, and the inside of the closed container is divided into two chambers which are not connected to each other, and the upper chamber is a gas-liquid separation chamber and a lower chamber of the cathode material.
  • the anode material gas-liquid separation chamber a through hole is formed in the partition plate, an annular protrusion is arranged around the through hole of the upper surface of the partition plate, and a duct is arranged at the lower part of the through hole, and the upper end of the duct is tightly connected with the through hole, and the lower end of the duct extends into the The anode material is separated from the liquid level in the chamber.
  • a cathode material recovery port is arranged in the upper part of the gas-liquid separation chamber of the cathode material, and an exhaust gas outlet is arranged on the upper part.
  • An anode material recovery port is arranged in the upper part of the anode material gas-liquid separation chamber, a liquid outlet port and an auxiliary solution inlet are arranged in the lower part; a gas outlet is arranged in the upper part of the anode material gas-liquid separation chamber, and the gas outlet is separated from the cathode material through the pipeline.
  • the upper part of the cavity is connected, or a through hole as a carbon dioxide discharge port is opened on the separator, and the carbon dioxide passing through the carbon dioxide discharge port passes through the liquid layer on the upper surface of the separator into the gas-liquid separation chamber of the cathode material.
  • the direct liquid fuel cell system further includes an auxiliary starting power interface and a liquid fuel delivery port, the liquid fuel delivery port being connected to the auxiliary solution inlet of the gas-liquid separator via the liquid fuel communication pipe; the auxiliary starting power interface via the wire and the liquid fuel An electric heating element connected to the outside of the connecting tube is connected, and the auxiliary starting power supply interface is connected to the electric heating element disposed on the lower wall of the gas-liquid separation chamber of the anode material via a wire; the power generating device further includes a low temperature auxiliary starting component; Components include auxiliary solution storage tanks, electric heaters, solution transfer pumps, cryogenic power supplies, and auxiliary power plugs.
  • the electric heater is disposed at the bottom of the auxiliary solution storage tank to heat the solution inside the auxiliary solution storage tank, and the low temperature power supply supplies power to the electric heater or simultaneously supplies the electric heater and the solution delivery pump.
  • the liquid outlet of the solution transfer pump is connected to the liquid fuel delivery port of the direct liquid fuel cell system via a pipeline, and the liquid inlet of the solution delivery pump is connected to the auxiliary solution storage tank via a pipeline; the auxiliary power supply plug is directly Alternatively, a voltage converter is electrically coupled to the auxiliary start power interface of the direct liquid fuel cell system to power the electrical heating elements of the direct liquid fuel cell system during the startup phase.
  • the electric heater in the low temperature auxiliary starting component is a PTC heater;
  • the electric heating element of the direct liquid fuel cell system is one or two of an electric heating wire or an electric heating wire or an electric heating belt or a PTC heater the above.
  • the low temperature power source is a low temperature lithium battery or a lead acid battery.
  • the direct liquid fuel cell system includes a first heat exchanger; a stack anode outlet solution as a hot fluid of the first heat exchanger, and a cathode cathode inlet gas as a cold fluid of the first heat exchanger for realizing the stack anode
  • the outlet solution is a function of preheating the cathode inlet gas of the stack.
  • the direct liquid fuel cell system further includes an electronic load for starting and a controller; the electronic load for starting is disposed on a condenser, and the electronic load for starting is connected in parallel with the fuel cell stack, and the control The device is electrically connected and operates during the start-up phase of the stack to heat the condenser.
  • the direct liquid fuel cell system is structurally separate from the low temperature auxiliary starting component and can be quickly connected by an auxiliary starting power interface and a liquid delivery port.
  • the gas-liquid separator in the direct liquid fuel cell system is further disposed at a high-concentration fuel inlet, and the high-concentration fuel inlet line is connected to the outlet of the fuel replenishing pump, and the fluid in the inlet line of the fuel replenishing pump passes through the gas-liquid
  • the fluid in the outlet of the separator is preheated with the fluid in the line connected to the fuel circulation pump.
  • An upper portion of the auxiliary solution storage tank in the low temperature auxiliary starting unit is provided with a gas pressure equalizing tube.
  • the volume of liquid in the auxiliary solution storage tank can be obtained from a visual scale on the tank.
  • the stack has a cavity for heating, and the hot tail gas generated by the catalytic combustion of the organic fuel is heated by the stack through the inner cavity.
  • the inner cavity is any one or more of the following structures, and a hollow sealed inner cavity is provided inside one or more bipolar plates inside the electric stack, and the inner cavity is provided with a gas inlet and a gas outlet.
  • the heat generated by the organic fuel through the catalytic combustion module can be heated by heating pipes for components such as hydrothermal management inside the liquid fuel cell system.
  • the catalytic combustion module includes a catalytic burner, a fuel pump, an air pump, and an electronic control.
  • the catalytic burner comprises a combustion chamber, a catalyst is arranged in the combustion chamber, and a combustion inlet connected to the fuel pump is arranged on the combustion chamber, and an air inlet connected to the air pump is arranged on the combustion chamber, and an exhaust gas outlet is arranged on the combustion chamber.
  • a heating wire/heating sheet is arranged on the burner, and the catalytic burner at a low temperature is heated by a low-temperature power source to enable catalytic combustion at a low temperature.
  • the catalyst used in the catalytic burner is one of a noble metal catalyst, a transition metal hydride catalyst, and a double oxide catalyst.
  • the stack end plate is made of stainless steel or aluminum alloy.
  • the catalytic burner of the present invention can be heated to 0 ° C or higher by using an electric heating wire under low temperature conditions, thereby enabling a catalytic combustion reaction to occur.
  • the heating reaction of the exothermic heating catalytic burner to the temperature above 0 °C may also be performed by using a heating agent for the hot battery.
  • One of the catalysts (usually selected) used in the catalytic burner is Pt/Al 2 O 3 .
  • the invention solves the problem of low temperature starting of the liquid fuel cell which cannot be solved in the prior art, is beneficial to starting the liquid fuel cell system at a low temperature, improves the adaptability of the low temperature environment of the liquid fuel cell, and expands the application range thereof.
  • Figure 1 Schematic diagram of a direct liquid fuel cell system according to the present invention
  • 101 fuel cell stack 101 fuel cell stack; 102 air pump; 103 fan; 104 condenser; 105 gas-liquid separator; 106 first heat exchanger; 107 fuel circulation pump; 108 preheating pipeline; 109 fuel replenishing pump; a gas-liquid separator heater; a 111 liquid fuel communication tube; a 112 liquid fuel communication tube electric heating line; 113 an activation electronic load; 114 controller, including a controller 114-1 and a secondary battery 114-2;
  • 101 is a fuel cell stack that directly converts chemical energy stored in the fuel into electrical energy;
  • 102 is an air pump that delivers air to the cathode of the stack;
  • 103 is a fan whose start and stop can be used to adjust the condensation efficiency of the condenser;
  • 104 is a condenser for condensing water vapor at the cathode outlet;
  • 105 is a gas-liquid separator for separating carbon dioxide gas in the anode material to separate water in the cathode material; and simultaneously diluting the added high-concentration fuel or pure Fuel;
  • 106 is a first heat exchanger that uses the heat of the methanol solution flowing from the anode outlet of the stack to heat the air;
  • 107 is a fuel circulation pump for delivering liquid fuel to the stack;
  • 108 is a preheating line, utilizing gas The heat of the methanol solution in the pipeline connected to the fuel circulation pump of the liquid separator is high-concentration fuel preheating;
  • 109
  • High concentration fuel or pure fuel 110 is a gas-liquid separator heater, which can be heated and maintained at a certain temperature for the methanol solution;
