WO2019109413A1 - 一种内燃动车组混合供电动力***及供电方法 - Google Patents

一种内燃动车组混合供电动力***及供电方法 Download PDF

Info

Publication number
WO2019109413A1
WO2019109413A1 PCT/CN2017/118477 CN2017118477W WO2019109413A1 WO 2019109413 A1 WO2019109413 A1 WO 2019109413A1 CN 2017118477 W CN2017118477 W CN 2017118477W WO 2019109413 A1 WO2019109413 A1 WO 2019109413A1
Authority
WO
WIPO (PCT)
Prior art keywords
super capacitor
train
power
energy management
management module
Prior art date
Application number
PCT/CN2017/118477
Other languages
English (en)
French (fr)
Inventor
杨颖�
周安德
李耘茏
范丽冰
李庭芳
齐彪
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Priority to US16/769,998 priority Critical patent/US20200385034A1/en
Priority to MA50952A priority patent/MA50952B1/fr
Priority to RS20230809A priority patent/RS64570B1/sr
Priority to PL17933929.6T priority patent/PL3722177T3/pl
Priority to EP17933929.6A priority patent/EP3722177B1/en
Publication of WO2019109413A1 publication Critical patent/WO2019109413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/08Transmission systems in or for locomotives or motor railcars with IC reciprocating piston engines
    • B61C9/24Transmission systems in or for locomotives or motor railcars with IC reciprocating piston engines electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to an electric power supply system in an internal combustion motor train, in particular to an internal combustion electric vehicle hybrid power supply system and a power supply method.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, an internal combustion electric vehicle hybrid power supply system and a power supply method are provided to improve the power performance of the train and improve the train transportation capacity.
  • an internal combustion electric vehicle hybrid power supply power system comprising:
  • the energy management module is configured to receive respective current voltages, currents, actual available powers, current output powers, and energy management of the internal electric power package, the rectifier, the super capacitor, and the inverter;
  • An electric power package for transmitting its own working parameters to the energy management module, and transmitting the energy and its own capability parameters to the rectifier;
  • a rectifier for transmitting its own operating parameters to the energy management module, and transmitting the energy and its own capability parameters to the inverter;
  • a super capacitor for transmitting its own operating parameters to the energy management module, and transmitting the energy and its own capability parameters to the inverter;
  • the inverter is configured to send its working parameters to the energy management module, and simultaneously supply the output power of the internal electric power package and the super capacitor to the traction motor to monitor the working state of the traction motor;
  • the energy management module sends the level signal of the train controller to the inverter.
  • the inverter sets the train speed and traction according to the power performance of the power system.
  • the envelope of the train speed and the regenerative braking force controls the traction motor to exert the corresponding torque; at the same time, the inverter calculates the current actual demand power according to the input voltage and current value, and sends the required power to the energy management module, energy management.
  • the module calculates and sends the output power command to the rectifier, and the rectifier controls the internal electric power package to output the corresponding power according to the command of the energy management module.
  • the above power system includes two power supply sources: an internal electric power package and a super capacitor.
  • the power supply is sufficient, and the train acceleration is high, which greatly improves the dynamic performance of the train.
  • the internal electric power package and the super capacitor supply power to the traction motor and the vehicle load in parallel; when the train is in the braking condition, the internal electric power package runs at idle speed, the rectifier is in standby state, and the super capacitor quickly recovers the traction motor.
  • Regenerative braking energy when the train is in inert or static conditions, the internal electric power pack runs at an idle speed to charge the supercapacitor while maintaining the current running speed of the train; when the internal electric power pack fault is isolated, the supercapacitor supplies power to the train load.
  • the power supply can be maintained for a certain period of time; when the super capacitor fault is isolated, the internal electric power package supplies power to the train load to maintain the train running at a low speed.
  • the power of the internal electric power package is 360 to 390 kW, and the power of the super capacitor is 300 to 450 kW.
  • the price and weight of an electric power package are about 1.5 times that of the super capacitor of the same power, so the power system of the present invention has the weight. Light and low cost.
  • the present invention also provides a hybrid power supply method for an internal combustion train, comprising:
  • the energy management module determines the super capacitor voltage setting value. If the super capacitor terminal voltage is greater than the set value (set to DC750V in the present invention), the energy management module controls the rectifier to be turned on, the internal power package and the super The capacitors supply power to the inverter together; if the super capacitor terminal voltage is less than the set value, the energy management module controls the rectifier to be turned on, and the internal electric power package charges the super capacitor until the super capacitor terminal voltage reaches the set value;
  • the energy management module controls the internal electric power package to run at idle speed, the rectifier is in the standby state, and judges according to the current terminal voltage sent by the super capacitor.
  • the energy management module controls Isolation super capacitor, regenerative braking power is consumed by the vehicle equipment and braking resistor;
  • the super capacitor voltage is less than the set value, the energy management module controls the super capacitor to work, and the regenerative braking power is absorbed by the super capacitor and the vehicle equipment;
  • the energy management module controls the internal electric power package to run at idle speed, the rectifier is in working state, and judges according to the current terminal voltage sent by the super capacitor.
  • the energy management The module controls the isolation supercapacitor; when the supercapacitor terminal voltage is less than the set value, the supercapacitor is charged by the inner electric power package;
  • the energy management module controls the internal power package and the rectifier to be in a stop state, and judges according to the current terminal voltage sent by the super capacitor.
