WO2019109619A1 - 一种智能变电站全自动闭环检测方法及装置 - Google Patents

一种智能变电站全自动闭环检测方法及装置 Download PDF

Info

Publication number
WO2019109619A1
WO2019109619A1 PCT/CN2018/091528 CN2018091528W WO2019109619A1 WO 2019109619 A1 WO2019109619 A1 WO 2019109619A1 CN 2018091528 W CN2018091528 W CN 2018091528W WO 2019109619 A1 WO2019109619 A1 WO 2019109619A1
Authority
WO
WIPO (PCT)
Prior art keywords
substation
test
tested
measured
file
Prior art date
Application number
PCT/CN2018/091528
Other languages
English (en)
French (fr)
Inventor
罗蓬
范辉
杨经超
郝晓光
赵宇皓
何磊
饶群
Original Assignee
国网河北省电力有限公司电力科学研究院
国家电网有限公司
武汉凯默电气有限公司
国网河北能源技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国家电网有限公司, 武汉凯默电气有限公司, 国网河北能源技术服务有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Priority to US16/254,426 priority Critical patent/US11327114B2/en
Publication of WO2019109619A1 publication Critical patent/WO2019109619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network

Definitions

  • the embodiments of the present disclosure relate to the field of substation technologies, and in particular, to a method and an apparatus for automatically detecting a closed loop of a smart substation.
  • intelligent substation has a unified, object-oriented hierarchical information and service model.
  • the intelligent substation adopts interoperable intelligent electronic equipment and networked communication structure, which improves the information interaction and processing capability of the substation, and also makes the information organization and distribution relationship of secondary equipment such as relay protection more complicated.
  • most of the existing intelligent substations still test the secondary system of the substation with reference to the conventional substation method. It is impossible to automatically develop the test plan based on the information of the secondary system structure and equipment configuration of the substation under test, which leads to the visualization of the closed-loop test of the substation. The level is lower.
  • the embodiments of the present disclosure provide a method and a device for automatically detecting a closed loop of a smart substation, so as to solve the problem that the closed loop test of the existing substation can result in a low level of visualization due to the inability to automatically formulate a test solution.
  • an embodiment of the present disclosure provides a method for automatic closed-loop detection of a smart substation, including:
  • the test item is obtained from the preset test item library based on the SSD topology diagram of the tested substation, the test plan of the tested substation is generated, the project test is performed, and the test result is output.
  • the embodiment of the present disclosure further provides a smart substation automatic closed-loop detecting device, including:
  • the comparison module is configured to compare the measured substation SCD file with the device type data template file to determine whether the measured substation configuration information is correct;
  • a generating module configured to parse the SCD file of the tested substation and generate a SSD topology diagram of the substation under test when determining that the substation configuration information is correct;
  • the test module is configured to obtain a test item from a preset test item library based on the tested substation SSD topology diagram, generate a test plan of the tested substation, perform a project test, and output a test result.
  • an embodiment of the present disclosure further provides an electronic device, including:
  • One or more processors are One or more processors;
  • One or more computer programs wherein the one or more computer programs are stored in the memory and configured to be executed by the one or more processors, wherein the computer program is executed.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the smart substation automatic closed loop detection method described in the first aspect is implemented. A step of.
  • the measured substation SCD file is compared with the device type data template file to determine whether the measured substation configuration information is correct; when it is determined that the measured substation configuration information is correct, the analysis office Describe the SCD file of the substation to be tested and generate a SSD topology diagram of the substation under test; obtain a test item from the preset test item library based on the SSD topology diagram of the substation under test, generate a test plan of the substation under test and perform project test, output test result.
  • test project can be automatically generated according to the system structure and equipment configuration information of the substation, and the substation test device can be automatically tested for the project, the visualization level of the substation closed-loop test is improved, and the work intensity of the substation staff is also reduced.
  • FIG. 1 is a flow chart of a method for automatic closed-loop detection of a smart substation according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a scenario of a fully automatic closed-loop detection method for an intelligent substation according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another automatic closed-loop detection method for a smart substation according to an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of a smart substation automatic closed-loop detecting device according to an embodiment of the present disclosure
  • FIG. 5 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of another intelligent substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for automatic closed-loop detection of a smart substation according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a method for automatic closed-loop detection of a smart substation according to an embodiment of the present disclosure. schematic diagram. As shown in Figure 1, the following steps are included:
  • Step 101 Compare the measured substation SCD file with the device type data template file to determine whether the measured substation configuration information is correct.
  • the intelligent substation automatic closed-loop detection method is applied to a smart substation automatic closed-loop detection device, and the intelligent substation automatic closed-loop detection device includes a test platform, and the test platform passes the test communication.
  • the network is in communication with the substation to be tested.
  • SCD Substation Configuration Description
  • the step 101 may further include:
  • the virtual terminal of the imported substation SCD file is first reviewed, and the tested substation SCD file is compared with the virtual terminal connection standard template file to check the Whether the virtual terminal configuration of the SCD file relay protection related equipment and its connection are correct and complete, to ensure that the signal protection relationship between the relay protection of the device under test and the associated secondary device is correct, thereby ensuring the follow-up The effectiveness of the project test.
  • a typical template library of the virtual terminal connection of the substation relay protection related device is generated according to the virtual terminal connection standard template file, and an XML (Extensible Markup Language) is used. Language) The language establishes a typical template library of virtual terminal connections according to the voltage level and IED (Intelligent Electronic Device) type.
  • the SV input virtual terminal check template and the GOOSE input virtual terminal check template are set up in XML format, and the virtual terminal description and meaning are represented by the desc attribute under the node Inputs/ExtRef, and the calibration keyword is constructed according to the meaning of each specific virtual terminal.
  • check keywords support logical operations such as "AND”, “OR” or "OR”.
  • the SV input soft pressure plate and the GOOSE input/output soft pressure plate calibration template in XML format are established.
  • the name of the DataSet node is dsRelayEna, which is represented as a pressure plate.
  • the desc attribute of the node DataSet/FCDO indicates the description and meaning of the pressure plate, and the calibration keyword is constructed.
  • An example of the SV input soft pressure plate check template is as follows:
  • the terminal According to the identified IED type, read the template file, search for the IED/AccessPoint/Server/LDevice/LN0/Inputs/ExtRef node in the SCD file, according to the selected iedName and the internal short address intAddr, press prefix/lnClass/lnInst/ doName matches the doName description under the IED/AccessPoint/Server/LDevice/LN node. If there is a terminal in the template and there is no match under Inputs/ExtRef, the terminal belongs to the missing input virtual terminal, as in the template. In the terminal under Inputs/ExtRef, the terminal belongs to the multi-input virtual terminal;
  • the input terminal of the IED/AccessPoint/Server/LDevice/LN0/Inputs/ExtRef node is iedName/ldInst/prefix/lnClass/lnInst/doName to form the reference path of the virtual Id output terminal of the opposite side.
  • the description of the output virtual terminal is obtained, and the input virtual terminal description and the output virtual terminal description are matched according to the keyword, and the matching is correct for the connection, and the incorrect matching is the mismatch connection.
  • the communication configuration information in the imported substation SCD file is compared with the communication model information in the virtual terminal connection standard template file, and the determination is performed. Whether the configuration information of the SCD file of the tested substation is correct, to ensure the consistency between the device under test and the communication model of the substation, to avoid problems such as signal misalignment and abnormal communication service during the test, which affects the test effectiveness.
  • the virtual terminal connection standard template file is read and parsed by using a preset XML parser, and model configuration information related to the device to be tested is extracted, and the extracted model configuration is performed by using a logical node as a basic unit.
  • Information (including data within logical nodes, data attributes, data sets, various control blocks, etc.) is mapped to the MMS named variable of the structure type, and is stored as a model virtual according to the physical device-logical device-logical node-data type structure tree.
  • the model information of each layer of the device under test is obtained online by testing the communication network, specifically: collecting all the logical devices in the device model through the Get Server Directory service, and collecting through the Logical Device Directory through the Get Logical Device Directory.
  • the logical nodes in each logical device collect data, various control blocks and data sets in each logical node through the Get Logical Node Directory, and read each data through Get Data Definition.
  • the name and type of all data attributes read the current value of each data through Get Data Values, obtain the names of all members in the data set through Get Data Set Directory, and obtain the above
  • the complete hierarchical information model of the device under test and its current value are stored as model virtual terminal connection standard template file 2.
  • model virtual terminal connection standard template file 2 is consistent with the model virtual terminal connection standard template file 1 by the method of positive and negative two-way data comparison, to determine whether the measured substation SCD file configuration information is correct.
  • Step 102 When it is determined that the measured substation configuration information is correct, parse the measured substation SCD file and generate a substation SSD topology map.
  • the configuration information of the SCD file of the tested substation When it is determined that the configuration information of the SCD file of the tested substation is correct, it also indicates that the connection relationship of the device under test of the substation is correct, and then the SCD file of the substation under test is analyzed, and the SSD topology diagram of the substation under test is generated according to the analysis result.
  • the staff In order to realize the visualization of the connection information and status information of the secondary station and the secondary equipment of the substation, it is convenient for the staff to intuitively know the connection information and status information of the secondary equipment of the substation through the SSD topology diagram of the tested substation, which is more convenient to work. Intelligent control of personnel on substations.
  • the step 102 includes:
  • the SCD file of the tested substation is parsed and a main wiring diagram and an interval wiring diagram are generated to generate a substation SSD topology diagram, and the primary equipment and the secondary equipment in the substation under test are obtained.
  • the SCD file of the tested substation is parsed, and the main wiring diagram and the interval wiring diagram of the primary system of the substation are generated, and the primary device and the secondary logic device are acquired.