  • 111 is a liquid fuel communication tube, one end is connected The bottom of the gas-liquid separator, the other end is a liquid fuel delivery port, which is fixed on the outer wall of the DMFC system; the liquid fuel communication tube can be used to inject a methanol solution into the gas-liquid separator, or the methanol solution in the gas-liquid separator Emptying;
  • 112 is a liquid fuel communication tube electric heating line, the resistance value is a certain value, heating after heating, can be heated for the liquid fuel communication tube;
  • 113 is an electronic load for starting, connected in parallel with the fuel cell stack, by the controller Control, installed on the condenser, working in the system startup phase, can speed up the stack heating, shorten the start-up time; start the heat generated by the electronic load itself to heat the condenser to prevent internal condensation due to the condenser temperature is too low Water is frozen
  • FIG. 2 is a schematic structural view of a low temperature auxiliary starting component according to the present invention.
  • auxiliary solution storage tank 202 auxiliary solution storage tank heater; 203 solution delivery pump; 204 solution delivery pump inlet pipe 205 solution delivery pump outlet pipe; 206 auxiliary solution delivery pipe; 207 is air pressure balance pipe; It is the auxiliary solution tank top cover; 209 liquid level window with scale line; 210 solution pump power line; 211 heater power line; 212 solution pump power switch; 213 heater power switch; 214 total power switch ;215 low temperature power supply; 216 low temperature power supply connector; 217 external power supply electrical connector; 218 voltage converter; 219 auxiliary power supply plug;
  • 201 is an auxiliary solution storage tank for storing the auxiliary solution, and the outer surface of the side wall has an insulating material; 202 is an auxiliary solution storage tank heater, and is heated for the auxiliary solution storage tank after being charged; 203 is a solution conveying pump for conveying The auxiliary solution may also transport the methanol solution in the direct methanol fuel cell gas-liquid separator to the auxiliary solution storage tank; 204 is the solution transfer pump inlet pipe, the outer wall is covered with the heat insulating material; 205 is the solution transfer pump outlet pipe, The outer wall is covered with the heat insulating material; 206 is an auxiliary solution conveying pipe; normally, the solution conveying pump inlet pipe is connected with the auxiliary solution conveying pipe, and when the system needs to be started, the solution is sent to the pump discharge pipe and the liquid fuel of the direct methanol fuel cell.
  • the delivery port is connected, and the heated auxiliary solution is added to the direct methanol fuel cell system; when the direct methanol fuel cell system needs to be stored in a low temperature environment, the solution delivery pump outlet pipe is connected with the auxiliary solution delivery pipe, and the liquid is connected.
  • the pump inlet pipe is connected to the liquid fuel delivery port of the direct methanol fuel cell, and the methanol solution in the gas-liquid separator can be evacuated to prevent the low temperature.
  • the methanol solution in the environment freezes and damages the gas-liquid separator and other components;
  • 207 is a pressure balance tube for balancing the pressure inside and outside the auxiliary solution tank;
  • 208 is the auxiliary solution tank upper cover, and the upper cover can be quickly added to add the auxiliary solution.
  • 209 is a liquid level window with a tick mark. The liquid level can be observed through the window.
  • the auxiliary line can be judged by the tick mark.
  • 210 is the power line of the solution transfer pump, and 211 is the heater.
  • the power cord, the negative pole of the solution delivery pump power cord is connected to the negative pole of the heater power cord;
  • 212 is the solution delivery pump power switch, which is disposed on the positive pole of the solution delivery pump power cord;
  • 213 is the heater power switch, setting On the positive pole of the heater power cord;
  • 214 is the total power switch, 215 is the low temperature power supply, 216 is the low temperature power supply connector; the low temperature power supply can use the lead acid battery or the low temperature lithium battery; the low temperature power supply through the low temperature power supply connector is the solution
  • the pump is pumped, the heater provides electrical energy; the low-temperature power connector is disconnected, the low-temperature power source can be removed; and the 217 is an external power connector.
  • the auxiliary starting part can be supplied with electric energy through the internal cigarette lighter, other low-temperature power supply, fuel cell and other power sources;
  • 218 is a voltage converter, which can provide 12VDC, 24VDC two-standard voltage output, which can be of different specifications.
  • the direct methanol fuel cell system provides the electrical energy required for the start-up phase; and
  • 219 is the auxiliary power plug that can be connected to the direct methanol fuel cell system to provide electrical energy thereto;
  • the low temperature auxiliary starting component mainly comprises an auxiliary solution storage tank 201 with a scale, a PTC heater 202, a solution delivery pump 203, a low temperature power supply 215, a voltage converter 218, an external power connector 217, etc.; the auxiliary solution is assisted by the auxiliary starting part
  • the auxiliary solution in the storage tank 207, and the liquid fuel communication pipe and the gas-liquid separator in the direct methanol fuel cell system are heated, and then the auxiliary solution is filled into the gas-liquid separator, and the heat of the auxiliary solution is used to raise the temperature of the stack.
  • the invention has the advantages that the direct methanol fuel cell system has a simple structure, does not need to integrate a large-capacity battery inside, and is assisted by an external power supply such as a low-temperature auxiliary starting component and an in-car cigarette lighter; the low-temperature auxiliary starting component adopts a PTC heater, and does not need
  • the temperature controller is simple in structure, low in cost and easy to implement; the direct methanol fuel cell system can be separated from the low temperature auxiliary starting component after entering the positive starting state;
  • Figure 3 is a schematic view showing the connection of the gas-liquid separator heater and the liquid fuel communication tube electric heating line according to the present invention
  • 110 is a gas-liquid separator heater
  • 112 is a liquid fuel communication tube electric heating line, and the power lines of the two are connected in parallel
  • 301 is a fuel cell auxiliary power supply interface through which the gas-liquid separator heater and the liquid can be supplied The fuel communication tube is powered by an electric heating line; the auxiliary power supply plug of the auxiliary starting component can be matched with the auxiliary power supply interface of the fuel cell;
  • FIG. 4 is a schematic diagram of a software flow of a low temperature start mode of a direct methanol fuel cell system according to the present invention
  • the fuel circulation pump starts to work, so that the auxiliary solution circulates in the system; then the controller starts to detect the temperature of the fuel cell stack, when the stack temperature is greater than the set value, Enter the normal startup state;
  • Figure 5 is a schematic view showing the low temperature starting connection of the fuel cell according to the present invention.
  • 1 preheating battery 2 heating wire or heating plate; 3 catalytic combustion gas pump; 4 fuel pump; 5 fuel tank; 6 electric control board; 7 gas liquid separator; 8 fuel cell stack; ;
  • 1 is a preheating battery for catalyzing the preheating of the burner to provide electric energy
  • 2 is a heating wire or heating sheet for converting electric energy into thermal energy for preheating of the catalytic burner
  • 3 is a catalytic combustion gas pump for providing a catalytic burner Air
  • 4 is a fuel pump that provides a steady flow of fuel for catalytic combustion
  • 5 is a fuel tank for storing fuel for catalytic combustion
  • 6 is an electronic control board for performing device power supply and controlling its operation
  • 7 is gas-liquid separation Separating the carbon dioxide gas in the anode material to separate the water in the cathode material; simultaneously diluting the added high-concentration fuel or pure fuel
  • 8 is the fuel cell stack, directly converting the chemical energy stored in the fuel For electric energy
  • 9 is a fuel cell air pump that delivers air to the cathode of the stack;
  • Figure 6 Schematic diagram of the heating chamber of the stack of bipolar plates
