WO2019107337A1 - Vehicle vibration control device - Google Patents

Vehicle vibration control device Download PDF

Info

Publication number
WO2019107337A1
WO2019107337A1 PCT/JP2018/043513 JP2018043513W WO2019107337A1 WO 2019107337 A1 WO2019107337 A1 WO 2019107337A1 JP 2018043513 W JP2018043513 W JP 2018043513W WO 2019107337 A1 WO2019107337 A1 WO 2019107337A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuators
sensor
output
temperature sensors
temperature
Prior art date
Application number
PCT/JP2018/043513
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 香田
友行 李
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019557227A priority Critical patent/JP6876149B2/en
Priority to CN201880076716.6A priority patent/CN111433059B/en
Publication of WO2019107337A1 publication Critical patent/WO2019107337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0185Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method for failure detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a vehicle vibration control device suitably used to reduce, for example, vibration of a railway vehicle.
  • a temperature sensor in order to detect coil temperature of a linear actuator, a temperature sensor is provided in u phase coil group and w phase coil group, respectively.
  • no abnormality diagnosis of the temperature sensor is performed, and it is difficult to cope with the abnormality of the sensor.
  • all temperature sensors are determined to be abnormal although the other temperature sensors operate normally, so it is necessary to limit the current and output of the actuator. Become. For this reason, it is difficult to secure the ride comfort of the vehicle to be originally expected.
  • An object of the present invention is to provide a vehicle vibration control apparatus capable of identifying a temperature sensor that has become abnormal by comparing output values when any of a plurality of temperature sensors is abnormal. .
  • the first and second actuators each of which is provided on one of the two bogies of one rail car and generates a force
  • the other of the two bogies are provided on the other.
  • the present invention is applied to a vehicle vibration control device provided with other first and second actuators that generate a force, and a control device that controls the first and second actuators.
  • each first actuator and each second actuator comprises a three-phase linear motor provided with a temperature sensor in at least one phase coil.
  • the control device compares the output value of each of the in-phase temperature sensors provided in each first actuator between one carriage and the other carriage, and the in-phase temperature sensor provided in each second actuator Compare the output values of the sensor value comparison and determination unit between the two bogies that compare the output values of each and the in-phase temperature sensors provided in the first and second actuators in one bogie, and compare the other bogies
  • the sensor value comparison and determination unit with the same carriage that compares the output values of the in-phase temperature sensors provided in the first and second actuators, the sensor value comparison and determination unit between two carriages, and the same carriage And a sensor abnormality determination unit that specifies an abnormal temperature sensor among the temperature sensors based on the determination result of the sensor value comparison and determination unit.
  • the in-phase temperature sensor is a temperature sensor provided in each of the coils through which the in-phase current of the at least one phase coil flows.
  • an abnormal sensor can be properly identified by mutual comparison of output values, regardless of which temperature sensor becomes abnormal. it can.
  • FIG. 1 It is a front view which shows the rail vehicle with which the vehicle vibration control apparatus by embodiment of this invention was applied. It is the top view which looked at the inside of the railway vehicle from the upper side in order to demonstrate the positional relationship of the inverter in FIG. 1, an actuator, an acceleration sensor, etc.
  • FIG. It is a control block diagram which shows the control apparatus in FIG. It is a longitudinal cross-sectional view which shows the specific structure of a linear actuator. It is a characteristic line figure showing the 1st pattern in performing failure determination of a temperature sensor. It is a characteristic diagram showing the 2nd pattern in performing failure determination of a temperature sensor. It is a characteristic diagram showing the 3rd pattern in performing failure determination of a temperature sensor.
  • FIGS. 1 to 11 show the first embodiment.
  • a railway vehicle 1 includes a vehicle body 2 on which, for example, passengers, passengers and the like get on, and front and rear bogies 3 provided below the vehicle body 2. These two bogies 3 are disposed apart from each other on the front side and the rear side of the vehicle body 2, and each bogie 3 is provided with four wheels 4.
  • the railcar 1 is driven to travel along the rail 5 in the direction of arrow A, for example, when it is advanced, as the wheels 4 roll (rotate) on the left and right rails 5 (only one is shown).
  • a linear actuator 7 (hereinafter referred to as an actuator 7) is provided.
  • These actuators 7 consist of a three-phase linear motor provided between the vehicle body 2 and the wheel 4 (carriage 3), and constitute, for example, an electromagnetic suspension that buffers up and down vibrations.
  • Two actuators 7 provided separately in the left and right directions for each carriage 3 constitute first and second actuators 7A to 7D that generate adjustable forces in the upper and lower directions.
  • the actuator 7 as an electromagnetic suspension is disposed in two axes with respect to one carriage 3 and is disposed in four axes with respect to one vehicle (two carriages 3). As shown in FIG. 2, these actuators 7 are provided on the front carriage 3 located on the front side of the vehicle body 2 and are disposed on the first actuators 7A, FR on the FL side spaced apart in the left and right directions. And a second actuator 7C on the RL side and a second actuator 7D on the RR side, which are provided on the rear carriage 3 located on the rear side and are spaced apart in the left and right directions. ing.
  • the actuators 7 are attached to the railcar 1 in the upper and lower directions, and the first actuators 7A, 7C and the second actuators 7B, 7D are connected to the left of each truck 3 with respect to the traveling direction of the railcar 1, It is provided separately in the right direction.
  • actuators 7 individually buffer and reduce the vibrations of the vehicle body 2 with respect to the front and rear bogies 3 in the left and right directions, respectively.
  • the damping force is variably controlled in accordance with a command signal individually output from the control device 10 described later.
  • the actuator 7 may be configured to adjust the damping force characteristics continuously between hard characteristics and soft characteristics, or may be adjustable in two or more steps.
  • the first inverters 8A and 8C and the second inverters 8B and 8D are power supply circuits for the actuators 7 (the first actuators 7A and 7C and the second actuators 7B and 7D). .
  • the power line side of the inverter 8 is connected to the power supply (not shown) of the vehicle, and the power line side is connected to the actuators 7 (first actuators 7A, 7C and second actuators 7B, 7D).
  • the inverter 8 includes a plurality of switching elements such as transistors, field effect transistors (FETs), insulated gate bipolar transistors (IGBTs), etc., and each switching element has its open and closed (ON-OFF) states. Control is performed based on a command signal from the control device 10.
  • the inverter 8 drives the actuator 7 disposed in each wheel based on the command signal from the control device 10 and the power from the power supply.
  • the actuator 7 electromagnétique actuator
  • power is supplied to the actuator 7 from the power supply via the inverter 8.
  • the inverter 8 generates three-phase (u-phase, v-phase, w-phase) AC power from the power supplied from the power supply via the power line, and the coils of each actuator 7 via the power line Power is supplied to 25A, 25B and 25C.
  • the vehicle body 2 detects accelerations in the upper and lower directions of the vehicle body 2 as sprung accelerations at respective positions on four corner sides separated in the front and back directions and left and right directions.
  • a total of four acceleration sensors 9 are provided.
  • the acceleration sensors 9 are respectively mounted on a plurality of different places of the railcar 1 to constitute a plurality of sensors (behavior sensors) for detecting the behavior of the railcar 1.
  • the acceleration sensor 9 for example, an analog acceleration sensor of a piezoelectric type, a piezoresistive type or the like is used, and in particular, an acceleration sensor excellent in water resistance and heat resistance is preferably used.
  • the first acceleration sensor 9 is disposed at a position near the first actuator 7A on the front left side (FL) of the vehicle body 2, and the second acceleration sensor 9 is It is arrange
  • the third acceleration sensor 9 is disposed at the rear left side (RL) of the vehicle body 2 and at a position close to the other first actuator 7C.
  • the fourth acceleration sensor 9 is disposed at the rear right side (RR) of the vehicle body 2 2) It is disposed at a position close to the actuator 7D.
  • Each acceleration sensor 9 outputs a detection signal of acceleration detected at each position to the control device 10 described later as different signals (detection signals of vehicle behavior).
  • the acceleration sensor 9 is not limited to the front left side, the front right side, the rear left side, and the rear right side of the vehicle body 2.
  • the acceleration sensor 9 may be disposed at the front center of the vehicle body 2, the center left side, the center right side, the rear center,
  • the sensor arrangement on the vehicle body 2 may take any form.
  • the number of acceleration sensors 9 is not limited to four, and may be freely selected according to the purpose of measurement and control. However, it is desirable to arrange at least two.
  • the control device 10 that variably controls the generated damping force of each actuator 7 will be described.
  • the control device 10 is installed at a predetermined position of the railcar 1 (for example, a position substantially at the center of the vehicle body 2 as shown in FIG. 2).
  • the control device 10 is constituted by, for example, a microcomputer, and the inverter 8, the acceleration sensor 9, and temperature sensors 32 and 33 described later are connected to the input side thereof.
  • the actuator 7 is connected to the output side of the control device 10 via an inverter 8.
  • control device 10 is connected to, for example, a control device (not shown) of another vehicle body connected (connected) to the vehicle body 2 shown in FIG.
  • Vehicle information (for example, traveling position of the vehicle, traveling speed, etc.) is input / output via the communication line 11.
  • One control device 10 is disposed on one vehicle body 2, performs communication internally with the upper part of the vehicle via the communication line 11, and performs calculation internally based on a sensor signal, and each actuator 7 (specifically, The inverter 8) is supplied with a current based on the damping force command, and, for example, failure diagnosis, abnormality detection, and the like of each actuator 7 are performed.
  • the control device 10 has a memory 12 as a storage unit including, for example, a ROM, a RAM, a non-volatile memory, etc.
  • a memory 12 for example, temperature sensors 32, 33 shown in FIGS.
  • the control device 10 diagnoses failure of the control controller 13 that variably controls the generated damping force of the actuator 7 via the inverter 8 and the plurality of temperature sensors 32 and 33 respectively provided to the actuator 7.
  • a sensor value comparison and determination unit 14 between two bogies for performing (abnormality determination), a sensor value comparison and determination unit 15 for the same bogie, a sensor malfunction determination unit 16, and the memory 12 are configured.
  • the controller 13 is configured to include a command signal calculation unit 13A and a controllable temperature change unit 13B.
  • the command signal calculation unit 13A of the controller 13 detects a detection signal or the like from the acceleration sensor 9 every sampling time in order to reduce vibrations such as roll (rolling) and pitch (swinging in the forward and backward directions) of the vehicle body 2. While reading, for example, a command signal (a current value of a control command) is obtained by calculation according to the skyhook theory (skyhook control law). Then, the command signal operation unit 13A individually outputs the command signal to the inverter 8 (the first inverters 8A, 8C and the second inverters 8B, 8D in FIG. 2), and the actuator 7 (the second in FIG. 2). Damping force characteristics of each of the actuators 7A and 7C and the second actuators 7B and 7D are variably controlled.
  • the control law of the actuator 7 is not limited to the skyhook control law. For example, an LQG control law or an H ⁇ control law may be used.
  • the controllable temperature changing unit 13B of the controller 13 sets the controllable temperature threshold to the threshold value. It has a function of changing to a second temperature upper limit value T ⁇ smaller than the temperature upper limit value T ⁇ of 1. Then, after the change of the controllable temperature threshold value, the drive control of the actuator 7 is continued based on the detection signal (output value) of a normal temperature sensor among the plurality of temperature sensors 32 and 33 in which no abnormality is detected. Be done.
  • the sensor value comparison / determination unit 14 between two carriages is a first actuator 7A, 7C, a second actuator 7B, provided on one carriage (the carriage 3 on the front side) and another carriage (the carriage 3 on the rear side).
  • the output values of the respective in-phase temperature sensors 32 and 7 of 7D are shown in FIG. Compare and determine according to the procedure.
  • the sensor value comparison / determination unit 15 in the same carriage has output values T1u of the temperature sensors 32 and 33 in phase with the first actuators 7A and 7C and the second actuators 7B and 7D provided on the same carriage 3, respectively.
  • T1w, T2u, T2w, T3u, T3w, T4u, and T4w are compared and determined according to the processing procedure shown in FIG. 9 as described later.
  • the sensor abnormality determination unit 16 of the control device 10 calculates an abnormal temperature sensor (a malfunctioning temperature sensor) among the temperature sensors 32 and 33 based on the determination results of the comparison and determination units 14 and 15, which will be described later. As shown in FIG. 10, the process is specified according to the procedure shown in FIG.
  • the actuator 7 has, for example, a stator 21 disposed on the side of the vehicle body 2 and a mover 26 disposed on the side of the carriage 3 (wheels 4).
  • the coil member 25 of the armature 23 provided on the stator 21 A three-phase linear motor (three-phase linear synchronization) motor is configured by the permanent magnets 31 provided on the mover 26.
  • the actuator 7 is interposed between the vehicle body 2 (spring upper member) and the carriage 3 (spring lower member) on the wheel 4 side, and the relatively displaceable coaxial inner cylinder (displacement member) and outer cylinder
  • a coil member 25 (coils 25A, 25B, 25C) comprising a coil group of a plurality of phases provided on the rod 22 corresponding to the inner cylinder of the (displacement member) via the core 24 and a tube corresponding to the outer cylinder
  • It is configured as a cylindrical linear electromagnetic actuator including a permanent magnet 31 as a magnetic member provided on the (yoke) 27 and facing the coil member 25.
  • the stator 21 and the mover 26 of the actuator 7 are linearly displaceable relative to each other as a first member and a second member interposed between the vehicle body 2 and the carriage 3.
  • first and second members the case where the first member is the stator 21 and the second member is the mover 26 is illustrated.
  • the first member may be a mover
  • the second member may be a stator.
  • the stator 21 corresponding to the first member is roughly configured by the rod 22 and the armature 23.
  • the rod 22 is formed, for example, in a bottomed cylindrical shape and extends in the axial direction (that is, in the direction of relative displacement in FIG. 4 which is the direction of relative displacement) in the stroke direction.
  • a bottom 22B closing the side (the upper end in FIG. 4) and a radial inner side of the rod cylindrical portion 22A are concentrically formed with the rod cylindrical portion 22A, and one end (the upper end in FIG. 4) is the bottom 22B.
  • an inner cylindrical portion 22C axially extended to the position and closed by the bottom 22B.
  • the other end side (lower end side in FIG. 4) of the inner cylindrical portion 22C of the rod 22 axially extends on the inner peripheral side of the armature 23 (core 24), and the core 24 is formed by using, for example, fitting, press fitting or the like. It is fixed inside.
  • a mounting eye 22D attached to a spring (for example, the vehicle body 2) of the railway vehicle 1 is provided at the bottom 22B of the rod 22.
  • the mounting eye 22D is a mounting member for mounting the bottom 22B (projecting end) of the rod 22 to the sprung member (vehicle body 2 side) of the vehicle.
  • an armature 23 is provided on the open end side (lower end side in FIG. 4) of the rod cylindrical portion 22A so as to be integrated (fixed).
  • the armature 23 includes, for example, a substantially cylindrical core 24 made of a magnetic material, and a plurality of coils 25A, 25B, 25C provided on the core 24 and constituting the coil member 25 (that is, u-phase coil 25A, v-phase coil 25B , W-phase coil 25C).
  • the number of coil members 25 is not limited to three, and may be appropriately changed according to design specifications and the like, for example, six, nine, and twelve.
  • the mover 26 is a tube 27 as a yoke (outer cylinder) disposed on the outer peripheral side of the armature 23 (the core 24 and the coils 25A, 25B, 25C) and extends inside the tube 27 in the stroke direction. It comprises a guide rod 28 and a plurality of permanent magnets 31 as magnetic members provided in the tube 27 and facing the coils 25A, 25B, 25C with a gap in the radial direction.
  • the tube 27 is formed in a cylindrical shape with a bottom using, for example, a magnetic material that forms a magnetic path when placed in a magnetic field, such as carbon steel pipe for machine structure (STKM 12A), and extends in the axial direction that is the stroke direction. ing. That is, the tube 27 forms a magnetic circuit of the actuator 7 by using a magnetic material, and also has a function as a cover for preventing leakage of the magnetic flux of the permanent magnet 31 described later to the outside.
  • a magnetic material that forms a magnetic path when placed in a magnetic field
  • STKM 12A carbon steel pipe for machine structure
  • the tube 27 is positioned at a cylindrical portion 27A extending in the axial direction, a bottom portion 27B closing the other end side (lower end side in FIG. 4) of the cylindrical portion 27A, and an opening side (one end side) of the cylindrical portion 27A.
  • the annular bearing mounting portion 27C extends inward in the radial direction toward the rod 22 side of the stator 21.
  • a plurality of permanent magnets 31 are arranged in line in the axial direction inside the cylindrical portion 27A.
  • the bottom 27B is provided with a guide rod 28 located inside the cylinder 27A and extending in the axial direction from the bottom 27B to the inside of the armature 23 (the inside of the inner cylinder 22C of the rod 22).
  • the guide rod 28 slides relative to the inside of the inner cylindrical portion 22C of the rod 22 in the axial direction via the first and second bearings 29A and 29B.
  • the first bearing 29A is provided, for example, on the inner peripheral side of the rod 22 (inner cylindrical portion 22C)
  • the second bearing 29B is provided, for example, on the inner peripheral side of the core 24.
