WO2019107878A1 - Solid electrolyte, preparation method therefor, and solid-state battery comprising same - Google Patents

Solid electrolyte, preparation method therefor, and solid-state battery comprising same Download PDF

Info

Publication number
WO2019107878A1
WO2019107878A1 PCT/KR2018/014718 KR2018014718W WO2019107878A1 WO 2019107878 A1 WO2019107878 A1 WO 2019107878A1 KR 2018014718 W KR2018014718 W KR 2018014718W WO 2019107878 A1 WO2019107878 A1 WO 2019107878A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
metal oxide
sulfide
oxide particles
nano
Prior art date
Application number
PCT/KR2018/014718
Other languages
French (fr)
Korean (ko)
Inventor
김경수
조우석
정구진
유지상
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2019107878A1 publication Critical patent/WO2019107878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte having excellent water stability, a process for producing the solid electrolyte, and a full solid battery having excellent processability including the process.
  • Lithium secondary batteries are widely used as power sources for mobile electronic devices including mobile phones, and their applications are expanding as demand for large-sized devices such as electric vehicles increases.
  • the lithium secondary battery uses a liquid electrolyte in which a lithium salt is dissolved in an organic solvent, there is a potential risk of ignition and explosion due to electrolyte decomposition reaction as well as electrolyte leakage. In fact, there is an urgent need to overcome these problems, as the explosion of products using them is continuously occurring.
  • solid electrolytes are replaced with solid electrolytes, which are advantageous from the standpoint of safety because the components of all cells, such as electrodes and electrolytes, are solid.
  • lithium metal or Li alloy can be used as a negative electrode material, it is known that it is advantageous from the viewpoint of battery performance such as high energy density, high output and long life.
  • an object of the present invention is to provide a solid electrolyte having a high moisture stability, including a sulfide-based compound in which nano-metal oxide particles are located on a surface.
  • Another object of the present invention is to provide a method for producing the solid electrolyte in which the synthesis process is optimized.
  • the present invention relates to a sulfide-based compound represented by the following formula (1);
  • the nano metal oxide particles provides one or more solid electrolyte selected from the group consisting of MgO, CaO, SrO, BaO, TiO 2, ZrO 2, Cr 2 O 3, MnO, NiO, ZnO, Al 2 O 3, and SnO 2 do.
  • M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
  • X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te;
  • the average particle diameter of the nano-metal oxide particles may be 0.1 to 1000 nm.
  • the nano-metal oxide particles can form a coating on all or part of the surface of the sulfide compound.
  • the coating may be formed to 60% to 100% based on the total surface area of the sulfide compound.
  • the average thickness of the coating may be between 1 and 2000 nm.
  • the sulfide-based compound and the nano-metal oxide particles may be 80:20 to 99: 1 by weight, and more specifically, 90:10 to 98: 2.
  • the nano-metal oxide particles can trap moisture (H 2 O) and hydrogen sulfide (H 2 S).
  • the nano-metal oxide particles may be at least one selected from the group consisting of MgO, CaO, TiO 2 , ZrO 2 , and ZnO.
  • a, b, and c may be in the ranges of 5.5 ⁇ a ⁇ 6.5, 0.5 ⁇ b ⁇ 1.5, and 4.5 ⁇ c ⁇ 5.5, respectively.
  • the present invention is a.
  • step (C) compressing the mixture of step (b) to produce a pellet
  • M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
  • X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te;
  • the solid electrolyte is a solid electrolyte.
  • step (b) may include milling at a revolution rate of 1000 to 3000 rpm, and 0.5 to 5 minutes.
  • steps (a) to (c) may be carried out under conditions that are not exposed to moisture and oxygen, respectively.
  • the present invention also provides a pre-solid battery comprising the solid electrolyte.
  • the solid electrolyte according to the present invention can trap moisture and hydrogen sulfide on the surface of the sulfide compound, minimize the amount of hydrogen sulfide generated by reacting with water, and delay the generation rate of the hydrogen sulfide As far as possible, it has excellent moisture stability.
  • the synthesis process can be optimized by controlling the raw material of the sulfide compound in which the nano metal oxide particles are located on the surface.
  • the entire solid-state battery using the same can be large-sized and mass-produced, so that the manufacturing processability is excellent.
  • FIG. 1 is a graph showing the amounts of hydrogen sulfide generated at the time of exposure to the solid electrolytes prepared according to Example 1 and Comparative Example 1, respectively.
  • FIG. 1 is a graph showing the amounts of hydrogen sulfide generated at the time of exposure to the solid electrolytes prepared according to Example 1 and Comparative Example 1, respectively.
  • sulfide compounds such as Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, and Li 2 SP 2 S 5 , which are applied to solid electrolytes, can be included depending on the solid electrolyte structure when exposed to moisture as described above with P 2 S 7 4 - yi Li 2 S, etc. present in the cross-linking process sulfur or a composite structure as impurities has a problem of safety and reliability of the bar to generate toxic hydrogen sulfide gas reacts with the water.
  • the solid electrolyte according to the present invention can trap water and hydrogen sulfide on the surface of the sulfide-based compound, thereby reducing the generation rate of hydrogen sulfide and reducing the amount of generated hydrogen sulfide, .
  • the sulfide-based compound can reduce the area directly exposed to the atmosphere due to nano-metal oxide particles located on the surface, thereby minimizing moisture and reaction in the atmosphere.
  • the surface area of the material is extremely increased at the same volume, which acts as a trap for water or hydrogen sulfide, and as a result, the moisture stability of the solid electrolyte containing the same can be improved .
  • the solid electrolyte is a sulfide-based compound represented by the following formula (1); And the sulfide-based and comprises a nano metal oxide particles located at the surface of the compound, the nano metal oxide particles are MgO, CaO, SrO, BaO, TiO 2, ZrO 2, Cr 2 O 3, MnO, NiO, ZnO, Al 2 O 3 , and SnO 2 .
  • M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
  • X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te;
  • the nano-metal oxide particles may be nano-sized metal oxide particles, for example, an average particle diameter of 0.1 nm to 1000 nm.
  • an average particle diameter of the nano metal oxide particles is less than 0.1 nm, the efficiency of the production process is low.
  • the average particle diameter of the nano metal oxide particles is more than 1000 nm, it is difficult to expect an effect of improving the surface area due to the use of nanosized particles.
  • the shape of the nano-metal oxide particle on the surface of the sulfide compound compound is not limited.
  • the nano-metal oxide particle may be a discontinuous layer, a continuous layer, or a mixture thereof.
  • a film can be formed on all or part of the surface of the sulfide compound.
  • the coating film is a kind of coating film, specifically, a state in which nano-metal oxide particles are physically adsorbed and / or chemically bonded to the surface of the sulfide compound.
  • the coating may be formed to 60% to 100% based on the total surface area of the sulfide-based compound.
  • the coating film When the coating film is formed with less than 60% based on the total surface area of the sulfide compound, the area of the sulfide compound in direct contact with the atmosphere becomes large, and the reaction with moisture may be promoted, which is not preferable. In detail, it may be formed to 80% to 100%.
  • the average thickness of the coating formed on the surface of the sulfide compound by the nano-metal oxide particles can be appropriately adjusted, for example, from 1 nm to 2000 nm, and more specifically, from 10 nm to 1000 nm.
  • the average thickness of the coating is less than 1 nm, a uniform coating can not be secured, and therefore, the effect due to the film formation can not be obtained. If the average thickness exceeds 2000 nm, the lithium ion storage and release can be prevented.
  • the sulfide-based compound and the nano-metal oxide particles may be 80:20 to 99: 1 by weight. When the amount of the sulfide compound is greater than 99 or the amount of the nano metal oxide particles is less than 1 based on the weight, a sufficient effect due to the nano metal oxide particles can not be obtained. When the amount of the sulfide compound is less than 80 or the nano metal oxide When the amount of the particles exceeds 20, the number of the nano-metal oxide particles becomes excessively large, and the lithium ion mobility of the solid electrolyte including the nano-metal oxide particles may be lowered, which is not preferable. Specifically, the sulfide-based compound and the nano-metal oxide particles may be from 90:10 to 98: 2 by weight.
  • the sulfide compound of the solid electrolyte according to the present invention has an extremely increased surface area of the substance in the same volume due to the nano-metal oxide particles, and can act as a trap of moisture and hydrogen sulfide to capture these substances .
  • the nano-metal oxide particles can physically or chemically bond with moisture and hydrogen sulfide.
  • the nano-metal oxide particles may be at least one selected from the group consisting of MgO, CaO, TiO 2 , ZrO 2 , and ZnO.
  • the sulfide compound may be in any form as long as it is a compound satisfying the conditions of the above formula (1).
  • the content a of lithium defined by the sulfide-based compound of the above formula (1) is intended to maintain sufficient lithium ion conductivity by maintaining a proper crystal structure, and is not preferable because it can not achieve this when it is less than 1 or exceeds 7 .
  • the lithium ion conductivity may be deteriorated.
  • the elements M and X may be appropriately included according to the nano-metal oxide particles and other synthetic processes to improve the lithium ion conductivity or stabilize the crystal structure.
  • the content c of the element M exceeds 3 or the element M If the content d is more than 1, it acts as an impurity and the ionic conductivity may drop sharply, which is not preferable.
  • a, b, and c may be 5.5 ⁇ a ⁇ 6.5, 0.5 ⁇ b ⁇ 1.5, and 4.5 ⁇ c ⁇ 5.5, respectively, and the element M may be P. More specifically, the sulfide compound may be Li 6 PS 5 Cl.
  • the solid electrolyte according to the present invention may further include a solid electrolyte conventionally used in all solid-state cells.
  • a solid electrolyte conventionally used in all solid-state cells.
  • it can be formed using an inorganic solid electrolyte or an organic solid electrolyte.
  • the inorganic solid electrolyte is a ceramic-based material, it may be used a crystalline or non-crystalline material, an example of, ThioLISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O-Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2 , LiI, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3
  • the organic solid electrolyte may be a polymer such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, or a polyvinylidene May be mixed with a lithium salt. At this time, they may be used alone or in combination of at least one.
  • the inorganic solid electrolyte or the organic solid electrolyte may be added in an amount of 0.01 to 30% by weight, more specifically 0.1 to 20% by weight, based on the total weight of the solid electrolyte.
  • the thickness of the solid electrolyte layer may vary depending on the structure of the entire solid electrolyte, but may be, for example, from 0.1 micrometer to 1 micrometer, and more specifically from 1 micrometer to 100 micrometers.
  • the present invention provides a method for producing the solid electrolyte
  • step (C) compressing the mixture of step (b) to produce a pellet
  • M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
  • X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te;
