WO2019109611A1 - 电池组压差自动平衡装置 - Google Patents

电池组压差自动平衡装置 Download PDF

Info

Publication number
WO2019109611A1
WO2019109611A1 PCT/CN2018/089480 CN2018089480W WO2019109611A1 WO 2019109611 A1 WO2019109611 A1 WO 2019109611A1 CN 2018089480 W CN2018089480 W CN 2018089480W WO 2019109611 A1 WO2019109611 A1 WO 2019109611A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
probe
battery string
target voltage
Prior art date
Application number
PCT/CN2018/089480
Other languages
English (en)
French (fr)
Inventor
赵绪东
Original Assignee
神讯电脑(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神讯电脑(昆山)有限公司 filed Critical 神讯电脑(昆山)有限公司
Publication of WO2019109611A1 publication Critical patent/WO2019109611A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to the field of battery technology, for example, to a battery pack differential pressure automatic balancing device.
  • a battery pack of an electronic device such as a notebook computer usually includes a plurality of battery strings connected in series, each battery string including a plurality of batteries (for example, two parallel batteries), and the plurality of battery strings have the same lower limit voltage and the same The upper limit voltage.
  • each battery string including a plurality of batteries (for example, two parallel batteries), and the plurality of battery strings have the same lower limit voltage and the same The upper limit voltage.
  • a plurality of battery strings connected in series do not have a voltage difference, so that it is ensured that the plurality of battery strings can reach the lower limit voltage or the upper limit voltage synchronously after operation, and not one of the plurality of battery strings.
  • the other battery strings After reaching the lower limit voltage, the other battery strings cannot continue to discharge, or a battery string reaches the upper limit voltage first, and other battery strings cannot continue to be charged.
  • the lower limit voltage of each battery string is 3.0V
  • the upper limit voltage is 4.2V. If there is a pressure difference between the three battery strings, for example, the incoming voltages of the three battery strings are 3.5V, 3.6V, and 3.8V, respectively. After the synchronous discharge after the operation, the battery string with the incoming voltage of 3.5V is discharged first.
  • the other two battery strings can not continue to work; in the synchronous charging, the battery string with the incoming voltage of 3.8V is charged first, and the other two battery strings cannot continue to be charged, thus affecting the total capacity of the battery pack, wherein the battery string
  • the incoming voltage is the voltage between the positive and negative terminals of the battery string obtained from the supplier of the battery string.
  • the pressure difference between the multiple battery strings needs to be balanced to achieve the allowable differential pressure range.
  • a plurality of battery strings of the same battery pack are tested with a multimeter, the battery string of the highest voltage in the same group is measured, and the remaining battery strings are artificially charged to reach the highest voltage.
  • the charging result is required to be determined manually, and the accuracy is low; the battery string with low voltage needs to be separately charged, and the efficiency is low; the battery string charging condition needs to be monitored manually, and the working intensity is large;
  • the above work is labor intensive; when the polarity is reversed, it will be reversed and there is a risk of refilling.
  • the application provides a battery pack differential pressure automatic balancing device, which solves the problems of low accuracy of manual charging balance, low efficiency, high work intensity and labor expenditure.
  • the present application provides a battery pack differential pressure automatic balancing device including a plurality of sub-balance devices, wherein a plurality of sub-balance devices are disposed to respectively connect a plurality of battery strings of the battery pack in a one-to-one correspondence, and each of the sub-balance devices is configured to be connected The voltage of the battery string is automatically balanced to reach the target voltage, and
  • each sub-balance device comprises:
  • first currentless probe and a second currentless probe the first currentless probe being configured to connect a positive end of the corresponding battery string, the second currentless probe being configured to connect the corresponding battery string a negative terminal, the first currentless probe and the second currentless probe are configured to collect a voltage between a positive terminal and a negative terminal of the corresponding battery string;
  • first discharge probe disposed to connect a positive end of the corresponding battery string, and a second discharge probe configured to connect the negative of the corresponding battery string end;
  • a load configured to discharge the corresponding battery string
  • a target voltage circuit configured to generate a target voltage
  • the voltage comparison circuit being respectively connected to the first currentless probe, the second currentless probe, and a target voltage circuit, configured to set the first currentless probe and the second Comparing the voltage between the positive terminal and the negative terminal of the corresponding battery string obtained by the currentless probe acquisition with the target voltage, and transmitting the comparison result;
  • control circuit being respectively coupled to the voltage comparison circuit, the first discharge probe, the second discharge probe, and the load, configured to receive the comparison result, and in the comparison result Passing the load through the control circuit, the first discharge probe, and the second discharge probe in a case where a voltage between a positive terminal and a negative terminal of the corresponding battery string is greater than the target voltage a pin connected to the battery string, discharging the corresponding battery string, and in a case where the comparison result is that the voltage between the positive terminal and the negative terminal of the corresponding battery string is not greater than the target voltage, The connection of the load to the corresponding battery string is turned on, and the corresponding battery string is not discharged.