  • 10 is a cathode bipolar plate, one side is a cathode flow field for supplying a reactant to the cathode, one side is a flow field for providing heat exchange for the hot gas of the catalytic burner; 11 is a heating flow field of the bipolar plate, which is a catalytic burner The hot gas provides a heat exchange flow field; 12 is a gas inlet, the hot gas of the burner enters the bipolar plate heating flow field from the port; 13 is an anode bipolar plate, and the cathode bipolar plate forms a bipolar plate assembly with a heating cavity. There is an anode flowing therefor for the transportation of the anode reactant; 14 gas outlet, the hot gas of the burner leaves the bipolar plate heating flow field from the port; 15 is the anode flow field, and the passage of the anode reactant transport;
  • FIG. 7 Schematic diagram of the structure of the catalytic burner
  • 16 is a catalytic burner inlet for connecting a catalytic combustion air pump, a fuel pump and a catalytic burner; 17 is a catalytic burner flow field for filling the catalyst, uniformly distributing the fluid; and 18 is a catalytic burner outlet for connecting the fuel cell The stack heating chamber and the catalytic burner.
  • a DMFC system with a rated output of 50W is provided.
  • the stack consists of 40 single cells.
  • the methanol solution in the gas-liquid separator has been emptied after the last run.
  • An electric heating wire having a resistance of about 15 ⁇ is wound around the communication tube.
  • a gas-liquid separator was used to heat the gas-liquid separator using a PTC heater having a voltage of 12 VDC, a surface temperature of 80 ° C, and a power of about 50 W.
  • the methanol solution is heated by the shell-and-tube heat exchanger for the air at the outlet of the air pump, the methanol solution is taken away from the shell, and the air is taken away.
  • the feed tube of pure methanol is pre-heated by winding a few turns on the feed pipe of the fuel circulation pump.
  • the starting electronic load is in constant voltage mode, the maximum current is 10A, and the voltage setting is 20V.
  • a PTC heater having a voltage of 12 VDC, a surface temperature of 80 ° C, and a power of about 80 W was used to heat the auxiliary solution storage tank.
  • the auxiliary solution is charged into the auxiliary solution storage tank, and the electrical energy of the lead-acid battery in the auxiliary starting unit is used to heat the auxiliary solution. Insert the auxiliary start plug into the DMFC auxiliary start power connector to heat the connecting pipe and the gas-liquid separator.
  • the solution delivery pump outlet pipe of the auxiliary starting component is connected to the DMFC system liquid fuel delivery port, and the auxiliary solution is injected into the gas-liquid separator through the solution delivery pump.
  • the amount of the auxiliary solution is determined by the scale of the auxiliary solution tank side wall, and the injection is stopped after the desired value is reached, and the heating of the auxiliary solution storage tank is stopped.
  • Start the DMFC system and enter the low temperature start mode to circulate the heated auxiliary solution within the system.
  • the DMFC system enters the normal startup mode.
  • the heating of the gas-liquid separation unit and the liquid fuel communication tube can be stopped.
  • the start of the electronic load stops working.
  • a DMFC system with a rated output of 200 W is provided.
  • the stack consists of 70 single cells.
  • the methanol solution in the gas-liquid separation module has been emptied after the last run.
  • a heating wire having a resistance of about 28 ⁇ is wound around the liquid fuel communication tube.
  • a PTC heater having a voltage of 24 VDC, a surface temperature of 80 ° C, and a power of about 100 W was used to heat the gas-liquid separator.
  • the methanol solution is heated by the shell-and-tube heat exchanger for the air at the outlet of the air pump, the methanol solution is taken away from the shell, and the air is taken away.
  • the feed tube of pure methanol is pre-heated by winding a few turns on the feed pipe of the fuel circulation pump.
  • the maximum current for starting the electronic load is 20A, operating in constant voltage mode, and the voltage setting is 35V.
  • a PTC heater having a voltage of 24 VDC, a surface temperature of 80 ° C, and a power of about 200 W was used to heat the auxiliary solution storage tank.
  • the auxiliary solution is charged into the auxiliary solution storage tank, and the auxiliary solution is heated by the on-board cigarette lighter. Plug the auxiliary start plug into the DMFC auxiliary start power connector to heat the liquid fuel communication tube and the gas-liquid separator.
  • the solution delivery pump outlet pipe of the auxiliary starting component is connected to the DMFC system liquid fuel delivery port, and the auxiliary solution is injected into the gas-liquid separator through the solution delivery pump.
  • the amount of the auxiliary solution is determined by the scale of the auxiliary solution tank side wall, and the injection is stopped after the desired value is reached, and the heating of the auxiliary solution storage tank is stopped.
  • the DMFC system enters the normal startup mode.
  • the heating of the gas-liquid separator and the liquid fuel communication tube can be stopped.
  • the start of the electronic load stops working.
  • 1 is a preheating battery for catalyzing the preheating of the burner to provide electric energy.
  • 2 is a heating wire or heating sheet for converting electrical energy into thermal energy for preheating the catalytic burner.
  • 3 is a catalytic combustion air pump that supplies air to the catalytic burner.
  • 4 is a fuel pump that provides a steady flow of fuel for catalytic combustion.
  • 5 is a fuel tank for storing fuel for catalytic combustion.
  • 6 is an electrical control board that is used to power the device and control its operation.
  • 7 is a gas-liquid separator that separates carbon dioxide gas in the anode material to separate water in the cathode material.
  • 8 is a fuel cell stack that directly converts chemical energy stored in the fuel into electrical energy.
  • 9 is a fuel cell air pump that delivers air to the cathode of the stack.
  • 10 is a cathode bipolar plate, one side is a cathode flow field that supplies a reactant to the cathode, and one side is a flow field that provides heat exchange for the hot gas of the catalytic burner.
  • 11 is a bipolar plate heating flow field; on the bipolar plate inside the electric pile, a hollow closed inner cavity (as a heating flow field) is arranged inside the bipolar plate, and a gas inlet and a gas outlet are arranged on the inner cavity for catalysis
  • the hot gas of the burner provides a flow field for heat exchange.
  • 12 is the gas inlet, and the hot gas of the burner enters the bipolar plate heating flow field from this port.
  • 13 is an anode bipolar plate, and the cathode bipolar plate is composed of a bipolar plate assembly with a heating chamber, which has an anode flowing smoothly for the transportation of the anode reactant; 14 gas outlet, the hot gas of the burner leaves the bipolar from the port The plate heats the flow field.
  • 15 is the anode flow field, the channel through which the anode reactant is transported.
  • 16 is a catalytic burner inlet for connecting a catalytic combustion air pump, a fuel pump, and a catalytic burner.
  • 17 is a catalytic burner flow field for filling the catalyst and evenly distributing the fluid.
  • 18 is a catalytic burner outlet for connecting a fuel cell stack heating chamber and a catalytic burner.
  • the air pump can choose YLKTECH company DA50EE; the fuel pump can choose KNF NF11; the heating chip can choose 12VDC, 50W model; the lithium battery can choose 3 string 6 and 18650 lithium iron phosphate group.
  • the aqueous solution in the system is withdrawn and replaced with an aqueous solution of a polyol.
  • the catalytic combustion module switch is closed, and the system automatically performs preheating and starting of the catalytic burner.
  • the temperature of the fuel cell stack reaches 30 ° C, the aqueous solution of the polyol is replaced by an aqueous solution and repeated replacement operations are performed to ensure low polyol content.
  • the fuel cell switch is turned on to achieve low temperature start-up.
  • the catalytic combustion module is turned off.
  • the air pump can choose YLKTECH company DA50EE; the fuel pump can choose KNF company's NF11; the heating chip can choose 12VDC, 50W model; the lithium battery can choose 3 string 6 and 18650 lithium iron phosphate group.
  • the aqueous solution in the system is withdrawn, and the stack is purged with nitrogen, leaving only a small amount of water. After the freezing is completed, close the fuel cell system switch and turn on the debug mode to allow only the liquid pump to work.
  • the catalytic combustion module switch is closed, and the system automatically performs preheating and starting of the catalytic burner.
  • an aqueous solution is injected into the system, and the fuel cell switch is turned on to achieve low temperature starting.
  • the catalytic combustion module is turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