  • the super capacitor voltage is greater than the set value, the super capacitor gives the train load.
  • Power supply maintain the power supply for a certain period of time; when the super capacitor terminal voltage is less than the set value, the super capacitor is first charged by the external power source, and then the super capacitor is used to supply the train load;
  • the energy management module controls the super capacitor to be in an isolated state, and controls the internal electric power package to supply the train traction and the auxiliary load.
  • the invention has the beneficial effects that the power system of the invention comprises two power supply sources, the power supply is sufficient, the train acceleration is high, and the power performance of the train is greatly improved;
  • the output power of the electric power pack is greatly reduced, thereby reducing the polluted air emissions of the train, and the super capacitor also has a fast charge and discharge function, and the train brake energy is quickly recovered;
  • the invention has simple structure and reliable control, and can greatly Improve the train's power performance and improve train transportation capacity.
  • FIG. 1 is a circuit diagram of a power system of the present invention
  • FIG. 1 is a network connection diagram of a power system of the present invention.
  • Figure 3 is a configuration diagram of an internal electric power package;
  • Figure 4 is a diagram showing the internal configuration of the rectifier;
  • Figure 5 shows the internal configuration of the supercapacitor.
  • the power system of the present invention includes:
  • the energy management module is configured to receive the internal electric power package, the rectifier, the super capacitor, and the inverter sub-module to transmit their working state, current voltage, current, actual available power, current output power, and then calculate and perform energy management to realize power system response. Fast speed, strong dynamic performance and high recovery of braking energy.
  • the inner electric power package is connected to the energy management module through the MVB line, and the MVB network is used to send its own state and working parameters to the energy management module, and the power cable and the control cable are connected to the rectifier to realize energy transfer from the inner electric power package to the rectifier and Send its own capability parameters to the rectifier.
  • the rectifier side is connected to the energy management module through the MVB line, and the MVB network is used to send its own state and operating parameters to the energy management module, and the power cable and the control cable are connected to the inverter to realize the power package energy from the rectifier to the inverter and Send its own capability parameters to the inverter.
  • the supercapacitor is connected to the energy management module through the MVB line, and the MVB network is used to send its own state and working parameters to the energy management module, and the power cable is connected to the inverter through the power cable to realize the transfer of energy from the super capacitor to the inverter and its own capability.
  • the parameter sends the inverter.
  • the inverter is connected to the energy management module through the MVB line, and uses the MVB network to send its own state and operating parameters to the energy management module.
  • the power cable and the control cable are connected to the traction motor to realize the output of the internal power package and the super capacitor. The electric power is supplied to the traction motor while monitoring the working state of the traction motor.
  • connection mode of the internal electric power package and the super capacitor in the main circuit is parallel connection, which realizes hybrid power supply and improves the power of the train wheel.
  • the internal electric power package is configured to control the chassis, the output end is configured with voltage and current sensors, the control cabinet monitors the state of the electric power package and controls the output corresponding power according to the rectifier command; the voltage sensor is used for monitoring the real-time output voltage of the internal electric power package; the current sensor is used for Monitor the real-time output current of the internal power pack; the circuit diagram is shown in Figure 3.
  • the rectifier is internally equipped with a control module, the input terminal is provided with a contactor, and the output terminal is provided with a voltage and a current sensor.
  • the control module monitors the rectifier state and controls the output corresponding power according to the energy management module command; the contactor is used to input or isolate the rectifier; the voltage sensor is used to monitor the rectifier real-time output voltage; the current sensor is used to monitor the rectifier real-time output current; the circuit diagram is shown in FIG. .
  • the supercapacitor is internally configured with a control module with voltage, current sensor, fuse and contactor at the output.
  • the control module monitors the state of the supercapacitor; the voltage sensor monitors the real-time output voltage of the rectifier; the current sensor monitors the real-time output current of the rectifier; the fuse is used for overcurrent protection; the contactor is used to input or isolate the supercapacitor; the circuit diagram is shown in Figure 5.
  • the super capacitor also has a fast charge and discharge function to achieve rapid recovery of train braking energy.
  • the inverter includes a traction inverter and an auxiliary inverter.
  • the internal control module is equipped with a voltage, current sensor and contactor at the input end, and a voltage and current sensor at the output end.
  • the contactor is used to input or isolate the inverter; the module monitors the inverter state and controls the traction motor output corresponding torque according to the energy management module command; the voltage sensor is used to monitor the real-time input and output voltage of the inverter; the current sensor is used to monitor the inverter Real-time input and output current.
  • the traction motor is equipped with a speed sensor and a temperature sensor.
  • the speed sensor is used to monitor the traction motor speed
  • the temperature sensor is used to monitor the traction motor operating temperature.
  • the supercapacitor is one of the main power supply systems of the power system. Under the premise of the same output power requirement, the power system can be equipped with an internal electric power package with less power, thereby reducing the emission of polluted gases and the production cost of the entire power system.