  • the number of the plurality of battery strings in the battery pack is three or four.
  • each of the battery strings includes two or three batteries.
  • the target voltage is a lower limit voltage of the plurality of battery strings.
  • the lower limit voltage ranges from 1 to 24 volts.
  • the target voltage is a minimum incoming voltage of the plurality of battery strings, or the target voltage is measured before the plurality of battery strings are automatically balanced. a minimum of the voltages of the plurality of battery strings, wherein each battery string is a voltage between a positive terminal and a negative terminal of each of the battery strings.
  • the target voltage circuit includes an adjustable regulated power supply and an adjustable resistor, and the output end of the target voltage circuit reaches the target voltage by adjusting the adjustable resistor.
  • the device further includes: a rectifier bridge and a transformer, wherein an input end of the target voltage circuit is connected to a rectifier bridge, the rectifier bridge is connected to a transformer, and the transformer is configured to transform an alternating current The rectifier bridge is configured to convert the transformed alternating current into a direct current output to an input of the target voltage circuit.
  • the voltage comparison circuit is a precision voltage comparator LM393.
  • control circuit includes a relay.
  • the battery pack differential pressure automatic balancing device performs discharge monitoring through a voltage comparison circuit, and does not need to manually determine a charging result, and has high accuracy; multiple sub-balance devices can operate at the same time without separately charging each low-voltage battery string. More efficient; voltage comparison circuit for discharge monitoring, no need to manually monitor the battery string charging status, can reduce the work intensity; use automatic monitoring to do the above work, saving manpower; when the polarity is reversed, because the current voltage is negative, will not Discharge and avoid the risk of backfilling.
  • FIG. 1 is a schematic diagram of a battery pack differential pressure automatic balancing device according to an embodiment
  • FIG. 2 is a schematic structural view of a battery pack differential pressure automatic balancing device according to an embodiment
  • FIG. 3 is a schematic structural view of a sub-balance device of a battery pack differential pressure automatic balancing device according to an embodiment
  • FIG. 4 is a schematic diagram showing the circuit structure of a battery pack differential pressure automatic balancing device according to an embodiment.
  • FIG. 1 is a schematic diagram of a battery pack differential pressure automatic balancing device provided by an embodiment
  • FIG. 3 is a schematic structural diagram of a sub-balance device of a battery pack differential pressure automatic balancing device provided by an embodiment.
  • the application provides a battery pack differential pressure automatic balancing device 200.
  • the battery pack 100 includes a plurality of battery strings 101.
  • the number of the battery strings 101 may be any, usually three or four. In this embodiment, three are taken as an example.
  • Each of the battery strings 101 may include a plurality of batteries (e.g., the battery strings 101 are two or three batteries in parallel).
  • the battery pack differential pressure automatic balancing device 200 includes a plurality of sub-balance devices 201. In this embodiment, the number of the sub-balance devices 201 is three.
  • the plurality of sub-balance devices 201 are disposed to respectively connect the plurality of battery strings 101 of the battery pack in a one-to-one correspondence, and each of the sub-balance devices 201 is set to be connected.
  • the voltage of the battery string 101 is automatically balanced to reach the target voltage, and each of the sub-balance devices 201 includes:
  • the first currentless probe 202a and the second currentless probe 202b are disposed to connect the positive end of the corresponding battery string 101, and the second currentless probe 202b is configured to connect the corresponding battery string 101.
  • the negative terminal, the first currentless probe 202a and the second currentless probe 202b are arranged to collect a voltage between the positive terminal and the negative terminal of the corresponding battery string 101;
  • first discharge probe 203a is disposed to connect the positive end of the corresponding battery string 101
  • second discharge probe 203b is disposed to connect the corresponding battery string 101 Negative end
  • a load 207 configured to discharge the corresponding battery string 101
  • the target voltage circuit 204 is configured to generate a target voltage
  • the voltage comparison circuit 205 is connected to the first currentless probe 202a, the second currentless probe 202b, and the target voltage circuit 204, respectively, and is configured to set the first currentless probe 202a and the second currentless Comparing the voltage between the positive terminal and the negative terminal of the corresponding battery string 101 obtained by the probe 202b with the target voltage, and transmitting a comparison result;
  • the control circuit 206 is connected to the voltage comparison circuit 205, the first discharge probe 203a, the second discharge probe 203b, and the load 207, and is configured to receive the comparison result, and the comparison result is Where the voltage between the positive terminal and the negative terminal of the corresponding battery string 101 is greater than the target voltage, the load 207 is passed through the first discharge probe 203a and the second discharge probe 203b.