  • the method for producing the sulfide compound represented by the above formula (1) is not limited, and for example, a solid phase method, coprecipitation method, hydrothermal method, supercritical hydrothermal method, and the like can be used .
  • a solid phase method can be used. More specifically, a raw material composition such as a lithium sulfide, a metal sulfide, and a lithium halide is mixed, followed by drying if necessary and heat treatment in an inert atmosphere. Step < / RTI >
  • the lithium sulfide is not particularly limited in the present invention, and a known substance can be selected and used. Typically, Li 2 S, Li 2 S 2 and the like are possible, and in particular, it may be Li 2 S.
  • the metal sulfide may be, for example, a sulfide of at least one metal selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn and Sb.
  • the lithium halide can be, for example, LiF, LiCl, LiBr, or LiI.
  • the content of lithium sulfide, metal sulfide, and lithium halide mixed at this time can be variously adjusted according to the molar ratio of the sulfide compound to be produced, and is not particularly limited in the present invention.
  • the mixing can be carried out in a conventional manner in the art, for example, a dry or wet mixing method can be used.
  • the heat treatment is preferably carried out in a temperature range of 300 to 700, for about 1 minute to 60 minutes, more specifically for 1 minute to 30 minutes, more specifically for 1 minute to 10 minutes.
  • a heat treatment can be performed at least once, and for example, it can be carried out in two steps such as first and second heat treatment, and it is more advantageous to perform the second heat treatment at a higher temperature than the first heat treatment, Do.
  • the temperature of the heat treatment is less than 300, the residual substances may react with moisture to generate hydrogen sulfide. On the contrary, if the temperature exceeds 700, the particles of the sulfide compound become large, There is a possibility that the particle production of the particles becomes difficult.
  • the sulfide compound and the nano-metal oxide particles prepared as described above are mixed in the range of 80:20 to 99: 1 based on weight, specifically, in the range of 90:10 to 98: 2, .
  • the mixing may be performed by a dry or wet mixing method, and is not particularly limited in the present invention, but dry mixing is preferred.
  • Dry mixing can be used for conventional mixed powder production, and mechanical milling can be performed for uniform particle mixing.
  • mechanical milling can be performed for uniform particle mixing.
  • a roll mill, a ball mill, a mechanofusion, a jet mill or the like can be used as the mechanical milling, and a ball mill using the high impact energy efficiently can be used .
  • the mechanical milling treatment conditions can be appropriately adjusted according to the equipment to be used. If the rotation speed is high, the production rate of the product is increased, and the conversion rate of the long-chain product to the raw material composition is increased. For example, when a general ball mill is used, it is preferable to be performed under the conditions of the revolution per minute of 1000 rpm to 3000 rpm and the period of 0.5 to 5 minutes, more specifically, the revolution per minute of 1500 rpm to 2500 rpm and the period of 1 minute to 3 minutes Do.
  • the mixture is compressed to produce pellets in a high-density lump state.
  • the form of the pellets may be circular or polygonal, but there is no particular limitation.
  • Such a synthesis process can proceed to a glove box or a dry room which is not exposed to moisture and oxygen, thereby suppressing the reaction of the by-products, thereby enhancing water stability.
  • the present invention provides a pre-solid battery comprising the solid electrolyte.
  • the pre-solid battery includes a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode.
  • the positive electrode may be formed by applying a positive electrode mixture containing a positive electrode active material to a current collector, and the positive electrode mixture may further include a binder and a conductive material, if necessary.
  • the positive electrode active material is, for example, LiNi x Co 0 0 .8-. 2 AlxO 2 , LiCo x Mn y O 2 , LiNi x Co y O 2 , LiNi x Mn y O 2 , LiNi x Co y Mn z O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 and Li 4 Ti 5 O 12 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1); Cu 2 Mo 6 S 8 , chalcogenides such as FeS, CoS and MiS, oxides, sulfides or halides of scandium, ruthenium, titanium, vanadium, molybdenum, chromium, manganese, iron, cobalt, nickel, It may be used, more specifically, LiNi 0.
  • the shape of the cathode active material is not particularly limited and may be a particle shape, for example, a spherical shape, an elliptical shape, a rectangular parallelepiped shape, or the like.
  • the average particle diameter of the cathode active material may be within the range of 1 to 50 ⁇ ⁇ , but is not limited thereto.
  • the average particle diameter of the cathode active material can be obtained, for example, by measuring the particle size of the active material observed by a scanning electron microscope and calculating an average value thereof.
  • the binder is not particularly limited, and a fluorine-containing binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) may be used, but is not limited thereto.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the binder is not particularly limited as long as it can fix the cathode active material, and may be in the range of 0 to 10 wt% with respect to the entire anode.
  • the conductive material is not particularly limited as long as it can improve the conductivity of the anode, and examples thereof include nickel powder, cobalt oxide, titanium oxide, and carbon.
  • the carbon may be any one selected from the group consisting of Ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerene, or one or more thereof.
  • the content of the conductive material may be selected in consideration of other battery conditions, such as the type of conductive material, and may be, for example, in the range of 1 to 10% by weight based on the entire anode.
  • the thickness of the positive electrode material mixture layer in which the positive electrode material mixture containing the positive electrode active material, the binder and the conductive material is applied to the current collector may be, for example, 0.1 to 1000 micrometers.
  • the positive electrode mixture may include 0.1 to 60% by weight, more specifically 10 to 50% by weight, based on the total weight of the positive electrode mixture, of the solid electrolyte according to the present invention.
  • the thickness of the positive electrode material mixture layer may be, for example, 0.1 micrometer to 1000 micrometer.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, Nickel, titanium, silver, or the like may be used.
  • various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on the surface may be used.
  • the negative electrode of the pre-solid battery may be a lithium metal or a lithium alloy alone or may be coated with a negative electrode mixture containing a negative electrode active material on the negative electrode collector.
  • the negative electrode material mixture may further include a binder and a conductive material as described above, if necessary.
  • the negative electrode active material may be at least one selected from the group consisting of lithium metal, a lithium alloy, a lithium metal composite oxide, a lithium-containing titanium composite oxide (LTO), and combinations thereof.
  • the lithium alloy may be an alloy of lithium and at least one metal selected from Na, K, Rb, Cs, In, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • the lithium metal composite oxide is any one of metal (Me) oxides (MeO x ) selected from the group consisting of lithium and Si, Sn, Zn, Mg, Cd, Ce, Ni and Fe. For example, LixFe 2 O 3 0 ⁇ x? 1) or LixWO 2 (0 ⁇ x? 1).
  • SnxMe 1- xMe y O z (Me: Mn, Fe, Pb and Ge; Me ': Al, B, P, Si, Group 1, Group 2 and Group 3 elements of the periodic table, 1? Y? 3; 1? Z? 8); SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO2 2, Bi 2 O 3, Bi 2 O 4 , and Bi 2 O 5 and the like, and carbonaceous materials such as crystalline carbon, amorphous carbon or carbon composite may be used alone or in combination of two or more.
  • the negative electrode material mixture may contain 0.1 to 60% by weight, more specifically 10 to 50% by weight, based on the total weight of the negative electrode material mixture, of the solid electrolyte according to the present invention.
  • the anode current collector is not particularly limited as long as it has electrical conductivity without causing any chemical change in the entire solid battery.
  • the cathode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, Carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used.
  • the negative electrode current collector may be formed in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like having fine irregularities on its surface.
  • the production of all the solid batteries having the above-mentioned constitution is not particularly limited in the present invention, and can be produced by a known method.
  • a solid electrolyte according to the present invention is disposed between an anode and a cathode, and the cell is assembled by compression molding.
  • the solid electrolyte may be in the form of a solid electrolyte sheet, and may be formed by mixing a solid electrolyte with a binder or by press molding, or by dispersing the solid electrolyte in a solvent to form a slurry by a doctor blade or a spin coat Can be manufactured.
  • the assembled cell is installed in the casing and then sealed by heat compression or the like.
  • Laminate packs made of aluminum, stainless steel or the like, and cylindrical or square metal containers are very suitable for the exterior material.
  • the starting materials Li 2 S, P 2 S 5 , and LiCl were weighed in the molar ratio, mixed in the mortar, and homogeneously mixed for 6 hours in a planetary mill.
  • the mixture thus obtained was made into a pellet of 15 pie size and heat treated at 550 ° C. under a vacuum atmosphere to synthesize Li 6 PS 5 Cl.
  • the sulfide compound of Li 6 PS 5 Cl and TiO 2 having an average particle diameter of about 100 nm were weighed 95 mg and 5 mg, respectively.
  • the starting materials were placed in a mixing container and mixed at a rate of 2000 rpm for 1 minute or more to uniformly mix.
  • the mixture was recovered, compressed with a hydraulic press and processed into pellets to prepare a solid electrolyte.
  • Example 1 The solid electrolytes obtained in Example 1 and Comparative Example 1 were placed in separate closed containers together with a hygrometer and a hydrogen sulfide gas concentration measuring device and then exposed to an atmosphere at room temperature (25 ° C) and humidity of 30% The amount of generation was confirmed and is shown in Table 1 below.
  • the lithium ion conductivity of the solid electrolyte of Example 1 was 2.9 x 10 -4 S / cm, which was somewhat lower than the solid electrolyte of Comparative Example 1, In view of the fact that the ionic conductivity required for the practical use of the battery solid electrolyte is about 10 -4 S / cm to 10 -3 S / cm at room temperature, the solid electrolyte according to Example 1 does not have a problem do.
  • Example 1 In order to confirm the water stability of the solid electrolytes obtained in Example 1 and Comparative Example 1, the amount of hydrogen sulfide generated at the time of exposure to the atmosphere was measured.
  • Each of the solid electrolytes of Example 1 and Comparative Example 1 was weighed in an amount of 100 mg, and each of the solid electrolytes was placed in a separate closed container together with a hygrometer and a hydrogen sulfide gas concentration meter. All of the above steps were performed in a dry room at a dew point of -50 degrees or less. The two materials were simultaneously exposed to the atmosphere at room temperature (25 ° C) and humidity 30%. The amount of hydrogen sulfide generated over time was monitored to determine the reactivity with water.
  • the solid electrolyte of Example 1 had a lower hydrogen sulfide production rate and a lower generation amount than the solid electrolyte of Comparative Example 1. As a result, it was found that the nano metal oxide located on the surface of the sulfide compound suppressed hydrogen sulfide generation It can be seen that it is effective.