  • the power system of the embodiment of the invention comprises an energy management module, an internal electric power package, a rectifier, a super capacitor, an inverter, four traction motors, and a set of MVB networks.
  • the power system control strategy of the present invention is: a direct torque plus power limit control strategy.
  • the energy management module sends the level signal of the train controller to the inverter.
  • the inverter sets the train speed and traction according to the received controller level signal and the power performance of the power system in advance.
  • the envelope of the train speed and the regenerative braking force controls the traction motor to exert the corresponding torque; at the same time, the inverter calculates the current actual demand power according to the input voltage and current value, and sends the required power to the energy management module, energy management.
  • the module calculates and sends the output power command to the rectifier, and the rectifier controls the power pack to output the corresponding power according to the command of the energy management module.
  • the internal electric power package and the super capacitor supply power to the traction motor and the vehicle load in parallel.
  • the internal electric power package runs at an idle speed, the rectifier is in a standby state, and the super capacitor quickly recovers the regenerative braking energy of the traction motor.
  • the internal electric power pack runs at an idle speed, maintaining the current running speed of the train and charging the super capacitor.
  • the supercapacitor supplies power to the train load to maintain the power supply for a certain period of time.
  • the internal electric power package supplies power to the train load, maintaining the train running at a low speed (for example, below 50 km/h).
  • the power connection structure of the power supply power system of the invention has the following power connection relationship: the three-phase output end of the internal electric power package is U, V, W connected to the rectifier corresponding to the three-phase input terminals, namely U, V, W; the positive and negative outputs of the rectifier output DC
  • the input of the supercapacitor corresponds to the input positive and negative poles; the supercapacitor output positive and negative poles are connected to the corresponding input positive and negative poles of the traction inverter and the auxiliary inverter; the three-phase output terminals of the traction inverter are U, V, W
  • the traction motor corresponds to the three-phase input terminals, namely U, V, W; the auxiliary inverter three-phase output terminal and the DC output terminal, and the three-phase busbar and the DC busbar corresponding to the train are connected.
  • the circuit structure of the power supply system of the present invention has the following control relationship: the energy management module includes dry control modules, and MVB communication is used between the components, and the MVB is divided into two channels A and B, and the two channels are mutually redundant; A bundle of X1 of the power pack is connected to the X1 of the energy management module, another bundle is connected to the X1 of the rectifier, a bundle of the X2 of the internal power pack is connected to the X2 of the energy management module, and the other bundle is connected to the X2 of the rectifier; The other beam of the rectifier X1 is connected to the X1 of the supercapacitor, the other beam of the X2 of the rectifier is connected to the X2 of the supercapacitor; the other beam of the X1 of the supercapacitor is connected to the X1 of the inverter, and the X2 of the supercapacitor is another A bundle of wires connects the X2 of the inverter.
  • the energy management module determines the super capacitor voltage setting value. If the super capacitor terminal voltage is greater than the set value, the energy management module controls the rectifier to be turned on, and the internal electric power package and the super capacitor jointly supply power to the inverter; When the super capacitor terminal voltage is less than the set value, the energy management module controls the rectifier to be turned on, and the internal electric power package charges the super capacitor until the super capacitor terminal voltage reaches the set value.
  • the energy management module controls the internal electric power package to run at idle speed, the rectifier is in the standby state, and judges according to the current terminal voltage sent by the super capacitor.
  • the energy management module controls The isolated supercapacitor, the regenerative braking power is consumed by the vehicle equipment and the braking resistor; when the super capacitor terminal voltage is less than the set value, the energy management module controls the super capacitor to be put into operation, and the regenerative braking power is absorbed by the super capacitor and the in-vehicle device.
  • the energy management module controls the internal electric power package to run at idle speed, the rectifier is in working state, and judges according to the current terminal voltage sent by the super capacitor.
  • the energy management The module controls the isolation supercapacitor; when the supercapacitor terminal voltage is less than the set value, the supercapacitor is charged by the internal electric power package.
  • the energy management module controls the internal power package and the rectifier to be in a stop state, and judges according to the current terminal voltage sent by the super capacitor.
  • the super capacitor voltage is greater than the set value, the super capacitor gives the train load.
  • Power supply maintain the power supply for a certain period of time; when the super capacitor terminal voltage is less than the set value, the external power supply is used to charge the super capacitor, and then the super capacitor is used to supply the train load.
  • the energy management module controls the super capacitor to be in an isolated state, and controls the internal electric power package to supply the train traction and the auxiliary load.
  • the low-power internal electric power package increases the power super capacitor (currently, the minimum power of the inner electric power package is about 390 kW, and the largest is about 700 kW, and the 390 kW power package of the minimum power is selected in the invention. It is equipped with a super capacitor of 450 kW.) It is well known that the price and weight of an electric power package are about 1.5 times that of a super capacitor of the same power. Therefore, the power system of the invention has the characteristics of light weight and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种内燃动车组混合供电动力***,列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号,依据动力***的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集的电压、电流值,计算当前实际需求功率,并将需求功率发送给能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制内电动力包输出相应功率。该***结构简单、控制可靠,可以增加列车的动力性能,提高列车运输能力。同时还公开了一种内燃动车组混合供电方法。

