WO2019109200A1 - 微型led器件用上基板、微型led器件以及微型led显示装置 - Google Patents

微型led器件用上基板、微型led器件以及微型led显示装置 Download PDF

Info

Publication number
WO2019109200A1
WO2019109200A1 PCT/CN2017/114383 CN2017114383W WO2019109200A1 WO 2019109200 A1 WO2019109200 A1 WO 2019109200A1 CN 2017114383 W CN2017114383 W CN 2017114383W WO 2019109200 A1 WO2019109200 A1 WO 2019109200A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
substrate
layer
led device
upper substrate
Prior art date
Application number
PCT/CN2017/114383
Other languages
English (en)
French (fr)
Inventor
萧毅豪
Original Assignee
东旭集团有限公司
东旭光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭集团有限公司, 东旭光电科技股份有限公司 filed Critical 东旭集团有限公司
Priority to US16/768,813 priority Critical patent/US11545607B2/en
Priority to JP2020529667A priority patent/JP2021506108A/ja
Priority to PCT/CN2017/114383 priority patent/WO2019109200A1/zh
Priority to KR1020207019102A priority patent/KR102349395B1/ko
Priority to CN201780097022.6A priority patent/CN111357121A/zh
Publication of WO2019109200A1 publication Critical patent/WO2019109200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • This document relates to an upper substrate for a micro LED device, particularly an upper substrate of a flexible micro LED device (Micro-LED display), and a micro LED device (also referred to as Open Cell) and a micro LED display device produced using the upper substrate.
  • a micro LED device particularly an upper substrate of a flexible micro LED device (Micro-LED display), and a micro LED device (also referred to as Open Cell) and a micro LED display device produced using the upper substrate.
  • Micro-LED (micro-LED) technology that is, LED miniaturization and matrix technology, refers to a high-density and small-sized LED array integrated on one chip. For example, each pixel of the LED display can be addressed and individually driven to illuminate. Seen as a miniature version of an outdoor LED display that reduces pixel distance from millimeters to micrometers.
  • the Micro LED display is an LED display driver circuit fabricated by a normal CMOS integrated circuit (Complementary Metal-Oxide-Semiconductor) manufacturing process, and then an LED array is fabricated on the integrated circuit by using an MOCVD machine. Thereby a miniature display, that is to say a reduced version of the LED display, is realized.
  • CMOS integrated circuit Complementary Metal-Oxide-Semiconductor
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • CCFL Cold Cathode Fluorescent Lamp
  • the TFT-LCD non-self-luminous display principle results in a transmittance of the liquid crystal panel (open cell) of about 7% or less, resulting in a low photoelectric efficiency of the TFT-LCD.
  • white LEDs still provide less color saturation than trichromatic LEDs, and most TFT-LCD products are only about 72% NTSC (National Television Standards Committee (US) National Television Standards Committee).
  • NTSC National Television Standards Committee (US) National Television Standards Committee
  • US National Television Standards Committee
  • the brightness of TFT-LCD cannot be increased to more than 1000 nits, resulting in low image and color recognition, which is a major defect in its application. Therefore, another technology that directly utilizes three primary color LEDs as LED display or Micro LED Display of self-luminous display point pixels is also under development.
  • the micro LED display is a new generation of display technology
  • the structure is a miniaturized LED array, that is, the LED structure design is thinned, miniaturized and arrayed, so that the volume is about the current mainstream.
  • the LED structure design is thinned, miniaturized and arrayed, so that the volume is about the current mainstream.
  • 1% of the LED size each pixel can be addressed and individually driven to illuminate, reducing the distance of the pixel from the original millimeter to the micron.
  • Micro LED advantages include low power consumption, high brightness, ultra high resolution and color saturation, fast response, ultra power saving, long life, high efficiency, etc., and its power consumption is about LCD. 10%, 50% of OLED. Compared with OLEDs, which are also self-luminous displays, Micro LEDs are 30 times brighter than OLEDs and have resolutions up to 1500 PPI (pixel density), which is equivalent to more than five times that of Apple Watch using OLED panels up to 300 PPI. In addition, it has one of the advantages of good material stability and no image imprinting.
  • OLEDs have improved LCD panel thickness, need to be matched with backlight module adjustment, poor black level contrast, etc., and can achieve high contrast ratio.
  • the OLED must reduce the white picture and high brightness display to achieve power saving effect.
  • the wide color gamut characteristics of OLEDs are also not much different from KSF or quantum dots.
  • Micro LED is composed of a large number of micro LED arrays. In addition to high brightness, ultra high resolution and color saturation, each pixel can be driven independently, and it also has the advantages of power saving and fast response.
  • Micro LEDs are micron-sized to the micron level, providing high-brightness, low power consumption, ultra-high resolution and color saturation for every pixel (pixel) address control and single-point drive illumination. In the future, it can even be bonded to a flexible substrate to achieve flexible features such as OLED, and the application range is wider and more.
  • Figure 1 shows a comparison of the principle of operation of the three major displays.
  • Patent Document 1 WO 2014/093065
  • the display panel may include a pixel area and a non-pixel area A thin film transistor substrate of the domain.
  • the display area includes an array of bank openings and a bottom electrode array within the array of bank openings.
  • the ground line is located in the non-pixel region, and the ground bond line array extends between the bank openings in the pixel region and is electrically connected to the ground line in the non-pixel region.
  • a micro LED display structure is also described in Patent Document 2 (WO 2014/093063), which specifically relates to a reflective bank structure of a light emitting device.
  • the reflective bank structure can include a substrate, an insulating layer on the substrate, and an array of bank openings in the insulating layer, wherein each bank opening includes a bottom surface and a sidewall.
  • the reflective layer spans a sidewall of each of the bank openings in the barrier openings in the insulating layer.
  • the method for solving the heat dissipation problem of electronic components in the industry can be divided into active heat dissipation and passive heat dissipation.
  • Active cooling includes forced cooling and electromagnetic jet cooling.
  • the forced cooling of the fan is to generate strong air convection by the fan, and the hot air is led out of the heat source or the body of the lamp for heat dissipation.
  • the use of a fan to forcibly dissipate heat can effectively dissipate heat by regulating the fan speed. If the electronic space of a computer or a server is sufficient, the fan is forced to dissipate heat. This method is not only low cost but also a very effective heat dissipation method.
  • Passive heat dissipation includes natural convection heat dissipation and loop heat pipe heat dissipation.
  • Natural convection heat dissipation is through direct contact with air through heat sinks such as heat sink fins, lamp housings, and system boards. The air around the radiator becomes hot air by absorbing heat, and then the hot air rises, and the cold air drops, which naturally drives the air to generate convection to achieve heat dissipation.
  • heat sinks such as heat sink fins, lamp housings, and system boards.
  • the air around the radiator becomes hot air by absorbing heat, and then the hot air rises, and the cold air drops, which naturally drives the air to generate convection to achieve heat dissipation.
  • the heat exchange driving force of this method only comes from the temperature difference between the heat source and the surrounding air, and the contact area is increased to improve the heat dissipation effect.
  • the LED light source is composed of LED, heat dissipation structure, driver and lens, so heat dissipation is an important part. If the LED does not dissipate well, its lifetime will also be affected.
  • the heat has a great influence on high-brightness LEDs.
  • heat is concentrated in a chip having a small size, and an increase in temperature of the chip causes a non-uniform distribution of thermal stress, a luminous efficiency of the chip, and a decrease in lasing efficiency of the phosphor.
  • the temperature exceeds a certain value, the device failure rate increases exponentially.
  • Statistics show that for every 2 °C rise in component temperature, reliability drops by 10%. Further, when a plurality of LEDs are densely arranged to constitute a white light illumination system, the heat dissipation problem is more serious. Addressing thermal management issues has become a prerequisite for high-brightness LED applications.
  • chip size there is a certain relationship between chip size and heat dissipation.
  • the most straightforward way to increase the brightness of a power LED is to increase the input power, and in order to prevent saturation of the active layer, the size of the p-n junction must be increased accordingly.
  • Increasing the input power necessarily increases the junction temperature, which in turn reduces the quantum efficiency.
  • the increase in single-tube power depends on the ability of the device to derive heat from the pn junction.
  • the chip size and junction area are separately increased while maintaining the current chip material, structure, packaging process, current density on the chip, and equivalent heat dissipation conditions. The temperature will continue to rise.
  • micro LED display device is composed of a large number of micro LED arrays, so the heat dissipation problem must be considered when designing the structure of the micro LED display device.
  • the heat-conducting materials referred to herein refer to substances that can transfer heat. They can be metals or synthetic materials, including silicone grease and thermal grease (epoxy resin). Add thermal conductive particles), thermal double-sided adhesive, thermal pad (divided into silicon material and non-silicon material), phase change material, etc. These materials have their own advantages and disadvantages, and the use is different.
  • Thermal conductivity is one of the thermophysical parameters of a material and is the most important thermophysical parameter of a solid.
  • the thermal conductivity of low thermal conductivity materials is an important parameter for characterizing building energy conservation and physical properties of thermal insulation materials. The accurate measurement of its parameter values has very important theoretical and practical value.
  • Thermal Gap Filler including Thermal Conductive Pad, Thermal Tape, Thermal Grease, and the like.
  • the principle of filling the gap between the chip or the heating element and the heat sink is used as a path for providing thermal energy conduction and filling a gap of 0.125 mm to 10 mm. It can help transfer the thermal energy of the chip, allowing it to be effectively conducted to the heat sink fins, thereby reducing the chip temperature, improving chip life and performance.
  • the general thermal module includes thermal adhesive, heat sink fins and a fan.
  • the way of heat conduction is from the surface of the chip, through thermal conductive rubber (Thermal Gap Filler), thermal tape (Thermal Tape) or thermal grease (Thermal Grease) and other thermal materials to improve the efficiency of conduction to the heat sink fins, the thermal conductivity of the heat sink fins The better the area and the larger the area, the stronger the heat dissipation effect.
  • a cooling fan is often added to the heat dissipation module to bring the thermal energy to the discrete thermal module more quickly.
  • Such applications are commonly used in notebook computers (Laptop Computer), communication devices (Telecom Devices), LCD TVs (LCD TVs), LED lighting devices, Power Supply Unit PSUs, and DDR Memory Modules. And other products.
  • the thermal conductive adhesive is a heat transfer (Heat Transferring) medium, usually in the following types: thermal conductive adhesive (heat-dissipating adhesive), which is liquid or solid, and can be made of epoxy resin, ceramic powder or acrylic adhesive; Thermal tape), which is in the form of single-sided or double-sided tape, which is based on acrylic, silicone-based, and fiberglass mesh reinforcement materials; thermal silica gel (heat-dissipating silica gel), which is mostly solid, It has a liquid form and is composed of a silica gel material; a heat-conductive silicone sheet (heat-dissipating silica gel sheet) which is in a solid form and is composed of a silica gel material.
  • thermal conductive adhesive heat-dissipating adhesive
  • Thermal tape which is in the form of single-sided or double-sided tape, which is based on acrylic, silicone-based, and fiberglass mesh reinforcement materials
  • thermal silica gel (heat-dissipating silica gel), which is
  • epoxy resin is a kind of thermal conductive adhesive. It has been reported that an epoxy resin has been developed to have a thermal conductivity and insulation of up to 7.3 W/mK. It can be used for heat dissipation applications such as engines, LED lighting, power supply components, and semiconductor packages.
  • graphene has been attracting attention as a new type of material in recent years.
  • Graphene is a carbonaceous material with a two-dimensional honeycomb crystal structure formed by a single layer of carbon atoms SP 2 hybridized, and has unique electronic properties such as quantum Hall effect, field effect, Fermi effect, and higher Light transmittance and high electron mobility.
  • quantum Hall effect quantum Hall effect
  • field effect Fermi effect
  • Fermi effect and higher Light transmittance and high electron mobility
  • graphene also has a very excellent heat transfer coefficient.
  • the thermal radiation emissivity of graphene is 0.99 in the infrared range, very close to the thermal radiation emissivity of theoretical blackbody radiation. Therefore, graphene has considerable potential as a heat radiation heat dissipating material. Compared with the thermal emissivity of about 0.09 for copper and about 0.02 for aluminum, graphene has both heat conduction and heat radiation characteristics in heat dissipation applications.
  • Thermal conductivity k also known as thermal conductivity, refers to the ability of a material to directly conduct heat. Thermal conductivity is defined as the amount of heat that is directly transmitted by a unit of unit length and length in a unit temperature difference and unit time. The unit of thermal conductivity is Wami -1 Kelvin- 1 . The thermal conductivity of some materials is shown in Table 1 below. It can be seen from Table 1 that graphene has excellent heat transfer ability.
  • Patent Document 3 discloses a graphene heat-dissipating film made of graphite, graphene, and metal ions.
  • the patent document utilizes the combination of graphene and metal ions to form a vertical and horizontal graphene distribution pattern to achieve overall heat dissipation and heat conduction, thereby having a good heat dissipation effect.
  • This patent document focuses on the interaction between graphite, graphene and metal ions. It is believed that the graphene heat-dissipating film formed by three materials has stable structure and can be widely used in various places.
  • the color portion is formed by a color filter (as shown in Fig. 3), which accounts for about 20% of the cost of the TFT-LCD.
  • a color filter as shown in Fig. 3
  • the most urgent part of the current need for improvement and the highest level of technical requirements is the Black Matrix part.
  • the main functions of the black matrix are the following three points. (1) Preventing color resists (three-color photoresists such as red, green, and blue) from mixing: When the backlight of a TFT-LCD passes through a three-color layer, light scattering and refraction often occur, resulting in color mixing.
  • the black matrix To reduce color vividness and purity, effectively separating the three color layers is the main purpose of the black matrix.
  • the sources of black matrices used in color filters in TFT-LCD panels are as follows: (1) metallic chromium (Cr) black matrix; (2) resin black matrix; and (3) electroless nickel plating. (Ni) black matrix.
  • a black matrix layer having an opening may be formed on, for example, the exposed front surface of the flexible display substrate.
  • Exemplary black matrix materials that can be used in LEDs include carbon, metal films (eg, nickel, aluminum, molybdenum, and alloys), metal oxide films (eg, chromium oxide), metal nitride films (eg, chromium nitride). , an organic resin, a glass paste, and a resin or paste including black pigment or silver particles.
  • Black matrix The layer prevents the LED from penetrating between the LEDs or being absorbed by adjacent LEDs. Therefore, the presence of the black matrix layer improves the contrast of the image displayed on the flexible display panel.
  • the black matrix layer can be formed using, for example, inkjet printing, sputtering and etching, spin coating, lamination or printing methods.