Abstract

The present invention provides: a solid electrolyte having excellent water stability and comprising a sulfide-based compound represented by the following chemical formula (1), and metal oxide nanoparticles located on the surface of the sulfide-based compound, wherein the metal oxide nanoparticles are one or more selected from the group consisting of MgO, CaO, SrO, BaO, TiO2, ZrO2, Cr2O3, MnO, NiO, ZnO, Al2O3 and SnO2; a preparation method therefor; and a solid-state battery having excellent manufacturing processability by using the same. LiaMbScXd (1) In the formula, M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn and Sb, X is one or more selected from the group consisting of F, Cl, Br, I, O, Se and Te, 1≤a≤7, 0≤b≤3, 4≤c≤7 and 0≤d≤1.

Description

고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지SOLID ELECTROLYTE, METHOD FOR MANUFACTURING THE SAME, AND ALL ELECTRODE
본 발명은 우수한 수분 안정성을 가지는 고체 전해질, 그 제조 방법 및 이를 포함하여 제조 공정성이 우수한 전고체 전지에 관한 것이다.The present invention relates to a solid electrolyte having excellent water stability, a process for producing the solid electrolyte, and a full solid battery having excellent processability including the process.
리튬 이차전지는 휴대폰을 비롯한 이동식 전자기기의 전원으로 널리 사용되고 있으며, 전기 자동차 등 대형기기에 대한 수요가 증가함에 따라 그 적용 분야가 확대되고 있다. Lithium secondary batteries are widely used as power sources for mobile electronic devices including mobile phones, and their applications are expanding as demand for large-sized devices such as electric vehicles increases.
한편, 리튬 이차전지는 리튬염을 유기용매에 녹인 액체 전해질을 이용하므로, 전해액 누액 뿐만 아니라 전해액 분해 반응에 의한 발화 및 폭발에 대한 잠재적인 위험성을 안고 있다. 실제로도 이를 적용한 제품의 폭발 사고가 지속적으로 발생하고 있기 때문에 이러한 문제점을 해소하는 것이 시급한 상황이다.On the other hand, since the lithium secondary battery uses a liquid electrolyte in which a lithium salt is dissolved in an organic solvent, there is a potential risk of ignition and explosion due to electrolyte decomposition reaction as well as electrolyte leakage. In fact, there is an urgent need to overcome these problems, as the explosion of products using them is continuously occurring.
전고체 전지는 이러한 액체 전해질을 고체 전해질로 대체한 것으로 전극과 전해질 등 모든 전지의 구성요소가 고체이기 때문에 안전성 측면에서 유리하다. 또한, 음극 소재로 Li 금속 또는 Li 합금을 사용할 수 있기 때문에 고에너지 밀도, 고출력, 장수명 등 전지의 성능 관점에서도 유리한 것으로 알려져 최근 많은 연구가 진행되고 있다.All solid electrolytes are replaced with solid electrolytes, which are advantageous from the standpoint of safety because the components of all cells, such as electrodes and electrolytes, are solid. In addition, since lithium metal or Li alloy can be used as a negative electrode material, it is known that it is advantageous from the viewpoint of battery performance such as high energy density, high output and long life.
전고체 전지의 성능을 발휘하기 위해서는 높은 리튬 이온 전도도를 가지는 고체 전해질의 개발이 중요하며, 현재 Li10GeP2S12, Li6PS5Cl, Li2S-P2S5 등 황화물계 화합물이 널리 사용되고 있다. It is important to develop a solid electrolyte having a high lithium ion conductivity in order to exhibit the performance of the all-solid battery, and sulfide compounds such as Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, and Li 2 SP 2 S 5 are widely used have.
그러나, 이러한 황화물계 화합물은 고체전해질 구조에 따라 포함될수 있는 P2S7 4-의 가교황이 대기 중 수분과 및 산소와 반응하거나, 낮은 합성 온도로 인하여 잔존하는 Li2S 등의 원료물질이 수분과 반응하여 성능이 급격히 저하되될 수 있는 바, 대기 중 저장성이 저하되고 취급상의 어려움이 있다. 구체적으로, 하기 반응식과 같이, 수분과 반응하면 황화수소(H2S)와 같은 유독 가스가 발생하기 때문에 안전성 및 안정성의 문제가 대두된다.However, such a sulfide-based compound has a problem in that a bridging sulfur of P 2 S 7 4- , which may be contained depending on the solid electrolyte structure, reacts with moisture in the atmosphere and oxygen, or a raw material such as Li 2 S, And the performance may be sharply lowered. As a result, the storage stability in the atmosphere is deteriorated and the handling is difficult. Specifically, as shown in the following reaction formula, when reacting with water, a toxic gas such as hydrogen sulfide (H 2 S) is generated, resulting in a problem of safety and stability.
Figure PCTKR2018014718-appb-I000001
Figure PCTKR2018014718-appb-I000001
이러한 문제는 이온 전도성 저하로 이어지는 바, 황화물계 화합물을 고체 전해질로 이용하는 전고체 전지는 충방전이 진행됨에 따라 내부 저항이 증가하여 충방전 특성이 현저하게 손상될 수 있다.This problem leads to lowering of ion conductivity. As the charge / discharge progresses, the charge / discharge characteristics of the pre-solid battery using the sulfide-based compound as the solid electrolyte may increase due to the increase of the internal resistance.
이를 해결하기 위하여 아르곤 분위기의 글로브 박스, 수분을 제어한 드라이룸 등의 환경에서 취급되고 있으나, 이는 전고체 전지의 대면적화 및 대량 양산시 제조 공정성 열세로 이어진다.In order to solve this problem, it is handled in an environment such as an argon atmosphere glove box and a moisture controlled drier. However, this leads to the problem of the large-scale mass production of the entire solid battery and the manufacturing process disadvantage.
따라서, 높은 리튬 이온 전도성을 가지면서도 수분에 대해 안정성이 우수한 고체 전해질 및 이를 포함하여 제조 공정성이 우수한 대면적화 전고체 전지에 대한 필요성이 높은 실정이다.Accordingly, there is a high need for a solid electrolyte having high lithium ion conductivity and excellent stability against moisture, and a solid electrolyte having excellent processability including the solid electrolyte.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.
구체적으로, 본 발명의 목적은 나노 금속 산화물 입자가 표면에 위치하는 황화물계 화합물을 포함하여 높은 수분 안정성을 가지는 고체 전해질을 제공하는 것이다.Specifically, an object of the present invention is to provide a solid electrolyte having a high moisture stability, including a sulfide-based compound in which nano-metal oxide particles are located on a surface.
본 발명의 다른 목적은 합성 공정이 최적화된 상기 고체 전해질의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the solid electrolyte in which the synthesis process is optimized.
본 발명의 또 다른 목적은 상기 고체 전해질을 포함하여 우수한 제조 공정성을 가지는 대면적화 전고체 전지를 제공하는 것이다.It is still another object of the present invention to provide a pre-facing solid-state battery having excellent manufacturing processability including the solid electrolyte.
본 발명은 하기 화학식 (1)로 표현되는 황화물계 화합물; 및 The present invention relates to a sulfide-based compound represented by the following formula (1); And
상기 황화물계 화합물의 표면에 위치하는 나노 금속 산화물 입자를 포함하고, And a noble metal oxide particle located on the surface of the sulfide compound,
상기 나노 금속 산화물 입자는 MgO, CaO, SrO, BaO, TiO2, ZrO2, Cr2O3, MnO, NiO, ZnO, Al2O3, 및 SnO2로 이루어진 군에서 선택된 하나 이상인 고체 전해질을 제공한다.The nano metal oxide particles provides one or more solid electrolyte selected from the group consisting of MgO, CaO, SrO, BaO, TiO 2, ZrO 2, Cr 2 O 3, MnO, NiO, ZnO, Al 2 O 3, and SnO 2 do.
LiaMbScXd (1)Li a M b S c X d (1)
상기 식에서, In this formula,
M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
상기 나노 금속 산화물 입자의 평균 입경은 0.1 내지 1000 nm일 수 있다.The average particle diameter of the nano-metal oxide particles may be 0.1 to 1000 nm.
상기 나노 금속 산화물 입자는 황화물계 화합물 표면의 전체 또는 일부에 피막을 형성할 수 있다.The nano-metal oxide particles can form a coating on all or part of the surface of the sulfide compound.
상기 피막은 황화물계 화합물 전체 표면적을 기준으로 60% 내지 100% 로 형성되어 있을 수 있다.The coating may be formed to 60% to 100% based on the total surface area of the sulfide compound.
상기 피막의 평균 두께는 1 내지 2000 nm일 수 있다.The average thickness of the coating may be between 1 and 2000 nm.
상기 황화물계 화합물과 나노 금속 산화물 입자는 중량을 기준으로 80 : 20 내지 99 : 1일 수 있고, 상세하게는 90 : 10 내지 98 : 2일 수 있다.The sulfide-based compound and the nano-metal oxide particles may be 80:20 to 99: 1 by weight, and more specifically, 90:10 to 98: 2.
상기 나노 금속 산화물 입자는 수분(H2O) 및 황화수소(H2S)를 트랩(trap)할 수 있다.The nano-metal oxide particles can trap moisture (H 2 O) and hydrogen sulfide (H 2 S).
상기 나노 금속 산화물 입자는 MgO, CaO, TiO2, ZrO2, 및 ZnO로 이루어진 군에서 선택되는 하나 이상일 수 있다.The nano-metal oxide particles may be at least one selected from the group consisting of MgO, CaO, TiO 2 , ZrO 2 , and ZnO.
상기 a, b, 및 c는 각각 5.5<a<6.5, 0.5<b<1.5, 및 4.5<c<5.5일 수 있다.The values of a, b, and c may be in the ranges of 5.5 <a <6.5, 0.5 <b <1.5, and 4.5 <c <5.5, respectively.
본 발명은 The present invention
(가) 하기 화학식 (1)로 표현되는 황화물계 화합물을 준비하는 단계;(A) preparing a sulfide-based compound represented by the following formula (1);
(나) 상기 단계 (가)의 화합물과 나노 금속 산화물 입자를 혼합하는 단계; 및(B) mixing the compound of step (a) and the nanometer metal oxide particles; And
(다) 상기 단계 (나)의 혼합물을 압축하여 펠렛을 제조하는 단계;(C) compressing the mixture of step (b) to produce a pellet;
LiaMbScXd (1)Li a M b S c X d (1)
상기 식에서, In this formula,
M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
을 포함하는 상기 고체 전해질을 제조하는 방법을 제공한다.Wherein the solid electrolyte is a solid electrolyte.
상기 단계 (나)의 혼합은 분당 회전수 1000 내지 3000 rpm, 및 0.5분 내지 5분 조건에서 밀링(milling)하는 것을 포함할 수 있다.The mixing of step (b) may include milling at a revolution rate of 1000 to 3000 rpm, and 0.5 to 5 minutes.
상기 단계 (가) 내지 (다)는 각각 수분 및 산소에 노출되지 않는 조건에서 이루어질 수 있다. The above steps (a) to (c) may be carried out under conditions that are not exposed to moisture and oxygen, respectively.
또한, 본 발명은 상기 고체 전해질을 포함하는 전고체 전지를 제공한다.The present invention also provides a pre-solid battery comprising the solid electrolyte.
본 발명에 따른 고체 전해질은, 황화물계 화합물 표면에 위치한 나노 금속 산화물 입자가 수분 및 황화수소를 트랩(trap)할 수 있어 수분과 반응하여 발생하는 황화수소 발생량을 최소화할 수 있고, 그 발생 속도를 지연시킬 수 있는 바, 우수한 수분 안정성을 가진다.The solid electrolyte according to the present invention can trap moisture and hydrogen sulfide on the surface of the sulfide compound, minimize the amount of hydrogen sulfide generated by reacting with water, and delay the generation rate of the hydrogen sulfide As far as possible, it has excellent moisture stability.
또한, 상기 나노 금속 산화물 입자가 표면에 위치하는 황화물계 화합물의 원료 물질을 제어하여 합성 공정을 최적화할 수 있다.In addition, the synthesis process can be optimized by controlling the raw material of the sulfide compound in which the nano metal oxide particles are located on the surface.
따라서, 이를 이용한 전고체 전지는 대면적화 및 대량 양산이 가능하므로 제조 공정성이 우수하다.Therefore, the entire solid-state battery using the same can be large-sized and mass-produced, so that the manufacturing processability is excellent.
도 1은 실시예 1 및 비교예 1에 따라 각각 제조된 고체 전해질의 대기 노출시 황화수소 발생량을 나타내는 그래프이다.FIG. 1 is a graph showing the amounts of hydrogen sulfide generated at the time of exposure to the solid electrolytes prepared according to Example 1 and Comparative Example 1, respectively. FIG.
고체 전해질Solid electrolyte