  • the association of logical nodes when it is determined that the SCD file configuration information of the tested substation is correct, the SCD file of the tested substation is parsed, and the main wiring diagram and the interval wiring diagram of the primary system of the substation are generated, and the primary device and the secondary logic device are acquired.
  • the test communication network reads the MMS, SV, and GOOSE network communication message information of the secondary device under test, such as the protection device, the merging unit, and the intelligent terminal, in real time, and obtains the current of the device under test in the tested substation.
  • Operating parameters such as voltage value, switch position, alarm information, function validity information, temperature, light intensity, etc., and map the above operating parameters to the SSD topology diagram of the substation under test to realize information correlation and state visualization of the substation under test.
  • Equipment operation and maintenance application of extended configuration files in substation operation and maintenance, and improvement of substation safety management and control level.
  • Step 103 Acquire a test item from a preset test item library based on the SSD topology diagram of the tested substation, generate a test plan of the tested substation, perform a project test, and output a test result.
  • the topology structure of the substation system and each interval protection configuration can be obtained, the test item is obtained from the preset test item library, and the test plan of the substation device under test is automatically generated.
  • the test scheme all the devices to be tested are automatically tested by the project, and the state information of the target logical node model is read and compared online, and the test results are automatically diagnosed synchronously during the test, and the test results are outputted to realize the substation.
  • the automatic closed-loop management of the test program, test process and test results of the device under test avoids the error caused by the manual result diagnosis and improves the reliability and efficiency of the closed-loop detection of the substation.
  • the step 103 may include, for example:
  • the test item matching the device to be tested is extracted from a preset test item library, and the test item is generated according to a preset arrangement rule to generate a test plan of the tested substation. Steps, including:
  • the extracted test item is generated according to a preset arrangement rule to generate a test plan of the tested substation.
  • a device under test is divided into multiple protection logic nodes according to function refinement, and each protection logic node has an independent function, and different functions correspond to different test items. Further, by acquiring the protection logic node of the device to be tested, the test item matching the protection logic node may be extracted from the preset test item library, and all the test items are generated according to the preset arrangement rule. Substation test plan.
  • the fault quantity module outputs a fault amount to the device under test, and correspondingly sets the state information of the protection logic node corresponding to the device to be tested in the target logical node model.
  • the intelligent substation automatic closed-loop detecting device performs information interaction based on the test communication network and the SV interface, the GOOSE interface and the MMS interface of the device to be tested, realizes the test closed loop through the SV and GOOSE services, and reads the device logic of the device to be tested through the MMS service. Node status information.
  • the device to be tested Comparing the state information set in the target logical node model with the actual operating state information of the corresponding protection device of the device under test, the device to be tested outputs a corresponding comparison result, thereby completing the closed loop test.
  • each logical node corresponds to one test item in the test item library, and each test item may include multiple test items.
  • the corresponding test item PDIF_T1 is preset, and the corresponding item PDIS_T1 is preset according to the distance protection logical node PDIS.
  • the corresponding test special PDIF_T1_D is preset for the fixed value D in the logical node.
  • the differential principle is fixed, the fixed value and the control word name are fixed, so the corresponding test items and test special items are also fixed, and the test item PDIF_T1 is used as the differential protection PDIF.
  • test items are saved, considering the scalability of the PDIF differential protection principle, the test items can also be extended, and the extensions T1, T2, etc. are distinguished.
  • the sudden excitation amount is used.
  • the error value range there is a clear relay action standard.
  • the excitation amount is 0.95D
  • the regulation requires that the relay should not operate.
  • the excitation amount is 1.05D
  • the regulation requires the relay to operate reliably.
  • the SSD topology diagram of the substation under test is analyzed by the XML parsing module, the logical node information of the device under test is read, and corresponding test items are searched from the preset test item library according to the logical node information to form a target device test item.
  • the device model information to be tested is extracted in the target device test project and stored as a target logical node model.
  • the test platform fault quantity module performs SV sampling data communication with the device under test through the test communication network, and outputs a corresponding test fault amount to the device under test according to the preset test item, and simultaneously performs corresponding device logical nodes in the target logical node model. Assignment and store the obtained logical node target information in the target logical node model.
  • the test item failure amount is outputted at time T0, and the state data of the target logical node model is assigned.
  • the test content of the differential protection PDIF is 0.95D action setting test.
  • the PDIF.OP in the target logical node model is assigned “False”; the test content is 1.05D difference.
  • the dynamic protection action setting test performs "True" assignment on the PDIF.OP in the target logical node model.
  • the GOOSE information module performs GOOSE information interaction with the device under test through the test network, and records the protection action time T1 in the GOOSE message in the GOOSE information module.
  • the test platform also obtains a device action event report through the MMS service of the station control layer interface, and stores related information in the report in the device logical node status information.
  • the state information of the target logical node model and the corresponding device action time data in the device logical node state information are respectively read, and the consistency comparison is performed. If the data is consistent, the protection action result is correct, otherwise the action is indicated. The result is incorrect.
  • the test platform finds the protection action event report “brcbTripInfo” at time T1 according to the protection action time, reads “PDIF.OP” in the corresponding data set from the protection action event report, and “PDIF.OP” in the target logical node model. Perform an alignment to verify that the test results meet the standard expectations, generate test results, and generate or print a test report in a standard format.
  • test project can be automatically generated according to the system structure and equipment configuration information of the substation, and the substation test device can be automatically tested for the project, the visualization level of the substation closed-loop test is improved, and the work intensity of the substation staff is also reduced.
  • FIG. 3 is a flowchart of another automatic closed-loop detection method for a smart substation according to an embodiment of the present disclosure.
  • the intelligent substation automatic closed-loop detection method includes:
  • Step 201 Compare the measured substation SCD file with the device type data template file to determine whether the measured substation configuration information is correct.
  • This step can be implemented by referring to step 101 in the embodiment shown in FIG. 1. To avoid repetition, this embodiment of the present disclosure does not describe this.
  • Step 202 When it is determined that the measured substation configuration information is correct, the SCD file of the tested substation is parsed, and the voltage level and interval information in the parsed SCD file of the tested substation are obtained.
  • the SCD file of the tested substation is parsed, and the sub-system topological connection of the substation is analyzed according to the analyzed SCD file of the tested substation, and the voltage level and interval information of the substation are obtained. Find the connection point to which each device terminal of the substation is connected, and write down the terminal in the connection point.
  • the wiring interval of the line interval and the main high/medium/low voltage side interval is determined: there are 3 circuit breakers and 2 busbar connection points for the 3/2 circuit breaker wiring interval; there are 1 circuit breaker and 2 bus bars.
  • the connection point is the double busbar wiring interval; there is one circuit breaker and one busbar connection point for the single busbar wiring interval; the others are abnormal conditions.
  • the number of busbar connection points the line spacing and the wiring pattern of each side of the main transformer, the wiring mode of each voltage level is determined, and the paired parallel busbars are found for the double busbar wiring.
  • Step 203 Generate an interval topology feature code according to the interval information, and obtain a spacing connection diagram template that is matched with the interval topology feature code from a preset interval device graphic template library to generate a spacing wiring diagram.
  • the interval information includes at least each device type and its topological connection relationship in the interval, and then generates an interval topology feature code according to the interval information.
  • the node type is identified by a single letter, such as 'O' indicating the bus connection point, 'L' indicating the line "IFL", 'K' indicating the circuit breaker "CBR", and the like.
  • the nodes are traversed from the root node, and the nodes are numbered in order, and the node type identifiers and numbers are combined into a topological feature string.
  • the same level nodes are placed in the same level brackets, such as: “O2- ⁇ G3- ⁇ D4, P5, V6 ⁇ , D7 ⁇ ".
  • the interval topology feature code is generated by the interval topology feature string, and the corresponding template is found in the preset interval device graphic template library according to the interval topology feature code. If not, the interval connection diagram template is generated and stored in the preset interval. In the device graphic template library, if it exists, the corresponding interval wiring diagram is generated according to the adapted interval wiring diagram template. Perform this step for each interval until you generate a wiring diagram of all the intervals.
  • Step 204 Create a busbar primitive according to the voltage level, and lay out the interval wiring diagram according to the busbar primitive to generate a main wiring diagram.
  • the busbar primitives are created according to the busbar connection point information and the wiring manner under the voltage level, and the relative positions of the busbars are adjusted; the interval wiring diagrams are retrieved, the interval wiring diagrams are laid out according to a preset principle, and the voltage level primitives are adjusted. Position, generate the main wiring diagram of the substation primary system.
  • the preset principle is: (1) the busbar segmentation interval horizontal position is located between the two busbars; (2) the main pitch high/medium/low voltage side interval is located on the busbar near the main transformer side; (3) The main transformer device element is located in the center of the main wiring diagram; the high voltage side is located at the upper left of the main wiring diagram above the main transformer; the medium voltage side is located below the main transformer; the low voltage side is located at the upper right of the main wiring diagram; (4) The non-main variable spacing on the busbar shall be placed on the side of the connected busbar according to the relative position of the parallel busbars.
  • Step 205 Generate a SSD topology diagram of the tested substation according to the interval wiring diagram and the main wiring diagram, and obtain a connection relationship between the primary device and the secondary device in the tested substation.
  • the interval wiring diagram and the main wiring diagram are analyzed, thereby obtaining a connection relationship between the primary device and the secondary device in the substation device to be tested, and the switching device is acquired by testing the communication network.
  • Information such as position, protection status, current transformer current and voltage, etc., map parameter information and position information such as transformer current and voltage to the main wiring diagram for correlation, and map device status information to the interval wiring diagram for correlation.