  • the inventors of the present invention suddenly realized that if a graphene material is used to fabricate a black matrix of a micro LED device, the black matrix can be simultaneously utilized, and the micro LED device can also be used.
  • the heat generated by the wafer or the like of the lower substrate is effectively derived, that is, in the invention referred to herein, the high-thickness high-shielding coefficient film formed using graphene simultaneously functions as a black matrix and heat dissipation.
  • graphene can be patterned by a process technique such as inkjet or screen printing, a black matrix can be easily formed.
  • this paper is to provide a graphene heat-dissipating film which can be used in the upper substrate of a micro LED device, which has the function of dissipating the heat of the LED and the black matrix structure which must be used as a micro LED display to enhance the optical contrast.
  • a film has both the functions of heat dissipation and color separation.
  • the purpose of this paper is also to provide an upper substrate for a micro LED device, especially as an upper substrate for a flexible micro LED device, which has an R (red)/G (green)/B (blue) LED pixel.
  • the black matrix in the upper substrate is formed of graphene. When the black matrix has different coating thicknesses, it has a low light transmittance under visible light and has a heat dissipation function in the X, Y, and Z directions.
  • the integrated upper substrate will be delivered to the downstream customers who produce the micro LED device.
  • the customer can directly attach the integrated upper substrate to the lower substrate of the micro LED device, and obtain the semi-finished product after the alignment, that is, the micro LED device. It can also be called Open Cell.
  • An upper substrate for a micro LED device comprising:
  • a transparent adhesive layer covering the metal layer and the graphene layer on the base substrate is formed.
  • the graphene layer has an opening capable of exposing a light-transmitting region of the lower substrate for the micro LED to serve as a black matrix of the micro LED device.
  • the thickness of the metal layer at a position on the bottom substrate corresponding to the wafer of the lower substrate for the micro LED device is thickened or widened.
  • the graphene layer has a thickness of 5 ⁇ m or more, preferably 50 ⁇ m or less, preferably 40 ⁇ m or less, and preferably 30 ⁇ m or less.
  • a miniature LED device comprising:
  • the upper substrate according to any one of items 1 to 5, and
  • the micro LED device uses a lower substrate.
  • a display device comprising:
  • a method of preparing an upper substrate for a micro LED device comprising the steps of:
  • a transparent adhesive layer is formed on the base substrate on which the metal layer and the graphene layer are formed.
  • the metal layer at a position on the bottom substrate corresponding to the wafer of the lower substrate for the micro LED device The metal is thickened or widened.
  • the interlayer layer is formed on the graphene layer such that the interlayer layer is in contact with the LED and the region other than the wire of the lower substrate for the micro LED when it is bonded to the lower substrate for the micro LED device.
  • the micro LED device provided in the present invention uses the graphene film in the upper substrate to simultaneously have the dual functions of heat dissipation and color separation.
  • the film combines the function of dissipating LED heat collection and the black matrix structure that must be used as a micro LED display to enhance optical contrast.
  • This paper first proposes an "integrated upper substrate" exclusively for use in miniature LED displays, especially flexible miniature LEDs, which are in the form of integrated diaphragms.
  • the integrated upper substrate will be delivered to the downstream customers who produce the micro LED device. The customer can directly attach it to the lower substrate of the micro LED array, and obtain the semi-finished display, ie Open Cell, after the alignment is completed.
  • a component processor for driving hundreds of millions of micro LED chips can design a heat storage metal layer having a high film thickness at a specific position, thereby further effectively guiding Thermal energy.
  • the inter-layer layer is added in the upper substrate, it is possible to prevent the upper substrate from being impacted on the micro-LED lower substrate array during the winding process, especially the flexible micro-LED device.
  • the downward pressure of the entire display since the inter-layer layer is added in the upper substrate, it is possible to prevent the upper substrate from being impacted on the micro-LED lower substrate array during the winding process, especially the flexible micro-LED device. The downward pressure of the entire display.
  • the metal pattern of the upper substrate of the present invention since the metal pattern of the upper substrate of the present invention has the cross-alignment mark before the bonding of the lower base plate, it is not necessary to re-create, and the alignment accuracy can be improved.
  • Figure 1 shows a comparison of the three major displays.
  • FIG. 2 shows a schematic diagram of one embodiment of a substrate on a micro LED device referred to herein.
  • Fig. 3 is a schematic view showing the structure of a color filter and a black matrix.
  • FIG. 4 is a schematic view showing the preparation process of the upper substrate involved herein.
  • FIG. 5 is a schematic view showing a process of bonding the upper substrate and the micro LED lower substrate herein.
  • FIG. 6 is a schematic flow chart showing the micro-LED device obtained by soldering the obtained micro-LED upper and lower substrates.
  • Fig. 7 schematically shows a heat conduction path and a light conduction path of the micro LED device obtained herein.
  • Fig. 8 is a schematic perspective view showing the main structure of the upper and lower substrates herein.
  • Figure 9 shows the OD values of graphene layers of different thicknesses.
  • Figure 10 shows the light transmittance of a graphene layer of a certain thickness at different visible wavelengths.
  • Figure 11 is a schematic view showing the heat dissipation mode of the micro LED device obtained herein.
  • Figure 12 shows the results of the bending detection test and the heat dissipation experiment of the display obtained herein.
  • Micro LED devices as well as miniature LED display devices, are referred to herein.
  • the term "micro” device or “micro” LED structure as used herein may refer to a descriptive dimension of certain devices or structures in accordance with embodiments herein.
  • the term “micro” device or structure refers to a size from 1 ⁇ m to 100 ⁇ m.
  • the above dimensions are merely exemplary and that the dimensions of the miniature LED devices or display devices referred to herein are not necessarily limited by this and may be applicable to larger or smaller scales in some specific examples.
  • over span may refer to the relative position of one layer relative to the other.
  • crossing another layer, “on” another layer, or “on” another layer or “bonding” to another layer may be in direct contact with other layers or There may be one or more intermediate layers.
  • a layer “between” the layers may be in direct contact with the layer or may have one or more intermediate layers.
  • covering refers to the fact that one layer completely covers another layer, that is, A covering B means that A completely covers B, and B must contact A with the outside.
  • An upper substrate for a micro LED device comprising: a bottom substrate; a metal layer having a pattern on the bottom substrate having a non-opening region capable of covering the lower substrate for the micro LED; and a graphene layer formed on the bottom substrate; A transparent adhesive layer covering the metal layer and the graphene layer on the base substrate is formed.
  • the bottom substrate may be a flexible plastic substrate or a glass substrate.
  • the material of the substrate is not limited as long as it can be used as a substrate material in the LED display.
  • a plastic substrate such as PET, PI, PS or PP can be used.
  • the film thickness of the bottom substrate is 150 ⁇ m or less, but it is merely an exemplary description.
  • the thickness of the bottom substrate is not limited, and those skilled in the art can design according to actual conditions.
  • a metal layer having a pattern capable of covering a non-opening region of the lower substrate for the micro LED is formed on the base substrate.
  • the metal layer is directly formed on the bottom substrate, and the metal layer mainly includes the following parts: a position for soldering, a cross-alignment mark for future alignment with the lower substrate of the micro LED device, and guiding the latter.
  • a metal layer of graphene's own heat source that can conduct heat out of the device.
  • the metal layer has a pattern designed according to a non-opening region of the lower substrate for the micro LED device to be aligned, and the metal layer should be capable of covering the non-opening region of the lower substrate for LED.
  • a schematic depiction of the metal layer is given in Figures 2 and 4.
  • the metal material forming the metal layer is not limited, and may be any metal that can be used in an LED display, and may be, for example, an inorganic high heat conductive metal such as copper, aluminum, silver, or iron, preferably copper.
  • an inorganic high heat conductive metal such as copper, aluminum, silver, or iron, preferably copper.
  • it is preferable that the thickness of the metal layer at a position corresponding to the wafer of the lower substrate for the micro LED device on the base substrate is thickened or widened. By this thickening or widening process, the heat generated at the lower substrate wafer can be more efficiently derived.
  • FIG. 8 schematically shows the structure of the metal layer, and it can be seen that the metal layer has a given pattern which is designed according to the lower substrate for the micro LED to be bonded so that the metal layer can be covered.
  • the micro LED uses a non-opening area of the lower substrate.
  • the area of a metal portion of a part of the metal layer is widened or the film thickness thereof is thickened, and the portions which are widened and thickened correspond to the lower substrate for the micro LED device.
  • Such a structure can quickly receive the heat from the graphene layer of the entire micro LED device processor.
  • the metal layer has a film thickness of 30 ⁇ m or less.
  • the thickness can be adjusted, and the upper limit is not limited, and can be adjusted according to the size of the entire upper substrate or the entire LED device and the display device.
  • a graphene layer is also formed on the bottom substrate, as shown in FIGS. 2 and 4.
  • the graphene layer is formed on the base substrate and has an opening capable of exposing a light-transmitting region of the lower substrate for the micro LED.
  • This graphene layer will be used as a black matrix for micro LED devices.
  • some of the graphene layers having open cells are formed on the base substrate across the metal layer, that is, a portion of the graphene is formed on the metal layer, and a portion is in contact with the bottom substrate.
  • Some graphene-coated metal layers are formed on the base substrate; some graphenes are not formed on the bottom substrate without contact with the metal layers.
  • the position of the opening of the graphene layer is also designed according to the lower substrate of the micro LED device, thereby ensuring that it can expose the light-transmitting region of the lower substrate for the micro LED, thereby making it function as a black matrix of the micro LED device.
  • FIG. 8 schematically shows a schematic view of a graphene layer.
  • the graphene layer has an opening capable of exposing the light-transmitting region of the lower substrate for the micro LED, and the pixels of the respective color pixels are opened to pass the light.
  • the cross-alignment mark of the upper substrate may be exposed on the graphene layer, that is, the portion corresponding to the cross-alignment mark on the graphene layer is hollowed out, so that the cross-alignment mark on the upper substrate can be exposed, thereby further improving The alignment of the substrate is matched.
  • the cross mark is formed on the upper substrate PET, and the word is on the plastic substrate layer of the lower substrate.
  • the thickness of the graphene layer is not limited. However, in order to sufficiently function as a black matrix, the thickness of the graphene layer is required to be 1 ⁇ m or more.
  • the graphene layer acts as a black matrix, so it is required to block light, and the stronger the light-shielding ability, the higher the OD value of the graphene layer is required.
  • the absorbance (A) can be calculated by measuring the transmitted light and incident light intensity.
  • A -log10 (transmitted light intensity / incident light intensity).
  • the thickness of the graphene layer is preferably 5 ⁇ m or more, and the graphene layer can fully function as a black matrix, and the upper limit of the thickness of the graphene layer is not limited. Those skilled in the art can select and design according to the actual needs and dimensions of the micro LED device and the display. In a specific embodiment, the thickness of the graphene layer is preferably 50 ⁇ m or less, preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the film thickness of the graphene layer is 30 ⁇ m
  • the data of the light transmittance at each visible light wavelength is summarized in FIG. 10, and it can be seen that the film thickness is graphene.
  • Layer at each wavelength Both have a very low light transmittance, so that the function as a black matrix can be fully utilized.
  • the micro LED device of the present invention uses an upper substrate, which further includes: an interlayer layer formed on the graphene layer, and the interlayer layer is bonded to the lower substrate of the micro LED device.
  • the LEDs of the substrate are in contact with areas other than the wires.
  • the contact refers to a physical contact, that is, an area in which the interlayer layer actually contacts the LEDs and wires of the lower substrate.
  • there is such a interlayer layer that can prevent the black matrix from being pressed onto the lower substrate of the micro LED device, the processor, and the like when the flexible display is bent.
  • the schematic structure of the interlayer layer is given in FIG. In addition, FIG.
  • the interlayer layer 8 shows the three-dimensional structure of the interlayer layer and its mode of action.
  • the flexible substrate can be effectively prevented from being in the process of curling, and the upper substrate is used for the lower substrate array of the micro LED device. Produces an impact that disperses the downward pressure of the entire display.
  • the interlayer layer may be formed using a material generally used to form a photoresist resin.
  • a negative photoresist also known as a photoresist
  • a photoresist is a light-sensitive mixed liquid composed of a photosensitive resin, a sensitizer (see spectral sensitizing dye), and a solvent.
  • the photocuring reaction can be quickly performed in the exposed region, so that the physical properties of the material, particularly solubility, affinity, and the like are significantly changed.
  • the soluble fraction is dissolved by treatment with a suitable solvent to give the desired image.
  • photoresists are widely used in the manufacture of printed circuits and integrated circuits, as well as in printing and plate making processes.
  • Photoresist technology is complex and has many varieties. According to its chemical reaction mechanism and development principle, it can be divided into two types: negative gel and positive gel. Negative glue is formed after the formation of insoluble matter after illumination; on the contrary, it is insoluble to some solvents, and it is a positive glue after being irradiated to become a soluble substance. With this property, by coating the photoresist, the desired circuit pattern can be etched on the surface of the silicon wafer. Photoresists can be classified into three types based on the chemical structure of the photosensitive resin.
  • Photopolymerization type using an ethylenic monomer, generates a radical under the action of light, and the radical further initiates polymerization of the monomer, and finally forms a polymer, which has the characteristics of forming a positive image.
  • Photodegradable type using a material containing an azide quinone compound, after photoilishing, photodecomposition reaction occurs, and oil-soluble to water-soluble, can be made into a positive gel.
  • 3 photocrosslinking type using polyvinyl alcohol laurate as a photosensitive material, under the action of light, the double bonds in the molecule are opened, and the chain-chain crosslinks to form an insoluble network.
  • the structure acts as a resist, which is a typical negative photoresist.
  • the photoresist resin for forming the interlayer layer may be a positive photoresist resin or a negative photoresist resin.
  • the film thickness of the interlayer layer is not limited, and may be designed according to the specific size of the upper substrate and the lower substrate of the entire micro LED device. In a specific embodiment given herein, the film thickness of the interlayer layer Less than 40 ⁇ m.