일반적으로, 고체 전해질에 적용되는 Li10GeP2S12, Li6PS5Cl, Li2S-P2S5계 등의 황화물계 화합물은 앞서 설명한 바와 같이 수분에 노출될 경우 고체전해질 구조에 따라 포함될수 있는 P2S7 4 - 구조의 가교황 또는 합성 과정에서 불순물로 존재하는 Li2S 등이 수분과 반응하여 유독한 황화수소 가스를 발생시키는 바 안전성 및 안정성의 문제가 있었다.Generally, sulfide compounds such as Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, and Li 2 SP 2 S 5 , which are applied to solid electrolytes, can be included depending on the solid electrolyte structure when exposed to moisture as described above with P 2 S 7 4 - yi Li 2 S, etc. present in the cross-linking process sulfur or a composite structure as impurities has a problem of safety and reliability of the bar to generate toxic hydrogen sulfide gas reacts with the water.
이에 본 발명에 따른 고체 전해질은 황화물계 화합물 표면에 위치한 나노 금속 산화물이 수분 및 황화수소를 트랩(trap)할 수 있어, 황화수소 발생 속도를 지연시키고 발생량 또한 줄일 수 있는 바, 우수한 수분 안정성을 가질 수 있다. Accordingly, the solid electrolyte according to the present invention can trap water and hydrogen sulfide on the surface of the sulfide-based compound, thereby reducing the generation rate of hydrogen sulfide and reducing the amount of generated hydrogen sulfide, .
구체적으로, 상기 황화물계 화합물은 표면에 위치하는 나노 금속 산화물 입자로 인하여 대기에 직접적으로 노출되는 면적이 감소될 수 있어, 대기 중의 수분과 반응을 최소화할 수 있다. 또한, 상기 나노 금속 산화물 입자로 인하여 동일 부피에서 물질의 표면적이 극단적으로 증가하는 바, 이는 수분 또는 황화수소의 트랩(trap)으로 작용하여, 결과적으로 이를 포함하는 고체 전해질의 수분 안정성이 향상될 수 있다.Specifically, the sulfide-based compound can reduce the area directly exposed to the atmosphere due to nano-metal oxide particles located on the surface, thereby minimizing moisture and reaction in the atmosphere. In addition, due to the nano-metal oxide particles, the surface area of the material is extremely increased at the same volume, which acts as a trap for water or hydrogen sulfide, and as a result, the moisture stability of the solid electrolyte containing the same can be improved .
상세하게는, 고체 전해질은, 하기 화학식 (1)로 표현되는 황화물계 화합물; 및 상기 황화물계 화합물의 표면에 위치하는 나노 금속 산화물 입자를 포함하고, 상기 나노 금속 산화물 입자는 MgO, CaO, SrO, BaO, TiO2, ZrO2, Cr2O3, MnO, NiO, ZnO, Al2O3, 및 SnO2로 이루어진 군에서 선택된 하나 이상을 포함한다.Specifically, the solid electrolyte is a sulfide-based compound represented by the following formula (1); And the sulfide-based and comprises a nano metal oxide particles located at the surface of the compound, the nano metal oxide particles are MgO, CaO, SrO, BaO, TiO 2, ZrO 2, Cr 2 O 3, MnO, NiO, ZnO, Al 2 O 3 , and SnO 2 .
LiaMbScXd (1)Li a M b S c X d (1)
상기 식에서, In this formula,
M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
상기 나노 금속 산화물 입자는 나노 크기의 금속 산화물 입자로, 예를 들어, 평균 입경이 0.1 nm 내지 1000 nm일 수 있다. 상기 나노 금속 산화물 입자의 평균 입경이 0.1 nm 미만일 경우, 제조 공정상 효율이 떨어지며, 1000 nm 를 초과할 경우, 나노 크기의 입자 사용으로 인한 표면적 향상 효과를 기대하기 어려워 바람직하지 않은 바, 상세하게는, 1 nm 내지 500 nm 일 수 있다.The nano-metal oxide particles may be nano-sized metal oxide particles, for example, an average particle diameter of 0.1 nm to 1000 nm. When the average particle diameter of the nano metal oxide particles is less than 0.1 nm, the efficiency of the production process is low. When the average particle diameter of the nano metal oxide particles is more than 1000 nm, it is difficult to expect an effect of improving the surface area due to the use of nanosized particles. , And 1 nm to 500 nm.
상기 나노 금속 산화물 입자가 황화물계 화합물 표면에 위치하는 형태는 제한이 없으나, 예를 들어, 입자들이 불연속적으로 뭉쳐있는 형태, 연속적으로 뭉쳐있는 형태, 또는 이들의 혼합 형태일 수 있고, 상세하게는, 황화물계 화합물 표면의 전체 또는 일부에 피막을 형성할 수 있다.The shape of the nano-metal oxide particle on the surface of the sulfide compound compound is not limited. For example, the nano-metal oxide particle may be a discontinuous layer, a continuous layer, or a mixture thereof. , A film can be formed on all or part of the surface of the sulfide compound.
여기서 피막은 일종의 코팅막으로, 상세하게는, 나노 금속 산화물 입자가 황화물계 화합물의 표면과 물리적으로 흡착 및/또는 화학적으로 결합되어 있는 상태를 의미한다.Here, the coating film is a kind of coating film, specifically, a state in which nano-metal oxide particles are physically adsorbed and / or chemically bonded to the surface of the sulfide compound.
상기 피막은 황화물계 화합물 전체 표면적을 기준으로 60% 내지 100%로 형성될 수 있다. 피막이 황화물계 화합물 전체 표면적을 기준으로 60% 미만으로 형성될 경우, 황화물계 화합물이 대기와 직접적으로 접촉하는 면적이 커지는 바 수분과의 반응이 촉진될 수 우려가 있어 바람직하지 않다. 상세하게는 80% 내지 100%로 형성될 수 있다.The coating may be formed to 60% to 100% based on the total surface area of the sulfide-based compound. When the coating film is formed with less than 60% based on the total surface area of the sulfide compound, the area of the sulfide compound in direct contact with the atmosphere becomes large, and the reaction with moisture may be promoted, which is not preferable. In detail, it may be formed to 80% to 100%.
상기 나노 금속 산화물 입자가 황화물계 화합물 표면에 형성하는 피막의 평균 두께는 적절히 조절할 수 있으며, 예를 들어, 1 nm 내지 2000 nm일 수 있고, 상세하게는, 10 nm 내지 1000 nm일 수 있다.The average thickness of the coating formed on the surface of the sulfide compound by the nano-metal oxide particles can be appropriately adjusted, for example, from 1 nm to 2000 nm, and more specifically, from 10 nm to 1000 nm.
상기 피막의 평균 두께가 1 nm 미만일 경우 균일한 코팅을 담보할 수 없으므로 피막 형성으로 인한 효과를 얻을 수 없고, 2000 nm 초과할 경우 리튬 이온의 흡장, 방출을 방해할 수 있어 바람직하지 않다.If the average thickness of the coating is less than 1 nm, a uniform coating can not be secured, and therefore, the effect due to the film formation can not be obtained. If the average thickness exceeds 2000 nm, the lithium ion storage and release can be prevented.
상기 황화물계 화합물과 나노 금속 산화물 입자는 중량을 기준으로 80 : 20 내지 99 : 1일 수 있다. 중량을 기준으로 황화물계 화합물의 양이 99를 초과하거나 나노 금속 산화물 입자의 양이 1 미만일 경우, 나노 금속 산화물 입자로 인한 충분한 효과를 얻을 수 없고, 황화물계 화합물의 양이 80 미만이거나 나노 금속 산화물 입자의 양이 20을 초과일 경우, 나노 금속 산화물 입자가 지나치게 많아져 이를 포함한 고체 전해질의 리튬 이온 이동도가 오히려 떨어질 수 있는 바 바람직하지 않다. 상세하게는, 황화물계 화합물과 나노 금속 산화물 입자는 중량을 기준으로 90 : 10 내지 98 : 2일 수 있다.The sulfide-based compound and the nano-metal oxide particles may be 80:20 to 99: 1 by weight. When the amount of the sulfide compound is greater than 99 or the amount of the nano metal oxide particles is less than 1 based on the weight, a sufficient effect due to the nano metal oxide particles can not be obtained. When the amount of the sulfide compound is less than 80 or the nano metal oxide When the amount of the particles exceeds 20, the number of the nano-metal oxide particles becomes excessively large, and the lithium ion mobility of the solid electrolyte including the nano-metal oxide particles may be lowered, which is not preferable. Specifically, the sulfide-based compound and the nano-metal oxide particles may be from 90:10 to 98: 2 by weight.
앞서 설명한 바과 같이, 본 발명에 따른 고체 전해질의 황화계 화합물은 나노 금속 산화물 입자로 인하여 동일 부피에서 물질의 표면적이 극단적으로 증가하는 바, 수분 및 황화수소의 트랩으로 작용하여 이들 물질을 포획할 수 있다. 이는 나노 금속 산화물 입자가 수분 및 황화수소와 물리적 또는 화학적으로 결합할 수 있다는 의미이다.As described above, the sulfide compound of the solid electrolyte according to the present invention has an extremely increased surface area of the substance in the same volume due to the nano-metal oxide particles, and can act as a trap of moisture and hydrogen sulfide to capture these substances . This means that the nano-metal oxide particles can physically or chemically bond with moisture and hydrogen sulfide.
이러한, 나노 금속 산화물 입자는 상세하게는, MgO, CaO, TiO2, ZrO2, 및 ZnO로 이루어진 군에서 선택되는 하나 이상일 수 있다.The nano-metal oxide particles may be at least one selected from the group consisting of MgO, CaO, TiO 2 , ZrO 2 , and ZnO.
상기 황화물계 화합물은, 상기 화학식 (1)의 조건을 만족하는 화합물이라면 어떠한 형태로도 가능할 수 있다.The sulfide compound may be in any form as long as it is a compound satisfying the conditions of the above formula (1).
다만, 상기 화학식 (1)의 황화물계 화합물에서 정의한 리튬의 함량 a는 적절한 결정 구조를 유지하여 충분한 리튬 이온 전도성을 확보하기 위한 것으로, 1 미만이거나 7을 초과할 경우 이를 달성할 수 없어 바람직하지 않다.However, the content a of lithium defined by the sulfide-based compound of the above formula (1) is intended to maintain sufficient lithium ion conductivity by maintaining a proper crystal structure, and is not preferable because it can not achieve this when it is less than 1 or exceeds 7 .
상기 황의 함량 c가 4 미만이거나 7 초과일 경우, 리튬 이온 전도성이 떨어질 우려가 있어 바람직하지 않다.If the content c of sulfur is less than 4 or more than 7, the lithium ion conductivity may be deteriorated.
상기 원소 M 및 X는 각각 나노 금속 산화물 입자 및 그 밖의 합성 공정에 따라 적절하게 포함되어 리튬 이온 전도성을 향상시키거나 결정 구조를 안정화시킬 수 있으나, 원소 M의 함량 c가 3을 초과하거나, 원소 M의 함량 d가 1을 초과할 경우, 오히려 불순물로 작용하여 이온 전도도가 급격히 하락할 수 있는 바 바람직하지 않다.The elements M and X may be appropriately included according to the nano-metal oxide particles and other synthetic processes to improve the lithium ion conductivity or stabilize the crystal structure. However, when the content c of the element M exceeds 3 or the element M If the content d is more than 1, it acts as an impurity and the ionic conductivity may drop sharply, which is not preferable.
상세하게는, 상기 a, b, 및 c는 각각 5.5<a<6.5, 0.5<b<1.5, 및 4.5<c<5.5일 수 있고, 상기 원소 M은 P일 수 있다. 더욱 상세하게는, 상기 황화물계 화합물은, Li6PS5Cl일 수 있다.Specifically, a, b, and c may be 5.5 <a <6.5, 0.5 <b <1.5, and 4.5 <c <5.5, respectively, and the element M may be P. More specifically, the sulfide compound may be Li 6 PS 5 Cl.
한편, 본 발명에 따른 고체 전해질은 전고체 전지에 통상적으로 사용하는 고체 전해질을 추가로 포함할 수 있다. 하나의 예로, 무기 고체 전해질 또는 유기 고체 전해질을 사용하여 형성할 수 있다.Meanwhile, the solid electrolyte according to the present invention may further include a solid electrolyte conventionally used in all solid-state cells. As an example, it can be formed using an inorganic solid electrolyte or an organic solid electrolyte.
상기 무기 고체 전해질은 세라믹 계열의 재료로, 결정성 또는 비결정성 재질이 사용될 수 있으며, 하나의 예로, ThioLISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw(w는 w< 1), Li3 . 6Si0 .6P0. 4O4일 수 있다. 이때, 이들은 단독으로 또는 적어도 하나 이상을 조합하여 사용할 수 있다.The inorganic solid electrolyte is a ceramic-based material, it may be used a crystalline or non-crystalline material, an example of, ThioLISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O-Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2 , LiI, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w is w <1), Li 3 . 6 Si 0 .6 P 0 .4 O 4 . At this time, they may be used alone or in combination of at least one.
상기 유기 고체 전해질은 하나의 예로는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리 에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 등의 폴리머 계열의 재료에 리튬염을 혼합한 것을 사용할 수 있다. 이때, 이들은 단독으로 또는 적어도 하나 이상을 조합하여 사용할 수 있다.The organic solid electrolyte may be a polymer such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, or a polyvinylidene May be mixed with a lithium salt. At this time, they may be used alone or in combination of at least one.