  • the information provided by the LNode under the circuit breaker, the knife gate finds the associated intelligent terminal and the corresponding logical device and logical node. If the lnClass is XCBR/XSWI, then The data object Pos under the logical node describes the position information of the circuit breaker or the knife gate. By traversing the process layer GOOSE data set of the intelligent terminal, the position information of the circuit breaker or the knife gate can be located by which GOOSE item is provided. .
  • the 220kV outgoing interval is the interval name "2211", the type is "CBR”, the associated intelligent terminal IED name is IL2201A, ldInst is RPIT, and lnClass is XCBR.
  • the information provided by the LNode under PT, CT finds the associated merging unit and the corresponding logical device, logical node, and if lnClass is TVTR/TCTR, the Vol data object under TVTR and The Amp data objects under the TCTR describe the voltage and current sample values, respectively, and extract and map them to the sample data display unit in the wiring diagram.
  • the logical nodes under each interval find the logical nodes under the interval association protection device and the device IED, and the logical nodes describe the specific protection functions provided by the protection device, taking a line protection as an example, in the Bay node.
  • the interval name and description are given.
  • the logical node and instance number included in the PL2201A line protection are given under the interval logical node, such as the differential protection logical node PDIF, the distance protection logical node PDIS, the overcurrent protection logical node PTOC, etc.
  • Step 206 Read a network communication packet of the secondary device, and parse and extract relay protection state information, component location information, and device operation state information of the secondary device in the network communication packet.
  • the test communication network is used to communicate with the secondary device in the device to be tested, obtain the network communication message of the device under test, and extract state parameters, location information, and device state information of the secondary device in the network communication message.
  • Step 207 Map relay protection status information, component location information, and device operation status information of the secondary device to the measured substation SSD topology map.
  • the process layer intelligent terminal GOOSE message is received, the circuit breaker position GOOSE signal is extracted, the position information and the state parameter of each switch knife gate are displayed in real time on the main wiring diagram; the process layer merge unit SV message is received, and the current voltage SV is extracted.
  • the sampled signal displays the status parameters of the current and voltage samples in real time on the main wiring diagram.
  • the soft pressure plate such as GOOSE receiving pressure plate, GOOSE sending pressure plate and function pressure plate.
  • each interval protection device traversing and protecting each entry of the dsRelayEna data set in the MMS message, reading and displaying the function pressure plate of the device to be tested, GOOSE output pressure plate, GOOSE input pressure plate, SV input pressure plate state; monitoring SV and GOOSE broken chain Alarms, device abnormal alarms, protection start/actions, etc., according to the iedName of the protection device, traverse the entries of the dsWarning, dsAlarm, and dsCommstate data sets in the MMS message of the protection device, and read and display device anomalies, communication broken links, PT/CT Various types of alarm information, such as disconnection, traverse the dsTripInfo data set, and then map the device status information to the interval wiring diagram.
  • the SSD topology diagram of the primary and secondary equipment of the substation is established based on all the information on the main wiring diagram and the interval wiring diagram.
  • Step 208 Acquire a test item from a preset test item library based on the SSD topology diagram of the tested substation, generate a test plan of the tested substation, perform a project test, and output a test result.
  • This step can be implemented by referring to step 103 in the embodiment shown in FIG. 1. To avoid repetition, this embodiment of the present disclosure does not describe this.
  • the SCD file of the tested substation is parsed and a main wiring diagram and a spacing wiring diagram are generated, and then the primary device in the device under test is obtained according to the main wiring diagram and the interval wiring diagram.
  • the connection relationship with the secondary device obtaining the network communication message of the secondary device through the test communication network to establish a substation SSD topology diagram of the substation, and establishing the SSD topology map of the tested substation based on the preset test project library Test the program and test the project.
  • the SSD topology map of the substation can be established according to the system structure and equipment configuration information of the substation, and the test project can be automatically generated to automatically test the substation test device, which improves the visualization and intelligence level of the substation closed-loop test. .
  • FIG. 4 is a structural diagram of a smart substation automatic closed-loop detecting device according to an embodiment of the present disclosure.
  • the intelligent substation automatic closed-loop detecting device 30 includes, for example:
  • the comparison module 31 is configured to compare the measured substation SCD file with the device type data template file to determine whether the measured substation configuration information is correct;
  • a generating module 32 configured to parse the SCD file of the tested substation and generate a SSD topology diagram of the substation under test when determining that the substation configuration information is correct;
  • the test module 33 is configured to obtain a test item from a preset test item library based on the measured substation SSD topology diagram, generate a test plan of the tested substation, perform a project test, and output a test result.
  • the comparison module 301 includes:
  • the comparison sub-module 311 is configured to obtain the SCD file and the virtual terminal connection standard template file of the tested substation, and compare the SCD file of the tested substation with the virtual terminal connection standard template file to determine Whether the SCD virtual terminal connection of the substation being tested is correct;
  • a determining sub-module 312 configured to read model configuration information in the SCD file of the tested substation when determining that the connected substation SCD virtual terminal connection is correct, and acquire a device operation model of the substation under test, The model configuration information in the SCD file of the tested substation is compared with the device operation model of the tested substation to determine whether the configuration information of the tested substation is correct.
  • the comparison submodule 3011 includes:
  • a first generating unit 3111 configured to generate a virtual template template of a virtual terminal connection according to the virtual terminal connection standard template file
  • a first obtaining unit 3112 configured to parse the SCD file of the tested substation, and obtain a virtual terminal connection relationship between the protection and the associated device in the SCD file of the tested substation;
  • the comparison unit 3113 is configured to compare the virtual terminal connection relationship of the protection and associated device with a corresponding virtual terminal connection standard template file in the virtual terminal connection template library to determine the measured substation Whether the SCD virtual terminal connection relationship is correct.
  • the generating module 32 includes:
  • the generating sub-module 321 is configured to, when determining that the measured substation configuration information is correct, parse the SCD file of the tested substation and generate a main wiring diagram and an interval wiring diagram to generate a SSD topology diagram of the substation under test, and obtain the substation to be tested The relationship between the primary device and the secondary device;
  • the mapping sub-module 322 is configured to read a network communication message of the secondary device, and map the operating parameters of the tested substation to the SSD topology diagram of the tested substation.
  • the generating submodule 321 includes:
  • the parsing unit 3211 is configured to parse the measured substation SCD file, and obtain the voltage level and interval information in the parsed SCD file of the tested substation;
  • a second generating unit 3212 configured to generate an interval topology feature code according to the interval information, and obtain a spacing wiring diagram template adapted from the interval topology feature code from a preset interval device graphic template library to generate a spacing wire Figure
  • a third generating unit 3213 configured to create a bus primitive according to the voltage level, and lay out the interval wiring diagram according to the bus primitive to generate a main wiring diagram;
  • the second obtaining unit 3214 is configured to generate a SSD topology diagram of the tested substation according to the interval wiring diagram and the main wiring diagram, and acquire a connection relationship between the primary device and the secondary device in the tested substation.
  • mapping submodule 322 includes:
  • the third obtaining unit 3221 is configured to read a network communication packet of the secondary device, analyze and extract relay protection state information, component location information, and device operation of the secondary device in the network communication packet. status information;
  • the mapping unit 3222 is configured to map relay protection state information, component location information, and device operation state information of the secondary device into the measured substation SSD topology map.
  • the test module 33 includes:
  • the obtaining sub-module 331 is configured to acquire, according to the measured substation SSD topology map and the measured substation SCD file, the device under test information of the tested substation;
  • the extraction sub-module 332 is configured to extract, from a preset test project library, a test item that matches the device under test of the tested substation, and generate the test substation according to a preset arrangement rule. Test plan
  • the test sub-module 333 is configured to perform a project test on the tested substation according to the test plan, and output a test result.
  • the extraction submodule 332 includes:
  • the extracting unit 3321 is configured to acquire a protection logic node of the device to be tested, and extract a test item matching the protection logic node from a preset test item library;
  • the fourth generating unit 3322 is configured to generate the test plan of the tested substation according to a preset arrangement rule by using the extracted test item.
  • test submodule 333 includes:
  • the output unit 3331 is configured to output a fault amount to the device under test corresponding to the test item according to the test item in the test solution, and perform a protection logic node state corresponding to the device to be tested in the target logical node model. Information is set;
  • the testing unit 3332 is configured to compare the state information in the target logical node model with the corresponding actual operating state information of the protection device to be tested, to perform a project test on the tested substation, and output Test Results.
  • the comparison module 31 compares the measured substation SCD file with the device type data template file to determine whether the measured substation configuration information is correct; when it is determined that the measured substation configuration information is correct,
  • the generating module 32 parses the measured substation SCD file and generates a measured substation SSD topology map; the test module 33 obtains a test item from the preset test item library based on the tested substation SSD topology map, and generates a tested substation test. Plan and conduct project testing to output test results.
  • test project can be automatically generated according to the system structure and equipment configuration information of the substation, and the substation test device can be automatically tested for the project, the visualization level of the substation closed-loop test is improved, and the work intensity of the substation staff is also reduced.
  • an embodiment of the present disclosure further provides an electronic device, including a processor, a memory, a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor to implement the smart substation
  • an electronic device including a processor, a memory, a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor to implement the smart substation
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the intelligent substation automatic closed loop detection method embodiment, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种智能变电站全自动闭环检测方法及装置。方法包括:将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确(101);当判定所述被测变电站配置信息正确,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图(102);基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果(103)。本方案解决了现有的变电站闭环测试因无法自动制定测试方案而到导致可视化水平较低的技术问题。