  • the upper substrate for the micro LED device further includes a transparent adhesive layer formed on the base substrate covering the metal layer and the graphene layer.
  • the transparent adhesive layer may be an OCA optical adhesive (Optical Clear Adhesive).
  • OCA optical glue used herein is a special adhesive for bonding transparent optical elements such as lenses.
  • OCA optical adhesive is required to be colorless and transparent, light transmittance is above 90%, bond strength is good, it can be cured at room temperature or medium temperature, and has a small curing shrinkage.
  • OCA is considered to be a double-sided tape having optical transparency.
  • OCA optical glue is one of the raw materials for important touch screens. The optical acrylic adhesive is made into a non-substrate, and then the upper and lower layers are bonded to each other to form a release film, which is a double-sided adhesive tape without a base material. OCA optical glue is suitable as a binder for touch screens.
  • OCA optical adhesive has the advantages of clear, high light transmission (all-light transmittance >99%), high adhesion, high weather resistance, water resistance, high temperature resistance, UV resistance, adjustable thickness and uniformity.
  • the spacing, long-term use does not cause yellowing (yellowing), peeling and deterioration.
  • OCA optical glue is divided into two categories, one is resistive, the other is capacitive, and the resistive optical adhesive can be divided into 50 ⁇ m and 25 ⁇ m optical adhesives according to different thicknesses.
  • Capacitive optical adhesive is divided into 100 ⁇ m. , 175 ⁇ m, 200 ⁇ m optical glue.
  • Optical adhesives can be used in different fields according to their thickness. Their main applications are: electronic paper, transparent device bonding, projection screen assembly, aerospace or military optics assembly, display assembly, lens assembly, resistive touch screen G+F+ F, F+F, capacitive touch screen, panel, ICON and glass and polycarbonate plastic materials, special adhesive for bonding transparent optical components (such as lenses). Silicone rubber, acrylic resin and unsaturated polyester, polyurethane, epoxy resin and other adhesives can bond optical components. Some treatment agents are usually added during formulation to improve their optical properties or to reduce cure shrinkage. Suitable for fixing various films and screens (acrylic, glass screen, touch screen, etc.) around the display of mobile devices.
  • OCA optical glue to reduce glare, reduce LCD light loss, increase LCD brightness and increase light transmission, reduce energy consumption; and increase contrast, especially under strong light; Strength; avoid the generation of Newton's rings; make the surface of the product smoother; make the product borderless, expand the visible area, etc.
  • the transparent adhesive layer is formed on the base substrate, which completely covers the metal layer, the graphene layer, and the optional interlayer layer. Further, usually, the transparent adhesive layer is provided with a protective film, and the protective film can be peeled off before being used for bonding with the lower substrate.
  • the film thickness of the OCA adhesive layer is below 40 ⁇ m, but the thickness is merely exemplary, and the thickness of the layer is not What is the limit.
  • FIG. 2 is a schematic view showing the structure of the upper substrate for the micro LED device referred to herein.
  • Fig. 4 shows a method of manufacturing the upper substrate, and a method of manufacturing the upper substrate will be described in further detail below.
  • a micro LED device also commonly referred to as an Open Cell, comprising: an upper substrate for a micro LED device herein, and a lower substrate for a micro LED device.
  • the upper substrate for the micro LED device and the lower substrate for the micro LED device are bonded together through the transparent adhesive layer of the upper substrate.
  • the micro LED device can include a switching transistor, a driving transistor, a data line, a bottom electrode, a ground connection line, a patterned bank layer, a contact pad for driving the chip FPC, and a micro LED device for emitting red light.
  • a micro LED device that emits green light and a micro LED device that emits blue light are shown in FIG.
  • Fig. 5 shows an example of a manufacturing method of manufacturing the micro LED device herein, and a manufacturing method thereof will hereinafter be described in detail.
  • the miniature LED display device herein includes: a miniature LED device herein.
  • the miniature LED display device herein further includes a heat sink metal sheet.
  • a heat sink metal sheet any material capable of dissipating heat, such as an inorganic high thermal conductive metal such as copper, aluminum, silver or iron, preferably copper is used.
  • the heat-dissipating metal sheet When used in a large-sized display such as a television, it is often necessary to add the heat-dissipating metal sheet to further assist heat dissipation. When used for a small-sized display such as a mobile phone or a tablet computer, the heat-dissipating metal sheet can be omitted.
  • Figure 7 shows a schematic of the micro LED display device herein.
  • the present invention also relates to a method of fabricating an upper substrate for a micro LED device, comprising the steps of: forming a metal layer having a pattern of a non-opening region capable of covering a lower substrate for a micro LED on a base substrate; forming the metal layer a graphene layer is formed on the bottom substrate; and a transparent adhesive layer is formed on the bottom substrate on which the metal layer and the graphene layer are formed.
  • the method for fabricating the upper substrate of the micro LED device herein further comprises: adding the metal of the metal layer at a position corresponding to the wafer of the lower substrate of the micro LED device on the bottom substrate. Thick or widened.
  • the corresponding position means that the metal layer at the corresponding position does not actually contact the wafer of the lower substrate at a position corresponding to the wafer of the lower substrate of the micro LED device.
  • the method for fabricating the upper substrate of the micro LED device herein further comprises: forming a interlayer layer on the graphene layer such that the interlayer layer is bonded to the lower substrate of the micro LED device. It is in contact with the LED and the region other than the wire of the lower substrate for the micro LED.
  • FIG. 4 shows an exemplary diagram of a method of preparing the upper substrate referred to herein.
  • the bottom substrate is first prepared, and the bottom substrate is preferably a flexible plastic substrate or a glass substrate.
  • the material of the substrate there is no limitation on the material of the substrate, as long as it can be used in the LED display, for example, PET may be used.
  • Plastic substrate made of PI material.
  • the bottom substrate needs to be further cleaned for the subsequent printing step.
  • the thickness of the bottom substrate used is 150 ⁇ m or less, as shown in FIG.
  • the thickness is merely exemplary, and in the upper substrate referred to herein, the thickness is not specifically limited, and may be appropriately designed depending on the structure of the micro LED device to be prepared.
  • a wire screen printing step is performed on the cleaned bottom substrate to form a thermally conductive metal layer and an alignment layer at predetermined locations on the base substrate.
  • a location for soldering by a metal sheet, a cross-alignment mark, and a metal layer for guiding a subsequently formed heat source of the graphene layer on the bottom substrate the metal layer can be used to derive heat generated in the use of the display to the periphery of the display.
  • copper is used to form a position for soldering by the metal piece and a cross-alignment mark.
  • the formed metal soldering position, the metal cross, and the thermal conductive region have a film thickness of 20 ⁇ m or less, as shown in FIG. 2 .
  • the thickness is merely exemplary, and in the upper substrate referred to herein, the thickness is not specifically limited, and may be appropriately designed depending on the structure of the micro LED device to be prepared.
  • the metal material used in the second step is not particularly limited and may be any metal that can be used in an LED display, and may be, for example, copper, aluminum, or the like, preferably copper.
  • Screen printing forms a first layer on the bottom substrate and leaves a portion for forming a graphene black matrix having a light blocking and heat dissipating function at a position set as needed.
  • a second screen printing can also be performed. In the second printing, some wires formed on the bottom substrate are thickened, so that it can be targeted to the micro
  • the heat source of the component processor of the LED device focuses on heat dissipation.
  • the thickened metal layer may have a film thickness of 30 ⁇ m or less, as shown in FIG. 2 .
  • the thickening operation is performed because, when some manufacturers use microchips for the production of micro LED devices to implement multi-LED control, it is necessary to thicken the metal wires of some important positions of the upper substrate to achieve sufficient Cooling.
  • the upper substrate of this paper it can be designed according to the requirements of the manufacturer of the downstream micro LED device to be targeted, so that the metal wire can be thickened for some specific positions in the second step.
  • the thickness of the thickened wire There is no specific limit, and the film thickness of the metal layer can be designed according to the need to dissipate heat.
  • a graphene black matrix having a light shielding and heat dissipation function is formed at a corresponding position by screen printing.
  • the graphene layer in the upper substrate involved herein has two functions at the same time, that is, the graphene layer serves as a black matrix for separating red, green, and blue color regions, and the graphene layer has excellent thermal conductivity due to graphene. It is used as a heat dissipation layer.
  • the thickness of the graphene layer formed by the screen printing method is 40 ⁇ m or less, as shown in FIG. 2, but the thickness is also exemplified, and can be designed according to a specific case.
  • the thickness of the graphene layer is required to be at least 1 ⁇ m or more.
  • the interlayer layer may be further formed by screen printing, and the interlayer layer may be composed of, for example, a photoresist resin.
  • the formation of the interlayer layer can effectively prevent the black matrix from being pressed to the inter-structure of the micro LED when the flexible display is bent.
  • the step of forming the interlayer is not necessary and can be designed according to the case of the lower substrate for docking provided by the downstream micro LED device manufacturer.
  • the film thickness of the interlayer layer is below 40 ⁇ m, as shown in FIG. 2, and the film thickness should be understood to be merely exemplary.
  • the step of rolling the OCA optical paste is performed on the bottom substrate on which the wire and the graphene layer are formed.
  • an optical grade OCA paste is used, which can be used to adhere a micro LED array substrate for alignment, and the OCA adhesive layer has a film thickness of 40 ⁇ m or less, as shown in FIG. 2, the film Thickness should be understood to be merely exemplary.
  • the material of the OCA optical adhesive is an insulating epoxy resin material
  • the longitudinal heat source can be conducted to the graphene material, thereby facilitating heat dissipation.
  • a protective film on the commercially available OCA optical adhesive, whereby a protective film is provided on the upper substrate of the OCA adhesive layer obtained in the fifth step.
  • the "integrated upper substrate” herein has been obtained by the method shown in FIG.
  • the upper substrate can be directly supplied to manufacturers of downstream micro LED devices for the production of micro LED devices.
  • the lower substrate for the micro LED device As shown in FIG. 4, after the upper substrate for the micro LED device is obtained, as shown in FIG. 5, it can be aligned with the lower substrate for the micro LED device. As shown in FIG. 5, first, the lower substrate for the micro LED device needs to be taken out and the upper substrate is aligned with the upper substrate.
  • the lower substrate of the micro LED device is not particularly limited, and may be various lower substrates produced by a manufacturer in the art.
  • the lower substrate may include a switching transistor, a driving transistor, a data line, a bottom electrode, a ground connection line, a patterned bank layer, a contact pad for driving the chip FPC, and a micro LED device for emitting red light, and emitting
  • a switching transistor for example, a switching transistor, a driving transistor, a data line, a bottom electrode, a ground connection line, a patterned bank layer, a contact pad for driving the chip FPC, and a micro LED device for emitting red light, and emitting
  • a micro LED device for emitting red light
  • the alignment can be assisted by different alignment marks on the upper and lower substrates.
  • the bonding process is performed by a roller to obtain a semi-finished micro LED device, which may also be referred to as an Open Cell.
  • the heat-dissipating metal piece may be soldered on the obtained micro-LED device as shown in FIG. 5, for example, may be a copper piece, and the heat-dissipating metal piece is bent and placed on the lower LED TFT substrate. And use the air convection method to dissipate heat, as shown in Figure 6.
  • a display device can be obtained.
  • the step of soldering the heat dissipating metal piece is shown in FIG. 6, those skilled in the art will appreciate that the heat dissipating metal piece is not necessary for the display device.
  • the heat-dissipating metal sheet When used in a large-sized display such as a television, it is often necessary to add the heat-dissipating metal sheet to further assist heat dissipation.
  • the heat-dissipating metal sheet can be omitted.
  • a method of screen printing (also referred to as screen printing) is employed in forming a metal film layer or a graphene layer, but those skilled in the art can understand that film formation or
  • the manner of the layer is not limited thereto, and may be exemplified by, for example, inkjet printing, sputtering and etching, spin coating, lamination or printing methods, and the like.
  • the optical density OD value and the light transmittance were measured (the OD value was measured using the OCT Color Filter Color Checker LCF-Series MCPD-9800).
  • FIGS. 9 and 10 respectively show the OD values of graphene layers of different thicknesses, and the light transmittance of the graphene layer at a film thickness of 30 ⁇ m. It can be seen that in the present invention, a graphene layer having a film thickness of 5 ⁇ m or more can be used as a black matrix. According to the results of Example 1, it can be shown that the graphene layer can be used as a black matrix having a sufficiently low light transmittance.
  • the weight percentages of the respective components may be appropriately selected according to the following table to obtain graphene layers having different compositions.
  • a micro LED display was prepared in which PET was used as the base substrate, and the OCA adhesive layer and the lower substrate were respectively used as common OCA adhesives, and the lower substrate used by common liquid crystal panel manufacturers.
  • Example 2 The LED display obtained in Example 2 was monitored using an infrared camera as shown in Fig. 11, and the heat dissipation result of the display after a fixed number of bending was measured. The test results are shown in Fig. 12. It can be found that the display of the present invention has stable heat dissipation characteristics even if the bending is as high as 2000 times.
  • This article provides an "integrated upper substrate" for use in a miniature LED display device.
  • the substrate is in the form of an integrated diaphragm that can be directly supplied to downstream customers after production, and the customer can directly attach to the micro LED.
  • a semi-finished micro LED device can be obtained after the alignment bonding process.
  • the upper substrate herein has a graphene film that combines the function of dissipating LED heat collection and the black matrix structure that must be used as a micro LED display to enhance optical contrast.
  • the preferred upper substrate of the present invention designs a high-thickness heat-storing metal layer at a specific location for a component processor that drives hundreds of millions of micro-LED dies to ease the thermal energy.
  • the preferred upper substrate of the present invention is provided with a interlayer layer, which can prevent the micro LED device, especially the flexible LED device, from being impacted during the winding process, and the upper substrate can impact the micro LED lower substrate array, and can disperse the downward display of the entire display. pressure.
  • the preferred upper substrate has a cross-alignment mark before the lower base plate of the downstream manufacturer can improve the alignment accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种微型LED器件用上基板、微型LED器件以及微型LED显示装置,其中微型LED器件用上基板包括:底部基板;形成在底部基板上具有能够覆盖微型LED用下基板的非开口区的图案的金属层;形成在底部基板上的石墨烯层;以及形成在底部基板上覆盖金属层和石墨烯层的透明粘合层。