  • the corresponding battery strings 101 are connected to discharge the corresponding battery string 101, and the comparison result is that the voltage between the positive terminal and the negative terminal of the corresponding battery string 101 is not greater than the target voltage. Next, the connection of the load 207 to the corresponding battery string 101 is disconnected, and the corresponding battery string 101 is not discharged.
  • the target voltage may be a lower limit voltage of the plurality of battery strings 101, for example, the lower limit voltage may range from 1 to 24 volts (the adjustable power supply 208 described below may provide ).
  • the lower limit voltage may be 3.0 volts; when the battery string 101 is a lead acid battery, the lower limit voltage may be 2.0 volts.
  • the advantage of determining the value of the target voltage as the lower limit voltage is that it is not necessary to detect the initial voltage of each battery string 101 to determine the target voltage.
  • the target voltage is a minimum incoming voltage of the plurality of battery strings 101, or the target voltage is before the automatic balancing of the plurality of battery strings 101.
  • the minimum voltage among the voltages of the plurality of battery strings 101 is obtained, wherein each battery string 101 is a voltage between the positive terminal and the negative terminal of each of the battery strings 101. Determining the value of the target voltage as the minimum incoming voltage of the plurality of battery strings 101, the battery string 101 having the smallest incoming voltage does not need to be discharged, and the remaining battery strings 101 are less This target voltage can be reached by discharging.
  • FIG. 4 is a schematic diagram of a circuit structure of a battery pack differential pressure automatic balancing device according to an embodiment.
  • the target voltage circuit 204 can include an adjustable regulated power supply 208 and an adjustable resistor 209. The output of the target voltage circuit 204 reaches a target voltage by adjusting the adjustable resistor 209.
  • the battery differential pressure balancing device 200 further includes a rectifier bridge 210 and a transformer 211, wherein the input end of the target voltage circuit 204 can be connected to the rectifier bridge 210, and the rectifier bridge 210 is connected to the transformer 211.
  • the transformer 211 is configured to transform alternating current
  • the rectifier bridge 210 is configured to convert the transformed alternating current into a direct current output to an input end of the target voltage circuit 204.
  • the voltage comparison circuit 205 can be a precision voltage comparator LM393.
  • the control circuit 206 can include a relay 212 that controls whether the load 207 is connected to the battery string 101 via a switch of the relay 212.
  • the control circuit 206 is composed of a button 214, a relay 212, and a self-locking relay 213. After the battery pack 100 is connected, the start button 214 is activated, and the voltage between the positive terminal and the negative terminal of the battery string 101 is higher.
  • the relay 212 corresponding to the battery string 101 of the target voltage is locked by the latching relay 213, connected to the load 207, and the battery string 101 starts to discharge; the battery string between the positive and negative terminals of the battery string 101 is lower than the target voltage.
  • the corresponding relay 212 of 101 will not be locked, the load 207 will not be turned on, and the discharge cannot be started when the polarity is reversed.
  • each battery string 101 of the battery pack 100 is connected to the first discharge probe 203a and the first currentless probe 202a of the sub-balance device 201 corresponding to the battery string 101, and the negative end is connected to the corresponding sub-balance.
  • the battery pack differential pressure automatic balancing device 200 can achieve a pressure difference balance between the plurality of battery strings 101.
  • the battery pack differential pressure automatic balancing device 200 provided by the present application has the following advantages:
  • the discharge monitoring is performed by the voltage comparison circuit 205, and the charging result is not required to be determined manually, and the accuracy is high.
  • the experiment shows that the error of the jump voltage and the target voltage is less than 2 mV after the Agilent 34410A electric meter test, and the error is much smaller than the allowable test of 10 mV. Pressure difference
  • the plurality of sub-balance devices 201 can simultaneously operate to balance the voltages of the plurality of battery strings 101 at one time, without separately charging the battery strings 101 with low voltages respectively, and the efficiency is higher;
  • the voltage comparison circuit 205 performs discharge monitoring, and does not need to manually monitor the charging status of the battery string 101, thereby reducing the working intensity;
  • the battery pack differential pressure automatic balancing device provided by the present disclosure can improve the accuracy and efficiency of the pressure difference balance between the plurality of battery strings, and can reduce the working intensity, save labor, and avoid the risk of reverse charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池组压差自动平衡装置,包括多个子平衡装置(201),分别一一对应地连接电池组(100)的多个电池串(101)。每个子平衡装置包括:第一无电流探针(202a)和第二无电流探针(202b),第一无电流探针连接对应的电池串的正端,第二无电流探针连接对应的电池串的负端,以采集该电池串的正端和负端之间的电压;第一放电探针(203a)和第二放电探针(203b),第一放电探针连接对应的电池串的正端和第二放电探针连接该电池串的负端;负载(207),对电池串进行放电;目标电压电路(204),产生目标电压;电压对比电路(205),比较电池串的正端和负端之间的电压与目标电压;控制电路(206),接收电压对比电路的比较结果,并在电池串的正端和负端之间的电压大于目标电压时,使负载与对应的电池串相连,对该电池串放电,在电池串的正端和负端之间的电压不大于目标电压时,断开负载与该电池串的连接,不对电池串放电。