Description

一种智能变电站全自动闭环检测方法及装置
相关申请的交叉引用
本申请主张在2017年12月5日在中国提交的中国专利申请号No.201711268544.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及变电站技术领域,尤其涉及一种智能变电站全自动闭环检测方法及装置。
背景技术
近年来,智能变电站技术发展迅速,相对于常规变电站,智能变电站具有统一的、面向对象的层次化信息和服务模型。智能变电站采用可互操作的智能电子设备及网络化的通信结构,在提高变电站内部信息交互和处理能力的同时,也使得继电保护等二次设备的信息组织、分配关系更加复杂。但是,现有的智能变电站大多还是参照常规变电站的方法对变电站的一二次***进行测试,无法依托被测变电站一二次***结构、设备配置等信息自动制定测试方案,导致变电站闭环测试的可视化水平较低。
发明内容
本公开实施例提供一种智能变电站全自动闭环检测方法及装置,以解决现有的变电站闭环测试因无法自动制定测试方案而到导致可视化水平较低的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种智能变电站全自动闭环检测方法,包括:
将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;
当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件 并生成被测变电站SSD拓扑图;以及
基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
第二方面,本公开实施例还提供了一种智能变电站全自动闭环检测装置,包括:
比对模块,用于将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;
生成模块,用于当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;以及
测试模块,用于基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
第三方面,本公开实施例还提供一种电子设备,包括:
一个或多个处理器;
存储器;以及
一个或多个计算机程序,其中,所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,其中,所述计算机程序被执行时实现第一方面中所述的智能变电站全自动闭环检测方法中的步骤。
第四方面,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面中所述的智能变电站全自动闭环检测方法中的步骤。
这样,本公开实施例中,将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。这样,也就能够根据变电站的***结构及设备配置信息自动生成测试项目,并能对变电站待测装置自动进行项目测试,提高了变电站闭环测试的可视化水平,也减轻了变电站工作人员的工作强度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种智能变电站全自动闭环检测方法的流程图;
图2是本公开实施例提供的一种智能变电站全自动闭环检测方法的场景示意图;
图3是本公开实施例提供的另一种智能变电站全自动闭环检测方法的流程图;
图4是本公开实施例提供的一种智能变电站全自动闭环检测装置的结构图;
图5是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图;
图6是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图;
图7是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图;
图8是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图;
图9是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图;以及
图10是本公开实施例提供的另一种智能变电站全自动闭环检测装置的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1和图2,图1是本公开实施例提供的一种智能变电站全自动闭环检测方法的流程图,而图2是本公开实施例提供的一种智能变电站全自动闭环检测方法的场景示意图。如图1所示,包括以下步骤:
步骤101、将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确。
需要说明地是,本公开实施例中,所述智能变电站全自动闭环检测方法应用于智能变电站全自动闭环检测装置,所述智能变电站全自动闭环检测装置包括测试平台,所述测试平台通过测试通信网络与变电站待测装置通信连接。
通过所述测试通信网络导入变电站待测装置SCD(Substation Configuration Description,变电站配置描述)文件,将导入的所述被测变电站SCD文件与预存的虚端子连线标准模板文件进行比对,进而判断所述被测变电站SCD文件配置信息是否正确。
具体地,所述步骤101还可以包括:
根据所述虚端子连线标准模板文件生成虚端子连线典型模板库;
解析所述被测变电站SCD文件,并获取所述被测变电站SCD文件中的保护及关联设备的虚端子连接关系;
将所述保护及关联设备的虚端子连接关系与所述虚端子连线典型模板库中对应的虚端子连线标准模板文件进行对比,以判断所述被测变电站SCD虚端子连接关系是否正确;
若是,读取所述被测变电站SCD文件中的模型配置信息,并获取被测变电站的装置运行模型,将所述被测变电站SCD文件中的模型配置信息与所述被测变电站的装置运行模型进行比对,以判断所述被测变电站配置信息是否正确。
本公开实施例中,首先需要对导入的所述被测变电站SCD文件的虚端子进行审查,将所述被测变电站SCD文件与所述虚端子连线标准模板文件进行 比对,检查所述被测变电站SCD文件中继电保护相关设备的虚端子配置及其连线是否正确、完整,以确保所述待测装置继电保护及关联二次设备之间的信号关联关系配置无误,进而确保后续项目测试的有效性。
具体地,基于现有标准和智能变电站典型设计方案,根据所述虚端子连线标准模板文件生成变电站继电保护相关设备的虚端子连线典型模板库,利用XML(Extensible Markup Language,可扩展标记语言)语言按照电压等级、IED(Intelligent Electronic Device,智能电子设备)类型建立虚端子连线典型模板库。获取所述被测变电站SCD文件,提取其中继电保护相关设备的虚端子连线关系,基于设备名称和设备类型,将所述被测变电站SCD文件中的待测设备与所述虚端子连线标准模板文件中相应的设备进行比对,判断该待测设备虚端子连线是否正确,并重复上述过程,直至变电站所有待测设备完成虚端子连线正确与否的比对。本实施例中,可以将所有比对结果按照连线错误、冗余和缺失等类型图形化输出,以供工作人员进行人工确认。
具体实现过程如下:
建立采用XML格式的SV输入虚端子校核模板、GOOSE输入虚端子校核模板,以节点Inputs/ExtRef下desc属性表示虚端子描述及含义,并依据每一具体的虚端子含义构建校核关键词(keywords),校核关键词支持字符串的“与(AND)”、“或(OR)”等逻辑运算。
SV输入端子XML校核模板示例如下:
<Inputs desc="3/2断路器接线线路保护SV输入端子表">
<ExtRef desc="电压MU额定延时"keywords="延时|t"/>
<ExtRef desc="保护A相电压Ua1"keywords="(A相^电压^1)|Ua1"/>
<ExtRef desc="保护A相电压Ua2"keywords="(A相^电压^2)|Ua2"/>
<ExtRef desc="保护B相电压Ub1"keywords="(B相^电压^1)|Ub1"/>
<ExtRef desc="保护B相电压Ub2"keywords="(B相^电压^2)|Ub2"/>
</Inputs>
GOOSE输入端子XML校核模板示例如下:
<Inputs desc="3/2断路器接线线路保护GOOSE输入端子表">
<ExtRef desc="边断路器A相位置"keywords="(边断路器|边开关)^A^ 位置"/>
<ExtRef desc="边断路器B相位置"keywords="(边断路器|边开关)^B^位置/>
<ExtRef desc="边断路器C相位置"keywords="(边断路器|边开关)^C^位置/>
</Inputs>
虚端子校核模板的建立
1)建立采用XML格式的SV输出虚端子校核模板、GOOSE输出虚端子校核模板,以节点DataSet/FCDO下desc属性表示虚端子描述及含义,构建校核关键词。以GOOSE输出虚端子XML校核模板为例,如下所示:
<DataSet name="dsGOOSE"desc="3/2断路器接线线路保护GOOSE输出端子表">
<FCDO desc="跳边断路器A相"keywords="跳边断路器|跳边开关)^A"/>
<FCDO desc="跳边断路器B相"keywords="跳边断路器|跳边开关)^B"/>
<FCDO desc="跳边断路器C相"keywords="跳边断路器|跳边开关)^C"/>
</DataSet>
建立采用XML格式的SV输入软压板、GOOSE输入/输出软压板校核模板,DataSet节点下name为dsRelayEna表示为压板,以节点DataSet/FCDO下desc属性表示压板描述及含义,构建校核关键词。SV输入软压板校核模板示例如下:
<DataSet name="dsRelayEna"desc="3/2断路器接线线路保护SV输入软压板">
<FCDO desc="电压SV接收"keywords="电压^接收"/>
<FCDO desc="边断路器电流SV接收"keywords="(边断路器|边开关)^电流^接收"/>
</DataSet>
2)对SCD文件中的IED设备进行标识。导入待审SCD文件,遍历IED节点下的“name”及“desc”属性,提取IED列表,并按电压等级、IED类型(保护、合并单元、智能终端、智能组件等)、保护类型等进行分类与标识,IED 标识的目的主要是统一IED命名的规范性。
3)依据标识的IED类型,读取模板文件,搜索SCD文件中的IED/AccessPoint/Server/LDevice/LN0/Inputs/ExtRef节点,依据选择的iedName及内部短地址intAddr,按prefix/lnClass/lnInst/doName在IED/AccessPoint/Server/LDevice/LN节点下对doName描述进行匹配,如模板中有的端子而在Inputs/ExtRef下没有匹配项,则该端子属于漏配输入虚端子,如模板中没有而在Inputs/ExtRef下有的端子,则该端子属于多配输入虚端子;
4)搜索SCD文件中的IED/AccessPoint/Server/LDevice/LN0/DataSet/FCDO节点,按ldInst/prefix/lnClass/lnInst/doName/daName构成引用地址,依据构成的引用地址,列出IED/AccessPoint/Server/LDevice/LN0下的所有地址对应的虚端子描述,将该描述与模板定义的端子进行关键词匹配,如模板中有的端子而在DataSet/FCDO下没有匹配项,则该端子属于漏配输出虚端子,如模板中没有而在DataSet/FCDO下有的端子,则该端子属于多配输出虚端子。
5)按IED/AccessPoint/Server/LDevice/LN0/DataSet搜索iedName站控层访问点各逻辑节点dsRelayEna数据集,依据模板中关键词对数据集下DataSet/FCDO的压板条目进行匹配,如模板中有的压板而在DataSet/FCDO下没有匹配项,则该端子属于漏配压板,如模板中没有而在DataSet/FCDO下有的压板,则该端子属于多配压板。