Description

微型LED器件用上基板、微型LED器件以及微型LED显示装置 技术领域
本文涉及微型LED器件用上基板、尤其是柔性微型LED器件(Micro-LED显示器)的上基板、以及利用该上基板生产的微型LED器件(也称为Open Cell)和微型LED显示装置。
背景技术
Micro-LED(微型LED)技术即LED微缩化和矩阵化技术,是指在一个芯片上集成的高密度微小尺寸的LED阵列,如LED显示屏每一个像素可定址、单独驱动点亮,则可看成是户外LED显示屏的微缩版,该技术将像素点距离从毫米级降低至微米级。Micro LED显示器是底层用正常的CMOS集成电路(互补型金属氧化物半导体电路(Complementary Metal-Oxide-Semiconductor))制造工艺制成LED显示驱动电路,然后再用MOCVD机在集成电路上制作LED阵列,从而实现了微型显示屏,也就是所说的LED显示屏的缩小版。
自1990年代起,TFT-LCD(薄膜晶体管液晶显示器)开始蓬勃发展。但由于LED具有高色彩饱和度、省电、轻薄等特点。一些厂商采用LED作为背光源。但由于其成本过高、散热不佳、光电效率低等问题,导致其并未大量应用于TFT-LCD产品中。
直到2000年,蓝光LED芯片刺激荧光粉制成白光LED的方法、效率、成本开始逐渐成熟。从2008年起,白光LED背光模组呈现爆发性的成长。在几年的时间内几乎全面取代了CCFL(Cold Cathode Fluorescent Lamp,冷阴极荧光灯管),其应用领域由手机、平板电脑、笔记本型电脑、台式显示器乃至电视等。
但TFT-LCD非自发光的显示原理所致,导致其液晶面板(open cell)的穿透率约在7%以下,造成TFT-LCD的光电效率较低。此外,白光LED所能提供的色饱和度仍不如三原色LED,大部分TFT-LCD产品约仅72%NTSC(National Television Standards Committee(美国)国家电视标准委员会)。此外,在室外环境下 TFT-LCD亮度无法提升至1000nits以上,致使影像和色彩辨识度低,这是其一大应用上的缺陷。因此另一种直接利用三原色LED作为自发光显示点像素的LED Display或Micro LED Display的技术也正在发展中。
如上所述,微发光二极管显示器(Micro LED Display)为新一代的显示技术,结构是微型化LED数组,也就是将LED结构设计进行薄膜化、微小化与数组化,使其体积约为目前主流LED大小的1%,每一个像素都能寻址、单独驱动发光,将像素点的距离由原本的毫米级降到微米级。
承继了LED的特性,Micro LED优点包括低功耗、高亮度、超高分辨率与色彩饱和度、反应速度快、超省电、寿命较长、效率较高等,其功率消耗量约为LCD的10%、OLED的50%。而与同样是自发光显示的OLED相比,Micro LED的亮度比OLED高30倍,且分辨率可达1500PPI(像素密度),相当于Apple Watch采用OLED面板达到300PPI的5倍多。另外,其具有良好的材料稳定性与无影像烙印也是优势之一。
OLED改善了LCD面板厚度、需搭配背光模块调校、黑位对比不佳等问题,可实现高对比度率。然而OLED必须减少白色画面与高亮度显示,才能达到省电效果。OLED的广色域特性也与KSF或是量子点差距不大。另一方面,Micro LED为多量微型LED数组组成,除了能达高亮度、超高分辨率与色彩饱和之外,每个像素都能独立驱动,并且还具有省电、反应速度快等优点。
发明内容
根据LED inside预计从2016年至2021年,LED产业年复合成长率为2%,整体产业成长性已有限。从显示器技术的发展来看,储于超指出随着OLED技术发展多时,相关专利多半已由韩国企业掌握,如果现在开始发展则恐怕难以追赶上韩国企业。相比之下,Micro LED技术开启了另一发展空间。
Micro LED尺寸微缩到微米(micron)等级,不仅每一点像素(pixel)都能寻址控制及单点驱动发光,还具有高亮度、低功耗、超高分辨率与色彩饱和度等优点。其未来甚至可接合在软性基板上,实现有如OLED般可挠曲特色,应用范围更广也更多元。图1示出了三大显示器作用原理的比较图。
基于上述描述可以看出,本领域急需针对微型LED显示器的研究。在专利文献1(WO2014/093065)中描述了微型LED显示器结构,其具体描述了一种显示面板和一种形成该显示面板的方法。该显示面板可包括具有像素区域和非像素区 域的薄膜晶体管衬底。该显示区域包括隔堤开口阵列和该隔堤开口阵列内的底部电极阵列。接地线位于非像素区域中,并且接地联结线阵列在像素区域中的隔堤开口之间延伸并电连接到非像素区域中的接地线。专利文献2(WO2014/093063)中也描述了一种微型LED显示器结构,其具体涉及了发光器件的反射隔堤结构。该反射隔堤结构可包括衬底、衬底上的绝缘层以及绝缘层中的隔堤开口阵列,其中每个隔堤开口包括底表面和侧壁。反射层跨越绝缘层中的隔堤开口中的每个隔堤开口的侧壁。
一般来说,LED灯工作是否稳定、质量好坏,与灯体本身散热至关重要。目前业界解决电子组件散热问题的方法可分为主动式散热和被动式散热。主动式散热包含风扇强制散热和电磁喷流散热。其中风扇强制散热顾名思义就是借由风扇产生强力的空气对流,将热空气导出热源或灯具本体之外来进行散热。使用风扇强制散热可以借由调控风扇转速而有效的将热排出,计算机或服务器等电子产品如果机构空间充足,大都以风扇进行强制散热,该方法不仅成本低廉且是相当有效的散热方式。
被动式散热则包含自然对流散热与回路热管散热,其中自然对流散热是透过散热器,例如散热鳍片、灯具灯壳、***电路板等和空气进行直接接触。散热器周边的空气因吸收热量成为热空气,接着热空气上升,冷空气下降,自然就会带动空气产生对流达到散热的效果。对于机构空间有限的电子产品,如手机或平板计算机、乃至于LED灯源等不适合加装风扇的产品,大多采用此种散热方式。然而,此种方式的热交换驱动力仅来自热源与周围空气之温差,加大接触面积才能提高散热效果。
目前市场上的高亮度LED灯的散热常常采用自然散热,其散热的效果并不理想。LED光源打造的LED灯具由LED、散热结构、驱动器、透镜组成,因此散热是一个重要的部分。如果LED不能很好散热、它的寿命也会受影响。
此外热量对高亮度LED的影响也很大。通常热量集中在尺寸很小的芯片内,芯片温度升高引起热应力的非均匀分布、芯片发光效率和荧光粉激射效率下降。当温度超过一定值时,器件失效率呈指数规律增加。统计数据表明,组件温度每上升2℃,可靠性下降10%。进一步,当多个LED密集排列组成白光照明***时,热量的耗散问题更为严重。解决热量管理问题已成为高亮度LED应用的先决条件。
此外,芯片尺寸与散热也存在一定的关系。提高功率LED的亮度最直接的方法是增大输入功率,而为了防止有源层的饱和必须相应地增大p-n结的尺寸。而增大输入功率必然使结温升高,进而使量子效率降低。单管功率的提高取决于器件将热量从p-n结导出的能力,在保持现有芯片材料、结构、封装工序、芯片上电流密度不变及等同的散热条件下,单独增加芯片的尺寸,结区温度将不断上升。
而这一问题对于微型LED显示装置则更为突出,这是因为微型LED显示装置是由多量微型LED数组组成,因此在设计微型LED显示装置的结构时散热问题是必须要考虑的。
另一方面,在材料领域中,存在多种导热材料,本文所称的导热材料泛指可以传递热量的物质,可以是金属,也可以是合成材料,包括硅脂、导热胶水(环氧树脂中添加导热粒子)、导热双面胶、导热垫(分为硅材料和非硅材料)、相变材料等。这些材料各有优缺点,使用场合也不一样。导热率是材料的热物性参数之一,也是固体最重要的热物性参数。低导热性能材料导热率作为表征建筑节能与保温材料物性的重要参数,其参数值的准确测量有着非常重要的理论和使用价值。
导热胶(Thermal Gap Filler),包含导热硅胶片(Thermal Conductive Pad)、导热胶带(Thermal Tape)、导热膏(Thermal Grease)等。利用其填补芯片或发热体与散热片中间空隙的原理,作为提供热能传导的路径以及填补0.125mm-10mm的缝隙。能帮助传递芯片的热能,使其有效的传导到散热鳍片上,由此降低芯片温度、提高芯片寿命及效能。
一般散热模块包含了导热胶、散热鳍片以及风扇。热传导的方式则是由芯片表面、经过导热胶(Thermal Gap Filler)、导热胶带(Thermal Tape)或导热膏(Thermal Grease)等导热材料来提升效率传导至散热鳍片上,散热鳍片的导热系数越佳及面积越大,其散热效果则越强。如果芯片产热较高或机器空间较小,通风不佳,则常会在散热模块中加上散热风扇来将热能更快速的带离散热模块。此类应用多用在如笔记本电脑(Notebook,Laptop Computer)、通讯设备(Telecom Device)、液晶电视(LCD TV)、LED照明设备、电源供应器(Power Supply Unit PSU)、内存模块(DDR Memory Module)等产品中。
导热胶为一种导热(Heat Transferring)介质,通常存在以下类型:导热胶(散热胶),其为液体或固体,可以是环氧树脂、陶瓷粉末或亚克力胶制成;导热胶带(散 热胶带),其为单面或双面胶带形式,有基于丙烯酸类的、基于有机硅类的、以及玻璃纤维网补强材料等类型;导热硅胶(散热硅胶),其大部分为固体,亦有液体形式,组成为硅胶材质;导热硅胶片(散热硅胶片),其为固体形式,组成为硅胶材质。
其中环氧树脂作为一种导热胶类物质,有报道称已经研发一种环氧树脂出可以具备最大7.3W/mK导热性及绝缘性。其可用于发动机、LED照明、电源部件及半导体封装等的散热用途。
除了上述导热材料之外,近年来,石墨烯作为一种新型的材料广泛受到了关注。石墨烯是一种由单层碳原子SP2杂化堆积而成具有二维蜂窝状晶体结构的碳质材料,具有独特的电子性能,如量子霍尔效应,场效应、费米效应、较高的光透过率与高的电子迁移率。目前对于石墨烯的各种用途进行了多种的研究。
除了上述作用之外,石墨烯还具有非常优异的热传导系数。已有研究人员发现石墨烯的热辐射发射率在红外线范围为0.99,非常接近理论黑体辐射的热辐射发射率1。因此石墨烯作为热辐射散热材料有相当大的潜力。相对于铜约0.09及铝约0.02的热辐射系数,石墨烯在散热应用上兼具了热传导与热辐射的特性。