Description

电池组压差自动平衡装置 技术领域
本公开涉及电池技术领域,例如涉及一种电池组压差自动平衡装置。
背景技术
笔记本电脑等电子装置的电池组,通常会包括多个相互串联的电池串,每个电池串包括多个电池(例如可以为两个并联的电池),多个电池串具有相同的下限电压和相同的上限电压。电池组在放电时,若某个电池串到达下限电压则无法再继续放电;电池组在充电时,若某个电池串达到上限电压则无法再继续充电。因此,相互串联的多个电池串之间较佳为不具备压差,如此才可以确保多个电池串工作后可以同步到达下限电压或上限电压,而不至于多个电池串中某个电池串先到达下限电压后,其它电池串无法继续放电,或者某个电池串先达到上限电压,其它电池串无法继续充电。
例如,期望出厂电压皆为3.8V的三串电池串组成的电池组中每个电池串的下限电压为3.0V,上限电压为4.2V。若三个电池串间存在压差,如三个电池串的来料电压分别为3.5V、3.6V以及3.8V,在工作后同步放电后,来料电压为3.5V的电池串先放电完毕,其余两个电池串也无法继续工作;在同步充电时,来料电压为3.8V的电池串先充电完毕,其余两个电池串也无法继续充电,从而影响电池组的总容量,其中,电池串的来料电压为从电池串的供应商处获得的该电池串的正端和负端之间电压。
因此,在电池组出厂前,需要对多个电池串之间的压差进行平衡,以达到允许的压差范围。通常是用万用表对同一电池组的多个电池串进行测试,测出同组中的最高电压的电池串,并对其余电池串人为充电以达到该最高电压。
然而,采用上述方式,具有如下缺点:需要人为确定充电结果,准确率低;需要分别对每个电压低的电池串充电,效率低下;需要人为监控电池串充电状况,工作强度大;采用人工进行上述工作,耗费人力;极性接反时,即会反充,存在反充风险。
发明内容
本申请提供一种电池组压差自动平衡装置,解决人工充电平衡准确率低、效率低下、工作强度大以及耗费人力的问题。
本申请提供一种电池组压差自动平衡装置包括多个子平衡装置,其中,多个子平衡装置设置为分别一一对应地连接电池组的多个电池串,且每个子平衡装置设置为对连接的电池串的电压进行自动平衡以达到目标电压,以及
其中,每个子平衡装置包括:
第一无电流探针和第二无电流探针,所述第一无电流探针设置为连接对应的电池串的正端,所述第二无电流探针设置为连接所述对应的电池串的负端,所述第一无电流探针和所述第二无电流探针设置为采集所述对应的电池串的正端和负端之间的电压;
第一放电探针和第二放电探针,所述第一放电探针设置为连接所述对应的电池串的正端,所述第二放电探针设置为连接所述对应的电池串的负端;
负载,设置为对所述对应的电池串进行放电;
目标电压电路,设置为产生目标电压;
电压对比电路,所述电压对比电路分别与所述第一无电流探针、所述第二无电流探针以及目标电压电路连接,设置为将所述第一无电流探针和所述第二无电流探针采集得到的所述对应的电池串的正端和负端之间的电压与所述目标电压进行比较,并发送比较结果;
控制电路,所述控制电路分别与所述电压对比电路、所述第一放电探针、所述第二放电探针及所述负载相连,设置为接收所述比较结果,并在所述比较结果为所述对应的电池串的正端和负端之间的电压大于所述目标电压的情况下,使所述负载通过所述控制电路、所述第一放电探针和所述第二放电探针与所述电池串相连,对所述对应的电池串放电,在所述比较结果为所述对应的电池串的正端和负端之间的电压不大于所述目标电压的情况下,断开所述负载与所述对应的电池串的连接,不对所述对应的电池串放电。
在一实施例中,所述电池组中的多个电池串的个数为三个或四个。
在一实施例中,每个所述电池串包括两个或三个电池。
在一实施例中,所述目标电压为所述多个电池串的下限电压。
在一实施例中,所述下限电压取值范围在1~24伏。
在一实施例中,所述目标电压为所述多个电池串的来料电压中的最小来料电压,或者所述目标电压为在对所述多个电池串进行自动平衡前,测得的所述 多个电池串的电压中的最小电压,其中,每个电池串为所述每个电池串的正端和负端之间的电压。