  • the guide rod 28 adopts a configuration in which the guide rod 28 is formed integrally with the bottom of the tube 27 with the tube 27 or a configuration in which the guide rod 28 separate from the tube 27 is fixed to the bottom 27B using screws or bolts. can do.
  • a mounting eye 27D is provided on the bottom 27B of the tube 27 so as to be opposite to the guide rod 28 in the axial direction.
  • the mounting eye 27D is a mounting member for mounting the tube 27 on the unsprung member (the carriage 3 side) of the vehicle.
  • a third bearing 30 formed of a sliding member such as a bearing, a sleeve, and the like slidingly contacting the outer peripheral surface of the rod 22 is provided on the inner peripheral surface of the bearing mounting portion 27C.
  • the bearing mounting portion 27C and the third bearing 30 constitute a rod guide that slidably supports the rod 22 in the axial direction.
  • the permanent magnets 31 axially adjacent to each other have, for example, opposite polarities.
  • the even-numbered permanent magnet 31 counted from the one end is The inner circumferential surface side is an S pole and the outer circumferential surface side is an N pole.
  • each permanent magnet 31 may be, for example, a ring magnet formed integrally in a cylindrical shape, or a segmented segment magnet formed in an annular shape by arranging a plurality of arc-shaped magnet elements in the circumferential direction. Can.
  • the number of permanent magnets 31 is not limited to the illustrated example.
  • the tube 27 constituting the yoke is preferably a magnetic body from the viewpoint of magnetic circuit and magnetic leakage, but at least one of the third bearing 30 and the bearing mounting portion 27C is preferably a nonmagnetic body.
  • the temperature sensors 32 and 33 are sensors that detect the heat generation temperature of the armature 23 (coil member 25).
  • the u-phase temperature sensor 32 is disposed in the vicinity of the coil 25A (that is, the u-phase coil 25A) which easily rises in temperature with operation in the normal stroke region, and the w-phase temperature sensor 33 is heated. It is arrange
  • These temperature sensors 32, 33 are respectively disposed on the armature 23 (near the coil member 25) of the actuator 7 (the first actuators 7A, 7C and the second actuators 7B, 7D).
  • the temperature sensor 32 (FL) shown in FIG. 3 detects the temperature in the vicinity of the u-phase coil 25A as an output value T1u
  • the temperature sensor 33 (FL) detects the temperature in the vicinity of the w-phase coil 25C as, for example, an output value T1w.
  • the temperature sensor 32 (FR) detects the temperature near the u-phase coil 25A as, for example, the output value T2u
  • the temperature sensor 33 (FR ) Detects the temperature near the w-phase coil 25C as an output value T2w, for example.
  • the temperature sensor 32 (RL) shown in FIG. 3 detects the temperature near the u-phase coil 25A as the output value T3u, for example, The sensor 33 (RL) detects the temperature in the vicinity of the w-phase coil 25C as, for example, an output value T3w.
  • the temperature sensor 32 (RR) detects the temperature near the u-phase coil 25A as, for example, the output value T4u, and the temperature sensor 33 (RR ) Detects the temperature near the w-phase coil 25C as, for example, an output value T4w.
  • the v-phase coil 25B located midway between the u-phase coil 25A and the w-phase coil 25C tends to have the highest temperature. Therefore, the detection temperature of the u-phase coil 25A and the w-phase coil 25C on both sides (output values T1u and T1w of the temperature sensors 32 and 33) is the upper limit temperature for maintaining the durability and life of the v-phase coil 25B.
  • the first upper temperature limit T ⁇ is determined as derived from the above in consideration of the thermal resistance.
  • the controller 13 of the control device 10 performs the first actuator Control is performed to limit the temperature rise by limiting the output of 7A. This point is the same for the other actuators 7 B to 7 D, so the description will be omitted.
  • the second temperature upper limit value T ⁇ is, for example, the durability of the u-phase coil 25A, the temperature which is the upper limit for maintaining the life, the detection temperature of the w-phase coil 25C on the opposite side (output value of the temperature sensor 33 T1w) can be derived in consideration of thermal resistance, or the durability of w-phase coil 25C, the upper limit temperature for maintaining the life is the detected temperature of u-phase coil 25A on the opposite side (output value of temperature sensor 32 It is a temperature upper limit value set so as to be derived in consideration of the thermal resistance from T1 u). As described above, since the first temperature upper limit value T ⁇ and the second temperature upper limit value T ⁇ are different in thermal resistance to be considered, the first temperature upper limit value T ⁇ is the second temperature upper limit value T ⁇ . The temperature is higher than that (T ⁇ > T ⁇ ).
  • the first pattern for performing abnormality determination (failure determination) of the temperature sensors 32 and 33 is the temperature at the start of detection with the characteristic line 35 indicated by a dotted line, as opposed to the characteristic line 34 at the normal time indicated by a solid line in FIG. Is a failure pattern in which the temperature is lower than the lower limit threshold. Further, another characteristic line 36 indicated by a dotted line is a failure pattern in which the detected temperature is higher than the upper limit threshold.
  • the output value (detected temperature) of the temperature sensors 32 and 33 is provided with an upper threshold and a lower threshold. When it becomes, it becomes possible to detect failure of temperature sensors 32 and 33 appropriately by judging as sensor abnormalities.
  • the characteristic line 37 shown by the dotted line shifts at almost the same temperature although the temperature after the start of detection is slightly higher than the lower limit threshold, compared to the normal characteristic line 34 shown by the solid line. It is a failure pattern.
  • the other characteristic line 38 indicated by the dotted line has a failure pattern in which the temperature after the start of detection is slightly lower than the upper threshold but changes at substantially the same temperature.
  • the temperature sensor 32 or 33 is peeled off from the object to be measured (for example, the coil 25A or 25C), or the output value is fixed at a constant value due to a failure of the temperature sensor body or the measuring circuit. That's the case.
  • the failure detection method changes depending on the value at which the output values of the temperature sensors 32, 33 are fixed. For example, in the case of sticking above the upper threshold or below the lower threshold, it is a simple output abnormality and can be detected as a sensor failure. However, when sticking within the normal range (more than the lower limit threshold and less than the upper limit threshold), for example, the temperature which becomes an abnormality candidate depending on whether the deviation is large compared with the output value of the temperature sensor provided in the other actuator 7 Although the sensor can be detected, it is not possible to specify an abnormal axis (which actuator 7 has a failure of the temperature sensor). The reason is that when a plurality of temperature sensors are in the normal range, it is necessary to determine which sensor output value is considered to be normal, and it is difficult to identify an abnormal axis.
  • the third pattern shown in FIG. 7 is the characteristic line 34 shown by the dotted line, while the characteristic line 34 shown by the dotted line has a gradually lower temperature than the characteristic line 34 shown by the solid line.
  • the third pattern of such a failure is when the temperature sensor 32 or 33 peels off only a part of the object to be measured, and the change in output value becomes gentler than that in the normal state.
  • the time constant of the output value of the temperature sensors 32 and 33 is large because a gap is formed between the temperature sensor 32 or 33 and the object to be measured.
  • the output difference between the normal state and the abnormal state is small, it is difficult to detect an abnormality due to the difference (output difference) between the output values of the plurality of temperature sensors. That is, in an environment where there is a temperature imbalance, it is difficult to determine whether the output value of the temperature sensor is higher or lower than that in the normal state. For example, by calculating the output difference (deviation) with another temperature sensor, it is possible to judge that the temperature sensor has a failure when the deviation exceeds a certain threshold, but in this case, the temperature sensor has a failure. It can not be determined whether it is a temperature difference due to the above or a temperature difference due to temperature imbalance, and there is a possibility that it may be erroneously detected as a failure of the temperature sensor.
  • the control device 10 includes two sensor value comparison and determination units (a sensor value comparison and determination unit 14 between two carriages, and a sensor value comparison and determination unit 15 for the same carriage) And a sensor abnormality determination unit 16.
  • a sensor value comparison and determination unit 14 between two carriages, and a sensor value comparison and determination unit 15 for the same carriage
  • a sensor abnormality determination unit 16 As a result, even if any one of the plurality of temperature sensors 32, 33 attached to the actuator 7 (the first actuators 7A, 7C and the second actuators 7B, 7D in FIG. 2) becomes abnormal, the output is It is made possible to identify a failed temperature sensor by mutual comparison of values.
  • the sensor value comparison / determination unit 14 between two bogies follows one processing procedure shown in FIG. 8 described later (for example, the bogie 3 on the front side) and the other bogie (for example, the bogie 3 on the rear side) While comparing the output values T1u and T3u of the in-phase temperature sensors 32 provided in the first actuators 7A and 7C with each other, and comparing the output values T1w and T3w of the other in-phase temperature sensors 33 The output values T2u and T4u of the in-phase temperature sensors 32 provided in the second actuators 7B and 7D are compared, and a comparison operation is performed to compare the output values T2w and T4w of the other in-phase temperature sensors 33.
  • the sensor value comparison and determination unit 14 between the two bogies is the difference between the output values T1u and T3u of the temperature sensors 32 provided in the first actuators 7A and 7C (more specifically, the absolute value of the difference between the two). It is determined whether or not
  • the sensor value comparison and determination unit 14 between the two bogies is the difference between the output values T2u and T4u of the temperature sensors 32 provided in the second actuators 7B and 7D (more specifically, the absolute value of the difference between the two). It is determined whether or not
  • the sensor value comparison / determination unit 14 between the two bogies is, for example, the output value T1u of the temperature sensor 32 that detects the temperature near the u-phase coil 25A in the first actuator 7A of the bogie 3 on the front side, In the same manner as the output value T3u of the temperature sensor 32 which similarly detects the temperature near the u-phase coil 25A in one actuator 7C, left and right in the traveling direction (for example, arrow A direction) between different bogies 3 of the same vehicle.
  • Temperature sensors attached to the same phase of the first and second actuators 7A and 7C (or to the right and left of the second actuators 7B and 7D) mounted on the same side (left side) of the direction The respective output values are mutually compared among 32 (or each temperature sensor 33).
  • the rail 5 on the left side of the railway vehicle 1 and the right side The effect of the difference of the track 5 of the rail 5 (track deviation) or the difference of the input condition accompanying the track curve can be suppressed small, and the influence of the input from the track to the truck 3 and the car 2 is almost equal before and after can do.
  • the front and rear first actuators 7A and 7C (or the front and rear second actuators 7B and 7D) mounted on the same side in the left and right directions of the vehicle also have conditions for the cooling air received by each. It becomes almost equal.
  • the front and rear first actuators 7A and 7C (or the front and rear second actuators 7B and 7D) mounted on the same side in the left and right directions of the vehicle are respectively generated Since the effects of the thrust and the heat generated by the thrust and the cooling air are almost equal, the output values of the temperature sensor 32 for detecting the temperature in the vicinity of the u-phase coil 25A become equal, and the temperature in the vicinity of the w-phase coil 25C is detected. It can be said that the output values of the temperature sensor 33 are almost equal.
  • the sensor value comparison / determination unit 14 between the two bogies compares the difference between the output values of the temperature sensors, which are substantially equal, as in steps 2, 4, 6 and 8 shown in FIG. If it is above the threshold Ta, it is determined that one of the two temperature sensors above the threshold Ta is abnormal as in steps 3, 5, 7, and 9.
  • of the difference between them is
  • 70K
  • is, for example, equal to or greater than the determination threshold Ta of 40K, and one of the temperature sensor 32 of the output value T1u and the temperature sensor 32 of the output value T3u is determined to be abnormal. Then, “error determination candidate 1” is stored in the memory 12 in step 11 described later.
  • abnormality determination candidate 1 in this case is one of the two temperature sensors, and it is not possible to identify the faulty temperature sensor that has become abnormal by this. In other words, whether the temperature sensor 32 with the output value T1u or the output value T3u is peeled off from the object to be measured and an appropriate temperature can not be obtained, or for the temperature sensor 32 or the temperature sensor of either the output value T1u or the output value T3u It can not be determined whether the circuit of (4) has broken down and stuck at a fixed value or there is another cause other than that.
  • the sensor value comparison and determination unit 15 in the same carriage compares and determines from another viewpoint and records (stores) the abnormality determination candidate 2 of the temperature sensor, and the sensor abnormality determination unit 16 thereafter determines two abnormalities. From the candidates 1 and 2, the temperature sensor satisfying the AND condition is regarded as abnormal, and the failure of the temperature sensor is determined.
  • the sensor value comparison and determination unit 15 for the same carriage is provided to the first and second actuators 7A and 7B in one carriage (for example, the carriage 3 on the front side) in accordance with the processing procedure shown in FIG. 9 described later.
  • the output values T1u and T2u of the in-phase temperature sensors 32 are compared, the output values T1w and T2w of the other in-phase temperature sensors 33 are compared, and the other carriage (for example, the carriage 3 on the rear side) 1, compare the output values T3u and T4u of the in-phase temperature sensors 32 provided in the second actuators 7C and 7D, and compare the output values T3w and T4w of the other in-phase temperature sensors 33 .
  • the sensor value comparison / determination unit 15 compares the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B in the front carriage 3 (absolute value of both The difference between the output values T1w and T2w of the other temperature sensors 33 (the absolute value of the two
  • T12w) is calculated.
  • the output difference between the output values T3u and T4u of the in-phase temperature sensors 32 provided to the first and second actuators 7C and 7D (the absolute value of the both
  • T34u
  • the difference between the output values T3w and T4w of the other temperature sensors 33 (absolute value
  • T34w of the two).
  • the sensor value comparison and determination unit 15 calculates the average value Tave of the output differences (ie, the absolute values of the output differences T12u, T12w, T34u, and T34w) calculated for each identical carriage 3 by the following numbers:
  • the difference ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w, which is the difference between each output difference (absolute values T12u, T12w, T34u, T34w) and the average value Tave, is calculated as the following equation 2 .
  • a comparison operation is performed to determine whether these differences .DELTA.T12u, .DELTA.T12w, .DELTA.T34u, .DELTA.T34w are larger than a predetermined determination threshold Tb, for example, whether they are larger than the determination threshold Tb or more. .
  • the sensor value comparison / determination unit 15 in the same carriage obtains the difference between the temperature sensor values of two in-phase two of the temperature sensors 32, 33 attached to one vehicle as the output differences T12u, T12w, T34u, T34w (See step 22 in FIG. 9).
  • the first and second actuators 7A, 7B (7C) mounted separately on the left and right of the same carriage 3 are separated. , 7D) and the same phase temperature sensor output difference.
  • the input conditions associated with the curve are different, and the influence of the cooling air is also different from each other. Therefore, it is considered that there is a temperature difference with a certain width between the first and second actuators 7A and 7B (or between the first and second actuators 7C and 7BD).
  • the temperature differences are output differences T12u, T12w, T34u, T34w obtained in step 22 described later.
  • the average value Tave of these output differences T12u, T12w, T34u, T34w is calculated by the above equation (1). That is, an average value Tave obtained by averaging the temperature difference is calculated.
  • the deviation between the average value Tave calculated in step 23 and the temperature difference (output differences T12u, T12w, T34u, T34w) calculated in step 22 is calculated as differences ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w.
  • the largest difference (maximum value ⁇ Tmax1) among the differences ⁇ T12u, ⁇ T12w, ⁇ T34u, and ⁇ T34w is calculated as the largest difference from the average value Tave.
  • the maximum value ⁇ Tmax1 is compared with the determination threshold Tb, and if the maximum value ⁇ Tmax1 is greater than or equal to the determination threshold Tb, either one of the two temperature sensors for which the maximum value ⁇ Tmax1 is obtained is considered abnormal. 27 is stored as "abnormality judgment candidate 2".
  • the sensor abnormality determination unit 16 of the control device 10 determines which of the temperature sensors 32, 33 is based on the determination result of the comparison determination unit 14, 15. It is specified whether or not it is an abnormal temperature sensor.
  • the determination table 40 shown in FIG. 11 determines from the determination results (abnormality determination candidates 1 and 2) of the two comparison determination units 14 and 15 that a temperature sensor that satisfies the AND condition is redundant with both candidates, and the temperature of the failure determination.
  • the case where the sensor is specified as output value T1u, T1w, T4u, T4w, T3u, T3w, T2u, T2w in order from the top is shown.
  • the sensor abnormality determination unit 16 determines the absolute value of the output difference (
  • the vehicle vibration control device of the railway vehicle 1 according to the first embodiment has the above-described configuration, and its operation will be described next.
  • the acceleration sensor 9 on the first actuator 7A side detects the vibration of the front left side (FL) of the vehicle body 2
  • the acceleration sensor 9 on the second actuator 7B side vibrates the front right side (FR) of the vehicle body 2.
  • the acceleration sensor 9 on the first actuator 7C side detects the vibration of the rear left side (RL) of the vehicle body 2
  • the acceleration sensor 9 on the second actuator 7D side detects the vibration of the rear right side (RR) of the vehicle body 2.
  • the controller 13 of the control device 10 determines, for example, FL, FR, and RL to suppress the vibration of the railway vehicle 1 while discriminating the signals detected by the respective acceleration sensors 9 as detection signals of the individual vehicle behavior (acceleration).
  • the target damping forces to be generated by the actuators 7 (the first actuators 7A and 7C and the second actuators 7B and 7D) on the RR side are calculated.
  • the first actuators 7A, 7C and the second actuators 7B, 7D are variably controlled so that the generated damping forces have characteristics in accordance with the target damping forces, according to the command signals individually output from the controller 13. Be done.