此外,通常用来衡量材料的热传导性质可以是使用热导率来进行。热传导率k,也可以称为热导率是指材料直接传导热量的能力。热导率定义为单位截面、长度的材料在单位温差和单位时间内直接传导的热量。热导率的单位为瓦米-1开尔文-1。一些物质的热导率如下表1所示。从表1可以看出石墨烯具有优异的热传导能力。
Figure PCTCN2017114383-appb-000001
物质 物质状态 导热率Wm-1K-1
石墨烯 固态 (4840±440)~(5300±480)
金刚石 固态 900~2320
固态 420
固态 401
黄金 固态 318
固态 237
白金 固态 70
固态 80
Khan等人(Khan,U.,O'Neill,A.,Lotya,M.,De,S.and Coleman,J.N.(2010)High-Concentration Solvent Exfoliation ofGraphene.Small,6,864-871)以10vo1.%的多层石墨烯为导热助剂添加于环氧树脂中作为热材料,该研究显示添加了石墨烯之后可增加2300%导热系数。添加2%于市售热界面材料(使用铝粉或氧化锌粉作为导热添加剂),则其导热系数k值可由5.8W/m·K增加到14W/m·K。可见石墨烯具有优异的导热性能。
专利文献3(CN105899053A)公开了一种石墨烯散热薄膜,该散热薄膜使用石墨、石墨烯以及金属离子制成。该专利文献中利用石墨烯与金属离子的结合,形成纵横式的石墨烯分布格局,以达到全面散热和导热作用,由此具有良好的散热效果。该专利文献注重关注了石墨、石墨烯以及金属离子之间的相互作用,认为采用三种物质形成的石墨烯散热薄膜的结构稳定,可广泛应用于各种场所。
在现有的TFT-LCD组成中,彩色部分是由彩色滤光片而来(如图3所示),而这占TFT-LCD成本约20%的组成部分。其中,近年来针对彩色滤光片的材料进行了深入地研发,已取得了不错的成果。而在此TFT-LCD面板结构图中,目前最迫切需要改进以及技术需求层次最高的部分便是黑色矩阵(Black Matrix)部分。黑色矩阵的主要功能为以下三点。(1)防止彩色光阻(红、绿、蓝等三色光阻)混色:TFT-LCD的背光源经过三色彩色层时,往往会有光线散射以及折射的情形产生,从而造成色彩因相互混合而降低色彩鲜艳度及纯度,将此三色层有效地隔开是黑色矩阵的主要目的。(2)提高红、绿、蓝的颜色对比值(Contrast)。(3)对驱动电极如Thin-Film Transistor具有遮旋光性:光线对于TFT而言会造成部分损害,因此有必要利用黑色矩阵来为TFT作有效遮蔽。
目前TFT-LCD面板中的彩色滤光片所使用的黑色矩阵来源,大约有以下种类:(1)金属铬(Cr)黑色矩阵;(2)树脂型黑色矩阵;以及(3)无电解电镀镍(Ni)黑色矩阵。
针对微型LED器件,会在例如柔性显示基板的暴露的前表面上形成具有开口的黑色矩阵层。能够在LED中使用的示例性的黑色矩阵材料包括碳、金属膜(例如,镍、铝、钼和合金)、金属氧化物膜(例如,氧化铬)、金属氮化物膜(例如氮化铬)、有机树脂、玻璃膏和包括黑色颜料或银颗粒的树脂或糊状物。黑色矩阵 层防止LED在LED之间渗透或被相邻的LED吸收。因此,黑色矩阵层的存在改善了在柔性显示面板上显示的图像的对比度。黑色矩阵层可以使用例如,喷墨印刷,溅射和蚀刻,旋涂,层压或印刷方法等方法形成。
在进行本文所述的方案的研究的过程中,本文的发明人突然意识到如果利用石墨烯材料来制作微型LED器件的黑色矩阵,则可以同时发挥黑色矩阵的作用,并且还可以将微型LED器件的下基板的晶片等产生的热量有效地导出,即在本文涉及的发明中,利用石墨烯形成的高厚的高遮光系数薄膜同时发挥黑色矩阵和散热两个功能。此外,还因为石墨烯能够利用喷墨、网印等工艺技术图案化,因此能够容易形成黑色矩阵。
本文的目的在于提供一种石墨烯散热薄膜该膜可以用于微型LED器件的上基板中,其兼具消散LED聚热的功能和当作微型LED显示器提升光学对比时必须使用的黑色矩阵结构的功能。即一片膜同时具备散热及隔开颜色结构的双重功能。
本文的目的还在于提供了一种微型LED器件用上基板,尤其是用作柔性微型LED器件用上基板,此基板除了具有遮着R(红)/G(绿)/B(蓝)LED像素漏光从而提升显示器的对比的效果之外,还具有将LED的聚热或发热的热源传导到外界的效果。其中,该上基板中的黑色矩阵是由石墨烯形成的。当黑色矩阵在不同涂布厚度下,在可见光下具备很低的光穿透率,并且拥有X、Y、Z轴向的散热功能。
本文的目的还在于提供一种微型LED器件的一体式上基板,尤其是柔性微型LED器件的一体式上基板,该上基板是以整合式膜片形式存在。该一体式上基板生产后将输送给生产微型LED器件的下游客户,客户可以将该一体式上基板直接贴附于微型LED器件用下基板上,在对位后得到半成品,即微型LED器件,也可以称为Open Cell。
本文的目的还在于提供一种包括本文所述的微型LED器件用上基板的微型LED器件,以及包括该微型LED器件的显示装置。
本文的目的还在于提供一种制备本文涉及的微型LED器件用上基板的制备方法。
本文的目的是通过以下技术方案予以实现。
1.一种微型LED器件用上基板,其包括:
底部基板;
形成在底部基板上具有能够覆盖微型LED用下基板的非开口区的图案的金属层;
形成在底部基板上的石墨烯层;以及
形成在底部基板上覆盖金属层和石墨烯层的透明粘合层。
2.根据项1所述的微型LED器件用上基板,其中,
所述石墨烯层具有能够露出微型LED用下基板的透光区域的开孔,以用作微型LED器件的黑色矩阵。
3.根据项1或2所述的微型LED器件用上基板,其还包括:
形成在石墨烯层上的间系层,该间系层在与微型LED器件用下基板贴合时与所述下基板的LED和导线之外的区域接触。
4.根据项1~3中任一项所述的微型LED器件用上基板,其中,
底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层的厚度经加厚或宽度经加宽。
5.根据项1~4中任一项所述的微型LED器件用上基板,其中,
所述石墨烯层的厚度在5μm以上,优选在50μm以下,优选在40μm以下,优选在30μm以下。
6.一种微型LED器件,其包括:
项1~5中任一项所述的上基板,以及
微型LED器件用下基板。
7.一种显示装置,其包括:
项6所述的微型LED器件。
8.根据项7所述的显示装置,其还包括散热金属片。
9.一种微型LED器件用上基板的制备方法,其包括如下工序:
在底部基板上形成具有能够覆盖微型LED用下基板的非开口区的图案的金属层;
在形成有所述金属层的底部基板上形成石墨烯层;以及
在形成有所述金属层和石墨烯层的底部基板上形成透明粘合层。
10.根据项9所述的微型LED器件用上基板的制备方法,其还包括:
对底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层 的金属进行加厚或加宽处理。
11.根据项9或10所述的微型LED器件用上基板的制备方法,其还包括:
在石墨烯层上形成间系层,以使得该间系层在与微型LED器件用下基板贴合时与所述微型LED用下基板的LED和导线之外的区域接触。
发明的效果
本文提供的微型LED器件用上基板中的石墨烯薄膜同时具备散热及隔开颜色结构的双重功能。该膜兼具消散LED聚热和当作微型LED显示器提升光学对比必须使用的黑色矩阵结构的功能。
本文首先提出了专属于微型LED显示器,尤其是柔性微型LED使用的“一体式上基板”,该上基板是以整合式膜片形式存在。该一体式上基板生产后将输送给生产微型LED器件的下游客户,客户可以直接贴附于微型LED阵列的下基板上,在完成对位后获得半成品显示器,即Open Cell。
根据本文的微型LED器件用上基板,在该上基板上针对驱动上亿颗微型LED晶片的组件处理器,能够设计出在特定位置具有高膜厚的热储存的金属层,从而进一步有效地疏导热能。
根据本文的微型LED器件用上基板,由于在上基板中增加安排间系层,从而可以防止尤其是柔性微型LED器件在卷挠的过程中,上基板对微型LED下基板阵列产生冲击,可分散整面显示器的向下压力。
根据本文,由于本文的上基板所具有的金属图案中具备跟下基版贴合前的十字对位标志,不需要重新制作,可以提高对位精度。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
图1示出了三大显示器的比较图。
图2示出本文涉及的微型LED器件上基板的一个实施方式的示意图。
图3示出彩色滤光片和黑色矩阵的结构的示意图。
图4示出本文涉及的上基板的制备流程示意图。
图5示出本文的上基板与微型LED下基板的贴合流程示意图。
图6示出对得到的微型LED上下基板进行焊接得到微型LED器件的流程示意图。
图7示意性地示出本文得到的微型LED器件的热传导路径和光传导路径。
图8示意性地示出本文的上下基板中的主要结构的拆分立体示意图。
图9示出不同厚度的石墨烯层所具有的OD值。
图10示出在不同可见光波长下的一定厚度的石墨烯层的光穿透度。
图11示出本文得到的微型LED器件的散热方式的示意图。
图12示出本文得到的显示器的弯折检测实验和散热实验的结果。
具体实施方式
下面将参照附图更详细地描述本文的具体实施例。虽然附图中显示了本文的具体实施例,然而应当理解,可以以各种形式实现本文而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本文,并且能够将本文的范围完整的传达给本领域的技术人员。
在本文中涉及微型LED器件,以及微型LED显示装置。在本文中使用的术语“微型”器件或“微型”LED结构可指根据本文的实施例的某些器件或结构的描述性尺寸。如本文所用,术语“微型”器件或结构是指1μm到100μm的尺寸。当然本领域技术人员可以理解,以上尺寸仅仅是示例性的,本文涉及的微型LED器件或显示装置的尺寸未必受此限制,并且在一些特定的实例中可适用于更大或更小的尺度。
本文所使用的术语“跨越”、“在...之上”、“在...之间”和“在...上”可指代一层相对于其它层的相对位置。“跨越”另一层、“在”另一层“之上”、或“在”另一层“上”或键合(连接)“至”另一层的一层可与其它层直接接触或可具有一个或多个中间层。位于多层“之间”的一层可与该多层直接接触或可具有一个或多个中间层。在本文中,“覆盖”是指代一层完全盖住另一层,即A覆盖B是指,A完全盖住B,B必须跨越A与外界接触。