Description

一种内燃动车组混合供电动力***及供电方法 技术领域
本发明涉及内燃动车组内电供电***,特别是一种内燃动车组混合供电动力***及供电方法。
背景技术
传统的内燃动车组经过多年的发展,为人类文明的发展做出了巨大贡献,创造了难以计算的直接或间接经济利益。但是随着近年来轨道交通技术的飞速发展,人们越来越认识到传统的内燃车对人类环境带来的危害。传统内燃动车动力***运行排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们去考虑内燃动车组动力***问题,需求最优的解决方案。在20世纪初,美国GE公司、加拿大铁路动力混合技术公司及日本东芝公司先后研制了柴油机与蓄电池混合供电的内燃动车组,然而由于该种混合动力动车组成本高、维修费用高,在国内外轨道交通领域并未得到广泛应用。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种内燃动车组混合供电动力***及供电方法,提升列车的动力性能,提高列车运输能力。
为解决上述技术问题,本发明所采用的技术方案是:一种内燃动车组混合供电动力***,包括:
能量管理模块,用于接收内电动力包、整流器、超级电容、逆变器发送的各自的当前电压、电流、实际可用功率、当前输出功率,进行能量管理;
内电动力包,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至整流器;
整流器,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至逆变器;
超级电容,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数发送给逆变器;
逆变器,用于将自身工作参数发送给能量管理模块,同时将内电动力包和超级电容的输出电量供给牵引电机,监控牵引电机的工作状态;
列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收 到的司控器级位信号,依据动力***的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集电压、电流值,计算当前实际需求功率,并将需求功率发送给能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制内电动力包输出相应功率。
上述动力***内包含两个供电电源:内电动力包和超级电容,供电电源充足,列车启动加速度高,极大地提升了列车的动力性能。
列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能;列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量;列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度的同时给超级电容充电;当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速运行。
本发明中内电动力包功率为360~390kW,超级电容功率为300~450kW,一套内电动力包的价格、重量是同等功率的超级电容的1.5倍左右,因此本发明的动力***具有重量轻、成本低的特点。
相应地,本发明还提供了一种内燃动车组混合供电方法,包括:
列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值(本发明中设定为DC750V),则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值;
列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收;
列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电;
当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先由外部电源给超级电容充电,然后再由超级电容给列车负载供电;
当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。
与现有技术相比,本发明所具有的有益效果为:本发明动力***内包含两个供电电源,供电电源充足,列车启动加速度高,极大地提升了列车的动力性能;由于超级电容参与供电,列车运行时内电动力包输出功率大大降低,进而降低了列车污染空气排放,且超级电容还具有快速充放电功能,实现列车制动能量快速回收;本发明结构简单、控制可靠,可以极大地提升列车的动力性能,提高列车运输能力。
附图说明
图1为本发明动力***电路结构图;
[根据细则91更正 09.02.2018] 
图2为本发明动力***网络连接图。
图3为内电动力包配置图;
图4为整流器内部配置图;
图5为超级电容内部配置图。
具体实施方式
如图1和图2所示,本发明动力***包括:
能量管理模块用于接收内电动力包、整流器、超级电容、逆变器子模块发送自身工作状态,当前电压、电流、实际可用功率、当前输出功率,然后计算并进行能量管理,实现动力***响应速度快、动力性能强、回收制动能量高的优点。
内电动力包一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与整流器相连,实现能量从内电动力包传递至整流器和将自身能力参数发送整流器。
整流器一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与逆变器相连,实现动力包能量从整流器传递至逆变器和将自身能力参数发送逆变器。
超级电容一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆与逆变器相连,实现能量从超级电容传递至逆变器和将自身能力参数发送逆变器。