  • the conventional vehicle vibration control apparatus that is, a vehicle vibration control apparatus of a railway vehicle using an actuator in which two temperature sensors are arranged
  • failure patterns of the temperature sensors for example, the first shown in FIGS.
  • one temperature sensor fails, in the prior art, there is a possibility that all temperature sensors may be judged as abnormal although the remaining temperature sensors operate normally.
  • the control device 10 shown in FIG. 3 includes the sensor value comparison and determination unit 14 between two carriages, the sensor value comparison and determination unit 15 for the same carriage, and the sensor malfunction determination unit 16
  • the control process shown in FIGS. 8 to 10 it is possible to reliably specify an abnormal temperature sensor even if any of the total eight temperature sensors 32 and 33 become abnormal. I am able to do it.
  • the sensor value comparison / determination unit 14 between the two carts detects the temperature detection signals (output values T1u, T1w, T2u) output from a total of eight temperature sensors 32, 33 in step 1. , T2w, T3u, T3w, T4u, T4w). That is, in the first actuator 7A on the front left side (FL) provided on the front carriage 3, the temperature sensor 32 (FL) detects the temperature near the u-phase coil 25A as the output value T1u, and the temperature sensor 33 (FL ) Detects the temperature near the w-phase coil 25C as an output value T1w.
  • the temperature sensor 32 (FR) detects the temperature near the u-phase coil 25A as an output value T2u
  • the temperature sensor 33 (FR ) Detects the temperature near the w-phase coil 25C as an output value T2w.
  • the temperature sensor 32 (RL) detects the temperature near the u-phase coil 25A as an output value T3u
  • the temperature sensor 33 (RL) The temperature near the w-phase coil 25C is detected as an output value T3w.
  • the temperature sensor 32 (RR) detects the temperature near the u-phase coil 25A as an output value T4u
  • the temperature sensor 33 (RR ) Detects the temperature near the w-phase coil 25C as an output value T4w.
  • an output value T1u of the temperature sensor 32 (FL) provided in the front first actuator 7A and an output value T3u of the temperature sensor 32 (RL) provided in the rear first actuator 7C Is calculated as an absolute value (
  • step 2 When “YES” is determined in step 2, the absolute value (
  • the output value T1w of the temperature sensor 33 (FL) provided in the front first actuator 7A and the output value T3w of the temperature sensor 33 (RL) provided in the rear first actuator 7C Is calculated as an absolute value (
  • ) of the difference between the output values T1w and T3w is larger than the threshold Ta for determination of abnormality, so the output value in the next step 5
  • One of the temperature sensors 33 of T1w and T3w can be determined to be abnormal.
  • the temperature sensors 33 of the output values T1w and T3w can determine that neither is abnormal.
  • the output value T2u of the temperature sensor 32 (FR) provided in the front second actuator 7B and the output value T4u of the temperature sensor 32 (RR) provided in the rear second actuator 7D Is calculated as an absolute value (
  • step 6 When it is determined “YES” in step 6, the absolute value (
  • the output value T2w of the temperature sensor 33 (FR) provided in the front second actuator 7B and the output value T4w of the temperature sensor 33 (RR) provided in the rear second actuator 7D Is calculated as an absolute value (
  • ) of the difference between the output values T2w and T4w is larger than the threshold value Ta for determination of abnormality, so the output value in the next step 9
  • One of the temperature sensors 33 of T2w and T4w can be determined to be abnormal. Further, when it is determined “NO” in step 8, the temperature sensors 33 of the output values T2w and T4w can determine that neither is abnormal.
  • step 10 it is determined whether or not any abnormality occurs in any of the temperature sensors 32, 33, and when “NO” is determined, an abnormality occurs in any of the temperature sensors 32, 33. Since the process has not been performed, the process returns to step 1 to continue the subsequent processes. However, when the determination in step 10 is “YES”, the temperature sensor 32 or 33 is determined to be abnormal in any one of the steps 3, 5, 7 or 9.
  • the temperature sensor 32 or 33 judged to be abnormal ie, the temperature sensor 32 with the output value T1u or T3u, the temperature sensor 33 with the output value T1w or T3w, the temperature sensor with the output value T2u or T4u
  • the memory 12 stores the output value T2w or the temperature sensor 33 having the output value T2w or T4w in the memory 12 as the "abnormality determination candidate 1". Then, at step 12, the process returns to the main flow (not shown).
  • the sensor value comparison / determination unit 15 in the same carriage detects the temperature output from the total of eight temperature sensors 32 and 33 in the same manner as step 1 in step 21. Output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w) as signals are read. In the next step 22, the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B are compared with each other in the front carriage 3, and the other in-phase temperature sensors 33 are compared.
  • the output values T1w and T2w are compared with each other, and the output values T3u and T4u of the in-phase temperature sensor 32 provided in the first and second actuators 7C and 7D in the rear carriage 3 are compared with each other.
  • a comparison operation is performed to compare the output values T3w and T4w of the in-phase temperature sensor 33 with each other.
  • the sensor value comparison and determination unit 15 outputs the difference between the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B of the front carriage 3 (absolute value of both The value
  • T12u) and the output difference between the output values T1w and T2w of the other temperature sensors 33 (the absolute value of the two
  • T12w) is calculated.
  • the output difference between the output values T3u and T4u of the in-phase temperature sensors 32 provided to the first and second actuators 7C and 7D (absolute value
  • T34u of both)
  • the difference between the output values T3w and T4w of the other temperature sensors 33 (absolute value
  • T34u of the two) is calculated.
  • the average value Tave of the output differences T12u, T12w, T34u, T34w is calculated by the equation (1).
  • differences ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w, which are deviations between the output differences (absolute values T12u, T12w, T34u, T34w) and the average value Tave are calculated according to the equation (2).
  • the largest difference among the differences ⁇ T12u, ⁇ T12w, ⁇ T34u, and ⁇ T34w according to Equation 2 is calculated as the maximum value ⁇ Tmax1.
  • next step 26 it is determined whether the maximum value ⁇ Tmax1 is larger than a predetermined threshold Tb for determination of abnormality, for example, whether it is larger than the threshold Tb for determination.
  • the maximum value ⁇ Tmax1 is smaller than the determination threshold Tb, and in this case, all differences ⁇ T12u, ⁇ T12w, ⁇ T34u, and ⁇ T34w are smaller than the determination threshold Tb.
  • the output differences T12u, T12w, T34u, and T34w are values close to the average value Tave, and it can be determined that the deviation from the average value Tave is small enough to be ignored.
  • the temperature sensors 32 for the output values T1u, T2u, T3u, and T4u and the temperature sensors 33 for the output values T1w, T2w, T3w, and T4w are not abnormal but are operating normally. Can. Therefore, when it is determined as "NO" in step 26, all the temperature sensors 32, 33 determine that they are normal, return to the step 21, and continue the subsequent processing.
  • the maximum value ⁇ Tmax1 is equal to or greater than the threshold Tb for determining abnormality, and the largest difference (maximum value ⁇ Tmax1) among the differences ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w is abnormal.
  • the threshold value Tb is greater than or equal to the determination threshold Tb.
  • the temperature sensor 32 with the output value T1u or T2u, the temperature sensor 33 with the output value T1w or T2w, the temperature sensor 32 with the output value T3u or T4u, or the temperature sensor 33 with the output value T3w or T4w are stored in the memory 12 as “abnormality judgment candidate 2” as shown in FIG. 11, for example. Then, at step 28, the process returns to the main flow (not shown).
  • the sensor malfunction determination unit 16 of the control device 10 reads “fault decision candidate 1” in step 31 (see FIG. 8). Further, at step 32, "abnormality determination candidate 2" at step 27 (see FIG. 9) is read.
  • step 33 it is determined whether or not there are overlapping temperature sensors 32 or 33 between the aforementioned "abnormality judgment candidate 1" and "abnormality judgment candidate 2".
  • the process returns to step 31 to continue the subsequent processing.
  • “YES” is determined in step 33, there is a temperature sensor that satisfies the AND condition that is duplicated in the two abnormality determination candidates 1 and 2 as in the determination table 40 shown in FIG. 11, for example. And determine that the corresponding temperature sensor is at fault.
  • the sensor abnormality determination unit 16 of the control device 10 outputs the temperature sensors satisfying the AND condition overlapping in the two abnormality determination candidates 1 and 2 as the temperature sensor for determining the failure in order from the top according to the determination table 40 shown in FIG.
  • the temperature sensor 33 of the output value T2w is
  • the output values T1u, T1w, T3u, T3w of the in-phase temperature sensors 32, 33 provided on the first actuators 7A, 7C between the two carriages 3 are compared
  • the sensor value comparison and determination unit 14 between the two bogies for comparing the output values T2u, T2w, T4u, and T4w of the in-phase temperature sensors 32, 33 provided in the second actuators 7B and 7D;
  • the output values T1u, T1w, T2u, T2w of the in-phase temperature sensors 32, 33 provided in the first and second actuators 7A, 7B in the carriage 3 are compared, and in the rear carriage 3, the first, second 2)
  • the sensor value comparison and determination unit 15 with the same carriage that compares the output values T3u, T3w, T4u, and T4w of the in-phase temperature sensors 32, 33 provided in the actuators 7C and 7D, and the comparison and determination unit 14 Based on the 15 of the determination result (abnormality judgment candidates 1, 2) and
  • the abnormality judgment candidate 1 judged to be abnormal by the sensor value comparison judgment unit 14 between the two bogies and the sensor value comparison judgment unit 15 with the same bogie are judged as abnormalities.
  • the sensor abnormality determination unit 16 determines whether or not there is a temperature sensor 32 or 33 overlapping in the abnormality determination candidates 1 and 2.
  • the controllable temperature changing portion 13B of the controller 13 controls the first controllable temperature threshold value. It is changed to a second temperature upper limit value T ⁇ which is smaller than the temperature upper limit value T ⁇ . Then, after the change of the controllable temperature threshold value, drive control of the actuator 7 is continued based on a detection signal (output value) of a normal temperature sensor among the plurality of temperature sensors 32 and 33 in which no abnormality is detected. Can be done. This makes it possible to secure the ride comfort of the vehicle that is originally expected.
  • any one of the temperature sensors 32 and 33 mounted in the vicinity of the coils 25A and 25C of the first actuators 7A and 7C and the second actuators 7B and 7D is considered to be abnormal. Even in this case, an abnormal sensor (failed temperature sensor) can be properly identified.
  • the abnormality of the temperature sensor the temperature sensor in which the abnormality is occurring
  • the risk of the failure mode of firing and smoking of the first actuators 7A and 7C and the second actuators 7B and 7D is reduced. Can be enhanced.
  • the present invention is not limited to this, and for example, it is determined whether or not any of the differences ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w is greater than or equal to the threshold Tb in comparison with the determination threshold Tb. It may be configured to detect (determine) the abnormality judgment candidate 2 ".
  • FIGS. 12 and 13 show a second embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the feature of the second embodiment is that the difference between the output value of each temperature sensor is calculated from the difference in output change per fixed time for each temperature sensor, and the temperature based on the temperature change within the fixed time A gradient is used to identify an abnormal temperature sensor.
  • the detection signals of the temperature sensors 32 and 33 use the respective instantaneous values as output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w, and these output values are used.
  • the calculation of the failure determination of the sensor is performed from the difference of Therefore, when noise is included in the detection signals of the temperature sensors 32, 33, there is a possibility that the failure of the temperature sensors 32, 33 may be erroneously detected. Therefore, control processing according to the second embodiment in which such a defect is improved will be described with reference to FIGS. 12 and 13.
  • the processing procedure shown in FIG. 12 shows a specific example of the comparison determination processing by the sensor value comparison / determination unit 14 between two carriages, and the sensor value in the carriage having the same processing procedure shown in FIG.
  • the specific example of the comparison determination process by the comparison determination part 15 is shown.
  • the sensor value comparison / determination unit 14 between the two bogies detects the temperature detection signals (output values T1u, T1w, T2u) output from a total of eight temperature sensors 32, 33 in step 41.
  • T2w, T3u, T3w, T4u, T4w) are calculated as differences ⁇ T1u, ⁇ T1w, ⁇ T2u, ⁇ T2w, ⁇ T3u, ⁇ T3w, ⁇ T4u, ⁇ T4w between the output changes per fixed time for each of the temperature sensors 32 and 33.
  • the difference ⁇ T1u (corresponding to the output value T1u) of the change in output per unit time of the temperature sensor 32 (FL) provided in the front first actuator 7A and the first actuator 7C on the rear side are provided.
  • the deviation from the difference ⁇ T1u (corresponding to the output value T3u) of the change in output per fixed time of the detected temperature sensor 32 (RL) is calculated as an absolute value (
  • step 42 When it is determined “YES” in step 42, the absolute value (
  • the difference .DELTA.T1w (corresponding to the output value T1w) of the change in output per unit time of the temperature sensor 33 (FL) provided in the first actuator 7A on the front side and the first actuator 7C on the rear side are provided.
  • the deviation from the difference ⁇ T3w (corresponding to the output value T3w) of the change in output per fixed time of the detected temperature sensor 33 (RL) is calculated as an absolute value (
  • step 44 When it is determined “YES” in step 44, the absolute value (
  • One of the temperature sensors 33 having the output values T1w and T3w can be determined to be abnormal. Further, when the determination in step 44 is “NO”, the temperature sensors 33 of the output values T1w and T3w can be determined to be normal, not abnormal.
  • the difference ⁇ T2u (corresponding to the output value T2u) of the change in output per unit time of the temperature sensor 32 (FR) provided in the second actuator 7B on the front side and the second actuator 7D on the rear side The deviation from the difference ⁇ T4u (corresponding to the output value T4u) of the change in output per fixed time of the detected temperature sensor 32 (RR) is calculated as an absolute value (
  • step 46 When it is determined “YES” in step 46, the absolute value (
  • the difference ⁇ T2w (corresponding to the output value T2w) of the change in output per unit time of the temperature sensor 33 (FR) provided in the second actuator 7B on the front side and the second actuator 7D on the rear side The deviation from the difference ⁇ T4w (corresponding to the output value T4w) of the change in output per fixed time of the detected temperature sensor 33 (RR) is calculated as an absolute value (
  • step 48 When it is determined “YES” in step 48, the absolute value (
  • step 50 it is determined whether or not an abnormality has occurred in any of the temperature sensors 32, 33.
  • the determination is "NO"
  • an abnormality occurs in any of the temperature sensors 32, 33. Since the process has not been performed, the process returns to step 41 to continue the subsequent processes.
  • the determination in step 50 is "YES"
  • the temperature sensor 32 or 33 is determined to be abnormal in any of the steps 43, 45, 47 or 49.
  • the temperature sensor 32 or 33 judged to be abnormal ie, the temperature sensor 32 with the output value T1u or T3u, the temperature sensor 33 with the output value T1w or T3w, the temperature sensor with the output value T2u or T4u
  • the memory 12 stores the output value T2w or the temperature sensor 33 having the output value T2w or T4w in the memory 12 as the "abnormality determination candidate 1".
  • the process returns to the main flow (not shown).
  • the sensor value comparison / determination unit 15 in the same carriage detects the temperature output from the total of eight temperature sensors 32 and 33 in the same manner as step 41 in step 61.
  • the signals (output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w) are output difference differences ⁇ T1u, ⁇ T1w, ⁇ T2u, ⁇ T2w, ⁇ T3u, ⁇ T3w, ⁇ T3w, ⁇ T3w, ⁇ T3w, ⁇ T3w, ⁇ T3w, ⁇ T3w Calculated as ⁇ T4u and ⁇ T4w.
  • the differences ⁇ T1u and ⁇ T2u in the output change per fixed time of the in-phase temperature sensors 32 provided in the first and second actuators 7A and 7B in the front carriage 3 are compared with each other
  • the differences ⁇ T1w, ⁇ T2w of the output change per fixed time of the in-phase temperature sensor 33 are compared, and the in-phase temperature sensors 32 provided on the first and second actuators 7C and 7D in the rear carriage 3 respectively
  • a comparison operation is performed to compare the differences .DELTA.T3u and .DELTA.T4u in the output change per fixed time, and to compare the differences .DELTA.T3w and .DELTA.T4w in the output change per fixed time of the other in-phase temperature sensor 33.
  • the sensor value comparison and determination unit 15 determines the difference .DELTA.T1u (the output value T1u) of the output change per unit time of the temperature sensor 32 provided in the first and second actuators 7A and 7B of the front carriage 3.
  • the difference ⁇ T3u (corresponding to the output value T3u) of the change in output of the temperature sensor 32 provided in the first and second actuators 7C and 7D per unit time and the difference ⁇ T4u (the output change)
  • ⁇ T34u), the difference ⁇ T3w (corresponding to the output value T3w) of the change in the output of the other temperature sensor 33 per fixed time, and the change in the output
  • ⁇ T34w) of the difference ⁇ T4w (corresponding to the output value T4w) is calculated.
  • the average value Tave of the output differences (absolute values ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w) is calculated by the following equation (3).
  • differences d.DELTA.T12u, d.DELTA.T12w, d.DELTA.T34u, d.DELTA.T34w, which are deviations between the respective output differences (absolute values .DELTA.T12u, .DELTA.T12w, .DELTA.T34u, .DELTA.T34w) and the average value Tave are calculated according to the following equation (4).