<本文涉及的微型LED器件用上基板>
根据本文的微型LED器件用上基板,其包括:底部基板;形成在底部基板上具有能够覆盖微型LED用下基板的非开口区的图案的金属层;形成在底部基板上的石墨烯层;以及形成在底部基板上覆盖金属层和石墨烯层的透明粘合层。
该底部基板可以为柔性塑料基板或玻璃基板,对于该基板的材质没有任何限制,只要是可以用作LED显示器中的基板材料均可以,例如可以采用PET、PI、PS或PP等材质的塑料基板。在图2示出的实例中,底部基板的膜厚在150μm以下,但其仅仅是一个示例性的描述。对于底部基板的厚度没有限定,本领域技术人员可以根据实际情况来进行设计。
在该底部基板上形成具有能够覆盖微型LED用下基板的非开口区的图案的金属层。该金属层直接形成在底部基板上,该金属层主要包括以下几个部分:用于焊接的位置、用于将来与微型LED器件用下基板对位贴合的十字对位标志,以及引导后述石墨烯本身热源的金属层,其可以将热导出到器件外部。该金属层所具有的图案是根据将要对位贴合的微型LED器件用下基板的非开口区而设计的,该金属层应当能够覆盖LED用下基板的非开口区。图2和图4给出了金属层的示意性描述。对于形成金属层的金属材质没有限定,可以是任何能够用于LED显示器中的金属,例如可以为铜、铝、银、铁等无机高导热金属,优选为铜。在本文一个具体的实施方式中,优选底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层的厚度经加厚或宽度经加宽。通过该加厚或加宽处理,可以更有效地将下基板晶片处产生的热导出。
此外,图8示意性地示出了金属层的结构,可以看出该金属层具有给定的图案,该图案是根据待贴合的微型LED用下基板设计的,从而使得该金属层能够覆盖微型LED用下基板的非开口区。此外,可以看出在该示意性图例中,金属层中的一部分的金属区域的面积被加宽或者其膜厚被加厚,被加宽和加厚的这些部位恰好对应微型LED器件用下基板,这样的结构可以快速接收整个微型LED器件处理器的由石墨烯层带来的热量。
在本文的一个具体实例中,金属层的膜厚在30μm以下。但本领域技术人员可以理解,该厚度是可以调节的,对于其上限也没有限制,可以根据整个上基板或者整个LED器件、显示装置的尺寸来进行调节。
在本文所述的上基板中,在底部基板上还形成有石墨烯层,如图2和图4所 示,该石墨烯层形成在底部基板上,且具有能够露出微型LED用下基板的透光区域的开孔。该石墨烯层将用作微型LED器件的黑色矩阵。此外,如图2和图4所示,具有开孔的石墨烯层中的有些石墨烯部分跨越金属层形成在底部基板上,即该石墨烯一部分形成在金属层之上,一部分与底部基板接触;有些石墨烯覆盖金属层形成在底部基板上;有些石墨烯则不与金属层接触全部形成在底部基板上。石墨烯层所具有的开口的位置也是根据微型LED器件用下基板来进行设计的,从而保证其能够露出微型LED用下基板的透光区域,从而使其发挥微型LED器件的黑色矩阵的作用。
此外,图8示意性地示出了石墨烯层的示意图。可以看出,石墨烯层具有能够露出微型LED用下基板的透光区域的开孔,既各种颜色像素开孔,从而将光线通过。此外,该石墨烯层上还可以露出上基板十字对位标记,即石墨烯层上对应于十字对位标记的部分是镂空的,从而可以将上基板上的十字对位标记露出来,进一步提高基板贴合的对位精。其中,十字对位标记形成在上基板PET上,而口字的在下基板的塑料基板层上。
根据本文的微型LED器件用上基板,对于该石墨烯层的厚度没有限定,但为了能够充分发挥作为黑色矩阵的作用,要求石墨烯层的厚度在1μm以上。
在本文中,石墨烯层充当了黑色矩阵,因此需要其可以挡掉光线,遮光能力越强,因此要求石墨烯层的OD值高。依据Beer-Lambert law的公式,只要测量出透射光和入射光强度就能计算出吸光值(A)。A=-log10(透射光强度/入射光强度)。例如从OD值推算透光度的方式举例来说,OD=0.05时,透光度就是10^(-0.05)=0.891,透光率是89.1%;OD=0.5时,透光度就是10^(-0.5)=0.3162,透光率是31.62%;OD=1时,透光度就是10^(-1)=0.1,透光率是10%;OD=2时,透光度就是10^(-2)=0.01,透光率是1%。通过上述计算方式可以看出,在本文中,优选所述石墨烯层的厚度在5μm以上,此时石墨烯层可以充分发挥作为黑色矩阵的作用,此外,对于石墨烯层的厚度的上限没有限定,本领域技术人员可以根据微型LED器件、显示器的实际需求以及尺寸来进行选择和设计。在一个具体的实施方式中,石墨烯层的厚度优选在50μm以下,优选在40μm以下,进一步优选在30μm以下。
在一个具体的实施例中,当石墨烯层的膜厚为30μm时,其在各可视光波长下的光穿透率的数据总结在图10中,可以看出,该膜厚的石墨烯层在各个波长 下都具有非常低的光穿透率,因此可以充分发挥作为黑色矩阵的功能。
在本文一个具体的实施方式中,本文的微型LED器件用上基板,其还包括:形成在石墨烯层上的间系层,该间系层在与微型LED器件用下基板贴合时与所述下基板的LED和导线之外的区域接触。在本文中,该接触是指物理接触,即间系层实际上接触所述下基板的LED和导线之外的区域。进一步,尤其是针对柔性显示器时,存在这样的间系层,可以防止柔性显示器弯曲时,黑色矩阵压到微型LED器件用下基板上导线以及处理器等。图2中给出了间系层的示意性结构。此外,图8显示出了间系层的立体结构以及其作用模式,通过形成该间系层,可以有效地防止柔性微型LED显示器在卷挠的过程中,上基板对微型LED器件用下基板阵列产生冲击,可分散整面的显示器的向下压力。
在本文中,间系层可以采用通常用于形成光刻胶树脂的材料来形成。例如,负性光刻胶又称光致抗蚀剂,是一种由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像。此外,光刻胶广泛用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。基于感光树脂的化学结构,光刻胶可以分为三种类型。①光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。②光分解型,采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶。③光交联型,采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。在本文中,用于形成间系层的光刻胶树脂可以是正性光刻胶树脂,也可以是负性光刻胶树脂。
在本文中,对于间系层的膜厚没有限定,可以根据整个微型LED器件用上基板和下基板的具体尺寸来设计,在本文给出的一个具体的实施例中,间系层的膜厚小于40μm。
在本文中,微型LED器件用上基板还包括形成在底部基板上覆盖金属层和石墨烯层的透明粘合层。该透明粘合层可以采用OCA光学胶(Optical Clear Adhesive)。
在本文中使用的OCA光学胶是用于粘结透明光学元件(如镜头等)的特种粘胶剂。要求OCA光学胶无色透明、光透过率在90%以上、粘结强度良好,可在室温或中温下固化,并且具有固化收缩小等特点。可以认为OCA是具有光学透明性的双面胶。OCA光学胶是重要触摸屏的原材料之一。是将光学亚克力胶做成无基材,然后在上下底层,再各贴合一层脱模薄膜,是一种无基体材料的双面贴合胶带。OCA光学胶适合作为触摸屏的粘结剂。OCA光学胶的优点是清澈、具有高透光性(全光穿透率>99%)、高粘结力、高耐候性、耐水性、耐高温、抗紫外线、具有可调节的厚度、提供均匀的间距、长时间使用不会产生黄化(黄变)、剥离及变质的问题。
OCA光学胶分为两大类,一类是电阻式的,一类是电容式的,电阻式的光学胶按厚度不同又可分为50μm和25μm的光学胶,电容式的光学胶分为100μm、175μm、200μm的光学胶。
光学胶按照厚度不同可应用于不同的领域,其主要用途为:电子纸、透明器件粘结、投影屏组装、航空航天或军事光学器件组装、显示器组装、镜头组装、电阻式触摸屏G+F+F、F+F、电容式触摸屏、面板、ICON及玻璃以及聚碳酸脂等塑料材料的贴合、用于胶结透明光学元件(如镜头等)的特种胶粘剂。有机硅橡胶、丙烯酸型树脂及不饱和聚酯、聚氨酯、环氧树脂等粘合剂都可粘结光学元件。在配制时通常要加入一些处理剂,以改进其光学性能或降低固化收缩率。适合于固定移动机器的显示周边的各种薄膜、屏幕(丙烯酸、玻璃屏幕、触摸屏幕等)。使用OCA光学胶可以减少眩光、减少LCD发出光的损失、增加LCD的亮度和提高光的透射率,减少能耗;并且可以增加对比度,尤其是强光照射下的对比度;使得面连接有更高的强度;避免牛顿环的产生;使产品表面更平整;使得产品无边界,扩大可视区域等。
如图2所示,该透明粘合层形成在底部基板上,其完全覆盖了金属层、石墨烯层,以及任选的间系层。此外,通常该透明粘合层上自带有保护膜,在用于与下基板进行贴合之前,可以将该保护膜剥下。在本文的一个具体实例中,OCA胶层的膜厚在40μm以下,但是该厚度仅仅是实例性的,对于该层的厚度没有任 何限制。
图2给出了本文涉及的微型LED器件用上基板的结构示意图。图4则示出了该上基板的制造方法,下文中将会进一步详细描述上基板的制造方法。
<本文涉及的微型LED器件>
本文还进一步包括微型LED器件,通常也称为Open Cell,其包括:本文的微型LED器件用上基板,以及微型LED器件用下基板。本文的微型LED器件用上基板以及微型LED器件用下基板是通过上基板的透明粘合层粘合在一起。
通常微型LED器件用下基板上可以包括切换电晶、驱动电晶体、资料线路、底部电极、接地连接线、图案化的岸层、驱动晶片FPC的接触垫、以及发射红光的微型LED装置、发射绿光的微型LED装置以及发射蓝光的微型LED装置,如图5所示。
图5给出了制造本文的微型LED器件的制造方法的一个例子,下文中将详细描述其制造方法。
<本文涉及的微型LED显示装置>
本文的微型LED显示装置其包括:本文的微型LED器件。
在一个优选的实施方式中,本文的微型LED显示装置还包括散热金属片。对于散热金属片可以采用任何能够进行散热的材料,例如铜、铝、银、铁等无机高导热金属,优选采用铜。
对于用于电视等大型显示器时,往往需要添加该散热金属片以进一步辅助散热,而对于用于手机、平板电脑等中小型显示器时,该散热金属片可以省略。