逆变器一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与牵引电机相连,实现将内电动力包和超级电容的输出电量供给牵引电机,同时监控牵引电机工作状态。
内电动力包与超级电容在主电路中的连接方式为并联连接,实现混合供电,提高列车轮周功率。
内电动力包配置控制机箱,输出端配置电压、电流传感器,控制机箱监控内电动力包状态和根据整流器命令控制输出相应功率;电压传感器用于监控内电动力包实时输出电压;电流传感器用于监控内电动力包实时输出电流;电路简图见图3。
整流器内部配置控制模块,输入端设置接触器,输出端配置电压、电流传感器。控制模块监控整流器状态和根据能量管理模块命令控制输出相应功率;接触器用于投入或隔离整流器;电压传感器用于监控整流器实时输出电压;电流传感器用于监控整流器实时输出电流;电路简图见图4。
超级电容内部配置控制模块,输出端配置电压、电流传感器、熔断器和接触器。控制模块监控超级电容状态;电压传感器用于监控整流器实时输出电压;电流传感器用于监控整流器实时输出电流;熔断器用于过流保护;接触器用于投入或隔离超级电容;电路简图见图5。
进一步,超级电容还具有快速充放电功能,实现列车制动能量快速回收。
逆变器含牵引逆变器和辅助逆变器,内部配置控制模块,输入端配置电压、电流传感器和接触器,输出端配置电压、电流传感器。接触器用于投入或隔离逆变器;制模块监控逆变器状态和根据能量管理模块命令控制牵引电机输出相应力矩;电压传感器用于监控逆变器实时输入输出电压;电流传感器用于监控逆变器实时输入输出电流。
牵引电机配置速度传感器和温度传感器。速度传感器用于监控牵引电机转速,温度传感器用于监控牵引电机工作温度。
超级电容为动力***主要供电电源之一,在同等输出功率要求的前提下,动力***可选配功率较小的内电动力包,进而实现降低污染气体排放和整个动力***生产成本。
本发明实施例的动力***包括一个能量管理模块、一个内电动力包、一个整流器、一个超级电容、一个逆变器、四个牵引电机、一套MVB网络。
本发明的动力***控制策略为:直接转矩加功率限制控制策略。列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号和提前依据动力***的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络 线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集电压、电流值,计算当前实际需求功率,并将需求功率发送能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制动力包输出相应功率。
列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能。
列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量。
列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度同时给超级电容充电。
当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能。
当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速(例如时速50公里以下)运行。
本发明的供电动力***电路结构,其动力连接关系如下:内电动力包的三相输出端即U、V、W接整流器对应三相输入端即U、V、W;整流器输出直流电的正负极接超级电容对应的输入正负极;超级电容输出正负极接牵引逆变器和辅助逆变器的对应的输入正负极;牵引逆变器三相输出端即U、V、W接牵引电机对应三相输入端即U、V、W;辅助逆变器三相输出端和直流输出端,接列车对应的三相母线和直流母线。
本发明的供电动力***电路结构,其控制连接关系如下:能量管理模块包含干个控制模块,与各部件间用MVB通信,MVB分A、B两个通道,两个通道互相冗余;内电动力包的X1的一束线连接能量管理模块的X1,另一束线连接整流器的X1,内电动力包的X2的一束线连接能量管理模块的X2,另一束线连接整流器的X2;整流器的X1的另一束线连接超级电容的X1,整流器的X2的另一束线连接超级电容的X2;超级电容的X1的另一束线连接逆变器的X1,超级电容的X2的另一束线连接逆变器的X2。
列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值,则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值。
列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端 电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收。
列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电。
当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先有外部电源给超级电容充电,然后再由超级电容给列车负载供电。
当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。
本发明的动力***的配置规则:小功率内电动力包加大功率超级电容(目前国际上,内电动力包功率最小是390kW左右,最大的是700kW左右,本发明选用最小功率的390kW动力包,配置450kW的超级电容。),众所周知,一套内电动力包的价格、重量是同等功率的超级电容的1.5倍左右,因此本发明的动力***具有重量轻、成本低的特点。