在一实施例中,所述目标电压电路包括可调稳压电源及可调电阻,通过对可调电阻的调节,所述目标电压电路的输出端达到所述目标电压。
在一实施例中,所述装置还包括:整流桥和变压器,其中,所述目标电压电路的输入端连接整流桥,所述整流桥连接变压器,所述变压器设置为将交流电进行变压,所述整流桥设置为将变压后的交流电转化为直流电输出至所述目标电压电路的输入端。
在一实施例中,所述电压对比电路为精密电压比较器LM393。
在一实施例中,所述控制电路包括继电器。
本申请提供的电池组压差自动平衡装置,通过电压对比电路进行放电监测,无需人为确定充电结果,准确率高;多个子平衡装置可以同时作业,无需分别对每个电压低的电池串充电,效率更高;电压对比电路进行放电监测,无需人为监控电池串充电状况,可以减少工作强度;采用自动监测进行上述工作,节省人力;极性接反时,由于所述当前电压为负,不会进行放电,避免反充风险。
附图说明
图1为一实施例提供的电池组压差自动平衡装置的示意图;
图2为一实施例提供的电池组压差自动平衡装置的结构示意图;
图3为一实施例提供的电池组压差自动平衡装置的子平衡装置的结构示意图;
图4为一实施例提供的电池组压差自动平衡装置的电路结构示意图。
具体实施方式
请结合参阅图1、图2和图3,图1为一实施例提供的电池组压差自动平衡装置的示意图,图2为一实施例提供的电池组压差自动平衡装置的结构示意图,图3为一实施例提供的电池组压差自动平衡装置的子平衡装置的结构示意图。
本申请提供一种电池组压差自动平衡装置200。电池组100包括多个电池串101。在一实施例中,电池串101的个数可以任意,常见为三个或四个,本实施例中以三个为例。每个所述电池串101可以包括多个电池(例如电池串101为 并联的两个或者三个电池)。该电池组压差自动平衡装置200包括多个子平衡装置201。本实施例中以子平衡装置201的个数为三个为例,多个子平衡装置201设置为分别一一对应地连接电池组的多个电池串101,且每个子平衡装置201设置为对连接的电池串101的电压进行自动平衡以达到目标电压,每个子平衡装置201包括:
第一无电流探针202a和第二无电流探针202b,第一无电流探针202a设置为连接对应的电池串101的正端,第二无电流探针202b设置为连接对应的电池串101的负端,第一无电流探针202a和第二无电流探针202b设置为采集对应的电池串101的正端和负端之间的电压;
第一放电探针203a和第二放电探针203b,第一放电探针203a设置为连接所述对应的电池串101的正端,第二放电探针203b设置为连接所述对应的电池串101的负端;
负载207,设置为对所述对应的电池串101进行放电;
目标电压电路204,设置为产生目标电压;
电压对比电路205,电压对比电路205分别与第一无电流探针202a、第二无电流探针202b以及目标电压电路204连接,设置为将所述第一无电流探针202a和第二无电流探针202b采集得到的所述对应的电池串101的正端和负端之间的电压与所述目标电压进行比较,并发送比较结果;
控制电路206,控制电路206分别与所述电压对比电路205、第一放电探针203a、第二放电探针203b及所述负载207相连,设置为接收上述比较结果,并在所述比较结果为所述对应的电池串101的正端和负端之间的电压大于所述目标电压的情况下,使所述负载207通过所述第一放电探针203a和所述第二放电探针203b与所述对应的电池串101相连,对所述对应的电池串101放电,在所述比较结果为所述对应的电池串101的正端和负端之间的电压不大于所述目标电压的情况下,断开所述负载207与所述对应的电池串101的连接,不对所述对应的电池串101放电。