图7示出了本文微型LED显示装置的示意图。
<本文涉及的上基板的制备>
本文还涉及一种微型LED器件用上基板的制备方法,其包括如下工序:在底部基板上形成具有能够覆盖微型LED用下基板的非开口区的图案的金属层;在形成有所述金属层的底部基板上形成石墨烯层;以及在形成有所述金属层和石墨烯层的底部基板上形成透明粘合层。
在一个优选的实施方式中,本文的微型LED器件用上基板的制备方法,其还包括:对底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层的金属进行加厚或加宽处理。处于对应位置是指,与微型LED器件用下基板的晶片相对应的位置处,该对应位置处的金属层并不与下基板的晶片实际接触。
在一个优选的实施方式中,本文的微型LED器件用上基板的制备方法,其还包括:在石墨烯层上形成间系层,以使得该间系层在与微型LED器件用下基板贴合时与所述微型LED用下基板的LED和导线之外的区域接触。
图4示出了本文涉及的上基板的一种制备方法的示例图。在第一步中,首先准备底部基板,优选该底部基板为柔性塑料基板或玻璃基板,对于该基板的材质没有什么限制,只要是可以用于LED显示器中的基板都可以,例如可以采用PET、PI材质的塑料基板。在该步骤中,需要进一步对该底部基板进行清洗,以用于后面的印刷步骤。在本步骤中,使用的底部基板的厚度在150μm以下,如图2所示。但该厚度仅仅为示例性的,在本文涉及的上基板中,对于该厚度没有具体的限定,可以根据所要制备的微型LED器件的结构来适当地设计。
在第二步中,在清洗后的底部基板上进行导线网版印刷步骤,以在底部基板上的预定位置上形成导热金属层以及对位层。例如在底部基板上形成用于被金属片焊接的位置、十字对位标志以及用于引导后续形成的石墨烯层本身热源的金属层,该金属层可以将显示器使用中产生的热导出到显示器***。在本方法中,利用铜形成用于被金属片焊接的位置以及十字对位标志。在本文涉及的上基板的一个具体实施方式中,形成的金属焊接位置、金属十字对位、导热区的膜厚在20μm以下,如图2所示。但该厚度仅仅为示例性的,在本文涉及的上基板中,对于该厚度没有具体的限定,可以根据所要制备的微型LED器件的结构来适当地设计。
对于第二步中使用的金属材质没有具体限定,可以是任何能够用于LED显示器中的金属,例如可以为铜、铝等,优选为铜。网版印刷在底部基板上形成第一层,并在根据需要而设定的位置上留出用于形成具有遮光及散热功能的石墨烯黑色矩阵的部分。在第二步中,根据具体的微型LED器件的需求,还可以进行第二次网版印刷,在第二次印刷中,对形成在底部基板上的一些导线进行加厚操作,从而可以针对微型LED器件的组件处理器的热源进行重点散热。在本文涉及的上基板的一个具体实施方式中,加厚后的金属层膜厚可以在30μm以下,如图2所示。进行加厚操作是因为,针对有些厂商的用于生产微型LED器件采用的下基板存在微小晶片以实现多LED控制时,需要对上基板的一些重点位置的金属导线进行加厚处理以实现充分的散热。在设计本文的上基板时,可以根据其所要针对的下游的微型LED器件生产厂商的需求来进行设计,从而可以在第二步中针对一些特定位置对金属导线进行加厚。同样,对于加厚后的导线的厚度也 没有具体的限制,可以根据重点需要散热的情况来设计金属层的膜厚。
接下来,在第三步中,通过网版印刷在相应地位置形成具有遮光及散热功能的石墨烯黑色矩阵。在本文的涉及的上基板中石墨烯层同时具备两个作用,即该石墨烯层作为用于隔开红、绿、蓝颜色区域的黑色矩阵,同时该石墨烯层由于石墨烯优异的导热作用,其用作散热层。在一个具体的实施方式中,通过网版印刷方式形成的石墨烯层的厚度在40μm以下,如图2所示,但是该厚度也是示例性的,可以根据具体情况进行设计。但为了同时发挥黑色矩阵和散热片的作用,要求该石墨烯层的厚度至少在1μm以上。
形成了石墨烯层之后,在第三步中,还可以进一步通过网版印刷形成间系层,该间系层例如可以是由光刻胶树脂构成。特别是针对柔性微型LED器件,形成间系层可以有效地防止柔性显示器弯曲时,避免黑色矩阵压到微型LED的间系结构物。在第三步中,形成间系层的步骤不是必须的,可以根据下游的微型LED器件生产商所提供采用的用于对接的下基板的情况来进行设计。在一个具体的实施方式中,间系层的膜厚在40μm以下,如图2所示,该膜厚应当理解仅仅是示例性的。
在第四步中,在形成了导线、石墨烯层的底部基板上进行滚帖OCA光学胶的步骤。在一个具体的实施方式中,使用光学级OCA胶,其可以用于粘住用于对向的微型LED阵列基板,并且该OCA胶层的膜厚在40μm以下,如图2所示,该膜厚应当理解仅仅是示例性的。
如图4所示,在本文具体的实施方式中,由于采用的OCA光学胶的材质为绝缘性的环氧树脂类胶材料,可以将纵向的热源传导到石墨烯材质上,从而有利于散热。此外,通常市场上购买的OCA光学胶上还有保护膜,由此在第五步中得到的贴完OCA胶层的上基板上有一层保护膜。
至此,通过如图4所示的方法得到了本文的“一体式上基板”。该上基板可以直接提供给下游生产微型LED器件的厂商以用于生产微型LED器件。
<本文涉及的微型LED器件的制备>
如图4所示,在获得了微型LED器件用上基板之后,如图5所示,可以将其与微型LED器件用下基板进行对位贴合。如图5所述,首先需要取出微型LED器件用下基板与上基板进行对位贴合。对于微型LED器件的下基板没有具体的限定,可以是本领域的厂商生产的各种下基板。
例如,在该下基板上可以包括切换电晶、驱动电晶体、资料线路、底部电极、接地连接线、图案化的岸层、驱动晶片FPC的接触垫、以及发射红光的微型LED装置、发射绿光的微型LED装置以及发射蓝光的微型LED装置,如图5所示。
在进行贴合之前,如果本文的上基板上具有保护膜时,需要首先撕下OCA胶层上的保护层,然后进行上基板和下基板的对位贴合工序。在对位的过程中,可以通过在上基板和下基板上的不同对位标记来协助对位。
对位工序结束之后,利用辊轮来进行贴合工序从而得到半成品微型LED器件,也可以称为Open Cell。
<本文涉及的微型LED显示装置的制备>
根据所要具体生产的显示装置的需要,可以在如图5所述将得到的微型LED器件上焊接散热金属片,例如可以为铜片,该散热金属片弯折放在微型LED TFT下基板上,并利用空气对流的方式进行散热,如图6所示。
随后如图6所示,可以得到显示装置。虽然在图6显示了焊接散热金属片的步骤,但是本领域技术人员可以理解,该散热金属片不是显示装置必须的。对于用于电视等大型显示器时,往往需要添加该散热金属片以进一步辅助散热,而对于用于手机、平板电脑等中小型显示器时,该散热金属片可以省略。
在上述本文的微型LED器件以及显示装置中,在形成金属膜层、石墨烯层中采用的是网版印刷(也称为丝网印刷)的方式,但是本领域技术人员可以理解,形成膜或层的方式不限于此,可以列举诸如喷墨印刷,溅射和蚀刻,旋涂,层压或印刷方法来形成等等。
实施例
在以下实施例中,除非存在特殊说明,百分比表示重量百分比。
实施例1石墨烯层的光透过率
将75重量%的人造石墨烯粉填料(购买自泓明石墨),10重量%的烷基苯酸树脂载体(购买自沅鸿股份有限公司),5重量%的NMP溶剂(购买自松益化工股份有限公司)混合,并添加5重量%的分散剂(购买自BYK公司,型号:Anti-Terra 203)、2.5重量%的附着力促进剂(购买自佛山涂海汇化学材料有限公司,附着力促进剂型号为HT901)、2.5重量%的消泡剂(购买自创馨贸易,消泡剂的型号为TSA750S),从而获得网版印刷使用的浆料,在本实施例中使用铜膜作为基材,在上涂布不同 厚度的浆料从而得到具有不同厚度的石墨烯薄膜,即厚度为5μm、10μm、25μm、30μm以及45μm的石墨烯薄膜。
针对上述得到的不同的石墨烯膜,检测其光学浓度OD值和光穿透率(采用日本大冢公司彩色滤光片色度检查机LCF-Series MCPD-9800检测OD值)。
图9和10分别示出了不同厚度的石墨烯层的OD值,以及在30μm膜厚时的石墨烯层的光穿透度。可以看出在本发明中,可以使用膜厚度在5μm以上的石墨烯层做为黑色矩阵。根据实施例1的结果可以显示石墨烯层可以用作黑色矩阵,其具有足够低的光穿透率。
此外,除了上述实施例中给出的具体的重量百分比,除了上述具体的百分比之外,还可以按照下表适当地选择各成分的重量百分比,以获得不同组成的石墨烯层。
材料 重量百分比 来源
人造石墨烯粉 70%~90% 泓明石墨
烷基苯酸树脂 5%~10% 沅鸿股份有限公司
NMP溶剂 5%~10% 松益化工股份有限公司
分散剂 5%~10% BYK公司
附着力促进剂 5%~10% 佛山涂海汇化学材料有限公司
消泡剂 5%~10% 创馨贸易
实施例2微型LED显示器的制备
按照图4~图6所示的方式,制备了微型LED显示器,其中采用PET作为底部基板,OCA胶层和下基板分别采用的是常见的OCA胶,以及常见的液晶面板厂商使用的下基板。
实施例3微型LED显示器的散热能力评估
利用红外线摄影机,监测实施例2得到的LED显示器,如图11所示,并测量在固定弯曲次数后,显示器的散热结果。检测结果如图12所示,可以发现即使弯曲高达2000次,本文的显示器也具有稳定的散热特性。
本实施例中使用的LED晶粒规格如下:
像素尺寸:0.0100mm2
光输出亮度:>250cd/m2
工业实用性
本文提供了一种用于微型LED显示装置使用的“一体式上基板”,该基板以整合式膜片的形式存在,在生产后可以直接提供给下游的客户,客户可以直接贴附于微型LED阵列的下基板上,在对位贴合工序之后可以获得半成品微型LED器件。
本文的上基板中具有石墨烯膜,该膜兼具消散LED聚热和当作微型LED显示器提升光学对比必须使用的黑色矩阵结构的功能。
此外本文的优选的上基板,针对驱动上亿颗微型LED晶粒的组件处理器,设计出特定位置的高膜厚的热储存的金属层,以利缓和热能的疏导。
此外本文的优选的上基板设置有间系层,可以防止微型LED器件,尤其是柔性LED器件在卷挠的过程中,上基板对微型LED下基板阵列产生冲击,可分散整面显示器的向下压力。
本文优选的上基板上具备跟下游厂商的下基版贴合前的十字对位标记可提高对位精度。
本申请接受各种修改和可替换的形式,具体的实施方式已经在附图中借助于实施例来显示并且已经在本申请详细描述。但是,本申请不意在受限于公开的特定形式。相反,本申请意在包括本申请范围内的所有修改形式、等价物、和可替换物,本申请的范围由所附权利要求及其法律等效物限定。