Claims (10)

  1. 一种内燃动车组混合供电动力***,其特征在于,包括:
    能量管理模块,用于接收内电动力包、整流器、超级电容、逆变器发送的各自的当前电压、电流、实际可用功率、当前输出功率,进行能量管理;
    内电动力包,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至整流器;
    整流器,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至逆变器;
    超级电容,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数发送给逆变器;
    逆变器,用于将自身工作参数发送给能量管理模块,同时将内电动力包和超级电容的输出电量供给牵引电机,监控牵引电机的工作状态;
    列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号,依据动力***的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集的电压、电流值,计算当前实际需求功率,并将需求功率发送给能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制内电动力包输出相应功率。
  2. 根据权利要求1所述的内燃动车组混合供电动力***,其特征在于,所述内电动力包包括第一控制模块;所述第一控制模块与第一电流传感器、第一电压传感器连接;所述第一电流传感器、第一电压传感器均与发电机连接;所述发电机与柴油机连接;所述第一控制模块监控发电机状态和根据整流器命令控制输出相应功率;第一电压传感器用于监控发电机实时输出电压;第一电流传感器用于监控发电机实时输出电流。
  3. 根据权利要求2所述的内燃动车组混合供电动力***,其特征在于,所述整流器包括第二控制模块;所述第二控制模块与第二电压传感器、第二电流传感器连接;所述第二电压传感器、第二电流传感器均与DC/DC变换器连接;所述DC/DC变换器与AC/DC变换器连接;所述AC/DC变换器通过第一接触器接所述发电机; 所述第二控制模块监控DC/DC变换器状态和根据能量管理模块命令控制输出相应功率;第一接触器用于投入或隔离整流器;第二电压传感器用于监控整流器实时输出电压;第二电流传感器用于监控整流器实时输出电流。
  4. 根据权利要求3所述的内燃动车组混合供电动力***,其特征在于,所述超级电容包括第三控制模块,所述第三控制模块与第三电压传感器、第三电流传感器连接;所述第三电流传感器、第三电压传感器输入端均与熔断器连接;所述熔断器接超级电容;所述熔断器通过第二接触器接所述DC/DC变换器;所述第三控制模块监控超级电容状态;第三电压传感器用于监控超级电容实时输出电压;第三电流传感器用于监控超级电容实时输出电流;熔断器用于过流保护;第二接触器用于投入或隔离超级电容。
  5. 根据权利要求1所述的内燃动车组混合供电动力***,其特征在于,列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能。
  6. 根据权利要求1所述的内燃动车组混合供电动力***,其特征在于,列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量。
  7. 根据权利要求1所述的内燃动车组混合供电动力***,其特征在于,列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度同时给超级电容充电。
  8. 根据权利要求1所述的内燃动车组混合供电动力***,其特征在于,当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速运行。
  9. 根据权利要求1~8之一所述的内燃动车组混合供电动力***,其特征在于,所述内电动力包功率为360~390kW,所述超级电容功率为300~450kW。
  10. 一种内燃动车组混合供电方法,其特征在于,包括:
    列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值,则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值;
    列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设 定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收;
    列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电;
    当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先由外部电源给超级电容充电,然后再由超级电容给列车负载供电;
    当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。
PCT/CN2017/118477 2017-12-08 2017-12-26 一种内燃动车组混合供电动力***及供电方法 WO2019109413A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/769,998 US20200385034A1 (en) 2017-12-08 2017-12-26 Hybrid power supply system of diesel multiple unit and power supply method thereof
MA50952A MA50952B1 (fr) 2017-12-08 2017-12-26 Système d'alimentation électrique hybride et procédé d'alimentation électrique pour rame automotrice diesel
RS20230809A RS64570B1 (sr) 2017-12-08 2017-12-26 Hibridni sistem napajanјa i postupak napajanјa za višestruku dizel jedinicu
PL17933929.6T PL3722177T3 (pl) 2017-12-08 2017-12-26 Hybrydowy system zasilania oraz sposób zasilania dla zespołu trakcyjnego z silnikiem Diesla
EP17933929.6A EP3722177B1 (en) 2017-12-08 2017-12-26 Hybrid power supply system and power supply method for diesel multiple unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711292990.0 2017-12-08
CN201711292990.0A CN108032862B (zh) 2017-12-08 2017-12-08 一种内燃动车组混合供电动力***及供电方法