6)在输入、输出虚端子校核的基础上进一步进行连线的校核。按照IED设备对IED/AccessPoint/Server/LDevice/LN0/Inputs/ExtRef节点下输入端子按iedName/ldInst/prefix/lnClass/lnInst/doName构成对侧IED输出虚端子的引用路径。根据此引用路径获取输出虚端子的描述,将输入虚端子描述与输出虚端子描述按关键词进行匹配,匹配正确的为连线正确,匹配不正确的为错配连线。
7)输出结果。对各IED给出校核结果,包括端子、压板、连线的漏配、多配、错配进行图形化标识。
当判定所述待测装置SCD虚端子连线正确,将导入的所述被测变电站SCD文件中的通信配置信息与所述虚端子连线标准模板文件中的通信模型信 息进行比对,判断所述被测变电站SCD文件配置信息是否正确,以确保变电站的待测装置与通信模型的一致性,避免测试过程中发生信号错位、通信服务异常等问题而影响测试有效性。
具体地,利用预设的XML解析器读取并解析所述虚端子连线标准模板文件,并提取其中与待测装置有关的模型配置信息,以逻辑节点为基本单位,将提取到的模型配置信息(包括逻辑节点内的数据、数据属性、数据集、各种控制块等)映射到结构体类型的MMS有名变量,按照物理设备-逻辑设备-逻辑节点-数据类型的结构树存储为模型虚端子连线标准模板文件1。
通过测试通信网络在线获取所述待测装置各层模型信息,具体为:通过Get Server Directory(读服务器目录)服务收集装置模型中所有的逻辑设备,通过Get Logical Device Directory(读逻辑设备目录)收集每个逻辑设备中的逻辑节点,通过Get Logical Node Directory(读逻辑节点目录)收集每个逻辑节点中的数据、各种控制块和数据集,通过Get Data Definition(读数据定义)读取各个数据下所有数据属性的名称和类型,通过Get Data Values(读数据值)读取各个数据的当前值,通过Get Data Set Directory(读数据集目录)获得该数据集中所有成员的名称,进而获取所述待测装置完整的分层信息模型及其当前值,并将其存储为模型虚端子连线标准模板文件2。
通过正反双向数据比对的方法,比对所述模型虚端子连线标准模板文件2是否与所述模型虚端子连线标准模板文件1一致,以判断所述被测变电站SCD文件配置信息是否正确。
步骤102、当判定所述被测变电站配置信息正确,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图。
当判定所述被测变电站SCD文件配置信息正确时,也就说明变电站的待测装置的连接关系正确,进而对所述被测变电站SCD文件进行解析,并根据解析结果生成被测变电站SSD拓扑图,从而实现变电站全站一二次设备连接信息及状态信息的可视化,方便工作人员通过所述被测变电站SSD拓扑图即能直观地获知变电站一二次设备的连接信息及状态信息,更加方便工作人员对变电站的智能管控。
具体地,所述步骤102包括:
当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成主接线图和间隔接线图以生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的关联关系;
读取所述二次设备的网络通信报文,并将所述被测变电站的运行参数映射到所述被测变电站SSD拓扑图中。
本公开实施例中,当判定所述被测变电站SCD文件配置信息正确,解析所述被测变电站SCD文件,并生成变电站一次***主接线图和间隔接线图,获取一次设备与二次逻辑设备、逻辑节点的关联关系。
进一步地,通过所述测试通信网络实时读取变电站中保护装置、合并单元、智能终端等被测二次设备的MMS、SV、GOOSE网络通信报文信息,获取被测变电站中待测装置的电流电压值、开关刀闸位置、告警信息、功能有效性信息、温度、光强等运行参数,并将上述运行参数映射到被测变电站SSD拓扑图中,实现被测变电站信息关联与状态可视化,方便设备运行维护,扩展配置文件在变电站运维检修中的应用,提升变电站安全管控水平。
步骤103、基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
具体地,根据所述被测变电站SSD拓扑图,进而能够得出变电站***的拓扑结构以及各间隔保护配置,从预设的测试项目库获取测试项目,并自动生成变电站待测装置的测试方案,并根据所述测试方案对所有待测装置自动进行项目测试,通过在线读取并比对目标逻辑节点模型的状态信息,在测试过程中对测试结果进行同步自动诊断,并输出测试结果,实现变电站待测装置测试方案、测试过程及测试结果的自动闭环管理,避免了人工结果诊断带来的误差,提升了变电站闭环检测的可靠性和效率。
本公开实施例中,所述步骤103例如可以包括:
根据所述被测变电站SSD拓扑图及所述被测变电站SCD文件,获取所述被测变电站的待测装置信息;
从预设的测试项目库中提取与所述被测变电站的待测装置信息匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案;
根据所述测试方案中的测试项目,向与所述测试项目对应的待测装置输出故障量,并对目标逻辑节点模型中与所述待测装置对应的保护逻辑节点状态信息进行置位;
将所述目标逻辑节点模型中置位后的状态信息与对应的待测装置保护逻辑节点实际运行状态信息进行比对,以对所述被测变电站进行项目测试,并输出测试结果。
具体地,有了被测变电站SSD拓扑图,结合被测变电站SCD文件,获取被测变电站共有多少套待测装置,并具体获取待测装置的型号、功能单元等信息,进而从预设的测试项目库中提取与待测装置匹配的测试项目。根据预设的排列规则,将所有待测装置的所有测试项目进行合理排列,进而生成适用于被测变电站的测试方案。
本公开实施例中,所述从预设的测试项目库中提取与所述待测装置匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案的步骤,包括:
获取所述待测装置的保护逻辑节点,从预设的测试项目库中提取与所述保护逻辑节点匹配的测试项目;
将提取的所述测试项目按照预设的排列规则生成所述被测变电站的测试方案。
具体地,一台待测装置根据功能细化分为多个保护逻辑节点,每个保护逻辑节点具备独立的功能,不同的功能也就对应不同的测试项目。进而通过获取待测装置的保护逻辑节点,也就能从预设的测试项目库中提取与所述保护逻辑节点匹配的测试项目,将所有的测试项目按照预设的排列规则生成所述被测变电站的测试方案。
进一步地,根据所述测试项目,由故障量模块向待测装置输出故障量,并对所述目标逻辑节点模型中与所述待测装置对应的保护逻辑节点状态信息进行相应置位。智能变电站全自动闭环检测装置基于所述测试通信网络与待测装置的SV接口、GOOSE接口、MMS接口进行信息交互,通过SV、GOOSE服务实现测试闭环,通过MMS服务读取待测装置的设备逻辑节点状态信息。
将所述目标逻辑节点模型中置位后的状态信息与对应的待测装置保护逻 辑节点实际运行状态信息进行比对,待测装置并输出相应的比对结果,进而完成闭环测试。
需要说明的是,每个逻辑节点对应测试项目库中的一个测试项目,每个测试项目可以包括多个测试专项。
例如对于具有差动保护和距离保护逻辑节点的线路保护设备,根据差动保护逻辑节点PDIF,预置对应测试项目PDIF_T1,根据距离保护逻辑节点PDIS,预置对应项目PDIS_T1。测试项目中,针对逻辑节点中的定值D,预置对应测试专项PDIF_T1_D。对于一个固定的差动保护PDIF而言,差动原理是固定的,定值和控制字名称是固定的,因此对应的测试项目和测试专项也是固定的,将该测试项目PDIF_T1作为差动保护PDIF的对应测试项目进行保存,考虑PDIF差动保护原理的可扩展性,测试项目也可进行扩展,以后缀名T1、T2等进行区分。对于逻辑节点定值准确度测试,采用突加激励量的方式,在给定的误差值范围,有明确的继电器动作标准,例如对PDIF差动保护动作定值D,误差允许5%。例如,在突加激励量0.95D时,规程要求继电器不应动作,在突加激励量1.05D时,规程要求继电器应可靠动作。
通过XML解析模块对变电站被测变电站SSD拓扑图进行解析,读取待测装置逻辑节点信息,并按照逻辑节点信息从预设的测试项目库中寻找对应的测试项目,构成目标设备测试项目。在目标设备测试项目中提取待测装置模型信息,存储为目标逻辑节点模型。
测试平台故障量模块通过测试通信网络与待测装置进行SV采样数据通信,根据预置的测试项目,向待测装置输出相应的测试故障量,同时对目标逻辑节点模型中相应的设备逻辑节点进行赋值,并将得到的逻辑节点目标信息存储在目标逻辑节点模型中。具体实现过程中,通过SV服务,在T0时刻输出测试项目故障量,对目标逻辑节点模型中的相关数据进行状态赋值。例如对差动保护PDIF的测试内容为0.95D的动作定值测试,在输出0.95D故障量的同时,将目标逻辑节点模型中的PDIF.OP进行“False”赋值;测试内容为1.05D的差动保护动作定值测试,将目标逻辑节点模型中的PDIF.OP进行“True”赋值。
同时,GOOSE信息模块通过测试网络与待测装置进行GOOSE信息交互, 将GOOSE报文中保护动作时刻T1记录在GOOSE信息模块中。此外,测试平台还通过站控层接口的MMS服务获取设备动作事件报告,并将报告中的相关信息存储在设备逻辑节点状态信息中。
最后,分别读取上述目标逻辑节点模型的状态信息和设备逻辑节点状态信息中相对应的待测装置动作时刻数据,进行一致性比对,若数据一致,则表示保护动作结果正确,否则表示动作结果不正确。例如,测试平台根据保护动作时间找到T1时刻的保护动作事件报告“brcbTripInfo”,从保护动作事件报告中读取相应数据集中的“PDIF.OP”,和目标逻辑节点模型中的“PDIF.OP”进行比对,验证测试结果是否符合标准预期,生成测试结果,并将所述测试结果生成或打印标准格式的测试报告。
本公开实施例中,将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站SCD文件配置信息是否正确;当判定所述被测变电站SCD文件配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。这样,也就能够根据变电站的***结构及设备配置信息自动生成测试项目,并能对变电站待测装置自动进行项目测试,提高了变电站闭环测试的可视化水平,也减轻了变电站工作人员的工作强度。
参见图3,图3是本公开实施例提供的另一种智能变电站全自动闭环检测方法的流程图。如图3所示,所述智能变电站全自动闭环检测方法包括:
步骤201、将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确。
该步骤可参照图1所示实施例中的步骤101进行实施,为避免重复,本公开实施例中对此不作赘述。
步骤202、当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件,获取解析后的所述被测变电站SCD文件中的电压等级和间隔信息。
本公开实施例中,解析所述被测变电站SCD文件,根据解析后的所述被测变电站SCD文件分析变电站一次***拓扑连接,获取变电站的电压等级和 间隔信息。查找变电站各一次设备端子连接到的连接点,并在连接点中记下该端子。
查找线路间隔和主变各侧间隔的外部连接点,标记为母线连接点,如Mn。按照以下原则确定线路间隔和主变高/中/低压侧间隔的接线方式:有3个断路器、2个母线连接点的为3/2断路器接线间隔;有1个断路器、2个母线连接点的为双母线接线间隔;有1个断路器、1个母线连接点的为单母线接线间隔;其他为异常情况。根据母线连接点数目、线路间隔和主变各侧间隔的接线方式确定各电压等级的接线方式,对双母线接线找到其配对平行母线。
步骤203、根据所述间隔信息生成间隔拓扑特征码,并从预设的间隔设备图形模板库中获取与所述间隔拓扑特征码适配的间隔接线图模板,以生成间隔接线图。