一种直接液体燃料电池发电装置,包括直接液体燃料电池***和低温辅助启动部件。在电堆阴极入口设置一个换热器,利用电堆阳极出口的燃料溶液的热量为空气加热,利用启动用电子负载产生的热量为冷凝器加热,利用气液分离器出液口甲醇溶液热量为流入燃料补充泵的高浓度燃料预热。通过低温辅助启动部件或车内点烟器等外接电源辅助加热,可以在低温环境中启动与运行。采用甲醇、乙醇等有机小分子物质为燃料,在催化燃烧器中进行催化燃烧,燃烧产生的热直接或间接通过电堆加热室为电堆加热,为***内水热管理部件加热,实现液体燃料电池***低温快速启动,有利于液体燃料电池***在低温下启动,提高液体燃料电池的低温环境适应性,拓展了其应用范围。

Description

一种直接液体燃料电池发电装置 技术领域
本发明涉及一种在低温环境中启动的直接液体燃料电池发电装置,具体的说包括直接甲醇燃料电池***及低温辅助启动部件,尤其是适用需要在-20℃~-40℃低温环境中启动的直接甲醇燃料电池***。
背景技术
直接甲醇燃料电池(DMFC)是将及甲醇中的化学能直接转化为电能的一种化学反应装置。DMFC具有结构简单、燃料不需要重整、反应产物主要为水和二氧化碳,是环境友好的绿色能源等优点,被认为是十分理想的小型化可移动电源之一,在交通、通讯、军事、航天等方面具有广阔的应用前景。
DMFC大都使用高浓度或纯甲醇为燃料,但在电极催化层发生反应的是浓度较低的甲醇溶液,在0℃以下的环境中很容易结冰。纯甲醇的冰点为-97℃,可以直接存储在低温环境中。DMFC在-20℃~-40℃的低温环境中启动时,如果冷空气直接进入燃料电池电堆阴极,不仅会使电堆的温度分布不均匀,还容易使先接触到冷空气的阴极气体扩散层内局部结冰,影响性能。由于-20℃~-40℃的纯甲醇对泵内的密封材料影响很大,很难采购到适合输送-20℃~-40℃纯甲醇的微型燃料泵。如果采用电加热的方式给空气及纯甲醇预热,则会增加电能的消耗,减少***的输出电能。
在低温环境中,虽然将DMFC***内的甲醇溶液排空,可以避免因甲醇溶液结冰而造成气液分离器等部件的损坏,但是再次使用时如果气液分离组件内没有甲醇溶液,DMFC是无法正常启动的。DMFC在冬季的运输过程中,很难保证***始终处在0℃以上的环境中。在-20℃~-40℃的环境中用于启动***的辅助溶液早已结成冰块了,也无法加入到DMFC中。作为可移动电源,受体积与重量的限制,DMFC内部集成的二次电池大都采用锂电池,容量一般都比较小。况且,在-20℃~-40℃环境中普通锂电池的放电能力大幅下降,很难提供更多的电能用于加热。
美国专利6103410公开了一种将少量氧化剂与少量的燃料,如氢气引入到电堆阴极,在阴极催化剂的作用下燃料与氧化剂发生反应放出热量,同时生成水。可以将电堆内部的冰融化,并使电堆升到可以启动的温度。但是这样操作也容易降低阴极催化剂的活性,也容易对电极结构造成一定的损坏。而且这种方法需要将氢气与氧化剂混合在一起,操作不当容易发生安全事故。如果将纯甲醇引入到直接甲醇燃料电池的阴极,则会发生剧烈的反应,损坏电极。甲醇溶液在温度较低的环境中已经结冰了。
中国发明专利200910012179.1公开了一种质子交换膜燃料电池低温启动***及启动方法,采用置于冷却剂中的由相变材料做成的储热袋将燃料电池工作时产生的废热储存起来,当在低温条件下启动时先使储热袋放热,加热冷却剂,然后通过冷却剂给电堆加热。燃料电池正常工作后热带再次储存热量。直接甲醇燃料电池没有冷却剂,依靠空气为阴极生成的水或阳极的甲醇溶液冷却,进而控制电堆的温度。
中国发明专利201510741934.5公开了一种低温启动燃料电池***及利用方法,低温冷启动***包括燃料电池***、低温冷启动加热装置、燃料电池控制***和用电端。燃料电池控制***包括控制板和控制电源。采用低温冷启动加热装置对电堆的阴极入口管路、阳极入口管路、冷却回路采用电加热或水气加热的方式进行加热,同时 增加用电端负载使燃料电池升温。燃料电池***设置有加热控制器,在阳极回路、阴极回路、冷却回路以及加热之路连接端分别设置温度传感器。该方法虽然可以在保证电极安全的前提下加速燃料电池在低温下的冷启动,但是需求的电能较多,如果加热器的电能都来自于***内的控制电源,则控制电源的容量要足够大,而且放电能力不能受低温影响很大。而且,需要设置加热控制器进行各管路温度的检测与控制。
综合来看,现有的低温启动***及方法要么可能对电极造成损坏,要么不适用于直接甲醇燃料电池的结构,要么***内需要大容量的电池用于加热,均具有一定的局限性。
液体燃料电池是将液体燃料化学能转化为电能的一种化学反应装置。由于具有理论比能量密度高、***简单等优点,该类电池在便携式移动电源领域具有广泛的应用前景。
作为移动电源,液体燃料电池除了要有较高的放电性能以外,还需具有良好的稳定性和环境适应性。在低温条件下,一方面电极反应活性较低,电池性能显著下降。另一方面,电池反应过程中会产生水,当环境温度低于0℃时,电池内保留的水会很快结冰,致使液体燃料电池通常难以启动。
US7901823公开了一种以氢气为燃料的质子交换膜燃料电池(PEMFC)低温启动方法。该方法设有两个相互独立的液体通道。在低温启动时,其中一个通道内的液体被外部加热设备加热。
US7122259公开了一种以氢气为燃料的质子交换膜燃料电池(PEMFC)低温启动方法。该方法采用干热气体通过氢气通道、氧气通道和冷却液通道,使冰受热融化实现PEMFC启动。
CN106992307A公开了一种燃料电池堆发电***的液体循环子***,液体循环子***使用去离子水。该液体循环子***包括低温启动预热子***,专利但并没有对低温启动预热子***进一步说明。
在甲醇燃料电池方面,US2004003397公开了一种添加二甲氧甲烷防止甲醇燃料电池低温下溶液冷冻的方法。US20060112613公开了一种添加(OH) m-R 1-R 2-(OH) n防止甲醇燃料电池低温下溶液冷冻的方法,其中R1和R2为茚满或茚结构的自由基。US20100310954公开了一种添加单元醇或多元醇或惰性气体吹扫等防止溶液冷冻的方法。WO2012103537公开了一种低温环境下保持甲醇燃料电池不关机以维持电池***内部温度从而防止溶液冷冻的方法。
综合来看,目前甲醇燃料电池***的低温启动技术鲜有涉及。
发明内容
本发明针对以上现有技术的不足,提供一种直接液体燃料电池发电装置,在低温环境中启动的直接甲醇燃料电池***及低温辅助启动部件,尤其是适用需要在-20℃~-40℃低温环境中启动的直接甲醇燃料电池***。可以直接采用甲醇、乙醇等有机小分子原料催化燃烧放热作为***加热热源,具有原料易于保障、操作简便等优点。
一种直接液体燃料电池发电装置,包括直接液体燃料电池***,所述直接液体燃料电池***包括燃料电池电堆、气泵、气液分离器、液泵、冷凝器;所述气泵气体出 口与电堆阴极入口管路相连,电堆阴极出口经过冷凝器与气液分离器阴极物料回收口管路相连;所述气液分离器的出液口经燃料循环泵与电堆阳极入口管路相连,所述电堆阳极出口与气液分离器上的阳极物料回收口管路相连;所述气液分离器设置有阴极物料回收口、阳极物料回收口、辅助溶液入口和出液口。
所述气液分离器为一密闭容器,其中部设有横向的隔板,将密闭容器内部分隔成上下互不相连的二个腔室,上部腔室为阴极物料气液分离腔、下部腔室为阳极物料气液分离腔,于隔板上开设有通孔,于隔板上表面通孔四周设有一环形突起,通孔下部设有一导管,导管上端与通孔密闭连接,导管下端伸入至阳极物料分离腔内的液面以下。
于阴极物料气液分离腔中上部设有阴极物料回收口、上部设有尾气出口。
于阳极物料气液分离腔中上部设有阳极物料回收口、下部设有出液口和辅助溶液入口;于阳极物料气液分离腔上部设有气体出口,气体出口经管路与阴极物料气液分离腔中上部连通,或于隔板上开设有作为二氧化碳排出口的通孔,通过二氧化碳排出口的二氧化碳经过隔板上表面的液体层进入阴极物料气液分离腔中。
所述直接液体燃料电池***还包括一辅助启动电源接口和一液体燃料输送口,液体燃料输送口经液体燃料连通管与气液分离器的辅助溶液入口连接;辅助启动电源接口经导线与液体燃料连通管外部缠绕的电加热元件连接,辅助启动电源接口经导线与阳极物料气液分离腔中下部壁面上设置的电加热元件连接;所述发电装置还包括低温辅助启动部件;所述低温辅助启动部件包括辅助溶液储罐、电加热器、溶液输送泵、低温电源以及辅助供电插头。