Publications (1)

Publication Number Publication Date
WO2019109413A1 true WO2019109413A1 (zh) 2019-06-13

Family

ID=62101575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118477 WO2019109413A1 (zh) 2017-12-08 2017-12-26 一种内燃动车组混合供电动力***及供电方法

Country Status (7)

Country Link
US (1) US20200385034A1 (zh)
EP (1) EP3722177B1 (zh)
CN (1) CN108032862B (zh)
MA (1) MA50952B1 (zh)
PL (1) PL3722177T3 (zh)
RS (1) RS64570B1 (zh)
WO (1) WO2019109413A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171298A (zh) * 2019-05-10 2019-08-27 湖南科技大学 盾构电瓶车的铅酸电池与超级电容混合动力控制***
CN110143204B (zh) * 2019-06-06 2020-12-11 中车大连机车车辆有限公司 一种城轨车辆电池应急牵引控制方法及其控制***
CN110641485B (zh) * 2019-11-06 2022-01-18 中车株洲电力机车有限公司 功率控制方法、装置、***及混合动力内燃动车组
CN110843543B (zh) * 2019-11-29 2021-11-30 江苏徐工工程机械研究院有限公司 重载机械能量回收装置及回收方法、重载机械
CN113263920B (zh) * 2021-04-27 2022-05-17 西南交通大学 电气化铁路车载混合式储能***及其能量管理方法
CN113400955B (zh) * 2021-08-04 2022-09-30 株洲时代电子技术有限公司 一种混合动力轨道车电气控制方法
CN114325124B (zh) * 2021-12-31 2024-04-26 深圳市汇川技术股份有限公司 电容检测方法、装置、***与计算机可读存储介质
CN114954541B (zh) * 2022-04-29 2023-08-18 中车工业研究院有限公司 车辆的功率分配和跟踪速度的协同方法及装置
CN115230748B (zh) * 2022-09-01 2024-03-29 中车大连机车车辆有限公司 基于网络控制的动力分散内燃动车负载控制***和方法
CN115603337B (zh) * 2022-11-21 2023-04-07 西安热工研究院有限公司 一种基于超级电容的经济型调频***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496327A (zh) * 2013-06-24 2014-01-08 长春轨道客车股份有限公司 一种动力包和储能装置混合供电的动车组牵引***
CN105857320A (zh) * 2016-06-01 2016-08-17 北京交通大学 混合动力动车组牵引传动***能量管理策略
FR2970455B1 (fr) * 2011-01-13 2016-09-09 Soc Nat Des Chemins De Fer Francais - Sncf Engin ferroviaire hybride.
CN106114531A (zh) * 2016-08-30 2016-11-16 中车株洲电力机车有限公司 一种内燃动车组及其供电***及牵引控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116368A (en) * 1997-11-21 2000-09-12 Lockheed Martin Corp. Electric vehicle with battery regeneration dependent on battery charge state
JP3456624B2 (ja) * 1997-11-28 2003-10-14 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3345584B2 (ja) * 1998-07-02 2002-11-18 三菱電機株式会社 ディーゼル電気機関車用制御装置
US9193268B2 (en) * 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
DE10204215A1 (de) * 2002-01-28 2003-08-21 Bombardier Transp Gmbh Fahrzeug mit Bremsenergiespeicher
JP4340614B2 (ja) * 2004-09-29 2009-10-07 株式会社日立製作所 ハイブリッド鉄道車両
US7309929B2 (en) * 2005-04-25 2007-12-18 Railpower Technologies Corporation Locomotive engine start method
US7568537B2 (en) * 2006-01-09 2009-08-04 General Electric Company Vehicle propulsion system
US7780562B2 (en) * 2006-01-09 2010-08-24 General Electric Company Hybrid vehicle and method of assembling same
US7825530B2 (en) * 2007-06-29 2010-11-02 Ise Corporation Generator voltage stabilization system and method
US7928596B2 (en) * 2008-10-06 2011-04-19 General Electric Company Systems and methods for the utilization of energy generated by a powered vehicle
DE102008050737A1 (de) * 2008-10-08 2010-04-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Antriebsstrangs
US8482151B2 (en) * 2009-07-02 2013-07-09 Electrical Power Worx Corp. Auxiliary power systems and methods thereof
JP5996095B2 (ja) * 2013-03-29 2016-09-21 三菱電機株式会社 電気車制御装置および電気車のブレーキ制御方法
CN103350647B (zh) * 2013-06-24 2016-06-08 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引***
CN103401433A (zh) * 2013-06-24 2013-11-20 北京千驷驭电气有限公司 适用多供电模式的混合动力动车组牵引变流器
EP3224927B8 (en) * 2014-11-28 2019-10-02 HITACHI RAIL S.p.A. Auxiliary system of power supply and energy harvesting for an electric vehicle, and method for operating the auxiliary system of power supply and energy harvesting
JP6313522B2 (ja) * 2015-11-26 2018-04-18 株式会社東芝 電力制御装置、および電力制御システム
US10876510B2 (en) * 2016-03-02 2020-12-29 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
JP6725356B2 (ja) * 2016-07-29 2020-07-15 Kyb株式会社 鉄道車両用制振装置
CN106274508A (zh) * 2016-08-30 2017-01-04 中车株洲电力机车有限公司 一种内燃动车组及其供电***及牵引控制方法
JP6891963B2 (ja) * 2017-08-14 2021-06-18 日産自動車株式会社 電源システム及びその制御方法
US11938825B2 (en) * 2017-11-07 2024-03-26 Eaton Intelligent Power Limited System and method of a mobile electrical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970455B1 (fr) * 2011-01-13 2016-09-09 Soc Nat Des Chemins De Fer Francais - Sncf Engin ferroviaire hybride.
CN103496327A (zh) * 2013-06-24 2014-01-08 长春轨道客车股份有限公司 一种动力包和储能装置混合供电的动车组牵引***
CN105857320A (zh) * 2016-06-01 2016-08-17 北京交通大学 混合动力动车组牵引传动***能量管理策略
CN106114531A (zh) * 2016-08-30 2016-11-16 中车株洲电力机车有限公司 一种内燃动车组及其供电***及牵引控制方法