在一实施例中,所述目标电压可以为所述多个电池串101的下限电压,例如为所述下限电压的取值范围在1~24伏(下述的可调稳压电源208可以提供)。 当所述电池串101采用锂电芯时,所述下限电压可以为3.0伏;当所述电池串101采用铅酸电芯时,所述下限电压可以为2.0伏。将目标电压的取值确定为所述下限电压的好处在于,无需检测每个电池串101的初始电压来确定目标电压。
在一实施例中,所述目标电压为所述多个电池串101的来料电压中的最小来料电压,或者所述目标电压为在对所述多个电池串101进行自动平衡前,测得的所述多个电池串101的电压中的最小电压,其中,每个电池串101为所述每个电池串101的正端和负端之间的电压。将所述目标电压的取值确定为所述多个电池串101的来料电压中的最小来料电压,则具有最小来料电压的电池串101无需放电,且其余电池串101进行较少的放电即可达到该目标电压。
请再结合参阅图4,图4为一实施例提供的电池组压差自动平衡装置的电路结构示意图。
在一实施例中,所述目标电压电路204可以包括可调稳压电源208及可调电阻209,通过对可调电阻209的调节,所述目标电压电路204的输出端达到目标电压。
在一实施例中,所述电池组压差自动平衡装置200还包括整流桥210和变压器211,其中,所述目标电压电路204的输入端可以连接整流桥210,所述整流桥210连接变压器211,所述变压器211设置为将交流电进行变压,所述整流桥210设置为将变压后的交流电转化为直流电输出至所述目标电压电路204的输入端。
在一实施例中,所述电压对比电路205可以为精密电压比较器LM393。
在一实施例中,所述控制电路206可以包括继电器212,通过继电器212的开关控制负载207与电池串101的连接与否。在一实施例中,该控制电路206是由按钮214、继电器212以及自锁继电器213组成,连接好电池组100后,启动按钮214,电池串101的正端和负端之间的电压高于目标电压的电池串101对应的继电器212才会被自锁继电器213锁定,与负载207连接,电池串101开始放电;电池串101的正端和负端之间的电压低于目标电压的电池串101对应的继电器212,则不会被锁定,负载207不会接通,可见极性接反时亦无法启动放电。
使用时,将电池组100的每个电池串101的正端连接该电池串101对应的子平衡装置201的第一放电探针203a和第一无电流探针202a,负端连接对应的子平衡装置201的第二放电探针203b和第二无电流探针202b,并调节所述目标电压电路204,产生目标电压,所述第一无电流探针202a和所述第二无电流探针202b实时检测对应的电池串101的正端和负端之间的电压,所述电压对比电路205将对应的电池串101的正端和负端之间的电压与目标电压比较,并发送比较结果给所述控制电路206,所述控制电路206在比较结果为对应的电池串101的正端和负端之间的电压大于目标电压的情况下,控制所述负载207开启对所述对应的电池串101的放电。由于每个子平衡装置201分别将对应的电池串101进行放电达到相同的目标电压,因此,该电池组压差自动平衡装置200可以达到对多个电池串101之间的压差平衡。
本申请提供的电池组压差自动平衡装置200,具有如下优点:
1、通过电压对比电路205进行放电监测,无需人为确定充电结果,准确率高,实验显示,经安捷伦(Agilent)34410A电表测试,跳转电压与目标电压误差小于2mV,误差远小于测试10mV的允许压差;
2、多个子平衡装置201可以同时作业,一次性完成多个电池串101电压的平衡,无需分别对每个电压低的电池串101充电,效率更高;
3、连接好后,电压对比电路205进行放电监测,无需人为监控电池串101充电状况,可以减少工作强度;
4、采用自动监测进行上述工作,节省人力;
5、极性接反时,由于所述当前电压为负,不会进行放电,避免反充风险。
工业实用性
本公开提供的电池组压差自动平衡装置,可以提高多个电池串之间压差平衡的准确率和效率且可以减少工作强度、节省人力以及避免反充风险。