所述电加热器设置于辅助溶液储罐底部为辅助溶液储罐内部的溶液加热,所述低温电源为电加热器供电,或为电加热器和溶液输送泵同时供电。
所述溶液输送泵的出液口经管路与所述直接液体燃料电池***的液体燃料输送口连通,所述溶液输送泵的进液口经管路与辅助溶液储罐相连;所述辅助供电插头直接或经一电压变换器与所述直接液体燃料电池***的辅助启动电源接口电连接,为启动阶段的直接液体燃料电池***的电加热元件供电。
所述低温辅助启动部件中的电加热器为PTC加热器;所述直接液体燃料电池***的电加热元件为电加热丝或电加热线或电加热带或PTC加热器中的一种或二种以上。
所述低温电源为低温锂电池或铅酸电池。
所述直接液体燃料电池***包括第一换热器;电堆阳极出口溶液作为第一换热器的热流体,电堆阴极进口气体作为第一换热器的冷流体,用于实现电堆阳极出口溶液为电堆阴极进口气体预热的功能。
所述直接液体燃料电池***还包括启动用电子负载和控制器;所述启动用电子负载设置于冷凝器上,所述启动用电子负载与所述燃料电池电堆并联连接,同时与所述控制器电连接,于电堆启动阶段工作,为冷凝器加热。
所述直接液体燃料电池***与所述低温辅助启动部件在结构上是分离的,可以通过辅助启动电源接口及液体输送口实现快速连接。
所述直接液体燃料电池***中的气液分离器上还设置于一高浓度燃料入口,高浓度燃料入口管路与燃料补充泵的出口相连,燃料补充泵的入口管路内的流体通过气液分离器的出液口与燃料循环泵相连的管路内的流体来预热。
所述低温辅助启动部件中的辅助溶液储罐上部设置有气压平衡管。
辅助溶液储罐中的液体体积可由罐体上的可视刻度获得。
所述电堆具有用于加热的内腔,有机燃料经过催化燃烧后产生的热尾气流经内腔为电堆加热。
所述内腔为下述结构中的任一一种或二种以上组合,于电堆内部的一个以上的双极板内部设有中空的密闭内腔,内腔上设有气体进口和气体出口;于一个或二个电堆端板内部设有中空的密闭内腔,内腔上设有气体进口和气体出口;于电堆外部设有与电堆贴接的一个以上的导热板,导热板内设有中空的密闭内腔,内腔上设有气体进口和气体出口;于电堆外部设有与电堆贴接的导热管,导热管内部的腔室即为热尾气流经内腔,其两端为气体进口和气体出口。
有机燃料经过催化燃烧模块产生的热可通过加热管路为液体燃料电池***内部水热管理等部件加热。
催化燃烧模块包括催化燃烧器、燃料泵、气泵和电控。催化燃烧器包括燃烧室,燃烧室内设催化剂,燃烧室上设有与燃料泵相连的燃料入口,燃烧室上设有与气泵相连的空气入口,燃烧室上设有尾气出口。
于燃烧器上设有加热丝/加热片,利用低温电源对低温下的催化燃烧器加热,使其能够在低温下进行催化燃烧。
所述催化燃烧器采用的催化剂为贵金属催化剂、过渡金属氢化物催化剂、复氧化物催化剂中的一种。
所述电堆端板采用不锈钢、铝合金等材料。
本发明中的催化燃烧器在低温条件下可采用电加热丝将其加热至0℃以上,进而能够发生催化燃烧反应。亦可采用热电池用加热药点燃放热加热催化燃烧器至0℃以上发生催化燃烧反应。
所述催化燃烧器采用的催化剂之一(常用选择)为Pt/Al 2O 3
本发明解决了现有技术中无法解决的液体燃料电池低温启动的问题,有利于液体燃料电池***在低温下启动,提高液体燃料电池的低温环境适应性,拓展了其应用范围。
附图说明
图1:本发明所述的一种直接液体燃料电池***结构示意图;
图中,101燃料电池电堆;102气泵;103风扇;104冷凝器;105气液分离器;106第一换热器;107燃料循环泵;108预热管路;109燃料补充泵;110是气液分离器加热器;111液体燃料连通管;112液体燃料连通管电加热线;113启动用电子负载;114控制器,包括控制器114-1与二次电池114-2;
101是燃料电池电堆,将储存于燃料中的化学能直接转化为电能;102是气泵,给电堆阴极输送空气;103是风扇,它的启动和停止可以用来调节冷凝器的冷凝效率;104是冷凝器,用来冷凝阴极出口的水蒸气;105是气液分离器,将阳极物料中的二氧化碳气体分离出来,将阴极物料中的水分离出来;同时稀释添加进来的高浓度燃料或者纯燃料;106是第一换热器,利用从电堆阳极出口流出的甲醇溶液的热量为空气加热;107是燃料循环泵,用来给电堆输送液体燃料;108是预热管路,利用气液分离器的出液口与燃料循环泵相连管路中甲醇溶液的热量为高浓度燃料预热;109是燃料补充 泵,根据控制器的输出信号,向气液分离器中补充经过预热的高浓度燃料或者纯燃料;110是气液分离器加热器,可以为甲醇溶液加热并保持一定的温度;111是液体燃料连通管,一端连接气液分离器的底部,另一端为液体燃料输送口,固定在DMFC***的外壁上;通过液体燃料连通管可以向气液分离器中注入甲醇溶液,也可以将气液分离器中的甲醇溶液排空;112是液体燃料连通管电加热线,电阻值为一定值,加电后发热,可以为液体燃料连通管加热;113是启动用电子负载,与燃料电池电堆并联连接,受控制器控制,安装在冷凝器上,在***启动阶段工作,可以加快电堆升温,缩短启动时间;启动用电子负载自身发出的热量用来为冷凝器加热,防止由于冷凝器温度过低造成内部的冷凝水结冰,避免冷凝器内部堵塞;114是控制器,包括控制器与二次电池;
图2:本发明所述的低温辅助启动部件结构示意图;
图中,201辅助溶液储罐;202辅助溶液储罐加热器;203溶液输送泵;204溶液输送泵进液管205溶液输送泵出液管;206辅助溶液输送管;207是气压平衡管;208是辅助溶液储罐上盖;209带有刻度线的液位视窗;210溶液输送泵的电源线;211加热器的电源线;212溶液输送泵电源开关;213加热器电源开关;214总电源开关;215低温电源;216低温电源电连接器;217外接电源电连接器;218电压变换器;219辅助供电插头;
201是辅助溶液储罐,用来存储辅助溶液,侧壁外表面上有保温材料;202是辅助溶液储罐加热器,加电后为辅助溶液储罐加热;203是溶液输送泵,用来输送辅助溶液,也可以将直接甲醇燃料电池气液分离器里的甲醇溶液输送到辅助溶液储罐中;204是溶液输送泵进液管,外壁包覆保温材料;205是溶液输送泵出液管,外壁包覆保温材料;206是辅助溶液输送管;通常情况下,溶液输送泵进液管与辅助溶液输送管连接,需要启动***时,将溶液输送泵出液管与直接甲醇燃料电池的液体燃料输送口连接,将加热后的辅助溶液加注到直接甲醇燃料电池***中;当直接甲醇燃料电池***需要在低温环境中储存时,将溶液输送泵出液管与辅助溶液输送管连接,将液泵进液管与直接甲醇燃料电池的液体燃料输送口连接,可以将气液分离器中的甲醇溶液抽空,防止在低温环境中甲醇溶液结冰,损坏气液分离器等部件;207是气压平衡管,用来平衡辅助溶液储罐内外的压力;208是辅助溶液储罐上盖,打开上盖可以快速添加辅助溶液,也可以进行清洗;209是带有刻度线的液位视窗,通过视窗可以观测里面的液位,通过刻度线可以判断出输送了多少辅助溶液;210是溶液输送泵的电源线,211是加热器的电源线,溶液输送泵电源线的负极与加热器的电源线的负极连接在一起;212是溶液输送泵电源开关,设置在溶液输送泵电源线的正极上;213是加热器电源开关,设置在加热器电源线的正极上;214是总电源开关,215是低温电源,216是低温电源电连接器;低温电源可以选用铅酸电池或低温锂电池;低温电源通过低温电源电连接器为溶液输送泵,加热器提供电能;断开低温电源电连接器,可以取下低温电源;217是外接电源电连接器,通过此连接器可以通过车内点烟器、其他低温电源、燃料电池等电源为辅助启动部件提供电能;218是电压变换器,可以提供12VDC、24VDC两种规格的电压输出,可以为不同规格的直接甲醇燃料电池***提供启动阶段所需的电能;219是辅助供电插头,可以连接到直接甲醇燃料电池***上,为其提供电能;
低温辅助启动部件主要包括带有刻度的辅助溶液储罐201、PTC加热器202、溶液输送泵203、低温电源215、电压变换器218、外接电源连接器217等部分;通过辅助启动部件将辅助溶液储罐207中的辅助溶液,以及直接甲醇燃料电池***中液体燃料连通管以及气液分离器加热,然后将辅助溶液加注到气液分离器中,利用辅助溶液的热量升高电堆的温度;本发明的优点是直接甲醇燃料电池***结构简单,内部不用集成大容量的电池,通过低温辅助启动部件以及车内点烟器等外接电源辅助加热;低温辅助启动部件采用PTC加热器,不需要温度控制器,结构简单,成本低廉,易于实现;直接甲醇燃料电池***进入正查启动状态后,就可以与低温辅助启动部件分开;