  • the largest difference among the differences d.DELTA.T12u, d.DELTA.T12w, d.DELTA.T34u, d.DELTA.T34w according to equation 4 is calculated as the maximum value .DELTA.Tmax2.
  • step 66 it is determined whether the maximum value ⁇ Tmax2 is larger than a predetermined threshold Tb for determination of abnormality, for example, whether it is larger than the threshold Tb for determination.
  • the maximum value ⁇ Tmax2 is smaller than the determination threshold Tb, and in this case, all differences d ⁇ T12u, d ⁇ T12w, d ⁇ T34u, d ⁇ T34w are smaller than the determination threshold Tb.
  • the output difference absolute values ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w
  • the output difference is a value close to the average value Tave, and the deviation from the average value Tave is small enough to be ignored.
  • step 66 when it is determined that the temperature sensors 32 for the output values T1u, T2u, T3u, and T4u and the temperature sensors 33 for the output values T1w, T2w, T3w, and T4w are not abnormal but are operating normally. Can. Therefore, when it is determined as "NO" in step 66, all the temperature sensors 32, 33 determine that they are normal, return to the step 61, and continue the processing thereafter.
  • the maximum value ⁇ Tmax2 is equal to or greater than the threshold Tb for determining abnormality, and the largest difference (maximum value d ⁇ Tmax2) among the differences d ⁇ T12u, d ⁇ T12w, d ⁇ T34u, d ⁇ T34w is an abnormality.
  • the threshold value Tb is greater than or equal to the determination threshold Tb.
  • the temperature sensor 32 with the output value T1u or T2u, the temperature sensor 33 with the output value T1w or T2w, the temperature sensor 32 with the output value T3u or T4u, or the temperature sensor 33 with the output value T3w or T4w are stored in the memory 12 as “abnormality judgment candidate 2” as shown in FIG. 11, for example. Then, at step 68, the process returns to the main flow (not shown).
  • the sensor malfunction determination unit 16 of the control device 10 converts the “fault determination candidate 1” and the “fault determination candidate 2” described above. It is determined whether or not there are overlapping temperature sensors 32 or 33. For example, as in the determination table 40 shown in FIG. , Determine the corresponding temperature sensor as failure.
  • the difference between the output values of the temperature sensors 32, 33 can be expressed as the difference ⁇ T1u, ⁇ T1w, ⁇ T2u, the change in output per fixed time for each temperature sensor.
  • the abnormal temperature sensor 32 or 33 is specified using a temperature gradient calculated from ⁇ T2w, ⁇ T3u, ⁇ T3w, ⁇ T4u, ⁇ T4w and based on a temperature change in a fixed time.
  • the sensor value comparison / determination unit 14 between the two bogies adopted in the second embodiment is left between the front and rear bogies 3 of the same vehicle with respect to the traveling direction (the direction of arrow A), While comparing the in-phase temperature gradient between the first actuators 7A and 7C mounted on the same side (left side) to the right and comparing the in-phase temperature gradient between the second actuators 7B and 7D mounted on the same right side, From the comparison result, the “abnormality judgment candidate 1” of the temperature sensor 32 or 33 is determined.
  • the sensor value comparison / determination unit 15 in the same carriage adopted in the second embodiment is between the first and second actuators 7A and 7B separately mounted in the left and right directions of the same carriage 3
  • the temperature gradients of the common-mode temperature sensors between the first and second actuators 7C and 7D separately mounted in the left and right directions of the other carriages 3 are compared.
  • an average value Tave of these output differences absolute values ⁇ T12u, ⁇ T12w, ⁇ T34u, ⁇ T34w
  • differences d ⁇ T12u, d ⁇ T12w, d ⁇ T34u, d ⁇ T34w with the average value Tave are larger than the determination threshold Tb or not.
  • the "abnormality judgment candidate 2" of the plurality of temperature sensors 32 or 33 is determined.
  • the sensor abnormality determination unit 16 determines that a common abnormality candidate among the two abnormality determination candidates 1 and 2 is a temperature sensor for a failure that has become abnormal. Identify as For this reason, the output values of the temperature sensors 32 and 33 are not instantaneous values as in the first embodiment, but differences from output change per fixed time ⁇ T1u, ⁇ T1w, ⁇ T2u, ⁇ T2w, ⁇ T3u, ⁇ T3w, ⁇ T4u, ⁇ T4w
  • the temperature sensor 32 or 33 that has become abnormal can be identified using a temperature gradient based on a temperature change.
  • the second embodiment even when noise is included in the detection signals (ie, output values) of the temperature sensors 32 and 33, for example, the influence of the noise can be suppressed.
  • identification of a failed temperature sensor can be stably performed.
  • the present invention is not limited to this, and for example, it is determined whether any of the differences d ⁇ T12u, d ⁇ T12w, d ⁇ T34u, d ⁇ T34w is greater than or equal to the threshold Tb in comparison with the determination threshold Tb. It may be configured to detect (determine) the abnormality judgment candidate 2 ".
  • the u-phase temperature sensor 32 is disposed in the vicinity of the u-phase coil 25A among the plurality of coil members 25 provided in the armature 23 of the actuator 7, and w is disposed in the vicinity of the w-phase coil 25C.
  • the case where the phase temperature sensor 33 is disposed is described as an example.
  • the present invention is not limited to this, and for example, three or more temperature sensors are provided in one actuator, and if at least one of the temperature sensors is normal, an actuator based on the temperature sensor in which no abnormality is detected. The control of the above may be performed as continuously as possible.
  • the vehicle vibration control device includes first and second actuators provided on one of the two bogies of one of the rail cars to generate force, and the two bogies.
  • the other carriage is provided with other first and second actuators that generate a force, and a control device that controls the first actuators and the second actuators.
  • Each of the first and second actuators includes a three-phase linear motor having a temperature sensor in at least one phase coil.
  • the control device compares output values of the in-phase temperature sensors provided to the first actuators between the one carriage and the other carriage, and is provided to the second actuators.
  • a sensor value comparison and determination unit between two bogies for comparing the output values of the respective in-phase temperature sensors, and the respective in-phase temperature sensors provided in the first and second actuators in the one bogie A sensor value comparison and determination unit for the same truck that compares output values and compares output values of the in-phase temperature sensors provided in the first and second actuators in the other truck, and An abnormal temperature sensor among the temperature sensors based on the determination results of the sensor value comparison and determination unit between two bogies and the sensor value comparison and determination unit of the same bogie And a, and the sensor abnormality determination unit that identifies.
  • the in-phase temperature sensors are temperature sensors respectively provided in coils through which the in-phase current of the at least one-phase coils flows. Thereby, an abnormal temperature sensor can be identified.
  • the sensor value comparison and determination unit between the two bogies is a difference between output values of the respective temperature sensors provided in the respective first actuators. Is determined by comparison with a predetermined determination threshold, and it is determined whether the difference between the output values of the respective temperature sensors provided to the respective second actuators is larger than the determination threshold It is determined whether or not the sensor value comparison and determination unit in the same carriage calculates the difference between the output values of the temperature sensors provided in the first and second actuators for each of the same carriages. The average value of the differences between the output values is determined, and the differences between the differences between the output values and the average value are calculated, respectively, and any one of these differences is compared with another predetermined threshold value for determination.
  • the sensor abnormality determination unit compares each of the temperature sensors with the determination threshold value by the sensor value comparison determination unit between the two carriages and the sensor value comparison determination unit with the same carriage among the temperature sensors.
  • the temperature sensor determined to be large is identified as an abnormal temperature sensor. Thereby, even if any temperature sensor becomes abnormal, an abnormal temperature sensor can be specified certainly.
  • the sensor value comparison and determination unit between the two bogies is configured such that the difference between the output values of the respective temperature sensors provided in the respective first actuators is Calculated from the difference in output change per fixed time, and it is determined whether or not this calculated value is larger than a predetermined determination threshold, and each temperature sensor provided to each The difference between the output values of the sensors is calculated from the difference in the output change per fixed time for each temperature sensor, and it is determined whether the calculated value is larger than the threshold value for determination and the sensor with the same truck
  • the value comparison / determination unit calculates the output difference of each of the temperature sensors in each of the bogies from the difference in output change per fixed time for each of the temperature sensors to obtain an average value of the output differences, and Each output difference The difference between the two is calculated, and it is determined whether or not any of these differences is larger than other predetermined determination threshold values, and the sensor abnormality determination unit determines that the sensor abnormality determination unit A temperature sensor that is determined to be larger than each of the determination threshold values by the sensor value comparison
  • the three-phase linear motor of each of the first and second actuators includes the temperature sensor in at least a two-phase coil.
  • each of the first actuators and each of the second actuators is attached between a car body of the railway vehicle and each of the bogies.
  • each of the first actuators and each of the second actuators is attached to the railcar in the upper and lower directions, and each of the first actuators The actuator and the second actuators are spaced apart in the left and right directions of the bogies with respect to the traveling direction of the railway vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In this vehicle vibration control device, an abnormal temperature sensor, from among a plurality of temperature sensors provided on respective actuators, can be identified through mutual comparison of outputs. The present invention comprises: first and second actuators that are provided on one truck and generate a force; other first and second actuators provided on another truck; and a control device that controls the actuators. Each of the actuators comprises a three-phase linear motor with a temperature sensor on the coil of at least one phase. The control device comprises: a first comparison determination unit that, between the one truck and the other truck, compares the output values of the same-phase temperature sensors provided on the first actuators, and compares the output values of the same-phase temperature sensors provided on the second actuators; a second comparison determination unit that compares the output values of the same-phase temperature sensors provided on the actuators on the one truck, and compares the output values of the same-phase temperature sensors provided on the actuators on the other truck; and a sensor abnormality determination unit that identifies an abnormal temperature sensor from among the temperature sensors on the basis of the determination results from the first and second comparison determination units.

Description

車両振動制御装置Vehicle vibration control device
 本発明は、例えば鉄道車両の振動等を低減するのに好適に用いられる車両振動制御装置に関する。 The present invention relates to a vehicle vibration control device suitably used to reduce, for example, vibration of a railway vehicle.
 一般に、車両の振動を緩衝するため、車両の車体(ばね上)とばね下との間に電磁サスペンションを設ける構成とした車両振動制御装置は知られている(例えば、特許文献1参照)。この種の従来技術では、電磁サスペンションに用いるリニアモータ(リニアアクチュエータ)のコイル温度を検出するために、常用ストローク領域での作動に伴って温度上昇し易いu相コイル群と、熱が篭り易いw相コイル群とにそれぞれ温度センサを設ける構成としている。 In general, there is known a vehicle vibration control apparatus in which an electromagnetic suspension is provided between a vehicle body (spring top) and an unsprung portion of the vehicle in order to buffer the vibration of the vehicle (see, for example, Patent Document 1). In the prior art of this type, in order to detect the coil temperature of the linear motor (linear actuator) used for the electromagnetic suspension, the u-phase coil group whose temperature easily rises with operation in the normal stroke region, and heat are easily w The configuration is such that a temperature sensor is provided for each phase coil group.
特開2009-159790号公報JP, 2009-159790, A
 ところで、上述した従来技術では、リニアアクチュエータのコイル温度を検出するため、u相コイル群とw相コイル群とにそれぞれ温度センサを設けている。しかし、温度センサの異常診断は行っておらず、センサの異常時に対処することが難しい。また、1個の温度センサが故障した場合、他の温度センサは正常に動作しているにもかかわらず、温度センサの全てが異常と判断されるので、アクチュエータの電流や出力を制限することになる。このため、本来期待すべき車両の乗り心地を確保するのが難しくなる。 By the way, in the above-mentioned prior art, in order to detect coil temperature of a linear actuator, a temperature sensor is provided in u phase coil group and w phase coil group, respectively. However, no abnormality diagnosis of the temperature sensor is performed, and it is difficult to cope with the abnormality of the sensor. In addition, when one temperature sensor fails, all temperature sensors are determined to be abnormal although the other temperature sensors operate normally, so it is necessary to limit the current and output of the actuator. Become. For this reason, it is difficult to secure the ride comfort of the vehicle to be originally expected.
 本発明の目的は、複数の温度センサのいずれかが異常のときに、出力値の相互比較により異常となった温度センサを特定することができるようにした車両振動制御装置を提供することにある。 An object of the present invention is to provide a vehicle vibration control apparatus capable of identifying a temperature sensor that has become abnormal by comparing output values when any of a plurality of temperature sensors is abnormal. .
 本発明は、一両の鉄道車両が有する2つの台車のうち一方の台車にそれぞれ設けられて力を発生する第1,第2アクチュエータと、前記2つの台車のうち他方の台車にそれぞれ設けられて力を発生する他の第1,第2アクチュエータと、前記各第1アクチュエータと各第2アクチュエータとを制御する制御装置と、を備える車両振動制御装置に適用される。 According to the present invention, the first and second actuators each of which is provided on one of the two bogies of one rail car and generates a force, and the other of the two bogies are provided on the other. The present invention is applied to a vehicle vibration control device provided with other first and second actuators that generate a force, and a control device that controls the first and second actuators.
 そして、本発明の一実施形態によれば、各第1アクチュエータおよび各第2アクチュエータは、少なくとも一相のコイルに温度センサを備えた三相リニアモータを備える。制御装置は、一方の台車と他方の台車との間で各第1アクチュエータに設けられた同相の温度センサのそれぞれの出力値を比較し、かつ各第2アクチュエータに設けられた同相の温度センサのそれぞれの出力値を比較する2つの台車間のセンサ値比較判定部と、一方の台車において第1および第2アクチュエータに設けられた同相の温度センサのそれぞれの出力値を比較し、かつ他方の台車において第1および第2アクチュエータに設けられた同相の温度センサのそれぞれの出力値を比較する同一の台車でのセンサ値比較判定部と、2つの台車間のセンサ値比較判定部および同一の台車でのセンサ値比較判定部の判定結果に基づいて各温度センサのうち異常な温度センサを特定するセンサ異常判定部と、を備えている。同相の温度センサは、少なくとも1相のコイルのうちの同相の電流が流れるコイルにそれぞれ設けられた温度センサである。 And, according to one embodiment of the present invention, each first actuator and each second actuator comprises a three-phase linear motor provided with a temperature sensor in at least one phase coil. The control device compares the output value of each of the in-phase temperature sensors provided in each first actuator between one carriage and the other carriage, and the in-phase temperature sensor provided in each second actuator Compare the output values of the sensor value comparison and determination unit between the two bogies that compare the output values of each and the in-phase temperature sensors provided in the first and second actuators in one bogie, and compare the other bogies The sensor value comparison and determination unit with the same carriage that compares the output values of the in-phase temperature sensors provided in the first and second actuators, the sensor value comparison and determination unit between two carriages, and the same carriage And a sensor abnormality determination unit that specifies an abnormal temperature sensor among the temperature sensors based on the determination result of the sensor value comparison and determination unit. The in-phase temperature sensor is a temperature sensor provided in each of the coils through which the in-phase current of the at least one phase coil flows.
 本発明の一実施形態によれば、複数のアクチュエータにそれぞれ設けられた温度センサのうち、いずれの温度センサが異常となっても、出力値の相互比較により異常なセンサを適切に特定することができる。 According to one embodiment of the present invention, among temperature sensors respectively provided to a plurality of actuators, an abnormal sensor can be properly identified by mutual comparison of output values, regardless of which temperature sensor becomes abnormal. it can.
本発明の実施の形態による車両振動制御装置が適用された鉄道車両を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the rail vehicle with which the vehicle vibration control apparatus by embodiment of this invention was applied. 図1中のインバータ、アクチュエータおよび加速度センサ等の位置関係を説明するために鉄道車両の内部を上側からみた平面図である。It is the top view which looked at the inside of the railway vehicle from the upper side in order to demonstrate the positional relationship of the inverter in FIG. 1, an actuator, an acceleration sensor, etc. FIG. 図2中の制御装置を示す制御ブロック図である。It is a control block diagram which shows the control apparatus in FIG. リニアアクチュエータの具体的構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the specific structure of a linear actuator. 温度センサの故障判定を行う上での第1パターンを示す特性線図である。It is a characteristic line figure showing the 1st pattern in performing failure determination of a temperature sensor. 温度センサの故障判定を行う上での第2パターンを示す特性線図である。It is a characteristic diagram showing the 2nd pattern in performing failure determination of a temperature sensor. 温度センサの故障判定を行う上での第3パターンを示す特性線図である。It is a characteristic diagram showing the 3rd pattern in performing failure determination of a temperature sensor. 第1の実施の形態による2つの台車間で行う温度センサのセンサ値比較判定部の処理手順を示す流れ図である。It is a flowchart which shows the process sequence of the sensor value comparison determination part of the temperature sensor performed between two trolleys by 1st Embodiment. 第1の実施の形態による同一の台車で行う温度センサのセンサ値比較判定部の処理手順を示す流れ図である。It is a flowchart which shows the process sequence of the sensor value comparison determination part of the temperature sensor performed with the same trolley | bogie by 1st Embodiment. 実施の形態による異常な温度センサを特定するセンサ異常判定部の処理手順を示す流れ図である。It is a flowchart which shows the processing procedure of the sensor abnormality determination part which specifies the abnormal temperature sensor by embodiment. センサ異常判定部により異常な温度センサを特定するための判定テーブルを示す図である。It is a figure which shows the determination table for specifying an abnormal temperature sensor by a sensor abnormality determination part. 第2の実施の形態による2つの台車間で行う温度センサのセンサ値比較判定部の処理手順を示す流れ図である。It is a flowchart which shows the process sequence of the sensor value comparison determination part of the temperature sensor performed between two trolleys by 2nd Embodiment. 第2の実施の形態による同一の台車で行う温度センサのセンサ値比較判定部の処理手順を示す流れ図である。It is a flowchart which shows the process sequence of the sensor value comparison determination part of the temperature sensor performed by the same trolley | bogie by 2nd Embodiment.