Claims (10)

  1. 一种微型LED器件用上基板,其包括:
    底部基板;
    形成在底部基板上具有能够覆盖微型LED用下基板的非开口区的图案的金属层;
    形成在底部基板上的石墨烯层;以及
    形成在底部基板上覆盖金属层和石墨烯层的透明粘合层。
  2. 根据权利要求1所述的微型LED器件用上基板,其中,
    所述石墨烯层具有能够露出微型LED用下基板的透光区域的开孔,以用作微型LED器件的黑色矩阵。
  3. 根据权利要求1或2所述的微型LED器件用上基板,其还包括:
    形成在石墨烯层上的间系层,该间系层在与微型LED器件用下基板贴合时与所述下基板的LED和导线之外的区域接触。4.根据权利要求1~3中任一项所述的微型LED器件用上基板,其中,
    底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层的厚度经加厚或宽度经加宽。
  4. 根据权利要求1~4中任一项所述的微型LED器件用上基板,其中,
    所述石墨烯层的厚度在5μm以上,优选在50μm以下,优选在40μm以下,优选在30μm以下。
  5. 一种微型LED器件,其包括:
    权利要求1~5中任一项所述的上基板,以及
    微型LED器件用下基板。
  6. 一种显示装置,其包括:
    权利要求6所述的微型LED器件。
  7. 根据权利要求7所述的显示装置,其还包括散热金属片。
  8. 一种微型LED器件用上基板的制备方法,其包括如下工序:
    在底部基板上形成具有能够覆盖微型LED用下基板的非开口区的图案的金属层;
    在形成有所述金属层的底部基板上形成石墨烯层;以及
    在形成有所述金属层和石墨烯层的底部基板上形成透明粘合层。
  9. 根据权利要求9所述的微型LED器件用上基板的制备方法,其还包括:
    对底部基板上的与微型LED器件用下基板的晶片对应位置处的所述金属层的金属进行加厚或加宽处理。
  10. 根据权利要求9或10所述的微型LED器件用上基板的制备方法,其还包括:
    在石墨烯层上形成间系层,以使得该间系层在与微型LED器件用下基板贴合时与所述微型LED用下基板的LED和导线之外的区域接触。
PCT/CN2017/114383 2017-12-04 2017-12-04 微型led器件用上基板、微型led器件以及微型led显示装置 WO2019109200A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/768,813 US11545607B2 (en) 2017-12-04 2017-12-04 Upper substrate for miniature LED component, miniature LED component, and miniature LED display device
JP2020529667A JP2021506108A (ja) 2017-12-04 2017-12-04 マイクロledデバイス用上部基板、マイクロledデバイス及びマイクロled表示装置
PCT/CN2017/114383 WO2019109200A1 (zh) 2017-12-04 2017-12-04 微型led器件用上基板、微型led器件以及微型led显示装置
KR1020207019102A KR102349395B1 (ko) 2017-12-04 2017-12-04 초소형 led 컴포넌트용 상부 기판, 초소형 led 컴포넌트, 및 초소형 led 디스플레이 장치
CN201780097022.6A CN111357121A (zh) 2017-12-04 2017-12-04 微型led器件用上基板、微型led器件以及微型led显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114383 WO2019109200A1 (zh) 2017-12-04 2017-12-04 微型led器件用上基板、微型led器件以及微型led显示装置

Publications (1)

Publication Number Publication Date
WO2019109200A1 true WO2019109200A1 (zh) 2019-06-13

Family

ID=66750685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114383 WO2019109200A1 (zh) 2017-12-04 2017-12-04 微型led器件用上基板、微型led器件以及微型led显示装置

Country Status (5)

Country Link
US (1) US11545607B2 (zh)
JP (1) JP2021506108A (zh)
KR (1) KR102349395B1 (zh)
CN (1) CN111357121A (zh)
WO (1) WO2019109200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114627768A (zh) * 2022-04-06 2022-06-14 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210066547A1 (en) * 2019-08-28 2021-03-04 Tslc Corporation Semiconductor Components And Semiconductor Structures And Methods Of Fabrication
US12002918B2 (en) * 2021-01-15 2024-06-04 Samsung Electronics Co., Ltd. Display module and display apparatus having the same
WO2022196446A1 (ja) * 2021-03-17 2022-09-22 日亜化学工業株式会社 画像表示装置の製造方法および画像表示装置
CN113473804B (zh) * 2021-07-01 2022-07-05 重庆工业职业技术学院 一种电路板散热***
JPWO2023286434A1 (zh) * 2021-07-12 2023-01-19
US20230387376A1 (en) * 2022-05-25 2023-11-30 Facebook Technologies, Llc Apparatus, system, and method for achieving brightness uniformity across display elements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811528A (zh) * 2012-11-02 2014-05-21 株式会社半导体能源研究所 密封体及密封体的制造方法
CN104838508A (zh) * 2012-12-10 2015-08-12 勒克斯维科技公司 发光器件反射隔堤结构
CN105807475A (zh) * 2016-05-03 2016-07-27 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板及显示装置
CN105899053A (zh) * 2016-06-23 2016-08-24 柯良节 一种石墨烯散热薄膜
CN105914200A (zh) * 2016-04-26 2016-08-31 中山大学 一种可扩展型无源寻址led微显示器件
WO2016200882A1 (en) * 2015-06-08 2016-12-15 Corning Incorporated Microled display without transfer
CN106707533A (zh) * 2017-03-24 2017-05-24 京东方科技集团股份有限公司 一种三维显示装置
CN106876406A (zh) * 2016-12-30 2017-06-20 张希娟 基于iii‑v族氮化物半导体的led全彩显示器件结构及制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141026A (ja) 2006-12-04 2008-06-19 Sony Corp 電子機器及びその製造方法、並びに、発光ダイオード表示装置及びその製造方法
JP4450046B2 (ja) 2007-10-05 2010-04-14 ソニー株式会社 電子部品基板の製造方法
JP2012163699A (ja) * 2011-02-04 2012-08-30 Sanwa Signworks Co Ltd 表示装置
JP2013191685A (ja) * 2012-03-13 2013-09-26 Panasonic Corp 発光装置及びそれを用いた照明装置
US8933433B2 (en) 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
JP6017904B2 (ja) 2012-09-21 2016-11-02 ソニーセミコンダクタソリューションズ株式会社 実装基板、表示パネルおよび表示装置
CN202941076U (zh) * 2012-11-01 2013-05-15 苏州斯迪克新材料科技股份有限公司 电子产品用石墨散热片
CN102998851B (zh) * 2012-12-05 2016-01-06 京东方科技集团股份有限公司 一种液晶显示面板以及显示装置
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
CN103066195A (zh) * 2013-01-25 2013-04-24 中国科学院半导体研究所 应用石墨烯作为导热层的倒装结构发光二极管
CN104425546B (zh) * 2013-09-09 2018-04-13 宸鸿光电科技股份有限公司 有机发光二极管显示器及其制造方法
JP6312412B2 (ja) * 2013-12-04 2018-04-18 シャープ株式会社 窒化物半導体発光装置
JP2016143630A (ja) * 2015-02-05 2016-08-08 セイコーエプソン株式会社 有機el装置、及び電子機器
CN104916527B (zh) * 2015-05-15 2018-03-02 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN105629589B (zh) * 2016-01-05 2019-03-15 京东方科技集团股份有限公司 一种曲面显示面板及显示装置
CN205408381U (zh) * 2016-03-11 2016-07-27 奇华光电(昆山)股份有限公司 热扩散膜/金属箔复合散热片
CN105629576B (zh) * 2016-03-28 2018-10-23 深圳市华星光电技术有限公司 一种石墨烯背光模组及石墨烯液晶显示装置
JP6601294B2 (ja) * 2016-03-29 2019-11-06 Dic株式会社 粘着テープ、放熱シート、物品及び粘着テープの製造方法
TWI727041B (zh) 2016-05-20 2021-05-11 日商半導體能源研究所股份有限公司 顯示裝置
JP6115903B1 (ja) * 2016-06-14 2017-04-19 住宅環境設備株式会社 Led表示パネルおよび車載用led表示装置
CN205846015U (zh) * 2016-06-28 2016-12-28 共青城超群科技股份有限公司 一种铜柱型高散热led基板
CN106094360A (zh) * 2016-08-22 2016-11-09 深圳市华星光电技术有限公司 曲面液晶显示面板
CN106842729B (zh) * 2017-04-10 2019-08-20 深圳市华星光电技术有限公司 石墨烯电极制备方法及液晶显示面板
JPWO2018221256A1 (ja) * 2017-05-29 2020-03-26 株式会社ジャパンディスプレイ 表示装置
JP2018205456A (ja) 2017-06-01 2018-12-27 株式会社ブイ・テクノロジー フルカラーled表示パネル
JP2019028308A (ja) 2017-07-31 2019-02-21 大日本印刷株式会社 表示パネル及び表示装置
CN108565324B (zh) * 2018-01-05 2019-11-08 苏州芯脉智能电子科技有限公司 一种led灯的制作方法及led灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811528A (zh) * 2012-11-02 2014-05-21 株式会社半导体能源研究所 密封体及密封体的制造方法
CN104838508A (zh) * 2012-12-10 2015-08-12 勒克斯维科技公司 发光器件反射隔堤结构
WO2016200882A1 (en) * 2015-06-08 2016-12-15 Corning Incorporated Microled display without transfer
CN105914200A (zh) * 2016-04-26 2016-08-31 中山大学 一种可扩展型无源寻址led微显示器件
CN105807475A (zh) * 2016-05-03 2016-07-27 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板及显示装置
CN105899053A (zh) * 2016-06-23 2016-08-24 柯良节 一种石墨烯散热薄膜
CN106876406A (zh) * 2016-12-30 2017-06-20 张希娟 基于iii‑v族氮化物半导体的led全彩显示器件结构及制备方法
CN106707533A (zh) * 2017-03-24 2017-05-24 京东方科技集团股份有限公司 一种三维显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114627768A (zh) * 2022-04-06 2022-06-14 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备
CN114627768B (zh) * 2022-04-06 2024-03-15 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Also Published As

Publication number Publication date
CN111357121A (zh) 2020-06-30
JP2021506108A (ja) 2021-02-18
KR102349395B1 (ko) 2022-01-07
US11545607B2 (en) 2023-01-03
US20210111326A1 (en) 2021-04-15
KR20200089753A (ko) 2020-07-27

Similar Documents

Publication Publication Date Title
WO2019109200A1 (zh) 微型led器件用上基板、微型led器件以及微型led显示装置
US10120232B2 (en) Methods of fabricating quantum dot color film substrates
CN105676502B (zh) 一种显示模组及显示设备
KR100982706B1 (ko) 표시 장치, 발광 장치, 및 고체 발광 소자 기판
KR101151599B1 (ko) 방열 테이프 및 그 제조 방법
WO2017075879A1 (zh) 量子点彩膜基板及其制作方法与液晶显示装置
CN100403141C (zh) 液晶显示器件
CN101290429B (zh) 液晶显示器及其背光模组
US8730429B2 (en) Multi-layer printed circuit board and liquid crystal display device having the same
WO2016169233A1 (zh) Led灯条、背光源及显示装置
CN101563792A (zh) 发光装置、显示装置、以及固体发光元件基板
US11393959B2 (en) Micro light-emitting diode device
WO2021259085A1 (zh) 基板、背光模组及显示装置
CN105511163A (zh) 背光模组及显示屏
KR20060095361A (ko) 백 라이트 유닛 및 이를 이용한 액정 표시 장치
WO2024000960A1 (zh) 连接膜及显示模组
WO2020248426A1 (zh) 显示装置
CN110189650A (zh) 显示模组及显示装置
KR20160074802A (ko) 저발열 초고휘도 led 백라이트 및 액정 디스플레이
JP2008129464A (ja) 発光装置、およびこれを用いた表示装置
CN206960819U (zh) Tft液晶显示模组
TWI658611B (zh) 發光二極體結構、發光二極體結構的製造方法及微顯示器的畫素結構
US7998764B2 (en) Solid-state light emitting display and fabrication method thereof
CN107505748A (zh) 液晶显示组件
US11088172B2 (en) Array substrate and manufacturing method thereof, liquid crystal display panel and liquid crystal apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019102

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17934097

Country of ref document: EP

Kind code of ref document: A1