Claims (10)

  1. 一种电池组压差自动平衡装置,包括多个子平衡装置,其中,所述多个子平衡装置设置为分别一一对应地连接电池组的多个电池串,且每个子平衡装置设置为对连接的电池串的电压进行自动平衡以达到目标电压,以及
    其中,每个所述子平衡装置包括:
    第一无电流探针和第二无电流探针,所述第一无电流探针设置为连接对应的电池串的正端,所述第二无电流探针设置为连接所述对应的电池串的负端,所述第一无电流探针和所述第二无电流探针设置为采集所述对应的电池串的正端和负端之间的电压;
    第一放电探针和第二放电探针,所述第一放电探针设置为连接所述对应的电池串的正端,所述第二放电探针设置为连接所述对应的电池串的负端;
    负载,设置为对所述对应的电池串进行放电;
    目标电压电路,设置为产生目标电压;
    电压对比电路,所述电压对比电路分别与所述第一无电流探针、所述第二无电流探针以及所述目标电压电路连接,设置为将所述第一无电流探针和所述第二无电流探针采集得到的所述对应的电池串的正端和负端之间的电压与所述目标电压进行比较,并发送比较结果;
    控制电路,所述控制电路分别与所述电压对比电路、第一放电探针、第二放电探针及所述负载相连,设置为接收所述比较结果,并在所述比较结果为所述对应的电池串的正端和负端之间的电压大于所述目标电压的情况下,使所述负载通过所述控制电路、所述第一放电探针和所述第二放电探针与所述对应的电池串相连,对所述对应的电池串放电,在所述比较结果为所述对应的电池串的正端和负端之间的电压不大于所述目标电压的情况下,断开所述负载与所述对应的电池串的连接,不对所述对应的电池串放电。
  2. 如权利要求1所述的电池组的压差自动平衡装置,其中,所述电池组中的多个电池串的个数为三个或四个。
  3. 如权利要求1或2所述的电池组压差自动平衡装置,其中,每个所述电池串包括两个或三个电池。
  4. 如权利要求1、2或3所述的电池组压差自动平衡装置,其中,所述目标电压为所述多个电池串的下限电压。
  5. 如权利要求4所述的电池组压差自动平衡装置,其中,所述下限电压的取值范围在1~24伏。
  6. 如权利要求1、2或3所述的电池组压差自动平衡装置,其中,所述目标电压为所述多个电池串的来料电压中的最小来料电压,或者,所述目标电压为在对所述多个电池串进行自动平衡前,测得的所述多个电池串电压中的最小电压,其中,每个电池串的电压为所述每个电池串的正端和负端之间的电压。
  7. 如权利要求1-6中任一项所述的电池组压差自动平衡装置,其中,所述目标电压电路包括可调稳压电源及可调电阻,通过对所述可调电阻的调节,所述目标电压电路的输出端达到所述目标电压。
  8. 如权利要求7所述的电池组压差自动平衡装置,还包括:整流桥和变压器,其中,所述目标电压电路的输入端连接整流桥,所述整流桥连接变压器,所述变压器设置为将交流电进行变压,所述整流桥设置为将变压后的交流电转化为直流电输出至所述目标电压电路的输入端。
  9. 如权利要求1-8中任一项所述的电池组压差自动平衡装置,其中,所述电压对比电路为精密电压比较器LM393。
  10. 如权利要求1-9中任一项所述的电池组压差自动平衡装置,其中,所述控制电路包括继电器。
PCT/CN2018/089480 2017-12-08 2018-06-01 电池组压差自动平衡装置 WO2019109611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711293114.X 2017-12-08
CN201711293114.XA CN109904885A (zh) 2017-12-08 2017-12-08 电池组压差自动平衡装置

Publications (1)

Publication Number Publication Date
WO2019109611A1 true WO2019109611A1 (zh) 2019-06-13

Family

ID=66751268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089480 WO2019109611A1 (zh) 2017-12-08 2018-06-01 电池组压差自动平衡装置

Country Status (2)