 以下、本発明の実施の形態による車両振動制御装置を、電車等の鉄道車両に搭載した場合を例に挙げ、添付図面に従って詳細に説明する。 Hereinafter, the case where the vehicle vibration control device according to the embodiment of the present invention is mounted on a railway vehicle such as a train will be described in detail with reference to the attached drawings.
 ここで、図1ないし図11は第1の実施の形態を示している。図1において、鉄道車両1は、例えば乗客、乗員等が乗車する車体2と、該車体2の下側に設けられた前側,後側の台車3とを備えている。これら2つの台車3は、車体2の前部側と後部側とに離間して配置され、各台車3にはそれぞれ4個の車輪4が設けられている。鉄道車両1は、各車輪4が左,右のレール5(一方のみ図示)上を転動(回転)することによりレール5に沿って、例えば前進時に矢示A方向に走行駆動される。 Here, FIGS. 1 to 11 show the first embodiment. In FIG. 1, a railway vehicle 1 includes a vehicle body 2 on which, for example, passengers, passengers and the like get on, and front and rear bogies 3 provided below the vehicle body 2. These two bogies 3 are disposed apart from each other on the front side and the rear side of the vehicle body 2, and each bogie 3 is provided with four wheels 4. The railcar 1 is driven to travel along the rail 5 in the direction of arrow A, for example, when it is advanced, as the wheels 4 roll (rotate) on the left and right rails 5 (only one is shown).
 車体2と各台車3との間には、それぞれの台車3上で車体2を弾性的に支持する複数の懸架ばね6と、該各懸架ばね6と並列関係をなすように配置された複数のリニアアクチュエータ7(以下、アクチュエータ7という)とが設けられている。これらのアクチュエータ7は、車体2と車輪4(台車3)との間に設けられた三相リニアモータからなり、例えば上,下方向の振動を緩衝(減衰)する電磁サスペンションを構成している。1つの台車3毎に左,右方向に離間して設けられた2つのアクチュエータ7は、上,下方向に調整可能な力を発生する第1,第2アクチュエータ7A~7Dを構成している。 A plurality of suspension springs 6 for elastically supporting the vehicle body 2 on the respective carriages 3 between the vehicle body 2 and the respective carriages 3, and a plurality of suspension springs 6 arranged in parallel relationship with the respective suspension springs 6 A linear actuator 7 (hereinafter referred to as an actuator 7) is provided. These actuators 7 consist of a three-phase linear motor provided between the vehicle body 2 and the wheel 4 (carriage 3), and constitute, for example, an electromagnetic suspension that buffers up and down vibrations. Two actuators 7 provided separately in the left and right directions for each carriage 3 constitute first and second actuators 7A to 7D that generate adjustable forces in the upper and lower directions.
 電磁サスペンションとしてのアクチュエータ7は、1つの台車3に対して2軸配置され、1台の車両(2つの台車3)に対して4軸配置される。図2に示すように、これらのアクチュエータ7は、車体2の前部側に位置する前側の台車3に設けられ左,右方向に離間して配置されたFL側の第1アクチュエータ7A,FR側の第2アクチュエータ7Bと、後部側に位置する後側の台車3に設けられ左,右方向に離間して配置されたRL側の第1アクチュエータ7C,RR側の第2アクチュエータ7Dとにより構成されている。各アクチュエータ7は、鉄道車両1に対して上,下方向に取付けられ、第1アクチュエータ7A,7Cと第2アクチュエータ7B,7Dとは、鉄道車両1の進行方向に対して各台車3の左,右方向に離間して設けられている。 The actuator 7 as an electromagnetic suspension is disposed in two axes with respect to one carriage 3 and is disposed in four axes with respect to one vehicle (two carriages 3). As shown in FIG. 2, these actuators 7 are provided on the front carriage 3 located on the front side of the vehicle body 2 and are disposed on the first actuators 7A, FR on the FL side spaced apart in the left and right directions. And a second actuator 7C on the RL side and a second actuator 7D on the RR side, which are provided on the rear carriage 3 located on the rear side and are spaced apart in the left and right directions. ing. The actuators 7 are attached to the railcar 1 in the upper and lower directions, and the first actuators 7A, 7C and the second actuators 7B, 7D are connected to the left of each truck 3 with respect to the traveling direction of the railcar 1, It is provided separately in the right direction.
 これらのアクチュエータ7(即ち、第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)は、前,後の台車3に対する車体2の振動を左,右方向でそれぞれ個別に緩衝して低減させるように、後述の制御装置10から個別に出力される指令信号に従って減衰力が可変に制御されるものである。この場合、アクチュエータ7は、ハードな特性とソフトな特性との間で減衰力特性を連続的に調整する構成であってもよく、2段階または複数段階で調整可能な構成であってもよい。 These actuators 7 (i.e., the first actuators 7A, 7C and the second actuators 7B, 7D) individually buffer and reduce the vibrations of the vehicle body 2 with respect to the front and rear bogies 3 in the left and right directions, respectively. The damping force is variably controlled in accordance with a command signal individually output from the control device 10 described later. In this case, the actuator 7 may be configured to adjust the damping force characteristics continuously between hard characteristics and soft characteristics, or may be adjustable in two or more steps.
 図2に示す第1インバータ8A,8Cと第2インバータ8B,8D(全体として、インバータ8という)は、アクチュエータ7(第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)用の電源回路である。インバータ8は、電力線側が車両の電源(いずれも図示せず)に接続されると共に、動力線側がアクチュエータ7(第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)に接続されている。インバータ8は、例えばトランジスタ、電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)等からなる複数のスイッチング素子を含んで構成され、各スイッチング素子は、その開,閉成(ON-OFF)が制御装置10からの指令信号に基づいて制御される。 The first inverters 8A and 8C and the second inverters 8B and 8D (generally referred to as the inverter 8) shown in FIG. 2 are power supply circuits for the actuators 7 (the first actuators 7A and 7C and the second actuators 7B and 7D). . The power line side of the inverter 8 is connected to the power supply (not shown) of the vehicle, and the power line side is connected to the actuators 7 ( first actuators 7A, 7C and second actuators 7B, 7D). The inverter 8 includes a plurality of switching elements such as transistors, field effect transistors (FETs), insulated gate bipolar transistors (IGBTs), etc., and each switching element has its open and closed (ON-OFF) states. Control is performed based on a command signal from the control device 10.
 インバータ8は、制御装置10からの指令信号と前記電源からの電力とに基づいて、各輪に配置されたアクチュエータ7を駆動する。アクチュエータ7(電磁アクチュエータ)の力行時は、前記電源からインバータ8を経由して、アクチュエータ7に電力が供給される。このとき、インバータ8は、前記電源から電力線を介して供給される電力から三相(u相、v相、w相)の交流電力を生成し、前記動力線を介して各アクチュエータ7の各コイル25A,25B,25Cに電力を供給する。 The inverter 8 drives the actuator 7 disposed in each wheel based on the command signal from the control device 10 and the power from the power supply. During powering of the actuator 7 (electromagnetic actuator), power is supplied to the actuator 7 from the power supply via the inverter 8. At this time, the inverter 8 generates three-phase (u-phase, v-phase, w-phase) AC power from the power supplied from the power supply via the power line, and the coils of each actuator 7 via the power line Power is supplied to 25A, 25B and 25C.
 図2に示すように、車体2には、前,後方向と左,右方向に離間した4隅側の位置に、夫々の位置で車体2の上,下方向の加速度をばね上加速度として検出する合計4個の加速度センサ9が設けられている。これらの加速度センサ9は、鉄道車両1の異なる複数個所にそれぞれ搭載されて該鉄道車両1の挙動を検出する複数のセンサ(挙動センサ)を構成している。加速度センサ9としては、例えば圧電式、ピエゾ抵抗式等のアナログ式加速度センサが用いられ、特に、耐水性、耐熱性に優れた加速度センサを用いるのがよい。 As shown in FIG. 2, the vehicle body 2 detects accelerations in the upper and lower directions of the vehicle body 2 as sprung accelerations at respective positions on four corner sides separated in the front and back directions and left and right directions. A total of four acceleration sensors 9 are provided. The acceleration sensors 9 are respectively mounted on a plurality of different places of the railcar 1 to constitute a plurality of sensors (behavior sensors) for detecting the behavior of the railcar 1. As the acceleration sensor 9, for example, an analog acceleration sensor of a piezoelectric type, a piezoresistive type or the like is used, and in particular, an acceleration sensor excellent in water resistance and heat resistance is preferably used.
 ここで、例えば第1の加速度センサ9は、車体2の前部左側(FL)で一の第1アクチュエータ7Aに近い位置に配置され、第2の加速度センサ9は、車体2の前部右側(FR)で一の第2アクチュエータ7Bに近い位置に配置されている。第3の加速度センサ9は、車体2の後部左側(RL)で他の第1アクチュエータ7Cに近い位置に配置され、第4の加速度センサ9は、車体2の後部右側(RR)で他の第2アクチュエータ7Dに近い位置に配置されている。 Here, for example, the first acceleration sensor 9 is disposed at a position near the first actuator 7A on the front left side (FL) of the vehicle body 2, and the second acceleration sensor 9 is It is arrange | positioned in the position near 1st 2nd actuator 7B by FR). The third acceleration sensor 9 is disposed at the rear left side (RL) of the vehicle body 2 and at a position close to the other first actuator 7C. The fourth acceleration sensor 9 is disposed at the rear right side (RR) of the vehicle body 2 2) It is disposed at a position close to the actuator 7D.
 各加速度センサ9は、それぞれの位置で検出した加速度の検出信号を後述の制御装置10に互いに異なる信号(車両挙動の検出信号)として出力する。なお、加速度センサ9は、車体2の前部左側、前部右側、後部左側、後部右側に限らず、例えば車体2の前部中央、中央部左側、中央部右側、後部中央に配置する等、車体2上のセンサ配置はいかなる形をとっても良い。また、加速度センサ9の個数も4個に限らず、測定・制御の目的に合わせて自由に選んでよい。但し、少なくとも2個配置することが望ましい。 Each acceleration sensor 9 outputs a detection signal of acceleration detected at each position to the control device 10 described later as different signals (detection signals of vehicle behavior). The acceleration sensor 9 is not limited to the front left side, the front right side, the rear left side, and the rear right side of the vehicle body 2. For example, the acceleration sensor 9 may be disposed at the front center of the vehicle body 2, the center left side, the center right side, the rear center, The sensor arrangement on the vehicle body 2 may take any form. Further, the number of acceleration sensors 9 is not limited to four, and may be freely selected according to the purpose of measurement and control. However, it is desirable to arrange at least two.
 次に、各アクチュエータ7の発生減衰力を可変に制御する制御装置10について説明する。この制御装置10は、鉄道車両1の予め決められた位置(例えば、図2に示すように車体2のほぼ中央となる位置等)に設置されるものである。制御装置10は、例えばマイクロコンピュータ等により構成され、その入力側にはインバータ8、加速度センサ9および後述の温度センサ32,33等が接続されている。制御装置10の出力側には、インバータ8を介してアクチュエータ7がそれぞれ接続されている。 Next, the control device 10 that variably controls the generated damping force of each actuator 7 will be described. The control device 10 is installed at a predetermined position of the railcar 1 (for example, a position substantially at the center of the vehicle body 2 as shown in FIG. 2). The control device 10 is constituted by, for example, a microcomputer, and the inverter 8, the acceleration sensor 9, and temperature sensors 32 and 33 described later are connected to the input side thereof. The actuator 7 is connected to the output side of the control device 10 via an inverter 8.
 また、制御装置10は、例えば通信回線11を介して図1に示す車体2に連接(連結)された他の車体の制御装置(いずれも図示せず)に接続されると共に、鉄道車両1の車両情報(例えば、車両の走行位置、走行速度等)が通信回線11を介して入出力される。制御装置10は、1台の車体2に1個配置され、通信回線11を介した車両の上位部との通信や、センサ信号を元に内部で演算を行い、各アクチュエータ7(具体的には、インバータ8)に減衰力指令に基づいた電流を通電すると共に、例えば各アクチュエータ7の故障診断、異常検知等を行う。 Further, the control device 10 is connected to, for example, a control device (not shown) of another vehicle body connected (connected) to the vehicle body 2 shown in FIG. Vehicle information (for example, traveling position of the vehicle, traveling speed, etc.) is input / output via the communication line 11. One control device 10 is disposed on one vehicle body 2, performs communication internally with the upper part of the vehicle via the communication line 11, and performs calculation internally based on a sensor signal, and each actuator 7 (specifically, The inverter 8) is supplied with a current based on the damping force command, and, for example, failure diagnosis, abnormality detection, and the like of each actuator 7 are performed.
 ここで、制御装置10は、例えばROM,RAM,不揮発性メモリ等からなる記憶部としてのメモリ12を有し、このメモリ12内には、例えば図5~図7に示す温度センサ32,33の故障判定(異常判断)を行うための第1~第3パターンの特性と、例えば図8~図10に示す温度センサ32,33を用いて2つの台車間のセンサ値比較判定部14と同一の台車でのセンサ値比較判定部15およびセンサ異常判定部16の処理を行うためのプログラムと、温度センサ32,33の異常判断を行うために異常判定値として予め決められた判定用閾値Ta,Tbと、図11に示す異常な温度センサを特定するための判定テーブルと、アクチュエータ7の制御可能温度閾値である第1,第2の温度上限値Tα,Tβ(いずれも図示せず:Tα>Tβ)等とが更新可能に格納されている。 Here, the control device 10 has a memory 12 as a storage unit including, for example, a ROM, a RAM, a non-volatile memory, etc. In the memory 12, for example, temperature sensors 32, 33 shown in FIGS. The same as the sensor value comparison determination unit 14 between two bogies using the characteristics of the first to third patterns for performing failure determination (abnormality determination) and the temperature sensors 32 and 33 shown in FIGS. 8 to 10, for example. A program for performing the processing of the sensor value comparison / determination unit 15 and the sensor abnormality determination unit 16 in the bogie, and the judgment threshold values Ta and Tb predetermined as abnormality judgment values for making the abnormality judgment of the temperature sensors 32 and 33 11 and a first and second temperature upper limit values Tα and Tβ (controllable temperature thresholds of the actuator 7 (both not shown: Tα>). beta) and the like are stored updatable.
 図3に示すように、制御装置10は、アクチュエータ7の発生減衰力をインバータ8を介して可変に制御する制御コントローラ13と、アクチュエータ7にそれぞれ設けられた複数の温度センサ32,33の故障診断(異常判断)を行うための2つの台車間のセンサ値比較判定部14、同一の台車でのセンサ値比較判定部15およびセンサ異常判定部16と、前記メモリ12とを含んで構成されている。制御コントローラ13は、指令信号演算部13Aと制御可能温度変更部13Bとを含んで構成されている。 As shown in FIG. 3, the control device 10 diagnoses failure of the control controller 13 that variably controls the generated damping force of the actuator 7 via the inverter 8 and the plurality of temperature sensors 32 and 33 respectively provided to the actuator 7. A sensor value comparison and determination unit 14 between two bogies for performing (abnormality determination), a sensor value comparison and determination unit 15 for the same bogie, a sensor malfunction determination unit 16, and the memory 12 are configured. . The controller 13 is configured to include a command signal calculation unit 13A and a controllable temperature change unit 13B.
 制御コントローラ13の指令信号演算部13Aは、車体2のロール(横揺れ)、ピッチ(前,後方向の揺れ)等の振動を低減すべく、サンプリング時間毎に加速度センサ9からの検出信号等を読込みつつ、例えばスカイフック理論(スカイフック制御則)に従って指令信号(制御指令の電流値)を演算により求める。この上で、指令信号演算部13Aは、前記指令信号をインバータ8(図2中の第1インバータ8A,8Cと第2インバータ8B,8D)に個別に出力し、アクチュエータ7(図2中の第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)毎の減衰力特性を可変に制御する。なお、アクチュエータ7の制御則としては、スカイフック制御則に限るものではなく、例えばLQG制御則またはH∞制御則等を用いる構成でもよい。 The command signal calculation unit 13A of the controller 13 detects a detection signal or the like from the acceleration sensor 9 every sampling time in order to reduce vibrations such as roll (rolling) and pitch (swinging in the forward and backward directions) of the vehicle body 2. While reading, for example, a command signal (a current value of a control command) is obtained by calculation according to the skyhook theory (skyhook control law). Then, the command signal operation unit 13A individually outputs the command signal to the inverter 8 (the first inverters 8A, 8C and the second inverters 8B, 8D in FIG. 2), and the actuator 7 (the second in FIG. 2). Damping force characteristics of each of the actuators 7A and 7C and the second actuators 7B and 7D are variably controlled. The control law of the actuator 7 is not limited to the skyhook control law. For example, an LQG control law or an H∞ control law may be used.