이 경우 상기 무기 고체 전해질 또는 유기 고체 전해질은 고체 전해질 전체 중량을 기준으로 0.01 내지 30 중량% 첨가될 수 있고, 상세하게는 0.1 내지 20 중량% 첨가될 수 있다.In this case, the inorganic solid electrolyte or the organic solid electrolyte may be added in an amount of 0.01 to 30% by weight, more specifically 0.1 to 20% by weight, based on the total weight of the solid electrolyte.
고체 전해질층의 두께는 전고체 전지의 구조에 따라 상이할 수 있으나, 예를 들어, 0.1 마이크로미터 내지 1 마이크로미터일 수 있고, 상세하게는 1 마이크로미터 내지 100 마이크로일 수 있다.The thickness of the solid electrolyte layer may vary depending on the structure of the entire solid electrolyte, but may be, for example, from 0.1 micrometer to 1 micrometer, and more specifically from 1 micrometer to 100 micrometers.
고체 전해질 제조 방법Method of manufacturing solid electrolyte
본 발명은 상기 고체 전해질을 제조하는 방법으로서,The present invention provides a method for producing the solid electrolyte,
(가) 하기 화학식 (1)로 표현되는 황화물계 화합물을 준비하는 단계;(A) preparing a sulfide-based compound represented by the following formula (1);
(나) 상기 단계 (가)의 화합물과 나노 금속 산화물 입자를 혼합하는 단계; 및(B) mixing the compound of step (a) and the nanometer metal oxide particles; And
(다) 상기 단계 (나)의 혼합물을 압축하여 펠렛을 제조하는 단계;(C) compressing the mixture of step (b) to produce a pellet;
를 제공한다. Lt; / RTI &gt;
LiaMbScXd (1)Li a M b S c X d (1)
상기 식에서, In this formula,
M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
상기 화학식 (1)로 표현되는 황화물계 화합물을 제조하는 방법은 그 종류에 제한이 없으나, 예를 들어, 당업계에 널리 알려진 고상법, 공침법, 수열법, 초임계 수열법 등을 사용할 수 있다.The method for producing the sulfide compound represented by the above formula (1) is not limited, and for example, a solid phase method, coprecipitation method, hydrothermal method, supercritical hydrothermal method, and the like can be used .
하나의 예로, 고상법을 사용할 수 있으며, 상세하게는, 리튬황화물, 금속 황화물, 및 리튬 할로겐화물 등 원료 조성물을 혼합한 후, 필요에 따라 건조시키고 불활성 분위기에서 열처리하는 단계, 이를 냉각 후 분쇄하는 단계를 포함할 수 있다.As one example, a solid phase method can be used. More specifically, a raw material composition such as a lithium sulfide, a metal sulfide, and a lithium halide is mixed, followed by drying if necessary and heat treatment in an inert atmosphere. Step &lt; / RTI &gt;
상기 리튬 황화물은 본 발명에서 특별히 한정하지 않으며, 공지의 물질을 선택하여 사용이 가능하다. 대표적으로, Li2S, Li2S2 등이 가능하며, 상세하게는, Li2S일 수 있다.The lithium sulfide is not particularly limited in the present invention, and a known substance can be selected and used. Typically, Li 2 S, Li 2 S 2 and the like are possible, and in particular, it may be Li 2 S.
상기 금속 황화물은 예를 들어, Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상의 금속의 황화물일 수 있다.The metal sulfide may be, for example, a sulfide of at least one metal selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn and Sb.
상기 리튬 할로겐화물은 예를 들어, LiF, LiCl, LiBr, 또는 LiI일 수 있다.The lithium halide can be, for example, LiF, LiCl, LiBr, or LiI.
이 때 혼합되는 리튬황화물, 금속 황화물, 및 리튬 할로겐화물의 함량은 제조되는 황화물계 화합물의 몰비에 따라 다양하게 조절이 가능하며, 본 발명에서 특별히 한정하지 않는다.The content of lithium sulfide, metal sulfide, and lithium halide mixed at this time can be variously adjusted according to the molar ratio of the sulfide compound to be produced, and is not particularly limited in the present invention.
상기 혼합은 당업계에서 통상적인 방식으로 할 수 있으며 예를 들어, 건식 또는 습식 혼합 방식이 사용될 수 있다.The mixing can be carried out in a conventional manner in the art, for example, a dry or wet mixing method can be used.
상기 열처리는 300 내지 700의 온도 범위에서, 약 1분 내지 60분 동안, 구체적으로는 1분 내지 30분, 더욱 구체적으로는 1분 내지 10분 동안 유지하는 것이 좋다. 이러한 열처리는 1회 이상 수행할 수 있으며, 일례로 1차 및 2차 열처리와 같이 2단계에 걸쳐 수행할 수 있으며, 1차보다는 2차 열처리를 고온에서 수행하는 것이 입자 형성 및 화합물의 생성에 유리하다. The heat treatment is preferably carried out in a temperature range of 300 to 700, for about 1 minute to 60 minutes, more specifically for 1 minute to 30 minutes, more specifically for 1 minute to 10 minutes. Such a heat treatment can be performed at least once, and for example, it can be carried out in two steps such as first and second heat treatment, and it is more advantageous to perform the second heat treatment at a higher temperature than the first heat treatment, Do.
이때 열처리의 온도가 300 미만이면 지나치게 낮은 온도로 인하여 잔존 물질들이 수분과 반응하여 황화수소가 발생할 우려가 있고, 이와 반대로 700를 초과하면 황화물계 화합물의 입자가 커져 이로 인해 이온 전도도가 저하되거나 균일한 크기의 입자 제조가 어려워질 우려가 있다.If the temperature of the heat treatment is less than 300, the residual substances may react with moisture to generate hydrogen sulfide. On the contrary, if the temperature exceeds 700, the particles of the sulfide compound become large, There is a possibility that the particle production of the particles becomes difficult.
한편, 상기에서 제조된 황화물계 화합물과 나노 금속 산화물 입자는 앞서 설명한 바와 같이, 중량을 기준으로 80 : 20 내지 99 : 1으로, 상세하게는, 90 : 10 내지 98 : 2의 범위 내에서 혼합할 수 있다.On the other hand, the sulfide compound and the nano-metal oxide particles prepared as described above are mixed in the range of 80:20 to 99: 1 based on weight, specifically, in the range of 90:10 to 98: 2, .
상기 혼합은 건식 또는 습식 혼합 방식이 사용될 수 있으며, 본 발명에서 특별히 한정하지 않으나, 건식 혼합이 바람직하다.The mixing may be performed by a dry or wet mixing method, and is not particularly limited in the present invention, but dry mixing is preferred.
건식 혼합은 통상적인 혼합 분말 제조에 사용하는 방법이 가능하며, 균일한 입자 혼합을 위해 기계적 밀링(milling)을 수행할 수 있다. 기계적 밀링은 시료에 기계전 에너지를 부여하면서 분쇄하는 방법으로, 예를 들어, 롤밀, 볼밀, 메카노퓨전 또는 제트밀 등을 이용할 수 있고, 상세하게는 높은 충격 에너지를 효율적으로 이용한 볼밀을 사용할 수 있다. Dry mixing can be used for conventional mixed powder production, and mechanical milling can be performed for uniform particle mixing. For example, a roll mill, a ball mill, a mechanofusion, a jet mill or the like can be used as the mechanical milling, and a ball mill using the high impact energy efficiently can be used .
기계적 밀링 처리 조건은 사용하는 기기에 따라 적절히 조절할 수 있으며, 회전 속도가 빠르면 생성물의 생성 속도가 빨라지고, 회전 시간이 길수롤 생성물의 원료 조성물에 대한 전환율이 높아진다. 예를 들어, 일반적인 볼밀을 이용할 경우 분당 회전수 1000 rpm 내지 3000 rpm, 및 0.5분 내지 5분 조건에서, 상세하게는 분당 회전수 1500 rpm 내지 2500 rpm, 및 1분 내지 3분 조건에서 이루어지는 것이 바람직하다.The mechanical milling treatment conditions can be appropriately adjusted according to the equipment to be used. If the rotation speed is high, the production rate of the product is increased, and the conversion rate of the long-chain product to the raw material composition is increased. For example, when a general ball mill is used, it is preferable to be performed under the conditions of the revolution per minute of 1000 rpm to 3000 rpm and the period of 0.5 to 5 minutes, more specifically, the revolution per minute of 1500 rpm to 2500 rpm and the period of 1 minute to 3 minutes Do.
이후, 상기 혼합물을 압축하여 고밀도 덩어리 상태인 펠렛을 제조할 수 있다. 펠렛의 형태는 원형, 또는 다각형일 수 있으나, 여기서 특별히 제한은 없다.Thereafter, the mixture is compressed to produce pellets in a high-density lump state. The form of the pellets may be circular or polygonal, but there is no particular limitation.
이러한 합성 과정은 수분 및 산소에 노출되지 않는 글로브박스 또는 드라이룸에 진행될 수 있어, 부산물들의 반응 억제할 수 있으므로 수분 안정성을 높일 수 있다.Such a synthesis process can proceed to a glove box or a dry room which is not exposed to moisture and oxygen, thereby suppressing the reaction of the by-products, thereby enhancing water stability.
전고체All solids 전지 battery
본 발명은 상기 고체 전해질을 포함하는 전고체 전지를 제공한다. The present invention provides a pre-solid battery comprising the solid electrolyte.
상기 전고체 전지는, 양극, 음극, 및 상기 양극과 음극 사이에 게재되는 고체 전해질을 포함한다. The pre-solid battery includes a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode.
이하, 본 발명의 전고체 전지에 대해 구성별로 설명한다.Hereinafter, the entire solid-state battery of the present invention will be described for each structure.
상기 양극은 양극 활물질을 포함하는 양극 합제가 집전체에 도포되어 이루어지며, 상기 양극 합제는 필요에 따라, 바인더, 도전재를 더 포함할 수 있다.The positive electrode may be formed by applying a positive electrode mixture containing a positive electrode active material to a current collector, and the positive electrode mixture may further include a binder and a conductive material, if necessary.
상기 양극 활물질은 예를 들어, LiNi0 .8- xCo0 . 2AlxO2, LiCoxMnyO2, LiNixCoyO2, LiNixMnyO2, LiNixCoyMnzO2, LiCoO2, LiNiO2, LiMnO2, LiFePO4, LiCoPO4, LiMnPO4 및 Li4Ti5O12 등의 리튬 금속 산화물(0<x<1, 0<y<1); Cu2Mo6S8, FeS, CoS 및 MiS 등의 칼코겐화물, 스칸듐, 루테늄, 티타늄, 바나듐, 몰리브덴, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연 등의 산화물, 황화물 또는 할로겐화물이 사용될 수 있으며, 보다 구체적으로는, LiNi0 . 8Co0 . 1Mn0 . 1O2, TiS2, ZrS2, RuO2, Co3O4, Mo6S8, V2O5 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.The positive electrode active material is, for example, LiNi x Co 0 0 .8-. 2 AlxO 2 , LiCo x Mn y O 2 , LiNi x Co y O 2 , LiNi x Mn y O 2 , LiNi x Co y Mn z O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 and Li 4 Ti 5 O 12 (0 <x <1, 0 <y <1); Cu 2 Mo 6 S 8 , chalcogenides such as FeS, CoS and MiS, oxides, sulfides or halides of scandium, ruthenium, titanium, vanadium, molybdenum, chromium, manganese, iron, cobalt, nickel, It may be used, more specifically, LiNi 0. 8 Co 0 . 1 Mn 0 . 1 O 2 , TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , Mo 6 S 8 , and V 2 O 5 may be used, but the present invention is not limited thereto.
상기 양극 활물질의 형상은 특별히 한정되지 않으며, 입자형, 예컨대 구형, 타원형, 직육면체형 등일 수 있다. 양극활물질의 평균 입경은 1 내지 50 ㎛ 범위 내일 수 있으나, 이에만 한정되는 것은 아니다. 양극 활물질의 평균 입경은 예를 들어, 주사형 전자현미경에 의하여 관찰되는 활물질의 입경을 측정하고, 이의 평균값을 계산함으로써 얻을 수 있다.The shape of the cathode active material is not particularly limited and may be a particle shape, for example, a spherical shape, an elliptical shape, a rectangular parallelepiped shape, or the like. The average particle diameter of the cathode active material may be within the range of 1 to 50 占 퐉, but is not limited thereto. The average particle diameter of the cathode active material can be obtained, for example, by measuring the particle size of the active material observed by a scanning electron microscope and calculating an average value thereof.
상기 바인더는 특별히 한정되지 않으며, 폴리비닐리덴 플루오라이드(PVDF) 및 폴리테트라플루오로에틸렌(PTFE) 등의 불소 함유 바인더가 사용될 수 있으나, 이에 한정되는 것은 아니다. The binder is not particularly limited, and a fluorine-containing binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) may be used, but is not limited thereto.
상기 바인더의 함량은 양극 활물질을 고정할 수 있는 정도면 특별히 한정되지 않으며, 양극 전체에 대하여 0 내지 10 중량% 범위 내일 수 있다.The content of the binder is not particularly limited as long as it can fix the cathode active material, and may be in the range of 0 to 10 wt% with respect to the entire anode.
상기 도전재는 양극의 도전성을 향상시킬 수 있으면 특별히 한정되지 않고, 니켈 분말, 산화 코발트, 산화 티탄, 카본 등을 예시할 수 있다. 상기 카본은, 상세하게는, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유 및 플러렌으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 1종 이상 일 수 있다.The conductive material is not particularly limited as long as it can improve the conductivity of the anode, and examples thereof include nickel powder, cobalt oxide, titanium oxide, and carbon. Specifically, the carbon may be any one selected from the group consisting of Ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerene, or one or more thereof.