Country Link
CN (1) CN109904885A (zh)
WO (1) WO2019109611A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336840B (zh) * 2021-12-28 2022-10-21 中国汽车工程研究院股份有限公司 新能源汽车对标试验中电机电源数据误差判断及修正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819395A (zh) * 2006-03-15 2006-08-16 李慧琪 一种串联电池组的均衡充电方法及其装置
CN101017986A (zh) * 2006-12-29 2007-08-15 哈尔滨工业大学 动力电池组充放电过程中单体电池电压均衡方法及均衡器
CN104158155A (zh) * 2014-08-08 2014-11-19 广西卓能新能源科技有限公司 锂电池的平衡保护电路
CN106253383A (zh) * 2016-08-12 2016-12-21 辽宁比科新能源股份有限公司 一种锂离子电池组自动充放电均衡设备
JP2017167050A (ja) * 2016-03-17 2017-09-21 株式会社ケーヒン 電圧検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358212C (zh) * 2005-04-05 2007-12-26 苏州星恒电源有限公司 电池均衡电路
CN101471460B (zh) * 2007-12-28 2012-08-08 深圳市比克电池有限公司 对电池组进行均衡控制的方法和电池组充电方法
KR101091352B1 (ko) * 2008-05-28 2011-12-07 주식회사 엘지화학 과방전 방지 기능을 구비한 배터리 팩의 밸런싱 장치
CN102055210A (zh) * 2009-11-01 2011-05-11 姜笃勇 一种串联电池组的均衡充电方法及其装置
CN102148519A (zh) * 2011-03-31 2011-08-10 杭州高特电子设备有限公司 电池组自动均衡方法及电路
CN103208827A (zh) * 2012-01-17 2013-07-17 中国科学院广州能源研究所 一种大容量串联电池组均衡控制***与控制方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819395A (zh) * 2006-03-15 2006-08-16 李慧琪 一种串联电池组的均衡充电方法及其装置
CN101017986A (zh) * 2006-12-29 2007-08-15 哈尔滨工业大学 动力电池组充放电过程中单体电池电压均衡方法及均衡器
CN104158155A (zh) * 2014-08-08 2014-11-19 广西卓能新能源科技有限公司 锂电池的平衡保护电路
JP2017167050A (ja) * 2016-03-17 2017-09-21 株式会社ケーヒン 電圧検出装置
CN106253383A (zh) * 2016-08-12 2016-12-21 辽宁比科新能源股份有限公司 一种锂离子电池组自动充放电均衡设备

Also Published As

Publication number Publication date
CN109904885A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
US9853497B2 (en) Charge equalization systems and methods for battery systems and uninterruptible power supplies
TWI467887B (zh) 電池管理系統、方法及其非瞬態電腦可讀媒體
US20140062417A1 (en) Intelligent charge-discharge controller for battery and electronic device having same
US7427855B2 (en) Circuit for measuring inrush current
TWI530053B (zh) 行動電源電路及其方法
JP6902545B2 (ja) 1つのスイッチを用いる、セルと制御配線電子機器との間の接続性チェック
JP2009069056A (ja) 多セル直列電池用のセル電圧異常検出装置及びセル電圧監視装置
CN101764268B (zh) 一种动力电池平衡充电方法及动力电池平衡电路
TWM451737U (zh) 避免電池浮充之控制系統及供電系統
US8717035B2 (en) Systems and methods for detecting an open cell tap in a battery pack
KR20140143711A (ko) 충방전 제어 회로 및 배터리 장치
WO2019109611A1 (zh) 电池组压差自动平衡装置
KR20180069741A (ko) 이차 전지 감시 장치 및 고장 진단 방법
Aizpuru et al. Battery pack tests to detect unbalancing effects in series connected Li-ion cells
CN201096873Y (zh) 电压法干电池电量检测装置
RU129263U1 (ru) Устройство для испытания вторичных источников электропитания
CN103344904A (zh) 一种用于检验产品充电电路的模拟锂电池测试方法和电路
US10534041B2 (en) Measuring arrangement for identifying a malfunction in an energy accumulator arrangement
RU2633533C2 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи
RU61464U1 (ru) Автономное автоматическое устройство для поэлементного доразряда серебряно-цинковых аккумуляторов и аккумуляторов других электрохимических систем
US10914767B2 (en) Measuring arrangement for identifying a malfunction of an energy accumulator assembly
TWI594543B (zh) 二次電池充放電裝置
JP6387498B2 (ja) 二次電池の充電制御回路
US10305296B2 (en) Intelligent battery self repair
TWI679829B (zh) 多節電池組之穩定供電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885667

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18885667

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18885667

Country of ref document: EP

Kind code of ref document: A1