具体地,所述间隔信息至少包括间隔内各设备类型及其拓扑连接关系,进而根据所述间隔信息生成间隔拓扑特征码。例如,从母线连接点出发遍历间隔内各设备,以单字母标识节点类型,如‘O’表示母线连接点,‘L’表示线路“IFL”,‘K’表示断路器“CBR”等等。从根节点出发遍历各节点,按先后顺序为节点编号,并以节点类型标识和编号组合成拓扑特征字符串,同一级节点放在同一级括号中,如:“O2-{G3-{D4,P5,V6},D7}”。
由间隔拓扑特征字符串生成间隔拓扑特征码,根据间隔拓扑特征码在预设的间隔设备图形模板库中查找是否存在对应的模板,如不存在则生成间隔接线图模板并存入预设的间隔设备图形模板库中,若存在则根据适配的间隔接线图模板生成对应的间隔接线图。对每个间隔执行此步骤,直至生成所有间隔的接线图。
步骤204、根据所述电压等级创建母线图元,并根据所述母线图元布局所述间隔接线图以生成主接线图。
具体地,根据所述电压等级下母线连接点信息及接线方式创建母线图元并调整母线相对位置;调取各间隔接线图,按照预设原则布局各间隔接线图并调整各电压等级图元相对位置,生成变电站一次***主接线图。
需要说明的是,所述预设原则为:(1)母线分段间隔水平位置位于两母线之间;(2)主变高/中/低压侧间隔位于母线靠近主变一侧;(3)主变设备图 元位于整个主接线图中央;高压侧位于主变之上整个主接线图的左上方;中压侧位于主变的下方;低压侧位于整个主接线图的右上方;(4)母线上的非主变间隔应根据平行母线相对位置置于所连接母线一侧。
步骤205、根据所述间隔接线图及所述主接线图生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的连接关系。
本公开实施例中,解析所述间隔接线图及所述主接线图,进而得到变电站待测装置中一次设备与二次设备的连接关系,通过测试通信网络,获取二次设备采集的开关刀闸位置、保护状态、互感器电流电压等信息,将互感器电流电压等参数信息及位置信息映射到主接线图上进行关联,将设备状态信息映射到间隔接线图上进行关联。
具体地,由断路器、刀闸(type为“CBR”和“DIS”的Conducting Equipment)下的LNode提供的信息找到关联智能终端和相应的逻辑设备、逻辑节点,若lnClass为XCBR/XSWI,则该逻辑节点下的数据对象Pos描述了此断路器或刀闸的位置信息,通过遍历此智能终端的过程层GOOSE数据集,可以定位该断路器或刀闸的位置信息是由哪个GOOSE条目所提供。
如下示例中220kV出线间隔,间隔名称为“2211”,类型为“CBR”,关联智能终端IED名称为IL2201A,ldInst为RPIT,lnClass为XCBR。依据IL2201A/RPIT/XCBR.pos查找RPIT的GOOSE数据集,查找对应的GOOSE条目映射至接线图中的断路器位置显示单元。
Figure PCTCN2018091528-appb-000001
Figure PCTCN2018091528-appb-000002
由PT、CT(type为“VTR”和“CTR”的ConductingEquipment)下的LNode提供的信息找到关联合并单元和相应的逻辑设备、逻辑节点,若lnClass为TVTR/TCTR,则TVTR下Vol数据对象以及TCTR下的Amp数据对象分别描述了电压、电流采样值,提取并映射至接线图中的采样数据显示单元。
通过各间隔下的逻辑节点Bay/LNode查找该间隔关联保护装置和装置IED下的各逻辑节点,这些逻辑节点描述了此保护装置提供的具体保护功能,以一台线路保护为例,在Bay节点下,给出了间隔名称及描述,间隔逻辑节点下给出了PL2201A线路保护所包括的逻辑节点及实例号,如差动保护逻辑节点PDIF、距离保护逻辑节点PDIS、过流保护逻辑节点PTOC等,通过提取这些信息将间隔与间隔内的保护装置、保护功能进行关联。
</Bay>
<Bay name="2211"desc="220kV线路保护">
<LNode iedName="PL2201A"ldInst="PROT"prefix=""lnClass="PDIF"lnInst="1"/>
<LNode iedName="PL2201A"ldInst="PROT"prefix=""lnClass="PDIS"lnInst="1"/>
<LNode iedName="PL2201A"ldInst="PROT"prefix=""lnClass="PTOC"lnInst="1"/>
</Bay>
步骤206、读取所述二次设备的网络通信报文,解析并提取所述网络通信报文中的所述二次设备的继电保护状态信息、元件位置信息及设备运行状态信息。
基于上述一次设备与二次设备的连接关系,对各间隔一二次设备实时信息进行在线监测。通过测试通信网络,与待测装置中二次设备通信,获取所述待测装置的网络通信报文,并提取所述网络通信报文中二次设备的状态参 数、位置信息及设备状态信息。
步骤207、将二次设备的继电保护状态信息、元件位置信息及设备运行状态信息映射到所述被测变电站SSD拓扑图中。
具体地,接收过程层智能终端GOOSE报文,提取断路器位置GOOSE信号,在主接线图上实时显示各个开关刀闸的位置信息及状态参数;接收过程层合并单元SV报文,提取电流电压SV采样信号,在主接线图上实时显示电流电压采样的状态参数。
接收站控层各待测装置MMS报文,在间隔接线图页面实时监视待测装置状态信息,包括GOOSE接收压板、GOOSE发送压板、功能压板等软压板实时状态。依据各间隔保护装置的iedName,遍历保护MMS报文中dsRelayEna数据集各条目,读取并显示待测装置的功能压板、GOOSE输出压板、GOOSE输入压板、SV输入压板状态;监视SV以及GOOSE断链告警、装置异常告警、保护启动/动作等信息,依据保护装置的iedName,遍历保护装置MMS报文中dsWarning、dsAlarm、dsCommstate数据集各条目,读取并显示装置异常、通信断链、PT/CT断线等各类告警信息,遍历dsTripInfo数据集,进而将设备状态信息映射到间隔接线图上。
根据主接线图和间隔接线图上的所有信息建立变电站一次设备与二次设备的SSD拓扑图。
步骤208、基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
该步骤可参照图1所示实施例中的步骤103进行实施,为避免重复,本公开实施例中对此不作赘述。
本公开实施例中,当判定被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成主接线图和间隔接线图,进而根据主接线图和间隔接线图获取待测装置中一次设备和二次设备的连接关系,通过测试通信网络获取二次设备的网络通信报文以建立变电站被测变电站SSD拓扑图,并基于预设的测试项目库建立所述被测变电站SSD拓扑图中的测试方案并进行项目测试。这样,也就能够根据变电站的***结构及设备配置信息建立被测变电站SSD拓扑图,进而自动生成测试项目,以对变电站待测装置自动进行项目测试, 提高了变电站闭环测试的可视化和智能化水平。
参见图4,图4是本公开实施例提供的智能变电站全自动闭环检测装置的结构图。如图4所示,所述智能变电站全自动闭环检测装置30例如包括:
比对模块31,用于将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;
生成模块32,用于当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;
测试模块33,用于基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
可选地,如图5所示,所述比对模块301包括:
比对子模块311,用于获取所述被测变电站SCD文件及虚端子连线标准模板文件,并将所述被测变电站SCD文件与所述虚端子连线标准模板文件进行比对,以判断被测变电站SCD虚端子连线是否正确;
判断子模块312,用于当判定所述被测变电站SCD虚端子连线正确时,读取所述被测变电站SCD文件中的模型配置信息,并获取被测变电站的装置运行模型,将所述被测变电站SCD文件中的模型配置信息与所述被测变电站的装置运行模型进行比对,以判断所述被测变电站配置信息是否正确。
可选地,如图6所示,所述比对子模块3011包括:
第一生成单元3111,用于根据所述虚端子连线标准模板文件生成虚端子连线典型模板库;
第一获取单元3112,用于解析所述被测变电站SCD文件,并获取所述被测变电站SCD文件中的保护及关联设备的虚端子连接关系;
比对单元3113,用于将所述保护及关联设备的虚端子连接关系与所述虚端子连线典型模板库中对应的虚端子连线标准模板文件并进行对比,以判断所述被测变电站SCD虚端子连接关系是否正确。
可选地,如图7所示,所述生成模块32包括:
生成子模块321,用于当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成主接线图和间隔接线图以生成被测变电站SSD 拓扑图,并获取被测变电站中一次设备与二次设备的关联关系;
映射子模块322,用于读取所述二次设备的网络通信报文,并将所述被测变电站的运行参数映射到所述被测变电站SSD拓扑图中。
可选地,如图8所示,所述生成子模块321包括:
解析单元3211,用于解析所述被测变电站SCD文件,获取解析后的所述被测变电站SCD文件中的电压等级和间隔信息;
第二生成单元3212,用于根据所述间隔信息生成间隔拓扑特征码,并从预设的间隔设备图形模板库中获取与所述间隔拓扑特征码适配的间隔接线图模板,以生成间隔接线图;
第三生成单元3213,用于根据所述电压等级创建母线图元,并根据所述母线图元布局所述间隔接线图以生成主接线图;
第二获取单元3214,用于根据所述间隔接线图及所述主接线图生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的连接关系。
可选地,所述映射子模块322包括:
第三获取单元3221,用于读取所述二次设备的网络通信报文,解析并提取所述网络通信报文中的所述二次设备的继电保护状态信息、元件位置信息及设备运行状态信息;
映射单元3222,用于将二次设备的继电保护状态信息、元件位置信息及设备运行状态信息映射到所述被测变电站SSD拓扑图中。
可选地,如图9所示,所述测试模块33包括:
获取子模块331,用于根据所述被测变电站SSD拓扑图及所述被测变电站SCD文件,获取所述被测变电站的待测装置信息;
提取子模块332,用于从预设的测试项目库中提取与所述被测变电站的待测装置信息匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案;
测试子模块333,用于根据所述测试方案对所述被测变电站进行项目测试,输出测试结果。
可选地,如图10所示,所述提取子模块332包括:
提取单元3321,用于获取所述待测装置的保护逻辑节点,从预设的测试 项目库中提取与所述保护逻辑节点匹配的测试项目;
第四生成单元3322,用于将提取的所述测试项目按照预设的排列规则生成所述被测变电站的测试方案。
可选的,所述测试子模块333包括:
输出单元3331,用于根据所述测试方案中的测试项目,向与所述测试项目对应的待测装置输出故障量,并对目标逻辑节点模型中与所述待测装置对应的保护逻辑节点状态信息进行置位;
测试单元3332,用于将所述目标逻辑节点模型中置位后的状态信息与对应的待测装置保护逻辑节点实际运行状态信息进行比对,以对所述被测变电站进行项目测试,并输出测试结果。
本公开实施例中,比对模块31将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;当判定所述被测变电站配置信息正确时,生成模块32解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;测试模块33基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。这样,也就能够根据变电站的***结构及设备配置信息自动生成测试项目,并能对变电站待测装置自动进行项目测试,提高了变电站闭环测试的可视化水平,也减轻了变电站工作人员的工作强度。