图3:本发明所述的气液分离器加热器与液体燃料连通管电加热线连接示意图;
其中110是气液分离器加热器,112是液体燃料连通管电加热线,二者的电源线并联在一起;301是燃料电池辅助供电接口,通过此接口可以给气液分离器加热器、液体燃料连通管电加热线供电;辅助启动部件的辅助供电插头可以匹配燃料电池的辅助供电接口;
图4:本发明所述直接甲醇燃料电池***低温启动模式软件流程示意图;
直接甲醇燃料电池***控制器进入到低温启动模式后,燃料循环泵开始工作,使得辅助溶液在***内循环;然后控制器开始检测燃料电池电堆的温度,当电堆温度大于设定值后,进入正常启动状态;
图5:本发明涉及的燃料电池低温启动连接示意图;
图中,1预热用电池;2加热丝或加热片;3催化燃烧气泵;4燃料泵;5燃料罐;6电控板;7气液分离器;8燃料电池电堆;9燃料电池气泵;
1是预热用电池,用于催化燃烧器预热提供电能;2是加热丝或加热片,用于将电能转化为催化燃烧器预热的热能;3是催化燃烧气泵,为催化燃烧器提供空气;4是燃料泵,为催化燃烧提供稳定流量的燃料;5是燃料罐,用于存储催化燃烧用燃料;6是电控板,用于执行器件供电并控制其运行;7是气液分离器,将阳极物料中的二氧化碳气体分离出来,将阴极物料中的水分离出来;同时稀释添加进来的高浓度燃料或者纯燃料;8是燃料电池电堆,将储存于燃料中的化学能直接转化为电能;9是燃料电池气泵,给电堆阴极输送空气;
图6:电堆双极板加热内腔示意图;
图中,10阴极双极板;11双极板加热内腔;12气体进口;13阳极双极板;14气体出口;15阳极流场;
10是阴极双极板,一侧是为阴极提供反应物的阴极流场,一侧是为催化燃烧器的热气提供换热的流场;11是双极板加热流场,为催化燃烧器的热气提供换热的流场;12是气体进口,燃烧器的热气从此口进入双极板加热流场;13是阳极双极板,与阴极双极板组成带有加热腔的双极板组件,其上有阳极流畅,用于阳极反应物的运输;14气体出口,燃烧器的热气从此口离开双极板加热流场;15是阳极流场,阳极反应物运输的通道;
图7:催化燃烧器结构示意图;
图中,16催化燃烧器入口;17催化燃烧器流场;18催化燃烧器出口;
16是催化燃烧器入口,用于连接催化燃烧气泵、燃料泵和催化燃烧器;17是催化燃烧器流场,用于填充催化剂、均匀分配流体;18是催化燃烧器出口,用于连接燃料 电池电堆加热腔和催化燃烧器。
具体实施方式
为进一步说明本发明,列举以下实施例。
实施例1
提供一台额定输出功率为50W的DMFC***,电堆由40片单池组成,在上次运行结束后已经将气液分离器中的甲醇溶液排空。采用电阻约为15Ω的电加热线缠绕在连通管上。采用电压为12VDC,表面温度为80℃、功率约为50W的PTC加热器为气液分离器加热。甲醇溶液通过管壳式换热器为气泵出口的空气加热,甲醇溶液走壳程,空气走管程。将纯甲醇的进料管在燃料循环泵的进料管上缠绕几圈进行预热。启动用电子负载为恒压模式,最大电流为10A,电压的设定值为20V。采用电压为12VDC,表面温度为80℃、功率约为80W的PTC加热器为辅助溶液储罐加热。将辅助溶液装入到辅助溶液储罐中,使用辅助启动部件内的铅酸电池的电能为辅助溶液加热。将辅助启动插头插到DMFC辅助启动电源接口中,为连通管与气液分离器加热。当辅助溶液的温度接近60℃时,将辅助启动部件的溶液输送泵出液管与DMFC***液体燃料输送口连接,通过溶液输送泵将辅助溶液注入到气液分离器中。通过辅助溶液储罐侧壁的刻度,判断注入辅助溶液的量,到达所需值后停止注入,停止辅助溶液储罐的加热。启动DMFC***,进入低温启动模式,使加热后的辅助溶液在***内循环。当电堆温度升至6℃时,DMFC***进入正常启动模式。当电堆温度正常上升后可以停止对气液分离组件与液体燃料连通管的加热。当电堆温度升至60℃时启动用电子负载停止工作。
实施例2
提供一台额定输出功率为200W的DMFC***,电堆由70片单池组成,在上次运行结束后已经将气液分离组件中的甲醇溶液排空。采用电阻约为28Ω的加热线缠绕在液体燃料连通管上。采用电压为24VDC,表面温度为80℃、功率约为100W的PTC加热器为气液分离器加热。甲醇溶液通过管壳式换热器为气泵出口的空气加热,甲醇溶液走壳程,空气走管程。将纯甲醇的进料管在燃料循环泵的进料管上缠绕几圈进行预热。启动用电子负载的最大电流为20A,工作在恒压模式,电压的设定值为35V。采用电压为24VDC,表面温度为80℃、功率约为200W的PTC加热器为辅助溶液储罐加热。将辅助溶液装入到辅助溶液储罐中,通过车载点烟器为辅助溶液加热。将辅助启动插头插到DMFC辅助启动电源接口中,为液体燃料连通管与气液分离器加热。当辅助溶液的温度接近70℃时,将辅助启动部件的溶液输送泵出液管与DMFC***液体燃料输送口连接,通过溶液输送泵将辅助溶液注入到气液分离器中。通过辅助溶液储罐侧壁的刻度,判断注入辅助溶液的量,到达所需值后停止注入,停止辅助溶液储罐的加热。启动DMFC***,进入低温启动模式,使加热后的辅助溶液在***内循环。当电堆温度升至10℃时,DMFC***进入正常启动模式。当电堆温度正常上升后可以停止对气液分离器与液体燃料连通管的加热。当电堆温度升至60℃时启动用电子负载停止工作。
以上所述,仅是本发明的具体实施方式,但本发明的保护范围并不仅限于以上内容。基于本发明所披露的技术的变化、替换都应涵盖在本发明的保护范围之内。
实施例3
以直接甲醇燃料电池(DMFC)为例,按照图1方式连接各个部件。其中,1是预热用电池,用于催化燃烧器预热提供电能。2是加热丝或加热片,用于将电能转化为催化燃烧器预热的热能。3是催化燃烧气泵,为催化燃烧器提供空气。4是燃料泵,为催化燃烧提供稳定流量的燃料。5是燃料罐,用于存储催化燃烧用燃料。6是电控板,用于执行器件供电并控制其运行。7是气液分离器,将阳极物料中的二氧化碳气体分离出来,将阴极物料中的水分离出来。同时稀释添加进来的高浓度燃料或者纯燃料。8是燃料电池电堆,将储存于燃料中的化学能直接转化为电能。9是燃料电池气泵,给电堆阴极输送空气。10是阴极双极板,一侧是为阴极提供反应物的阴极流场,一侧是为催化燃烧器的热气提供换热的流场。11是双极板加热流场;于电堆内部的双极板上,双极板内部设有中空的密闭内腔(作为加热流场),内腔上设有气体进口和气体出口,为催化燃烧器的热气提供换热的流场。12是气体进口,燃烧器的热气从此口进入双极板加热流场。13是阳极双极板,与阴极双极板组成带有加热腔的双极板组件,其上有阳极流畅,用于阳极反应物的运输;14气体出口,燃烧器的热气从此口离开双极板加热流场。15是阳极流场,阳极反应物运输的通道。16是催化燃烧器入口,用于连接催化燃烧气泵、燃料泵和催化燃烧器。17是催化燃烧器流场,用于填充催化剂、均匀分配流体。18是催化燃烧器出口,用于连接燃料电池电堆加热腔和催化燃烧器。
气泵可以选择YLKTECH公司DA50EE;燃料泵可以选择KNF公司的NF11;加热片可以选择12VDC,50W型号;锂电池可以选择3串6并18650磷酸铁锂组。燃料电池冷冻前,将***内水溶液抽出,置换成多元醇的水溶液。冷冻完成后,闭合催化燃烧模块开关,***自动进行催化燃烧器预热和启动,待燃料电池电堆温度到达30℃时,置换多元醇水溶液为水溶液并重复多次置换操作,保证多元醇含量低于1%,开启燃料电池开关即可实现低温启动。待燃料电池电堆温度到达60℃左右时,关闭催化燃烧模块。
实施例4
以直接甲醇燃料电池(DMFC)为例,按照图1和实施例1的方式连接各个部件。其中,气泵可以选择YLKTECH公司DA50EE;燃料泵可以选择KNF公司的NF11;加热片可以选择12VDC,50W型号;锂电池可以选择3串6并18650磷酸铁锂组。燃料电池冷冻前,将***内水溶液抽出,用氮气对电堆进行吹扫,只留下少量水。冷冻完成后,闭合燃料电池***开关并开启调试模式,只让液泵工作。闭合催化燃烧模块开关,***自动进行催化燃烧器预热和启动,待燃料电池电堆温度到达30℃时,向***内注入水溶液,开启燃料电池开关即可实现低温启动。待燃料电池电堆温度到达60℃左右时,关闭催化燃烧模块。
以上所述的实施例只是为更好地阐明本发明而给出的较优选的具体实施方式,本领域的技术人员在本方案范围内进行的细节、步骤、材料、部件的变化和替换都应包含在本发明的保护范围内。