Also Published As

Publication number Publication date
EP3722177B1 (en) 2023-08-02
RS64570B1 (sr) 2023-10-31
CN108032862B (zh) 2020-01-17
EP3722177A1 (en) 2020-10-14
MA50952B1 (fr) 2023-11-30
EP3722177C0 (en) 2023-08-02
PL3722177T3 (pl) 2024-02-19
MA50952A (fr) 2020-10-14
US20200385034A1 (en) 2020-12-10
CN108032862A (zh) 2018-05-15
EP3722177A4 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019109413A1 (zh) 一种内燃动车组混合供电动力***及供电方法
CN107776416B (zh) 一种轨道交通混合动力电路、储能动力包及其供电方法
CN103350647B (zh) 一种接触网和储能装置混合供电的动车组牵引***
CN103072492B (zh) 一种纯电动客车用主动控制式复合电源及其控制方法
CN103481787A (zh) 接触网、动力包和储能装置混合供电的动车组牵引***
CN103496327A (zh) 一种动力包和储能装置混合供电的动车组牵引***
CN103419670B (zh) 一种储能装置供电的动车组牵引***
CN103818265B (zh) 用于动力交通工具上的电池管理装置
CN104590045A (zh) 一种纯电动车并行充电供电***
CN104527960A (zh) 船舶制动能量控制***及能量控制方法
CN107733055B (zh) 一种用于油--电混合动力机车车载动力电池的充电***
CN105235546B (zh) 一种1000kW功率等级纯电动交流传动调车机车电气主传动***
CN107554299B (zh) 一种铁路工程机械混合动力源***
CN107650690B (zh) 一种铁路工程机械混合动力源控制方法
CN105059129A (zh) 复合电源、使用该复合电源的供能***及电动汽车
WO2022160935A1 (zh) 一种车载分布式供电***、车载供电控制方法及装置
CN109131380B (zh) 内燃机车主辅传动***及内燃机车
CN106671796A (zh) 机车牵引***
Yang et al. An overview on braking energy regeneration technologies in Chinese urban railway transportation
CN106787086A (zh) 一种双pwm永磁电力驱动***及其控制方法
CN112009272B (zh) 一种双流制机车储能***的控制方法及***
Lianfu et al. Research on the integrated braking energy recovery strategy based on super-capacitor energy storage
CN109649222B (zh) 城轨列车再生能量综合利用***及其控制方法
CN109591528B (zh) 一种混合动力公铁车及其控制***
CN110758119A (zh) 一种电动汽车供电***及其控制方法、增程电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017933929

Country of ref document: EP

Effective date: 20200708

WWE Wipo information: entry into national phase

Ref document number: P-2023/0809

Country of ref document: RS