상기 도전재의 함량은 도전재의 종류 등 기타 전지의 조건을 고려하여 선택될 수 있으며, 예컨대 양극 전체에 대하여 1 내지 10 중량% 범위 내일 수 있다.The content of the conductive material may be selected in consideration of other battery conditions, such as the type of conductive material, and may be, for example, in the range of 1 to 10% by weight based on the entire anode.
상기 양극 활물질, 바인더 및 도전재를 포함하는 양극 합제를 집전체에 도포한 양극 합제 층의 두께는, 예를 들어 0.1 마이크로 미터 내지 1000 마이크로미터일 수 있다.The thickness of the positive electrode material mixture layer in which the positive electrode material mixture containing the positive electrode active material, the binder and the conductive material is applied to the current collector may be, for example, 0.1 to 1000 micrometers.
상기 양극 합제는, 경우에 따라서는 본 발명에 따른 고체 전해질을 양극 합제 전체 중량을 기준으로 0.1 중량% 내지 60 중량%, 상세하게는 10 중량% 내지 50 중량%로 포함할 수 있다. In some cases, the positive electrode mixture may include 0.1 to 60% by weight, more specifically 10 to 50% by weight, based on the total weight of the positive electrode mixture, of the solid electrolyte according to the present invention.
상기 양극 합제 층의 두께는, 예를 들어, 0.1 마이크로 미터 내지 1000 마이크로미터일 수 있다.The thickness of the positive electrode material mixture layer may be, for example, 0.1 micrometer to 1000 micrometer.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, Nickel, titanium, silver, or the like may be used. In addition, various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on the surface may be used.
전고체 전지의 음극은 리튬 금속 또는 리튬 합금을 단독으로 사용하거나 음극 집전체 상에 음극 활물질을 포함하는 음극 합제가 도포된 것을 사용할 수 있다. 상기 음극 합제는 필요에 따라, 앞서 설명한 바와 같은 구성의 바인더, 도전재를 더 포함할 수 있다.The negative electrode of the pre-solid battery may be a lithium metal or a lithium alloy alone or may be coated with a negative electrode mixture containing a negative electrode active material on the negative electrode collector. The negative electrode material mixture may further include a binder and a conductive material as described above, if necessary.
상기 음극 활물질은 리튬 금속, 리튬 합금, 리튬 금속 복합 산화물, 리튬 함유 티타늄 복합 산화물(LTO) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상일 수 있다. 이때 리튬 합금은 리튬과 Na, K, Rb, Cs, In, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로부터 선택되는 적어도 하나의 금속으로 이루어진 합금을 사용할 수 있다. 또한, 리튬 금속 복합 산화물은 리튬과 Si, Sn, Zn, Mg, Cd, Ce, Ni 및 Fe로 이루어진 군으로부터 선택된 어느 하나의 금속(Me) 산화물(MeOx)이고, 일례로 LixFe2O3(0<x≤1) 또는 LixWO2(0<x≤1)일 수 있다. 또한, SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.The negative electrode active material may be at least one selected from the group consisting of lithium metal, a lithium alloy, a lithium metal composite oxide, a lithium-containing titanium composite oxide (LTO), and combinations thereof. The lithium alloy may be an alloy of lithium and at least one metal selected from Na, K, Rb, Cs, In, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn. The lithium metal composite oxide is any one of metal (Me) oxides (MeO x ) selected from the group consisting of lithium and Si, Sn, Zn, Mg, Cd, Ce, Ni and Fe. For example, LixFe 2 O 3 0 < x? 1) or LixWO 2 (0 < x? 1). In addition, SnxMe 1- xMe y O z (Me: Mn, Fe, Pb and Ge; Me ': Al, B, P, Si, Group 1, Group 2 and Group 3 elements of the periodic table, 1? Y? 3; 1? Z? 8); SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO2 2, Bi 2 O 3, Bi 2 O 4 , and Bi 2 O 5 and the like, and carbonaceous materials such as crystalline carbon, amorphous carbon or carbon composite may be used alone or in combination of two or more.
상기 음극 합제는, 경우에 따라서는 본 발명에 따른 고체 전해질을 음극 합제 전체 중량을 기준으로 0.1 중량% 내지 60 중량%, 상세하게는 10 중량% 내지 50 중량%로 포함할 수 있다.The negative electrode material mixture may contain 0.1 to 60% by weight, more specifically 10 to 50% by weight, based on the total weight of the negative electrode material mixture, of the solid electrolyte according to the present invention.
이때, 음극 집전체는 전고체 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.In this case, the anode current collector is not particularly limited as long as it has electrical conductivity without causing any chemical change in the entire solid battery. For example, the cathode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, Carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. The negative electrode current collector may be formed in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like having fine irregularities on its surface.
전술한 바의 구성을 갖는 전고체 전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법을 통해 제조가 가능하다. The production of all the solid batteries having the above-mentioned constitution is not particularly limited in the present invention, and can be produced by a known method.
상세하게는, 양극 및 음극 사이에 본 발명에 따른 고체 전해질을 배치시킨 후 이를 압축 성형하여 셀을 조립한다.Specifically, a solid electrolyte according to the present invention is disposed between an anode and a cathode, and the cell is assembled by compression molding.
상기 고체 전해질은, 상세하게는 고체 전해질 시트 형태일 수 있으며, 고체 전해질을 단독 또는 바인더와 혼합하여 프레스성형하거나, 용매에 분산시켜 슬러리화한 것을 닥터 블레이드나, 스핀코트에 의해 제막하는 방법을 통해 제조할 수 있다.Specifically, the solid electrolyte may be in the form of a solid electrolyte sheet, and may be formed by mixing a solid electrolyte with a binder or by press molding, or by dispersing the solid electrolyte in a solvent to form a slurry by a doctor blade or a spin coat Can be manufactured.
상기 조립된 셀은 외장재 내에 설치한 후 가열 압축 등에 의해 봉지한다. 외장재로는 알루미늄, 스테인레스 등의 라미네이트 팩, 원통형이나 각형의 금속제 용기가 매우 적합하다.The assembled cell is installed in the casing and then sealed by heat compression or the like. Laminate packs made of aluminum, stainless steel or the like, and cylindrical or square metal containers are very suitable for the exterior material.
이하 실시예를 참조하여 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.The following examples are provided for illustrative purposes only and are not intended to limit the scope of the present invention.
<실시예 1>&Lt; Example 1 >
출발원료 Li2S, P2S5, 및 LiCl을 몰비대로 칭량하여 유발에서 혼합한 후, 플레너터리 밀링기에서 6시간 동안 균일 혼합을 수행하였다. 이렇게 얻어진 혼합물을 15파이 크기의 펠렛 형태로 만든 후 진공 분위기 하에서 550도 열처리를 수행하여 Li6PS5Cl를 합성하였다. The starting materials Li 2 S, P 2 S 5 , and LiCl were weighed in the molar ratio, mixed in the mortar, and homogeneously mixed for 6 hours in a planetary mill. The mixture thus obtained was made into a pellet of 15 pie size and heat treated at 550 ° C. under a vacuum atmosphere to synthesize Li 6 PS 5 Cl.
상기 Li6PS5Cl의 황화물계 화합물과 평균 입경이 약 100 nm의 TiO2를 각각 95 mg, 5 mg 칭량하였다. 상기 출발물질을 믹싱용 용기에 넣고 2000 rpm, 1분 이상 믹싱을 수행하여 균일하게 혼합하였다. 혼합물을 회수한 후 유압프레스로 압축하여 펠렛 형태로 가공하여 고체 전해질을 준비하였다. The sulfide compound of Li 6 PS 5 Cl and TiO 2 having an average particle diameter of about 100 nm were weighed 95 mg and 5 mg, respectively. The starting materials were placed in a mixing container and mixed at a rate of 2000 rpm for 1 minute or more to uniformly mix. The mixture was recovered, compressed with a hydraulic press and processed into pellets to prepare a solid electrolyte.
모든 실험은 수분 및 산소에 노출되지 않는 글로브박스 혹은 드라이룸에서 수행하였다.All experiments were performed in a glove box or dryer room that was not exposed to moisture and oxygen.
<비교예 1>&Lt; Comparative Example 1 &
Li6PS5Cl을 단독으로 사용하였다.Li 6 PS 5 Cl alone was used.
<실험예 1><Experimental Example 1>
실시예 1 및 비교예 1에서 각각 얻은 고체 전해질을 별도의 밀폐용기에 온습도계, 황화수소 가스 농도 측정기와 함께 넣어 준비한 이후, 실온(25도), 습도 30%의 대기에 노출시킨 이후 시간에 따른 황화수소 발생량을 확인하여 하기 표 1에 나타내었다. The solid electrolytes obtained in Example 1 and Comparative Example 1 were placed in separate closed containers together with a hygrometer and a hydrogen sulfide gas concentration measuring device and then exposed to an atmosphere at room temperature (25 ° C) and humidity of 30% The amount of generation was confirmed and is shown in Table 1 below.
이온 전도도Ion conductivity
실시예 1Example 1 2.9x10-4 S/cm2.9 x 10 -4 S / cm
비교예 1Comparative Example 1 1.5x10-3 S/cm1.5 x 10 -3 S / cm
상기 표 1에 따르면 실시예 1의 고체 전해질의 리튬 이온 전도도는 2.9x10-4 S/cm로 비교예 1의 고체 전해질 대비 다소 낮아졌으나, 이는 당업계에서 무시할 수 있는 수준으로, 일반적으로, 전고체 전지용 고체 전해질의 실용화에 요구되는 이온 전도도는 실온에서 약 10-4 S/cm 내지 10-3 S/cm 수준이라는 점에 비추어, 실시예 1에 따른 고체 전해질은 성능 구현에는 큰 문제가 없을 것으로 판단된다.According to Table 1, the lithium ion conductivity of the solid electrolyte of Example 1 was 2.9 x 10 -4 S / cm, which was somewhat lower than the solid electrolyte of Comparative Example 1, In view of the fact that the ionic conductivity required for the practical use of the battery solid electrolyte is about 10 -4 S / cm to 10 -3 S / cm at room temperature, the solid electrolyte according to Example 1 does not have a problem do.
<실험예 2><Experimental Example 2>
실시예 1 및 비교예 1에서 각각 얻은 고체 전해질의 수분 안정성을 확인하기 위하여, 대기 노출시의 황화수소 발생량을 측정하였다. 실시예 1 및 비교예 1의 고체 전해질을 각각 100 mg 씩 칭량하였으며, 별도의 밀폐용기에 온습도계, 황화수소 가스 농도 측정기와 함께 넣어 준비하였다. 상기 과정은 모두 노점 -50도 이하의 드라이룸에서 수행하였다. 두 소재를 동시에 실온(25도), 습도 30% 의 대기에 노출시켰으며, 이후 시간에 따른 황화수소 발생량을 모니터링하여 수분과의 반응성을 확인하여 하기 도 1에 나타내었다.In order to confirm the water stability of the solid electrolytes obtained in Example 1 and Comparative Example 1, the amount of hydrogen sulfide generated at the time of exposure to the atmosphere was measured. Each of the solid electrolytes of Example 1 and Comparative Example 1 was weighed in an amount of 100 mg, and each of the solid electrolytes was placed in a separate closed container together with a hygrometer and a hydrogen sulfide gas concentration meter. All of the above steps were performed in a dry room at a dew point of -50 degrees or less. The two materials were simultaneously exposed to the atmosphere at room temperature (25 ° C) and humidity 30%. The amount of hydrogen sulfide generated over time was monitored to determine the reactivity with water.
하기 도 1에 따르면, 비교예 1의 고체 전해질과 비교하여 실시예 1의 고체 전해질은 황화수소 발생속도가 늦고 발생량이 적은 것을 확인할 수 있는 바, 황화물계 화합물 표면에 위치한 나노 금속 산화물이 황화수소 발생 억제에 효과적임을 알 수 있다.According to FIG. 1, the solid electrolyte of Example 1 had a lower hydrogen sulfide production rate and a lower generation amount than the solid electrolyte of Comparative Example 1. As a result, it was found that the nano metal oxide located on the surface of the sulfide compound suppressed hydrogen sulfide generation It can be seen that it is effective.