 制御コントローラ13の制御可能温度変更部13Bは、センサ異常判定部16により、複数の温度センサ32,33のうちいずれかの温度センサが故障と判定されたときに、前記制御可能温度閾値を前記第1の温度上限値Tαより小さい第2の温度上限値Tβに変更する機能を有している。そして、前記制御可能温度閾値の変更後は、複数の温度センサ32,33のうち異常が検出されてない正常な温度センサの検出信号(出力値)に基づいて、アクチュエータ7の駆動制御は継続して行われる。 When the sensor abnormality determination unit 16 determines that any one of the plurality of temperature sensors 32 and 33 is out of order, the controllable temperature changing unit 13B of the controller 13 sets the controllable temperature threshold to the threshold value. It has a function of changing to a second temperature upper limit value Tβ smaller than the temperature upper limit value Tα of 1. Then, after the change of the controllable temperature threshold value, the drive control of the actuator 7 is continued based on the detection signal (output value) of a normal temperature sensor among the plurality of temperature sensors 32 and 33 in which no abnormality is detected. Be done.
 2つの台車間のセンサ値比較判定部14は、一の台車(前側の台車3)と他の台車(後側の台車3)とに設けられた第1アクチュエータ7A,7C、第2アクチュエータ7B,7Dのそれぞれの同相の温度センサ32,33の出力値(図2、図3に示す出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4w)を、後述するように図8に示す処理手順に沿って比較し判定する。同一の台車でのセンサ値比較判定部15は、同一の台車3に設けられた第1アクチュエータ7A,7Cと第2アクチュエータ7B,7Dとの同相の温度センサ32,33のそれぞれの出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4wを、後述の如く図9に示す処理手順に沿って比較し判定する。 The sensor value comparison / determination unit 14 between two carriages is a first actuator 7A, 7C, a second actuator 7B, provided on one carriage (the carriage 3 on the front side) and another carriage (the carriage 3 on the rear side). The output values of the respective in- phase temperature sensors 32 and 7 of 7D (the output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w shown in FIG. 2 and FIG. 3) are shown in FIG. Compare and determine according to the procedure. The sensor value comparison / determination unit 15 in the same carriage has output values T1u of the temperature sensors 32 and 33 in phase with the first actuators 7A and 7C and the second actuators 7B and 7D provided on the same carriage 3, respectively. T1w, T2u, T2w, T3u, T3w, T4u, and T4w are compared and determined according to the processing procedure shown in FIG. 9 as described later.
 さらに、制御装置10のセンサ異常判定部16は、前記各温度センサ32,33のうち異常な温度センサ(故障している温度センサ)を前記比較判定部14,15の判定結果に基づいて、後述の如く図10に示す処理手順に沿って特定するものである。 Furthermore, the sensor abnormality determination unit 16 of the control device 10 calculates an abnormal temperature sensor (a malfunctioning temperature sensor) among the temperature sensors 32 and 33 based on the determination results of the comparison and determination units 14 and 15, which will be described later. As shown in FIG. 10, the process is specified according to the procedure shown in FIG.
 次に、車体2の振動減衰を行う電磁サスペンション(例えば、三相リニアモータ)を構成するアクチュエータ7の具体的構成について、図4を参照しつつ説明する。 Next, a specific configuration of the actuator 7 constituting an electromagnetic suspension (for example, a three-phase linear motor) for damping the vibration of the vehicle body 2 will be described with reference to FIG.
 アクチュエータ7は、例えば車体2側に配置される固定子21と、台車3(車輪4)側に配置される可動子26とを有し、固定子21に設けられた電機子23のコイル部材25と、可動子26に設けられた永久磁石31とにより三相リニアモータ(三相リニア同期)モータを構成している。換言すると、アクチュエータ7は、車体2(ばね上部材)と車輪4側の台車3(ばね下部材)との間に介装され、相対変位可能な同軸状の内筒(変位部材)と外筒(変位部材)とのうちの内筒に対応するロッド22にコア24を介して設けられた複数相のコイル群からなるコイル部材25(コイル25A,25B,25C)と、外筒に対応するチューブ(ヨーク)27に設けられコイル部材25と対向する磁性部材としての永久磁石31とからなる筒状リニア電磁式アクチュエータとして構成されている。 The actuator 7 has, for example, a stator 21 disposed on the side of the vehicle body 2 and a mover 26 disposed on the side of the carriage 3 (wheels 4). The coil member 25 of the armature 23 provided on the stator 21 A three-phase linear motor (three-phase linear synchronization) motor is configured by the permanent magnets 31 provided on the mover 26. In other words, the actuator 7 is interposed between the vehicle body 2 (spring upper member) and the carriage 3 (spring lower member) on the wheel 4 side, and the relatively displaceable coaxial inner cylinder (displacement member) and outer cylinder A coil member 25 ( coils 25A, 25B, 25C) comprising a coil group of a plurality of phases provided on the rod 22 corresponding to the inner cylinder of the (displacement member) via the core 24 and a tube corresponding to the outer cylinder It is configured as a cylindrical linear electromagnetic actuator including a permanent magnet 31 as a magnetic member provided on the (yoke) 27 and facing the coil member 25.
 アクチュエータ7の固定子21と可動子26とは、車体2と台車3との間に介装された第1部材と第2部材として、直線状に互いに相対変位可能に配置されている。本実施の形態にあっては、第1部材と第2部材のうち、第1部材を固定子21とし、第2部材を可動子26とした場合を例示している。しかし、これに限らず、第1部材を可動子とし、第2部材を固定子としてもよい。 The stator 21 and the mover 26 of the actuator 7 are linearly displaceable relative to each other as a first member and a second member interposed between the vehicle body 2 and the carriage 3. In the present embodiment, of the first and second members, the case where the first member is the stator 21 and the second member is the mover 26 is illustrated. However, the present invention is not limited to this. The first member may be a mover, and the second member may be a stator.
 ここで、第1部材に相当する固定子21は、ロッド22と電機子23とにより大略構成されている。ロッド22は、例えば有底円筒状に形成されストローク方向となる軸方向(即ち、相対変位の方向である図4の上,下方向)に延びるロッド筒部22Aと、該ロッド筒部22Aの一端側(図4の上端側)を閉塞する底部22Bと、ロッド筒部22Aの径方向内側に位置してロッド筒部22Aと同心状に形成され一端側(図4の上端側)が底部22Bの位置まで軸方向に延びて底部22Bにより閉塞された内側筒部22Cと、を含んで構成されている。 Here, the stator 21 corresponding to the first member is roughly configured by the rod 22 and the armature 23. The rod 22 is formed, for example, in a bottomed cylindrical shape and extends in the axial direction (that is, in the direction of relative displacement in FIG. 4 which is the direction of relative displacement) in the stroke direction. A bottom 22B closing the side (the upper end in FIG. 4) and a radial inner side of the rod cylindrical portion 22A are concentrically formed with the rod cylindrical portion 22A, and one end (the upper end in FIG. 4) is the bottom 22B. And an inner cylindrical portion 22C axially extended to the position and closed by the bottom 22B.
 ロッド22の内側筒部22Cは、その他端側(図4の下端側)が電機子23(コア24)の内周側を軸方向に延び、例えば嵌合、圧入等の手段を用いてコア24の内側に固定されている。また、ロッド22の底部22Bには、例えば鉄道車両1のばね上(例えば、車体2)に取付けられる取付アイ22Dが設けられている。この取付アイ22Dは、ロッド22の底部22B(突出端)を車両のばね上部材(車体2側)に取付けるための取付部材である。一方、ロッド筒部22Aの開口端側(図4の下端側)には、電機子23が一体化(固定)するように設けられている。 The other end side (lower end side in FIG. 4) of the inner cylindrical portion 22C of the rod 22 axially extends on the inner peripheral side of the armature 23 (core 24), and the core 24 is formed by using, for example, fitting, press fitting or the like. It is fixed inside. Further, at the bottom 22B of the rod 22, for example, a mounting eye 22D attached to a spring (for example, the vehicle body 2) of the railway vehicle 1 is provided. The mounting eye 22D is a mounting member for mounting the bottom 22B (projecting end) of the rod 22 to the sprung member (vehicle body 2 side) of the vehicle. On the other hand, an armature 23 is provided on the open end side (lower end side in FIG. 4) of the rod cylindrical portion 22A so as to be integrated (fixed).
 電機子23は、例えば磁性体からなる略筒状のコア24と、該コア24に設けられコイル部材25を構成する複数のコイル25A,25B,25C(即ち、u相コイル25A,v相コイル25B,w相コイル25C)とにより構成されている。なお、コイル部材25(コイル25A,25B,25C)の個数は、3個に限らず、例えば6個、9個、12個等、設計仕様等に応じて適宜に変更することができる。 The armature 23 includes, for example, a substantially cylindrical core 24 made of a magnetic material, and a plurality of coils 25A, 25B, 25C provided on the core 24 and constituting the coil member 25 (that is, u-phase coil 25A, v-phase coil 25B , W-phase coil 25C). The number of coil members 25 ( coils 25A, 25B, and 25C) is not limited to three, and may be appropriately changed according to design specifications and the like, for example, six, nine, and twelve.
 可動子26は、電機子23(コア24およびコイル25A,25B,25C)の外周側に配置されるヨーク(外筒)としてのチューブ27と、該チューブ27の内側に位置してストローク方向に延びる案内ロッド28と、チューブ27に設けられコイル25A,25B,25Cに対し径方向に隙間をもって対向する磁性部材としての複数の永久磁石31とにより構成されている。 The mover 26 is a tube 27 as a yoke (outer cylinder) disposed on the outer peripheral side of the armature 23 (the core 24 and the coils 25A, 25B, 25C) and extends inside the tube 27 in the stroke direction. It comprises a guide rod 28 and a plurality of permanent magnets 31 as magnetic members provided in the tube 27 and facing the coils 25A, 25B, 25C with a gap in the radial direction.
 チューブ27は、例えば、磁場の中に置くと磁路を形成する磁性材料、例えば機械構造用炭素鋼鋼管(STKM12A)等を用いて有底円筒状に形成され、ストローク方向となる軸方向に延びている。即ち、チューブ27は、磁性材料を用いることにより、アクチュエータ7の磁気回路を形成すると共に、後述する永久磁石31の磁束を外部に漏らさないためのカバーとしての機能も有している。 The tube 27 is formed in a cylindrical shape with a bottom using, for example, a magnetic material that forms a magnetic path when placed in a magnetic field, such as carbon steel pipe for machine structure (STKM 12A), and extends in the axial direction that is the stroke direction. ing. That is, the tube 27 forms a magnetic circuit of the actuator 7 by using a magnetic material, and also has a function as a cover for preventing leakage of the magnetic flux of the permanent magnet 31 described later to the outside.
 ここで、チューブ27は、軸方向に延びる筒部27Aと、該筒部27Aの他端側(図4の下端側)を閉塞する底部27Bと、筒部27Aの開口側(一端側)に位置し固定子21のロッド22側に向けて径方向の内側へと延びた環状の軸受取付部27Cとにより構成されている。前記筒部27Aの内側には、複数の永久磁石31が軸方向に並んで配置されている。 Here, the tube 27 is positioned at a cylindrical portion 27A extending in the axial direction, a bottom portion 27B closing the other end side (lower end side in FIG. 4) of the cylindrical portion 27A, and an opening side (one end side) of the cylindrical portion 27A. The annular bearing mounting portion 27C extends inward in the radial direction toward the rod 22 side of the stator 21. A plurality of permanent magnets 31 are arranged in line in the axial direction inside the cylindrical portion 27A.
 底部27Bには、筒部27Aの内側に位置して底部27Bから電機子23の内側(ロッド22の内側筒部22Cの内側)を軸方向に延びる案内ロッド28が設けられている。この案内ロッド28は、ロッド22の内側筒部22C内を第1,第2軸受29A,29Bを介して軸方向に相対変位可能に摺動する。第1軸受29Aは、例えばロッド22(内側筒部22C)の内周側に設けられ、第2軸受29Bは、例えばコア24の内周側に設けられている。なお、案内ロッド28は、チューブ27の底部27Bに該チューブ27と一体に形成する構成や、チューブ27とは別体の案内ロッド28を底部27Bにねじやボルト等を用いて固定する構成を採用することができる。 The bottom 27B is provided with a guide rod 28 located inside the cylinder 27A and extending in the axial direction from the bottom 27B to the inside of the armature 23 (the inside of the inner cylinder 22C of the rod 22). The guide rod 28 slides relative to the inside of the inner cylindrical portion 22C of the rod 22 in the axial direction via the first and second bearings 29A and 29B. The first bearing 29A is provided, for example, on the inner peripheral side of the rod 22 (inner cylindrical portion 22C), and the second bearing 29B is provided, for example, on the inner peripheral side of the core 24. The guide rod 28 adopts a configuration in which the guide rod 28 is formed integrally with the bottom of the tube 27 with the tube 27 or a configuration in which the guide rod 28 separate from the tube 27 is fixed to the bottom 27B using screws or bolts. can do.
 また、チューブ27の底部27Bには、案内ロッド28とは軸方向の反対側に位置して取付アイ27Dが設けられている。この取付アイ27Dは、チューブ27を車両のばね下部材(台車3側)に取付けるための取付部材である。一方、軸受取付部27Cの内周面には、ロッド22の外周面と摺接する軸受、スリーブ等の摺動部材からなる第3軸受30が設けられている。軸受取付部27Cと第3軸受30は、ロッド22を軸方向に摺動可能に支持するロッドガイドを構成している。 Further, a mounting eye 27D is provided on the bottom 27B of the tube 27 so as to be opposite to the guide rod 28 in the axial direction. The mounting eye 27D is a mounting member for mounting the tube 27 on the unsprung member (the carriage 3 side) of the vehicle. On the other hand, on the inner peripheral surface of the bearing mounting portion 27C, a third bearing 30 formed of a sliding member such as a bearing, a sleeve, and the like slidingly contacting the outer peripheral surface of the rod 22 is provided. The bearing mounting portion 27C and the third bearing 30 constitute a rod guide that slidably supports the rod 22 in the axial direction.
 チューブ27の筒部27Aの内周面側には、磁場を生じさせる部材である磁性部材としての複数の円環状の永久磁石31が軸方向に沿って並んで配置されている。この場合、軸方向に隣合う各永久磁石31は、例えば互いに逆極性になっている。例えば、チューブ27の一端側から数えて奇数個目の永久磁石31を、内周面側がN極で外周面側がS極のものとすれば、一端側から数えて偶数個目の永久磁石31は、内周面側がS極で外周面側がN極のものとなっている。 A plurality of annular permanent magnets 31 as magnetic members, which are members for generating a magnetic field, are arranged in line along the axial direction on the inner peripheral surface side of the cylindrical portion 27A of the tube 27. In this case, the permanent magnets 31 axially adjacent to each other have, for example, opposite polarities. For example, if it is assumed that the odd-numbered permanent magnet 31 is counted from the one end side of the tube 27 and the inner peripheral surface side is the N pole and the outer peripheral surface side is the S pole, the even-numbered permanent magnet 31 counted from the one end is The inner circumferential surface side is an S pole and the outer circumferential surface side is an N pole.
 この場合、各永久磁石31は、例えば、円筒状に一体に形成されたリング磁石や、円弧状の複数の磁石素子を周方向に並べることにより円環状に構成した分割型のセグメント磁石とすることができる。なお、永久磁石31の個数は、図示の例に限るものではない。また、ヨークを構成するチューブ27は、磁気回路や磁気漏洩の観点から磁性体が好ましいが、第3軸受30と軸受取付部27Cのうちの少なくとも一方は、非磁性体が好ましい。 In this case, each permanent magnet 31 may be, for example, a ring magnet formed integrally in a cylindrical shape, or a segmented segment magnet formed in an annular shape by arranging a plurality of arc-shaped magnet elements in the circumferential direction. Can. The number of permanent magnets 31 is not limited to the illustrated example. The tube 27 constituting the yoke is preferably a magnetic body from the viewpoint of magnetic circuit and magnetic leakage, but at least one of the third bearing 30 and the bearing mounting portion 27C is preferably a nonmagnetic body.
 温度センサ32,33は、電機子23(コイル部材25)の発熱温度を検出するセンサである。このうち、u相の温度センサ32は、常用ストローク領域での作動に伴って温度上昇し易いコイル25A(即ち、u相コイル25A)近傍に配置され、w相の温度センサ33は、熱が篭り易いコイル25C(即ち、w相コイル25C)近傍に配置されている。これらの温度センサ32,33は、アクチュエータ7(第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)の電機子23(コイル部材25の近傍)にそれぞれ配設されている。 The temperature sensors 32 and 33 are sensors that detect the heat generation temperature of the armature 23 (coil member 25). Among these, the u-phase temperature sensor 32 is disposed in the vicinity of the coil 25A (that is, the u-phase coil 25A) which easily rises in temperature with operation in the normal stroke region, and the w-phase temperature sensor 33 is heated. It is arrange | positioned in the vicinity of the easy coil 25C (namely, w phase coil 25C). These temperature sensors 32, 33 are respectively disposed on the armature 23 (near the coil member 25) of the actuator 7 (the first actuators 7A, 7C and the second actuators 7B, 7D).