Claims (16)

  1. 一种直接液体燃料电池发电装置,包括直接液体燃料电池***,所述直接液体燃料电池***包括燃料电池电堆、气泵、气液分离器、燃料循环泵、冷凝器;所述气泵气体出口与电堆阴极入口管路相连,电堆阴极出口经过冷凝器与气液分离器阴极物料回收口管路相连;所述气液分离器的出液口经燃料循环泵与电堆阳极入口管路相连,所述电堆阳极出口与气液分离器上的阳极物料回收口管路相连;所述气液分离器设置有阴极物料回收口、阳极物料回收口、辅助溶液入口和出液口;其特征在于:
    所述直接液体燃料电池***还包括一辅助启动电源接口和一液体燃料输送口,液体燃料输送口经液体燃料连通管与气液分离器的辅助溶液入口连接;辅助启动电源接口经导线与液体燃料连通管外部缠绕的电加热元件连接,辅助启动电源接口经导线与阳极物料气液分离腔中下部壁面上设置的电加热元件连接;
    所述发电装置还包括低温辅助启动部件;所述低温辅助启动部件包括辅助溶液储罐、电加热器、溶液输送泵、低温电源以及辅助供电插头;所述电加热器设置于辅助溶液储罐底部为辅助溶液储罐内部的溶液加热,所述低温电源为电加热器供电,或为电加热器和溶液输送泵同时供电;
    所述溶液输送泵的出液口经管路与所述直接液体燃料电池***的液体燃料输送口连通,所述溶液输送泵的进液口经管路与辅助溶液储罐相连;
    所述辅助供电插头直接或经一电压变换器与所述直接液体燃料电池***的辅助启动电源接口电连接,为启动阶段的直接液体燃料电池***的电加热元件供电。
  2. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述低温辅助启动部件中的电加热器为PTC加热器;所述直接液体燃料电池***的电加热元件为电加热丝或电加热线或电加热带或PTC加热器中的一种或二种以上。
  3. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述低温电源为低温锂电池或铅酸电池或超级电容器。
  4. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述直接液体燃料电池***包括第一换热器;电堆阳极出口溶液作为第一换热器的热流体,电堆阴极进口气体作为第一换热器的冷流体,用于实现电堆阳极出口溶液为电堆阴极进口气体预热的功能。
  5. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述直接液体燃料电池***还包括启动用电子负载和控制器;所述启动用电子负载设置于冷凝器上,所述启动用电子负载与所述燃料电池电堆并联连接,同时与所述控制器电连接,于电堆启动阶段工作,为冷凝器加热。
  6. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述直接液体燃料电池***与所述低温辅助启动部件在结构上是分离的,可以通过辅助启动电源接口及液体输送口实现快速连接。
  7. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述气液分离器为一密闭容器,其中部设有横向的隔板,将密闭容器内部分隔成上下互不相连的二个腔室,上部腔室为阴极物料气液分离腔、下部腔室为阳极物料气液分离腔,于隔板上开设有通孔,于隔板上表面通孔四周设有一环形突起,通孔下部设有一导管,导管 上端与通孔密闭连接,导管下端伸入至阳极物料分离腔内的液面以下;于阴极物料气液分离腔中上部设有阴极物料回收口、上部设有尾气出口;
    于阳极物料气液分离腔中上部设有阳极物料回收口、下部设有出液口和辅助溶液入口;于阳极物料气液分离腔上部设有气体出口,气体出口经管路与阴极物料气液分离腔中上部连通,或于隔板上开设有作为二氧化碳排出口的通孔,通过二氧化碳排出口的二氧化碳经过隔板上表面的液体层进入阴极物料气液分离腔中。
  8. 如权利要求5所述直接液体燃料电池发电装置,其特征在于:所述直接液体燃料电池***中的气液分离器上还设置于一高浓度燃料入口,高浓度燃料入口管路与燃料补充泵的出口相连,燃料补充泵的入口管路内的流体通过气液分离器的出液口与燃料循环泵相连的管路内的流体来预热。
  9. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述低温辅助启动部件中的辅助溶液储罐上部设置有气压平衡管。
  10. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:辅助溶液储罐中的液体体积可由罐体上的可视刻度获得。
  11. 如权利要求1所述直接液体燃料电池发电装置,其特征在于:所述燃料电池电堆具有用于加热的内腔,有机燃料经过催化燃烧后产生的热尾气流经内腔为电堆加热。
  12. 如权利要求11所述直接液体燃料电池发电装置,其特征在于:所述内腔为下述结构中的任一一种或二种以上组合,于电堆内部的一个以上的双极板内部设有中空的密闭内腔,内腔上设有进口和出口;
    于一个或二个电堆端板内部设有中空的密闭内腔,内腔上设有进口和出口;
    于电堆外部设有与电堆贴接的一个以上的导热板,导热板内设有中空的密闭内腔,内腔上设有进口和出口;
    于电堆外部设有与电堆贴接的导热管,导热管内部的腔室即为热尾气流经内腔,其两端为进口和出口。
  13. 如权利要求11所述直接液体燃料电池发电装置,其特征在于:有机燃料经过催化燃烧模块产生的热可通过加热管路为液体燃料电池***内部水热管理等部件加热;催化燃烧模块包括催化燃烧器、燃料泵、气泵和电控;催化燃烧器包括燃烧室,燃烧室内设催化剂,燃烧室上设有与燃料泵相连的燃料入口,燃烧室上设有与气泵相连的空气入口,燃烧室上设有尾气出口。
  14. 如权利要求11所述直接液体燃料电池发电装置,其特征在于:于燃烧器上设有加热丝/加热片,利用低温电源对低温下的催化燃烧器加热,使其能够在低温下进行催化燃烧。
  15. 如权利要求11所述直接液体燃料电池发电装置,其特征在于:所述催化燃烧器采用的催化剂为贵金属催化剂、过渡金属氢化物催化剂、复氧化物催化剂中的一种。
  16. 如权利要求11所述直接液体燃料电池发电装置,其特征在于:所述电堆端板采用不锈钢、铝合金等材料。
PCT/CN2018/118058 2017-12-04 2018-11-29 一种直接液体燃料电池发电装置 WO2019109844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,354 US11302939B2 (en) 2017-12-04 2018-11-29 Direct liquid fuel cell power generation device
EP18887054.7A EP3624242A4 (en) 2017-12-04 2018-11-29 DEVICE FOR DIRECT LIQUID FUEL CELL POWER GENERATION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711262551.5 2017-12-04
CN201711262551.5A CN109873183B (zh) 2017-12-04 2017-12-04 一种直接液体燃料电池发电装置
CN201711372610.4A CN109935866B (zh) 2017-12-19 2017-12-19 一种用于液体燃料电池***低温启动的方法
CN201711372610.4 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019109844A1 true WO2019109844A1 (zh) 2019-06-13