Claims (14)

  1. 하기 화학식 (1)로 표현되는 황화물계 화합물; 및 A sulfide compound represented by the following formula (1); And
    상기 황화물계 화합물의 표면에 위치하는 나노 금속 산화물 입자를 포함하고, And a noble metal oxide particle located on the surface of the sulfide compound,
    상기 나노 금속 산화물 입자는 MgO, CaO, SrO, BaO, TiO2, ZrO2, Cr2O3, MnO, NiO, ZnO, Al2O3, 및 SnO2로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 고체 전해질:The nano metal oxide particles are MgO, CaO, SrO, BaO, TiO 2, ZrO 2, Cr 2 O 3, MnO, NiO, ZnO, Al 2 O 3, and from the group consisting of SnO 2, characterized in that at least one selected Solid electrolyte:
    LiaMbScXd (1)Li a M b S c X d (1)
    상기 식에서, In this formula,
    M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
    X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
    1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
  2. 제 1 항에 있어서, 상기 나노 금속 산화물 입자의 평균 입경은 0.1 내지 1000 nm인 것을 특징으로 하는 고체 전해질.The solid electrolyte according to claim 1, wherein the average particle size of the nano-metal oxide particles is 0.1 to 1000 nm.
  3. 제 1 항에 있어서, 상기 나노 금속 산화물 입자는 황화물계 화합물 표면의 전체 또는 일부에 피막을 형성하는 것을 특징으로 하는 고체 전해질.The solid electrolyte according to claim 1, wherein the nano-metal oxide particles form a coating on all or part of the surface of the sulfide compound.
  4. 제 3 항에 있어서, 상기 피막은 황화물계 화합물 전체 표면적을 기준으로 60% 내지 100%로 형성되어 있는 것을 특징으로 하는 고체 전해질.The solid electrolyte according to claim 3, wherein the coating is formed at 60% to 100% based on the total surface area of the sulfide compound.
  5. 제 3 항에 있어서, 상기 피막의 평균 두께는 1 내지 2000 nm인 것을 특징으로 하는 고체 전해질.4. The solid electrolyte according to claim 3, wherein the average thickness of the coating is 1 to 2000 nm.
  6. 제 1 항에 있어서, 상기 황화물계 화합물과 나노 금속 산화물 입자는 중량을 기준으로 80 : 20 내지 99 : 1인 것을 특징으로 하는 고체 전해질. The solid electrolyte of claim 1, wherein the sulfide-based compound and the nano-metal oxide particles are 80:20 to 99: 1 by weight.
  7. 제 1 항에 있어서, 상기 황화물계 화합물과 나노 금속 산화물 입자는 중량을 기준으로 90 : 10 내지 98 : 2인 것을 특징으로 하는 고체 전해질.The solid electrolyte of claim 1, wherein the sulfide-based compound and the nano-metal oxide particles have a weight ratio of 90:10 to 98: 2.
  8. 제 1 항 있어서, 상기 나노 금속 산화물 입자는 수분(H2O) 및 황화수소(H2S)를 트랩(trap)하는 것을 특징으로 하는 고체 전해질.The solid electrolyte according to claim 1, wherein the nano metal oxide particles trap moisture (H 2 O) and hydrogen sulfide (H 2 S).
  9. 제 1 항에 있어서, 상기 나노 금속 산화물 입자는 MgO, CaO, TiO2, ZrO2, 및 ZnO로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 고체 전해질.The solid electrolyte according to claim 1, wherein the nano-metal oxide particles are at least one selected from the group consisting of MgO, CaO, TiO 2 , ZrO 2 , and ZnO.
  10. 제 1 항에 있어서, 상기 a, b, 및 c는 각각 5.5<a<6.5, 0.5<b<1.5, 및 4.5<c<5.5인 것을 특징으로 하는 고체 전해질.4. The solid electrolyte according to claim 1, wherein a, b, and c satisfy the following relationships: 5.5 <a <6.5, 0.5 <b <1.5, and 4.5 <c <5.5.
  11. 제 1 항에 따른 고체 전해질을 제조하는 방법으로서, A process for producing the solid electrolyte according to claim 1,
    (가) 하기 화학식 (1)로 표현되는 황화물계 화합물을 준비하는 단계;(A) preparing a sulfide-based compound represented by the following formula (1);
    (나) 상기 단계 (가)의 화합물과 나노 금속 산화물 입자를 혼합하는 단계; 및,(B) mixing the compound of step (a) and the nanometer metal oxide particles; And
    (다) 상기 단계 (나)의 혼합물을 압축하여 펠렛을 제조하는 단계;(C) compressing the mixture of step (b) to produce a pellet;
    를 포함하는 것을 특징으로 하는 고체 전해질 제조 방법:The method for producing a solid electrolyte according to claim 1,
    LiaMbScXd (1)Li a M b S c X d (1)
    상기 식에서, In this formula,
    M은 Al, Si, P, Ga, Ge, As, In, Sn, 및 Sb로 이루어진 군에서 선택되는 하나 이상이고;M is one or more selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb;
    X는 F, Cl, Br, I, O, Se, 및 Te로 이루어진 군에서 선택되는 하나 이상이며; 및X is at least one selected from the group consisting of F, Cl, Br, I, O, Se, and Te; And
    1≤a≤7, 0≤b≤3, 4≤c≤7및 0≤d≤1이다.1? A? 7, 0? B? 3, 4? C? 7 and 0? D?
  12. 제 11 항에 있어서, 상기 단계 (나)의 혼합은 분당 회전수 1000 내지 3000 rpm, 및 0.5분 내지 5분 조건에서 밀링(milling)하는 것을 포함하는 것을 특징으로 하는 고체 전해질 제조 방법.12. The method of claim 11, wherein the mixing of step (b) comprises milling at a revolution rate of 1000 to 3000 rpm and 0.5 to 5 minutes.
  13. 제 11 항에 있어서, 상기 단계 (가) 내지 (다)는 각각 수분 및 산소에 노출되지 않는 조건에서 이루어지는 것을 특징으로 하는 고체 전해질 제조 방법.12. The method of claim 11, wherein the steps (a) to (c) are performed under conditions that are not exposed to moisture and oxygen, respectively.
  14. 제 1 항에 따른 고체 전해질을 포함하는 것을 특징으로 하는 전고체 전지.A pre-solid battery comprising the solid electrolyte according to claim 1.
PCT/KR2018/014718 2017-11-29 2018-11-27 Solid electrolyte, preparation method therefor, and solid-state battery comprising same WO2019107878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0161730 2017-11-29
KR1020170161730A KR102044506B1 (en) 2017-11-29 2017-11-29 Solid Electrolyte, Method for Preparing the Same and All Solid Battery Compring the Same