 前側の台車3に設けられた前部左側(FL)の第1アクチュエータ7Aにおいては、図3に示す温度センサ32(FL)がu相コイル25A近傍の温度を、例えば出力値T1uとして検出し、温度センサ33(FL)はw相コイル25C近傍の温度を、例えば出力値T1wとして検出する。前側の台車3に設けられた前部右側(FR)の第2アクチュエータ7Bでは、温度センサ32(FR)がu相コイル25A近傍の温度を、例えば出力値T2uとして検出し、温度センサ33(FR)がw相コイル25C近傍の温度を、例えば出力値T2wとして検出する。 In the first actuator 7A on the front left side (FL) provided on the front carriage 3, the temperature sensor 32 (FL) shown in FIG. 3 detects the temperature in the vicinity of the u-phase coil 25A as an output value T1u, The temperature sensor 33 (FL) detects the temperature in the vicinity of the w-phase coil 25C as, for example, an output value T1w. In the second actuator 7B on the front right (FR) provided on the front carriage 3, the temperature sensor 32 (FR) detects the temperature near the u-phase coil 25A as, for example, the output value T2u, and the temperature sensor 33 (FR ) Detects the temperature near the w-phase coil 25C as an output value T2w, for example.
 後側の台車3に設けられた後部左側(RL)の第1アクチュエータ7Cでは、図3に示す温度センサ32(RL)がu相コイル25A近傍の温度を、例えば出力値T3uとして検出し、温度センサ33(RL)がw相コイル25C近傍の温度を、例えば出力値T3wとして検出する。後側の台車3に設けられた後部右側(RR)の第2アクチュエータ7Dでは、温度センサ32(RR)がu相コイル25A近傍の温度を、例えば出力値T4uとして検出し、温度センサ33(RR)がw相コイル25C近傍の温度を、例えば出力値T4wとして検出する。 In the rear left (RL) first actuator 7C provided on the rear carriage 3, the temperature sensor 32 (RL) shown in FIG. 3 detects the temperature near the u-phase coil 25A as the output value T3u, for example, The sensor 33 (RL) detects the temperature in the vicinity of the w-phase coil 25C as, for example, an output value T3w. In the rear right (RR) second actuator 7D provided on the rear carriage 3, the temperature sensor 32 (RR) detects the temperature near the u-phase coil 25A as, for example, the output value T4u, and the temperature sensor 33 (RR ) Detects the temperature near the w-phase coil 25C as, for example, an output value T4w.
 ここで、図4に示す電機子23のコイル部材25(コイル25A,25B,25C)は、u相コイル25Aとw相コイル25Cとの中間に位置するv相コイル25Bが最も高温になり易い。このため、v相コイル25Bの耐久性、寿命を維持する上での上限となる温度を、両側のu相コイル25Aとw相コイル25Cの検出温度(温度センサ32,33の出力値T1u,T1w)から熱抵抗を考慮して導き出すように、前記第1の温度上限値Tαは決められている。 Here, in the coil member 25 ( coils 25A, 25B, 25C) of the armature 23 shown in FIG. 4, the v-phase coil 25B located midway between the u-phase coil 25A and the w-phase coil 25C tends to have the highest temperature. Therefore, the detection temperature of the u-phase coil 25A and the w-phase coil 25C on both sides (output values T1u and T1w of the temperature sensors 32 and 33) is the upper limit temperature for maintaining the durability and life of the v-phase coil 25B. The first upper temperature limit Tα is determined as derived from the above in consideration of the thermal resistance.
 前側の台車3に設けられた前部左側(FL)の第1アクチュエータ7Aを例に挙げると、温度センサ32,33の出力値T1u,T1wが、例えば第1の温度上限値Tα以上になると、コイル部材25のうち最も高温になり易いv相コイル25B(即ち、コイル25B)が損傷される可能性がある。このため、制御装置10の制御コントローラ13は、温度センサ32の出力値T1uまたは温度センサ33の出力値T1wが第1の温度上限値Tα(制御可能温度閾値)を超えたときに、第1アクチュエータ7Aの出力を制限して温度上昇を抑えるような制御を行う。この点は、他のアクチュエータ7B~7Dについても同様であるので、説明を省略する。 Taking the first actuator 7A on the front left side (FL) provided on the front carriage 3 as an example, when the output values T1u and T1w of the temperature sensors 32 and 33 become, for example, the first upper temperature limit Tα or more, Among the coil members 25, the v-phase coil 25 </ b> B (i.e., the coil 25 </ b> B) most likely to become hot may be damaged. Therefore, when the output value T1u of the temperature sensor 32 or the output value T1w of the temperature sensor 33 exceeds the first temperature upper limit value Tα (controllable temperature threshold value), the controller 13 of the control device 10 performs the first actuator Control is performed to limit the temperature rise by limiting the output of 7A. This point is the same for the other actuators 7 B to 7 D, so the description will be omitted.
 一方、第2の温度上限値Tβは、例えばu相コイル25Aの耐久性、寿命を維持する上での上限となる温度を、反対側のw相コイル25Cの検出温度(温度センサ33の出力値T1w)から熱抵抗を考慮して導き出すか、またはw相コイル25Cの耐久性、寿命を維持する上での上限となる温度を反対側のu相コイル25Aの検出温度(温度センサ32の出力値T1u)から熱抵抗を考慮して導き出すように設定した温度上限値である。このように、第1の温度上限値Tαと第2の温度上限値Tβとは、考慮する熱抵抗が異なっているために、第1の温度上限値Tαの方が第2の温度上限値Tβよりも高い温度(Tα>Tβ)となる。 On the other hand, the second temperature upper limit value Tβ is, for example, the durability of the u-phase coil 25A, the temperature which is the upper limit for maintaining the life, the detection temperature of the w-phase coil 25C on the opposite side (output value of the temperature sensor 33 T1w) can be derived in consideration of thermal resistance, or the durability of w-phase coil 25C, the upper limit temperature for maintaining the life is the detected temperature of u-phase coil 25A on the opposite side (output value of temperature sensor 32 It is a temperature upper limit value set so as to be derived in consideration of the thermal resistance from T1 u). As described above, since the first temperature upper limit value Tα and the second temperature upper limit value Tβ are different in thermal resistance to be considered, the first temperature upper limit value Tα is the second temperature upper limit value Tβ. The temperature is higher than that (Tα> Tβ).
 次に、例えば図5~図7に示す温度センサ32,33の異常判断を行うための第1~第3パターンの特性について説明する。 Next, the characteristics of the first to third patterns for judging abnormality of the temperature sensors 32 and 33 shown in FIGS. 5 to 7, for example, will be described.
 温度センサ32,33の異常判断(故障判定)を行うための第1パターンは、図5中に実線で示す正常時の特性線34に対し、点線で示す特性線35では、検出開始時の温度が下限閾値よりも低い温度となる故障パターンとなっている。また、点線で示す他の特性線36では、検出温度が上限閾値よりも高い温度となる故障パターンとなっている。図5中に点線で示す特性線35,36の故障パターン(第1パターン)に対しては、温度センサ32,33の出力値(検出温度)に上限閾値と下限閾値を設け、閾値以上または以下となった場合に、センサ異常と判断することで、温度センサ32,33の故障を適切に検出することが可能となる。 The first pattern for performing abnormality determination (failure determination) of the temperature sensors 32 and 33 is the temperature at the start of detection with the characteristic line 35 indicated by a dotted line, as opposed to the characteristic line 34 at the normal time indicated by a solid line in FIG. Is a failure pattern in which the temperature is lower than the lower limit threshold. Further, another characteristic line 36 indicated by a dotted line is a failure pattern in which the detected temperature is higher than the upper limit threshold. For the failure pattern (first pattern) of the characteristic lines 35 and 36 indicated by dotted lines in FIG. 5, the output value (detected temperature) of the temperature sensors 32 and 33 is provided with an upper threshold and a lower threshold. When it becomes, it becomes possible to detect failure of temperature sensors 32 and 33 appropriately by judging as sensor abnormalities.
 図6に示す第2パターンは、実線で示す正常時の特性線34に対し、点線で示す特性線37では、検出開始後の温度が下限閾値よりも僅かに高いものの、ほぼ同じ温度で推移する故障パターンとなっている。また、点線で示す他の特性線38は、検出開始後の温度が上限閾値よりも僅かに低いものの、ほぼ同じ温度で推移する故障パターンとなっている。このような故障の第2パターンは、温度センサ32または33が計測対象物(例えば、コイル25Aまたは25C)から剥がれるか、または温度センサ本体や計測回路の故障により、出力値が一定値で固着した場合である。 In the second pattern shown in FIG. 6, the characteristic line 37 shown by the dotted line shifts at almost the same temperature although the temperature after the start of detection is slightly higher than the lower limit threshold, compared to the normal characteristic line 34 shown by the solid line. It is a failure pattern. Further, the other characteristic line 38 indicated by the dotted line has a failure pattern in which the temperature after the start of detection is slightly lower than the upper threshold but changes at substantially the same temperature. In the second pattern of such failure, the temperature sensor 32 or 33 is peeled off from the object to be measured (for example, the coil 25A or 25C), or the output value is fixed at a constant value due to a failure of the temperature sensor body or the measuring circuit. That's the case.
 この故障(第2パターン)は、温度センサ32,33の出力値がどの値で固着したかによって故障検出方法が変わってくる。例えば、上限閾値以上または下限閾値以下で固着した場合、単純な出力異常でありセンサ故障として検出することができる。しかし、正常範囲内(下限閾値以上で、かつ上限閾値以下)で固着した場合、例えば他のアクチュエータ7に設けた温度センサの出力値と比較し偏差が大きいか否かにより、異常候補となる温度センサを検出できるが、異常軸(いずれのアクチュエータ7における温度センサの故障か)の特定ができない。その理由は、複数の温度センサが正常範囲内にある場合、どちらのセンサ出力値が正常と見做すかを判断しなければならず、異常軸の特定が難しいからである。 In this failure (second pattern), the failure detection method changes depending on the value at which the output values of the temperature sensors 32, 33 are fixed. For example, in the case of sticking above the upper threshold or below the lower threshold, it is a simple output abnormality and can be detected as a sensor failure. However, when sticking within the normal range (more than the lower limit threshold and less than the upper limit threshold), for example, the temperature which becomes an abnormality candidate depending on whether the deviation is large compared with the output value of the temperature sensor provided in the other actuator 7 Although the sensor can be detected, it is not possible to specify an abnormal axis (which actuator 7 has a failure of the temperature sensor). The reason is that when a plurality of temperature sensors are in the normal range, it is necessary to determine which sensor output value is considered to be normal, and it is difficult to identify an abnormal axis.
 一方、図7に示す第3パターンは、実線で示す正常時の特性線34に対し、点線で示す特性線39では、検出開始後の温度が漸次低い温度となり、特性線34(正常時)との温度検出誤差が大きくなっている故障パターンである。このような故障の第3パターンは、温度センサ32または33が計測対象物から一部のみ剥がれ、正常時と比べて出力値の変化が緩やかになった場合である。例えば、温度センサ32または33と計測対象物との間に隙間ができることで、温度センサ32,33の出力値の時定数が大きくなった状態である。 On the other hand, the third pattern shown in FIG. 7 is the characteristic line 34 shown by the dotted line, while the characteristic line 34 shown by the dotted line has a gradually lower temperature than the characteristic line 34 shown by the solid line. Is a failure pattern in which the temperature detection error is increased. The third pattern of such a failure is when the temperature sensor 32 or 33 peels off only a part of the object to be measured, and the change in output value becomes gentler than that in the normal state. For example, the time constant of the output value of the temperature sensors 32 and 33 is large because a gap is formed between the temperature sensor 32 or 33 and the object to be measured.
 この第3パターンの故障は、正常時と異常時の出力差が小さい場合、複数の温度センサの出力値の差(出力差)による異常検出が難しい。即ち、温度の不平衡がある環境において、正常時に比べて温度センサの出力値が高いか、低いかという判断をするのは困難である。例えば、他の温度センサとの出力差(偏差)を演算することで、偏差がある閾値以上になった場合に温度センサの故障と判断することも可能であるが、この場合、温度センサが故障したことに伴う温度差なのか、それとも温度不平衡による温度差なのかを判断できず、温度センサの故障として誤検知する虞れがある。 In the failure of the third pattern, when the output difference between the normal state and the abnormal state is small, it is difficult to detect an abnormality due to the difference (output difference) between the output values of the plurality of temperature sensors. That is, in an environment where there is a temperature imbalance, it is difficult to determine whether the output value of the temperature sensor is higher or lower than that in the normal state. For example, by calculating the output difference (deviation) with another temperature sensor, it is possible to judge that the temperature sensor has a failure when the deviation exceeds a certain threshold, but in this case, the temperature sensor has a failure. It can not be determined whether it is a temperature difference due to the above or a temperature difference due to temperature imbalance, and there is a possibility that it may be erroneously detected as a failure of the temperature sensor.
 以上のことから、温度センサ32,33の故障パターン(特に、第2,第3パターン)によっては、温度センサ32,33の出力値の平均値や偏差から故障検知するのは困難な場合がある。以上の技術背景に鑑みて、本実施の形態では、制御装置10が2つのセンサ値比較判定部(2つの台車間のセンサ値比較判定部14,同一の台車でのセンサ値比較判定部15)およびセンサ異常判定部16を備えている。これにより、アクチュエータ7(図2中の第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)にそれぞれ取付けた複数の温度センサ32,33のうち、いずれかのセンサが異常となっても、出力値の相互比較で故障した温度センサを特定することができるようにしている。 From the above, depending on the failure pattern of the temperature sensors 32 and 33 (in particular, the second and third patterns), it may be difficult to detect the failure from the average value or the deviation of the output values of the temperature sensors 32 and 33 . In view of the above technical background, in the present embodiment, the control device 10 includes two sensor value comparison and determination units (a sensor value comparison and determination unit 14 between two carriages, and a sensor value comparison and determination unit 15 for the same carriage) And a sensor abnormality determination unit 16. As a result, even if any one of the plurality of temperature sensors 32, 33 attached to the actuator 7 (the first actuators 7A, 7C and the second actuators 7B, 7D in FIG. 2) becomes abnormal, the output is It is made possible to identify a failed temperature sensor by mutual comparison of values.
 次に、制御装置10の前記2つの台車間のセンサ値比較判定部14,前記同一の台車でのセンサ値比較判定部15およびセンサ異常判定部16について、それぞれの具体的な構成を詳述する。 Next, specific configurations of the sensor value comparison and determination unit 14 between the two bogies of the control device 10, the sensor value comparison and determination unit 15 for the same bogie, and the sensor malfunction determination unit 16 will be described in detail. .
 ここで、2つの台車間のセンサ値比較判定部14は、後述の図8に示す処理手順に沿って一方の台車(例えば、前側の台車3)と他方の台車(例えば、後側の台車3)との間で第1アクチュエータ7A,7Cに設けられた同相の温度センサ32の出力値T1u,T3uを比較すると共に、他の同相の温度センサ33の出力値T1w,T3wを比較し、かつ各第2アクチュエータ7B,7Dに設けられた同相の温度センサ32の出力値T2u,T4uを比較すると共に、他の同相の温度センサ33の出力値T2w,T4wを比較する比較演算を行う。 Here, the sensor value comparison / determination unit 14 between two bogies follows one processing procedure shown in FIG. 8 described later (for example, the bogie 3 on the front side) and the other bogie (for example, the bogie 3 on the rear side) While comparing the output values T1u and T3u of the in-phase temperature sensors 32 provided in the first actuators 7A and 7C with each other, and comparing the output values T1w and T3w of the other in-phase temperature sensors 33 The output values T2u and T4u of the in-phase temperature sensors 32 provided in the second actuators 7B and 7D are compared, and a comparison operation is performed to compare the output values T2w and T4w of the other in-phase temperature sensors 33.
 即ち、2つの台車間のセンサ値比較判定部14は、第1アクチュエータ7A,7Cに設けられた各温度センサ32の出力値T1u,T3uの差(より具体的には、両者の差の絶対値|T1u-T3u|)が予め決められた判定用閾値Taに比較して大きいか否かを判定し、かつ各温度センサ33の出力値T1w,T3wの差(より具体的には、両者の差の絶対値|T1w-T3w|)が予め決められた判定用閾値Taに比較して大きいか否か、例えば判定用閾値Ta以上まで大きくなっているか否かを判定する比較演算を行う。 That is, the sensor value comparison and determination unit 14 between the two bogies is the difference between the output values T1u and T3u of the temperature sensors 32 provided in the first actuators 7A and 7C (more specifically, the absolute value of the difference between the two). It is determined whether or not | T1u−T3u |) is larger than a predetermined determination threshold Ta, and the difference between the output values T1w and T3w of the temperature sensors 33 (more specifically, the difference between the two) A comparison operation is performed to determine whether or not the absolute value | T1w−T3w |) of the above is larger than a predetermined determination threshold Ta, for example, whether or not the determination threshold Ta is larger.