Family

ID=66750417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118058 WO2019109844A1 (zh) 2017-12-04 2018-11-29 一种直接液体燃料电池发电装置

Country Status (3)

Country Link
US (1) US11302939B2 (zh)
EP (1) EP3624242A4 (zh)
WO (1) WO2019109844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310438A (zh) * 2019-08-02 2021-02-02 上海汽车集团股份有限公司 一种质子交换膜燃料电池***低温自启动方法及装置
CN114566681A (zh) * 2022-01-13 2022-05-31 上海杰宁新能源科技发展有限公司 一种能将多余的水份排出的氢燃料电池低温启动装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769310A (zh) * 2020-06-16 2020-10-13 广东国鸿氢能科技有限公司 一种燃料电池***
CN114284536B (zh) * 2021-12-31 2023-11-07 北京京豚科技有限公司 一种基于固态储氢与燃料电池的便携电源
CN115284895A (zh) * 2022-08-23 2022-11-04 中国第一汽车股份有限公司 燃料电池发动机的热管理***、热管理方法以及车辆
CN115483412A (zh) * 2022-09-23 2022-12-16 中国第一汽车股份有限公司 一种燃料电池及其的电堆湿度控制装置和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103410A (en) 1998-06-05 2000-08-15 International Fuel Cells Corporation Start up of frozen fuel cell
US20040003397A1 (en) 2002-06-27 2004-01-01 International Business Machines Corporation System and method for customized video commercial distribution
JP2005285403A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 燃料電池システム及びその凍結防止方法
US20060112613A1 (en) 2004-11-30 2006-06-01 Tomoaki Arimura Fuel for fuel cell
US7122259B2 (en) 2001-11-08 2006-10-17 Nissan Motor Co., Ltd. Fuel cell startup method
US20100310954A1 (en) 2009-06-04 2010-12-09 Madeleine Odgaard Method for frost protection in a direct methanol fuel cell
US7901823B2 (en) 2001-04-06 2011-03-08 Honda Giken Kogyo Kabushiki Kaisha Fuel cell employing cooling liquid passages for starting at low temperature
CN101997126A (zh) * 2009-08-21 2011-03-30 中国科学院大连化学物理研究所 用于以液体燃料进料的燃料电池***的燃料浓度控制方法
WO2012103537A2 (en) 2011-01-28 2012-08-02 Ird Fuel Cells Llc Method and system for stable direct methanol fuel cell operation at varying loads and sub-zero temperatures
CN105390715A (zh) * 2015-11-04 2016-03-09 北京氢璞创能科技有限公司 一种低温冷启动燃料电池***及利用方法
CN105762398A (zh) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 一种燃料电池组合电源***及其控制方法
CN106992307A (zh) 2017-06-02 2017-07-28 苏州中氢能源科技有限公司 燃料电池堆发电***的液体循环子***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085403A (ja) 2003-09-10 2005-03-31 Tdk Corp ディスク状記録媒体の製造方法及びディスク状記録媒体の製造方法に使用可能なスタンパ部材
US7465504B2 (en) * 2004-12-27 2008-12-16 Panasonic Corporation Direct oxidation fuel cell and system operating on concentrated fuel using low oxidant stoichiometry
US8153324B2 (en) * 2006-02-15 2012-04-10 Nanotek Instruments, Inc. Controlled-release vapor fuel cell
CN101587961A (zh) 2009-06-22 2009-11-25 新源动力股份有限公司 一种质子交换膜燃料电池低温启动***及启动方法
CN105762382A (zh) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 一种直接液体燃料电池***长期存储后的启动方法
KR101666200B1 (ko) * 2015-12-22 2016-10-13 엘아이지넥스원 주식회사 저온 시동 직접 메탄올 연료전지 시스템

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103410A (en) 1998-06-05 2000-08-15 International Fuel Cells Corporation Start up of frozen fuel cell
US7901823B2 (en) 2001-04-06 2011-03-08 Honda Giken Kogyo Kabushiki Kaisha Fuel cell employing cooling liquid passages for starting at low temperature
US7122259B2 (en) 2001-11-08 2006-10-17 Nissan Motor Co., Ltd. Fuel cell startup method
US20040003397A1 (en) 2002-06-27 2004-01-01 International Business Machines Corporation System and method for customized video commercial distribution
JP2005285403A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 燃料電池システム及びその凍結防止方法
US20060112613A1 (en) 2004-11-30 2006-06-01 Tomoaki Arimura Fuel for fuel cell
US20100310954A1 (en) 2009-06-04 2010-12-09 Madeleine Odgaard Method for frost protection in a direct methanol fuel cell
CN101997126A (zh) * 2009-08-21 2011-03-30 中国科学院大连化学物理研究所 用于以液体燃料进料的燃料电池***的燃料浓度控制方法
WO2012103537A2 (en) 2011-01-28 2012-08-02 Ird Fuel Cells Llc Method and system for stable direct methanol fuel cell operation at varying loads and sub-zero temperatures
CN105762398A (zh) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 一种燃料电池组合电源***及其控制方法
CN105390715A (zh) * 2015-11-04 2016-03-09 北京氢璞创能科技有限公司 一种低温冷启动燃料电池***及利用方法
CN106992307A (zh) 2017-06-02 2017-07-28 苏州中氢能源科技有限公司 燃料电池堆发电***的液体循环子***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624242A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310438A (zh) * 2019-08-02 2021-02-02 上海汽车集团股份有限公司 一种质子交换膜燃料电池***低温自启动方法及装置
CN114566681A (zh) * 2022-01-13 2022-05-31 上海杰宁新能源科技发展有限公司 一种能将多余的水份排出的氢燃料电池低温启动装置
CN114566681B (zh) * 2022-01-13 2023-11-21 上海杰宁新能源科技发展有限公司 一种能将多余的水分排出的氢燃料电池低温启动装置

Also Published As

Publication number Publication date
US20200119377A1 (en) 2020-04-16
EP3624242A4 (en) 2020-06-17
EP3624242A1 (en) 2020-03-18
US11302939B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2019109844A1 (zh) 一种直接液体燃料电池发电装置
CN105702979B (zh) 一种燃料电池电堆零度以下环境的启动方法
CN105390715B (zh) 一种低温冷启动燃料电池***及利用方法
CN100527510C (zh) 一种燃料电池低温启动的方法及装置
CN104733748B (zh) 一种中高温燃料电池集成运行***
JP2893344B2 (ja) 燃料電池システム
CN100379065C (zh) 可在低温环境下启动与运行的燃料电池发电***
CN103887545B (zh) 一种高温液体燃料电池***启动方法
JP2002543566A (ja) 耐凍性燃料電池システム及び方法
CN203674322U (zh) 一种中高温燃料电池集成运行***
CN101325263A (zh) 从燃料电池废气流中回收惰性气体
CN107394232B (zh) 燃料电池的动力***与交通工具
JP2002530817A (ja) 起動可能出力を改良した燃料電池システム
CN102751521A (zh) 一种燃料电池低温启动的空气回流加热***及其方法
CN104716370A (zh) 一种高温液体燃料电池***
CN113506893B (zh) 一种燃料电池***及其低温启动方法
CN104733746B (zh) 一种低温与中高温燃料电池联合运行***
CN101356681B (zh) 燃料电池***及操作方法
JP2020090695A (ja) 電気化学式水素圧縮システム
CN101853957B (zh) 燃料电池***
US8343678B2 (en) Fuel cell system to preheat fuel cell stack
CN109935866B (zh) 一种用于液体燃料电池***低温启动的方法
CN109713337B (zh) 直接甲醇燃料电池与锂离子电池混合输出装置和输出方法
CN106450377B (zh) 燃料电池热电联产***及其操作方法
CN109873183B (zh) 一种直接液体燃料电池发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018887054

Country of ref document: EP

Effective date: 20191210

NENP Non-entry into the national phase

Ref country code: DE