优选的,本公开实施例还提供一种电子设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述智能变电站全自动闭环检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述智能变电站全自动闭环检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种智能变电站全自动闭环检测方法,包括:
    将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;
    当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;以及
    基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
  2. 根据权利要求1所述的方法,其中,所述将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确的步骤,包括:
    获取所述被测变电站SCD文件及虚端子连线标准模板文件,并将所述被测变电站SCD文件与所述虚端子连线标准模板文件进行比对,以判断被测变电站SCD虚端子连线是否正确;以及
    当判定所述被测变电站SCD虚端子连线正确时,读取所述被测变电站SCD文件中的模型配置信息,并获取被测变电站的装置运行模型,将所述被测变电站SCD文件中的模型配置信息与所述被测变电站的装置运行模型进行比对,以判断所述被测变电站配置信息是否正确。
  3. 根据权利要求2所述的方法,其中,所述获取所述被测变电站SCD文件及虚端子连线标准模板文件,并将所述被测变电站SCD文件与所述虚端子连线标准模板文件进行比对,以判断被测变电站SCD虚端子连线是否正确的步骤,包括:
    根据所述虚端子连线标准模板文件生成虚端子连线典型模板库;
    解析所述被测变电站SCD文件,并获取所述被测变电站SCD文件中的保护及关联设备的虚端子连接关系;以及
    将所述保护及关联设备的虚端子连接关系与所述虚端子连线典型模板库中对应的虚端子连线标准模板文件进行对比,以判断所述被测变电站SCD虚端子连接关系是否正确。
  4. 根据权利要求1所述的方法,其中,所述当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图的步骤,包括:
    当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成主接线图和间隔接线图以生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的关联关系;以及
    读取所述二次设备的网络通信报文,并将所述被测变电站的运行参数映射到所述被测变电站SSD拓扑图中。
  5. 根据权利要求4所述的方法,其中,所述解析所述被测变电站SCD文件并生成主接线图和间隔接线图以生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的关联关系的步骤,包括:
    解析所述被测变电站SCD文件,获取解析后的所述被测变电站SCD文件中的电压等级和间隔信息;
    根据所述间隔信息生成间隔拓扑特征码,并从预设的间隔设备图形模板库中获取与所述间隔拓扑特征码适配的间隔接线图模板,以生成间隔接线图;
    根据所述电压等级创建母线图元,并根据所述母线图元布局所述间隔接线图以生成主接线图;以及
    根据所述间隔接线图及所述主接线图生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的连接关系。
  6. 根据权利要求4所述的方法,其中,所述读取所述二次设备的网络通信报文,并将所述被测变电站的运行参数映射到所述被测变电站SSD拓扑图中的步骤,包括:
    读取所述二次设备的网络通信报文,解析并提取所述网络通信报文中的所述二次设备的继电保护状态信息、元件位置信息及设备运行状态信息;以及
    将二次设备的继电保护状态信息、元件位置信息及设备运行状态信息映射到所述被测变电站SSD拓扑图中。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的 测试方案并进行项目测试,输出测试结果的步骤,包括:
    根据所述被测变电站SSD拓扑图及所述被测变电站SCD文件,获取所述被测变电站的待测装置信息;
    从预设的测试项目库中提取与所述被测变电站的待测装置信息匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案;以及
    根据所述测试方案对所述被测变电站进行项目测试,输出测试结果。
  8. 根据权利要求7所述的方法,其中,所述从预设的测试项目库中提取与所述被测变电站的待测装置信息匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案的步骤,包括:
    获取所述待测装置的保护逻辑节点,从预设的测试项目库中提取与所述保护逻辑节点匹配的测试项目;以及
    将提取的所述测试项目按照预设的排列规则生成所述被测变电站的测试方案。
  9. 根据权利要求7所述的方法,其中,所述根据所述测试方案对所述被测变电站进行项目测试,输出测试结果的步骤,包括:
    根据所述测试方案中的测试项目,向与所述测试项目对应的待测装置输出故障量,并对目标逻辑节点模型中与所述待测装置对应的保护逻辑节点状态信息进行置位;以及
    将所述目标逻辑节点模型中置位后的状态信息与对应的待测装置保护逻辑节点实际运行状态信息进行比对,以对所述被测变电站进行项目测试,并输出测试结果。
  10. 一种智能变电站全自动闭环检测装置,包括:
    比对模块,用于将被测变电站SCD文件与设备类型数据模板文件进行比对,以判断所述被测变电站配置信息是否正确;
    生成模块,用于当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成被测变电站SSD拓扑图;以及
    测试模块,用于基于所述被测变电站SSD拓扑图从预设的测试项目库中获取测试项目,生成被测变电站的测试方案并进行项目测试,输出测试结果。
  11. 根据权利要求10所述的装置,其中,所述比对模块包括:
    比对子模块,用于获取所述被测变电站SCD文件及虚端子连线标准模板文件,并将所述被测变电站SCD文件与所述虚端子连线标准模板文件进行比对,以判断被测变电站SCD虚端子连线是否正确;以及
    判断子模块,用于当判定所述被测变电站SCD虚端子连线正确时,读取所述被测变电站SCD文件中的模型配置信息,并获取被测变电站的装置运行模型,将所述被测变电站SCD文件中的模型配置信息与所述被测变电站的装置运行模型进行比对,以判断所述被测变电站配置信息是否正确。
  12. 根据权利要求11所述的装置,其中,所述比对子模块包括:
    第一生成单元,用于根据所述虚端子连线标准模板文件生成虚端子连线典型模板库;
    第一获取单元,用于解析所述被测变电站SCD文件,并获取所述被测变电站SCD文件中的保护及关联设备的虚端子连接关系;以及
    比对单元,用于将所述保护及关联设备的虚端子连接关系与所述虚端子连线典型模板库中对应的虚端子连线标准模板文件并进行对比,以判断所述被测变电站SCD虚端子连接关系是否正确。
  13. 根据权利要求10所述的装置,其中,所述生成模块包括:
    生成子模块,用于当判定所述被测变电站配置信息正确时,解析所述被测变电站SCD文件并生成主接线图和间隔接线图以生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的关联关系;以及
    映射子模块,用于读取所述二次设备的网络通信报文,并将所述被测变电站的运行参数映射到所述被测变电站SSD拓扑图中。
  14. 根据权利要求13所述的装置,其中,所述生成子模块包括:
    解析单元,用于解析所述被测变电站SCD文件,获取解析后的所述被测变电站SCD文件中的电压等级和间隔信息;
    第二生成单元,用于根据所述间隔信息生成间隔拓扑特征码,并从预设的间隔设备图形模板库中获取与所述间隔拓扑特征码适配的间隔接线图模板,以生成间隔接线图;
    第三生成单元,用于根据所述电压等级创建母线图元,并根据所述母线 图元布局所述间隔接线图以生成主接线图;以及
    第二获取单元,用于根据所述间隔接线图及所述主接线图生成被测变电站SSD拓扑图,并获取被测变电站中一次设备与二次设备的连接关系。
  15. 根据权利要求13所述的装置,其中,所述映射子模块包括:
    第三获取单元,用于读取所述二次设备的网络通信报文,解析并提取所述网络通信报文中的所述二次设备的继电保护状态信息、元件位置信息及设备运行状态信息;以及
    映射单元,用于将二次设备的继电保护状态信息、元件位置信息及设备运行状态信息映射到所述被测变电站SSD拓扑图中。
  16. 根据权利要求10至15中任一项所述的装置,其中,所述测试模块包括:
    获取子模块,用于根据所述被测变电站SSD拓扑图及所述被测变电站SCD文件,获取所述被测变电站的待测装置信息;
    提取子模块,用于从预设的测试项目库中提取与所述被测变电站的待测装置信息匹配的测试项目,并根据预设的排列规则将所述测试项目生成所述被测变电站的测试方案;以及
    测试子模块,用于根据所述测试方案对所述被测变电站进行项目测试,输出测试结果。
  17. 根据权利要求16所述的装置,其中,所述提取子模块包括:
    提取单元,用于获取所述待测装置的保护逻辑节点,从预设的测试项目库中提取与所述保护逻辑节点匹配的测试项目;以及
    第四生成单元,用于将提取的所述测试项目按照预设的排列规则生成所述被测变电站的测试方案。
  18. 根据权利要求16所述的装置,其中,所述测试子模块包括:
    输出单元,用于根据所述测试方案中的测试项目,向与所述测试项目对应的待测装置输出故障量,并对目标逻辑节点模型中与所述待测装置对应的保护逻辑节点状态信息进行置位;以及
    测试单元,用于将所述目标逻辑节点模型中置位后的状态信息与对应的待测装置保护逻辑节点实际运行状态信息进行比对,以对所述被测变电站进 行项目测试,并输出测试结果。
  19. 一种电子设备,包括:
    一个或多个处理器;
    存储器;以及
    一个或多个计算机程序,其中,所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,其中,所述计算机程序被执行时实现权利要求1至9中任一项所述的智能变电站全自动闭环检测方法中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的智能变电站全自动闭环检测方法中的步骤。
PCT/CN2018/091528 2017-12-05 2018-06-15 一种智能变电站全自动闭环检测方法及装置 WO2019109619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/254,426 US11327114B2 (en) 2018-06-15 2019-01-22 Fully-automatic closed-loop detection method and device for intelligent substation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711268544.6 2017-12-05
CN201711268544.6A CN109872112B (zh) 2017-12-05 2017-12-05 一种智能变电站全自动闭环检测方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/254,426 Continuation US11327114B2 (en) 2018-06-15 2019-01-22 Fully-automatic closed-loop detection method and device for intelligent substation