Publications (1)

Publication Number Publication Date
WO2019107878A1 true WO2019107878A1 (en) 2019-06-06

Family

ID=66665688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014718 WO2019107878A1 (en) 2017-11-29 2018-11-27 Solid electrolyte, preparation method therefor, and solid-state battery comprising same

Country Status (2)

Country Link
KR (1) KR102044506B1 (en)
WO (1) WO2019107878A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097560A (en) * 2021-04-09 2021-07-09 浙江大学山东工业技术研究院 High-air-stability nanocrystalline sulfide solid electrolyte, solid-state battery and preparation method of solid-state battery
CN114899479A (en) * 2022-05-11 2022-08-12 南开大学 Double-doped sulfide solid electrolyte and preparation method and application thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220017012A (en) 2020-08-03 2022-02-11 한국전자기술연구원 Solid electrolytes coated with hydrophobic polymer and all-solid batteries comprising the same
KR102379198B1 (en) 2020-08-03 2022-03-28 한국전자기술연구원 Solid electrolyte membrane and all-solid batteries comprising the same
KR20220032854A (en) 2020-09-08 2022-03-15 인켐스주식회사 Process of manufacturing Solid Electrolyte for Secondary Battery
KR20220078041A (en) 2020-12-03 2022-06-10 인켐스주식회사 Process of manufacturing Solid Electrolyte for Secondary Battery
CN114388803B (en) * 2021-12-28 2023-03-24 广东马车动力科技有限公司 Passivation layer sulfide solid electrolyte and preparation method and application thereof
KR20230165525A (en) 2022-05-27 2023-12-05 인켐스주식회사 Manufacturing method for sulfide-based solid electrolyte, sulfide-based solid electrolyte, solid electrolytee, all-solid battery
KR20240031075A (en) * 2022-08-30 2024-03-07 주식회사 엘지화학 Complex solid electrolyte, manufacturing method of the same and all-solid-sate battery comprising the same
WO2024080493A1 (en) * 2022-10-14 2024-04-18 삼성에스디아이 주식회사 Solid electrolyte, method for preparing same, positive electrode, and all-solid rechargeable battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103146A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and secondary battery using it
KR101302896B1 (en) * 2008-02-12 2013-09-06 도요타지도샤가부시키가이샤 All-solid lithium secondary battery
KR101621831B1 (en) * 2013-09-05 2016-05-17 쇼와 덴코 가부시키가이샤 Ultrafine particles of titanium dioxide and process for producing the same
KR20160128670A (en) * 2015-04-29 2016-11-08 현대자동차주식회사 Solid eletrolyte and all-solid-state battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103146A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and secondary battery using it
KR101302896B1 (en) * 2008-02-12 2013-09-06 도요타지도샤가부시키가이샤 All-solid lithium secondary battery
KR101621831B1 (en) * 2013-09-05 2016-05-17 쇼와 덴코 가부시키가이샤 Ultrafine particles of titanium dioxide and process for producing the same
KR20160128670A (en) * 2015-04-29 2016-11-08 현대자동차주식회사 Solid eletrolyte and all-solid-state battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOTA, S. ET AL.: "Synthesis, Structure, and Electrochemical Properties of Crystalline Li-P-S-0 Solid Electrolytes", SOLIDE STATE IONICS, vol. 288, 2016, pages 229 - 234, XP029529124, DOI: doi:10.1016/j.ssi.2016.02.002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097560A (en) * 2021-04-09 2021-07-09 浙江大学山东工业技术研究院 High-air-stability nanocrystalline sulfide solid electrolyte, solid-state battery and preparation method of solid-state battery
CN114899479A (en) * 2022-05-11 2022-08-12 南开大学 Double-doped sulfide solid electrolyte and preparation method and application thereof

Also Published As

Publication number Publication date
KR102044506B1 (en) 2019-11-13
KR20190062998A (en) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2019107878A1 (en) Solid electrolyte, preparation method therefor, and solid-state battery comprising same
WO2019107879A1 (en) Solid electrolyte, preparation method therefor, and solid-state battery comprising same
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2019059724A2 (en) Method for manufacturing electrode for secondary battery and electrode manufactured thereby
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2015133692A1 (en) Cathode active material, lithium secondary battery having same, and method for preparing same
WO2017213462A1 (en) Positive electrode active material for sodium secondary battery, and method for preparing same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2015060686A1 (en) Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
KR102002597B1 (en) Method for Preparing Solid Electrolyte, Solid Electrolyte Prepared by Using the Same, and All Solid Battery Comprising the Solid Electrolyte
WO2014010973A1 (en) Bimodal-type anode active material and lithium secondary battery including same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
EP3890063A1 (en) Negative electrode material and battery
WO2019054811A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery including same
WO2022014736A1 (en) All-solid-state battery comprising oxide-based solid electrolyte for low-temperature sintering process, and method for manufacturing same
WO2020111318A1 (en) Cathode active material for lithium secondary battery
WO2022086098A1 (en) Anode active material comprising graphene-silicon composite, manufacturing method therefor, and lithium secondary battery comprising same
WO2019031766A2 (en) Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same
WO2017123026A1 (en) Sulfide-based solid electrolyte and all-solid-state battery applied therewith
WO2019017736A9 (en) Metal-doped cathode active material for sodium secondary battery, preparation method therefor, and sodium secondary battery comprising same
WO2020197197A1 (en) Cathode active material particles for sulfide-based all-solid battery
WO2019235733A1 (en) Positive electrode active material, preparing method therefor, and lithium secondary battery including same
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884231

Country of ref document: EP

Kind code of ref document: A1