Publications (1)

Publication Number Publication Date
WO2019109619A1 true WO2019109619A1 (zh) 2019-06-13

Family

ID=66751223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091528 WO2019109619A1 (zh) 2017-12-05 2018-06-15 一种智能变电站全自动闭环检测方法及装置

Country Status (2)

Country Link
CN (1) CN109872112B (zh)
WO (1) WO2019109619A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532712A (zh) * 2019-09-03 2019-12-03 深圳供电局有限公司 模拟检测方法和***、电子设备、计算机可读存储介质
CN110968738B (zh) * 2019-11-19 2023-06-20 山东鲁软数字科技有限公司智慧能源分公司 智能站描述文件数据类型模板嵌套环检测方法及***
CN111458586B (zh) * 2020-04-16 2022-09-16 国网湖南省电力有限公司 智慧变电站多间隔就地化线路保护装置批量同步检测方法及***
CN115411729B (zh) * 2022-09-30 2024-04-16 南方电网科学研究院有限责任公司 一种电力***的电压稳定判别方法和装置
CN116343255B (zh) * 2023-05-23 2023-07-28 南京有嘉科技有限公司 一种图内光字牌自动校核***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184621A (zh) * 2014-09-04 2014-12-03 武汉国电武仪电气股份有限公司 智能变电站网络拓扑图的生成方法及***
US9362746B2 (en) * 2011-10-07 2016-06-07 Cisco Technology, Inc. Communication network topology management based on an associated electric grid topology
CN107255761A (zh) * 2017-06-29 2017-10-17 国网上海市电力公司 基于goose网络的智能变电站闭环测试***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088444A1 (en) * 2008-02-11 2009-08-12 ABB Research Ltd. System level testing for substation automation systems
CN105335342A (zh) * 2015-12-01 2016-02-17 国家电网公司 一种智能变电站scd配置文件虚端子联线正确性自动审查方法
CN105512213B (zh) * 2016-02-03 2019-03-05 国家电网公司 基于配置文件和g语言的智能变电站一二次设备状态信息可视化展示方法
CN106528968B (zh) * 2016-10-31 2019-05-14 国网福建省电力有限公司 一种基于ssd文件的智能变电站自动动模测试方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362746B2 (en) * 2011-10-07 2016-06-07 Cisco Technology, Inc. Communication network topology management based on an associated electric grid topology
CN104184621A (zh) * 2014-09-04 2014-12-03 武汉国电武仪电气股份有限公司 智能变电站网络拓扑图的生成方法及***
CN107255761A (zh) * 2017-06-29 2017-10-17 国网上海市电力公司 基于goose网络的智能变电站闭环测试***

Also Published As

Publication number Publication date
CN109872112A (zh) 2019-06-11
CN109872112B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US11327114B2 (en) Fully-automatic closed-loop detection method and device for intelligent substation
WO2019109619A1 (zh) 一种智能变电站全自动闭环检测方法及装置
CN107045663B (zh) 二次安全措施操作票可视化在线校核***及方法
CN107171819B (zh) 一种网络故障诊断方法及装置
CN106209405B (zh) 故障诊断方法及装置
CN111814999B (zh) 一种故障工单生成方法、装置、设备
WO2022048668A1 (zh) 知识图谱构建方法和装置、检查方法、存储介质
CN116500385B (zh) 输电网监测校验方法、装置、设备和介质
CN108173701B (zh) 一种智能变电站网络参数配置校验方法
CN104319891A (zh) 用于智能变电站过程层的检修运维装置及方法
CN109902373A (zh) 一种辖区变电站故障诊断、定位方法及***
CN108595390B (zh) 智能变电站scd与ied参数一致性的校验方法
CN111415107A (zh) 配电网台区画像生成方法、装置、计算机设备和存储介质
CN209545248U (zh) 一种可视化运维的智能变电站***
CN113095059B (zh) 变电站配置描述文件的校验方法、装置、设备及存储介质
CN116108202A (zh) 基于关系图谱的用采***数据攻击行为建模方法
CN108170975B (zh) 一种基于模型的scd变更可视化检查方法及***
Wang et al. FNETVision: A WAMS big data knowledge discovery system
CN109933450A (zh) 一种智能变电站二次虚回路配置文件的校验方法及装置
CN110650049A (zh) 一种软压板与虚回路可视化匹配的方法
CN115438093A (zh) 一种电力通信设备故障判断方法与检测***
CN112949271A (zh) 一种检修安全措施分析方法及***
CN115310921A (zh) 自动生成电力防误操作逻辑公式的方法和装置
Wang et al. Operation and maintenance technology of smart substations
CN112255481A (zh) 目标设备的防误检测方法及装置、存储介质、电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885395

Country of ref document: EP

Kind code of ref document: A1