 また、2つの台車間のセンサ値比較判定部14は、第2アクチュエータ7B,7Dに設けられた各温度センサ32の出力値T2u,T4uの差(より具体的には、両者の差の絶対値|T2u-T4u|)が予め決められた判定用閾値Taに比較して大きいか否かを判定し、かつ各温度センサ33の出力値T2w,T4wの差(より具体的には、両者の差の絶対値|T2w-T4w|)が予め決められた判定用閾値Taに比較して大きいか否か、例えば判定用閾値Ta以上まで大きくなっているか否かを判定する比較演算を行う。 Further, the sensor value comparison and determination unit 14 between the two bogies is the difference between the output values T2u and T4u of the temperature sensors 32 provided in the second actuators 7B and 7D (more specifically, the absolute value of the difference between the two). It is determined whether or not | T2u−T4u |) is larger than a predetermined determination threshold Ta, and the difference between the output values T2w and T4w of the temperature sensors 33 (more specifically, the difference between the two) A comparison operation is performed to determine whether or not the absolute value | T2w−T4w |) of is larger than a predetermined determination threshold Ta, for example, whether or not the determination threshold Ta is larger.
 2つの台車間のセンサ値比較判定部14は、例えば前側の台車3の第1アクチュエータ7Aにおいてu相コイル25A近傍の温度を検出する温度センサ32の出力値T1uと、後側の台車3の第1アクチュエータ7Cにおいて同じくu相コイル25A近傍の温度を検出する温度センサ32の出力値T3uというように、同じ車両の異なる台車3間で、かつ進行方向(例えば、矢示A方向)で左,右方向の同じ側(左側)に取付けられた前,後の第1アクチュエータ7A,7C(または、右側に取付けられた前,後の第2アクチュエータ7B,7D)の同じ相に取付けられた各温度センサ32(または、各温度センサ33)間において、それぞれの出力値を相互比較する。 The sensor value comparison / determination unit 14 between the two bogies is, for example, the output value T1u of the temperature sensor 32 that detects the temperature near the u-phase coil 25A in the first actuator 7A of the bogie 3 on the front side, In the same manner as the output value T3u of the temperature sensor 32 which similarly detects the temperature near the u-phase coil 25A in one actuator 7C, left and right in the traveling direction (for example, arrow A direction) between different bogies 3 of the same vehicle. Temperature sensors attached to the same phase of the first and second actuators 7A and 7C (or to the right and left of the second actuators 7B and 7D) mounted on the same side (left side) of the direction The respective output values are mutually compared among 32 (or each temperature sensor 33).
 このように、前,後の第1アクチュエータ7A,7C(または、前,後の第2アクチュエータ7B,7D)の温度センサ出力を相互に比較することで、鉄道車両1の左側のレール5と右側のレール5の軌道違い(軌道狂い)、または軌道曲線に伴う入力条件の差による影響を小さく抑えることができ、軌道から台車3、車体2間への入力の影響を前,後でほぼ同等とすることができる。さらに、車両の左,右方向で同じ側に取付けられている前,後の第1アクチュエータ7A,7C(または、前,後の第2アクチュエータ7B,7D)は、それぞれが受ける冷却風の条件もほぼ同等となる。 Thus, by comparing the temperature sensor outputs of the front and rear first actuators 7A and 7C (or the front and rear second actuators 7B and 7D) with each other, the rail 5 on the left side of the railway vehicle 1 and the right side The effect of the difference of the track 5 of the rail 5 (track deviation) or the difference of the input condition accompanying the track curve can be suppressed small, and the influence of the input from the track to the truck 3 and the car 2 is almost equal before and after can do. Furthermore, the front and rear first actuators 7A and 7C (or the front and rear second actuators 7B and 7D) mounted on the same side in the left and right directions of the vehicle also have conditions for the cooling air received by each. It becomes almost equal.
 以上のことから、車両の左,右方向で同じ側に取付けられている前,後の第1アクチュエータ7A,7C間(または、前,後の第2アクチュエータ7B,7D間)は、それぞれが発生する推力、推力に伴う発熱、冷却風の影響は、ほぼ同等となるので、u相コイル25A近傍の温度を検出する温度センサ32の出力値は同等となり、w相コイル25C近傍の温度を検出する温度センサ33の出力値もほぼ同等になるといえる。 From the above, the front and rear first actuators 7A and 7C (or the front and rear second actuators 7B and 7D) mounted on the same side in the left and right directions of the vehicle are respectively generated Since the effects of the thrust and the heat generated by the thrust and the cooling air are almost equal, the output values of the temperature sensor 32 for detecting the temperature in the vicinity of the u-phase coil 25A become equal, and the temperature in the vicinity of the w-phase coil 25C is detected. It can be said that the output values of the temperature sensor 33 are almost equal.
 そこで、2つの台車間のセンサ値比較判定部14は、ほぼ同等となる温度センサ間の出力値の差を、後述の図8に示すステップ2,4,6,8の如く比較し、判定用閾値Ta以上の場合、閾値Ta以上となった2つの温度センサのうち、いずれか一方をステップ3,5,7,9の如く異常と判定する。例えば、出力値T1uが30℃、出力値T3uが100℃、判定用閾値Taを40Kとした場合、両者の差の絶対値|T1u-T3u|は、|T1u-T3u|=|30-100|=70Kとなり、絶対値|T1u-T3u|は、例えば40Kの判定用閾値Ta以上であり、出力値T1uの温度センサ32と出力値T3uの温度センサ32のいずれか一方は異常と判定される。そして、後述のステップ11において「異常判断候補1」をメモリ12に記憶させる。 Therefore, the sensor value comparison / determination unit 14 between the two bogies compares the difference between the output values of the temperature sensors, which are substantially equal, as in steps 2, 4, 6 and 8 shown in FIG. If it is above the threshold Ta, it is determined that one of the two temperature sensors above the threshold Ta is abnormal as in steps 3, 5, 7, and 9. For example, when the output value T1u is 30 ° C., the output value T3u is 100 ° C., and the determination threshold Ta is 40 K, the absolute value | T1u−T3u | of the difference between them is | T1u−T3u | = | 30-100 | = 70K, and the absolute value | T1u−T3u | is, for example, equal to or greater than the determination threshold Ta of 40K, and one of the temperature sensor 32 of the output value T1u and the temperature sensor 32 of the output value T3u is determined to be abnormal. Then, “error determination candidate 1” is stored in the memory 12 in step 11 described later.
 しかし、この場合の「異常判断候補1」は、2つの温度センサのうちのいずれかであり、これだけでは異常となった故障している温度センサを特定することはできない。換言すれば、出力値T1uまたは出力値T3uの温度センサ32が測定対象物から剥がれてしまい適切な温度が取得できないのか、それとも出力値T1uまたは出力値T3uのどちらかの温度センサ32または温度センサ用の回路が故障し、一定値に固着したのか、またはそれ以外にまた別の原因があるのかを判断することはできない。 However, “abnormality determination candidate 1” in this case is one of the two temperature sensors, and it is not possible to identify the faulty temperature sensor that has become abnormal by this. In other words, whether the temperature sensor 32 with the output value T1u or the output value T3u is peeled off from the object to be measured and an appropriate temperature can not be obtained, or for the temperature sensor 32 or the temperature sensor of either the output value T1u or the output value T3u It can not be determined whether the circuit of (4) has broken down and stuck at a fixed value or there is another cause other than that.
 そこで、同一の台車でのセンサ値比較判定部15は、別の観点から比較判定して温度センサの異常判断候補2を記録(記憶)し、その後のセンサ異常判定部16において、2つの異常判断候補1,2からアンド条件を満たす温度センサを異常とし、温度センサの故障を確定する。 Therefore, the sensor value comparison and determination unit 15 in the same carriage compares and determines from another viewpoint and records (stores) the abnormality determination candidate 2 of the temperature sensor, and the sensor abnormality determination unit 16 thereafter determines two abnormalities. From the candidates 1 and 2, the temperature sensor satisfying the AND condition is regarded as abnormal, and the failure of the temperature sensor is determined.
 同一の台車でのセンサ値比較判定部15は、後述の図9に示す処理手順に沿って一方の台車(例えば、前側の台車3)において、第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32のそれぞれの出力値T1u,T2uを比較すると共に、他の同相の温度センサ33の出力値T1w,T2wを比較し、かつ他方の台車(例えば、後側の台車3)において第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32のそれぞれの出力値T3u,T4uを比較すると共に、他の同相の温度センサ33の出力値T3w,T4wを比較する比較演算を行う。 The sensor value comparison and determination unit 15 for the same carriage is provided to the first and second actuators 7A and 7B in one carriage (for example, the carriage 3 on the front side) in accordance with the processing procedure shown in FIG. 9 described later. The output values T1u and T2u of the in-phase temperature sensors 32 are compared, the output values T1w and T2w of the other in-phase temperature sensors 33 are compared, and the other carriage (for example, the carriage 3 on the rear side) 1, compare the output values T3u and T4u of the in-phase temperature sensors 32 provided in the second actuators 7C and 7D, and compare the output values T3w and T4w of the other in-phase temperature sensors 33 .
 即ち、センサ値比較判定部15は、前側の台車3において、第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32のそれぞれの出力値T1u,T2uの出力差(両者の絶対値|T1u-T2u|=T12u)と、他の温度センサ33のそれぞれの出力値T1w,T2wの出力差(両者の絶対値|T1w-T2w|=T12w)とを演算する。また、後側の台車3において、第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32のそれぞれの出力値T3u,T4uの出力差(両者の絶対値|T3u-T4u|=T34u)と、他の温度センサ33のそれぞれの出力値T3w,T4wの出力差(両者の絶対値|T3w-T4w|=T34w)とを演算する。 That is, the sensor value comparison / determination unit 15 compares the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B in the front carriage 3 (absolute value of both The difference between the output values T1w and T2w of the other temperature sensors 33 (the absolute value of the two | T1w−T2w | = T12w) is calculated. Further, in the carriage 3 on the rear side, the output difference between the output values T3u and T4u of the in-phase temperature sensors 32 provided to the first and second actuators 7C and 7D (the absolute value of the both | T3u-T4u | = T34u And the difference between the output values T3w and T4w of the other temperature sensors 33 (absolute value | T3w−T4w | = T34w of the two).
 この上で、センサ値比較判定部15は、同一の台車3毎にそれぞれ演算した前記各出力差(即ち、出力差の絶対値T12u,T12w,T34u,T34w)の平均値Taveを、下記の数1式の如く演算する共に、前記各出力差(絶対値T12u,T12w,T34u,T34w)と平均値Taveとの偏差である差分ΔT12u,ΔT12w,ΔT34u,ΔT34wを下記の数2式の如く演算する。そして、これらの差分ΔT12u,ΔT12w,ΔT34u,ΔT34wが予め決められた判定用閾値Tbに比較して大きいか否か、例えば判定用閾値Tb以上まで大きくなっているか否かを判定する比較演算を行う。 Further, the sensor value comparison and determination unit 15 calculates the average value Tave of the output differences (ie, the absolute values of the output differences T12u, T12w, T34u, and T34w) calculated for each identical carriage 3 by the following numbers: The difference ΔT12u, ΔT12w, ΔT34u, ΔT34w, which is the difference between each output difference (absolute values T12u, T12w, T34u, T34w) and the average value Tave, is calculated as the following equation 2 . Then, a comparison operation is performed to determine whether these differences .DELTA.T12u, .DELTA.T12w, .DELTA.T34u, .DELTA.T34w are larger than a predetermined determination threshold Tb, for example, whether they are larger than the determination threshold Tb or more. .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同一の台車でのセンサ値比較判定部15は、1車両に8個取付けられる温度センサ32,33のうち、同相の2個ずつ温度センサ値の差分を出力差T12u,T12w,T34u,T34wとして求める(図9のステップ22参照)。ここで、温度センサの差分(出力差T12u,T12w,T34u,T34w)を求める際には、同じ台車3の左,右方向に離間して取付けられた第1,第2アクチュエータ7A,7B(7C,7D)で、かつ同じ相の温度センサの出力差とする。 The sensor value comparison / determination unit 15 in the same carriage obtains the difference between the temperature sensor values of two in-phase two of the temperature sensors 32, 33 attached to one vehicle as the output differences T12u, T12w, T34u, T34w (See step 22 in FIG. 9). Here, when obtaining differences (output differences T12u, T12w, T34u, T34w) of the temperature sensors, the first and second actuators 7A, 7B (7C) mounted separately on the left and right of the same carriage 3 are separated. , 7D) and the same phase temperature sensor output difference.
 同じ台車3で左,右方向に離間して取付けられた第1,第2アクチュエータ7A,7B間(または、第1,第2アクチュエータ7C,7D間)では、軌道違い(軌道狂い)、または軌道曲線に伴う入力条件が異なり、さらに冷却風の影響も互いに異なることになる。このため、第1,第2アクチュエータ7A,7B間(または、第1,第2アクチュエータ7C,7BD間)には、ある一定の幅を持った温度差があると考えられる。この温度差は、後述のステップ22で求められる出力差T12u,T12w,T34u,T34wである。ステップ23では、これらの出力差T12u,T12w,T34u,T34wの平均値Taveを、前記数1式により演算して求める。即ち、前記温度差を平均化した平均値Taveを算出する。 A track difference (track deviation) or a track between the first and second actuators 7A and 7B (or between the first and second actuators 7C and 7D) mounted on the same carriage 3 spaced apart in the left and right directions The input conditions associated with the curve are different, and the influence of the cooling air is also different from each other. Therefore, it is considered that there is a temperature difference with a certain width between the first and second actuators 7A and 7B (or between the first and second actuators 7C and 7BD). The temperature differences are output differences T12u, T12w, T34u, T34w obtained in step 22 described later. At step 23, the average value Tave of these output differences T12u, T12w, T34u, T34w is calculated by the above equation (1). That is, an average value Tave obtained by averaging the temperature difference is calculated.
 次のステップ24では、ステップ23で算出した平均値Taveと、ステップ22で算出した温度差(出力差T12u,T12w,T34u,T34w)との偏差を差分ΔT12u,ΔT12w,ΔT34u,ΔT34wとして演算する。次のステップ25では、これらの差分ΔT12u,ΔT12w,ΔT34u,ΔT34wのうち、最も大きな差分(最大値ΔTmax1)を、平均値Taveから最も乖離の大きいものとして算出する。次のステップ26では、最大値ΔTmax1と判定用閾値Tbとを比較し、最大値ΔTmax1が判定用閾値Tb以上の場合は、最大値ΔTmax1を求めた2つの温度センサのどちらかが異常とし、ステップ27で「異常判断候補2」として記憶させる。 In the next step 24, the deviation between the average value Tave calculated in step 23 and the temperature difference (output differences T12u, T12w, T34u, T34w) calculated in step 22 is calculated as differences ΔT12u, ΔT12w, ΔT34u, ΔT34w. In the next step 25, the largest difference (maximum value ΔTmax1) among the differences ΔT12u, ΔT12w, ΔT34u, and ΔT34w is calculated as the largest difference from the average value Tave. In the next step 26, the maximum value ΔTmax1 is compared with the determination threshold Tb, and if the maximum value ΔTmax1 is greater than or equal to the determination threshold Tb, either one of the two temperature sensors for which the maximum value ΔTmax1 is obtained is considered abnormal. 27 is stored as "abnormality judgment candidate 2".
 次に、制御装置10のセンサ異常判定部16は、後述の図10に示す処理手順に沿って、前記比較判定部14,15の判定結果に基づき各温度センサ32,33のうちいずれのセンサが異常な温度センサであるか否かを特定する。図11に示す判定テーブル40は、2つの比較判定部14,15の判定結果(異常判断候補1,2)から、両候補で重複してアンド条件を満たす温度センサを異常とし、故障確定の温度センサを上から順に出力値T1u,T1w,T4u,T4w,T3u,T3w,T2u,T2wとして特定した場合を表している。 Next, according to the processing procedure shown in FIG. 10 described later, the sensor abnormality determination unit 16 of the control device 10 determines which of the temperature sensors 32, 33 is based on the determination result of the comparison determination unit 14, 15. It is specified whether or not it is an abnormal temperature sensor. The determination table 40 shown in FIG. 11 determines from the determination results (abnormality determination candidates 1 and 2) of the two comparison determination units 14 and 15 that a temperature sensor that satisfies the AND condition is redundant with both candidates, and the temperature of the failure determination The case where the sensor is specified as output value T1u, T1w, T4u, T4w, T3u, T3w, T2u, T2w in order from the top is shown.
 即ち、センサ異常判定部16は、各温度センサ32,33のうち前記比較判定部14により前記出力差の絶対値(|T1u-T3u|,|T1w-T3w|,|T2u-T4u|,|T2w-T4w|)が判定用閾値Taに比較して大きい(例えば、判定用閾値Ta以上まで大きくなっている)と判定された温度センサと、前記比較判定部15により前記差分ΔT12u,ΔT12w,ΔT34u,ΔT34wが判定用閾値Tbに比較して大きい(例えば、判定用閾値Tb以上まで大きくなっている)と判定された温度センサとから、例えばアンド条件を満たす温度センサを、出力異常で故障している温度センサとして特定する処理を行う。 That is, the sensor abnormality determination unit 16 determines the absolute value of the output difference (| T1u-T3u |, | T1w-T3w |, | T2u-T4u |, | T2w) according to the comparison / determination unit 14 of the temperature sensors 32 and 33. Is determined to be larger (for example, larger than the determination threshold Ta) compared to the determination threshold Ta, and the differences ΔT12u, ΔT12w, ΔT34u, For example, a temperature sensor whose AND condition that satisfies the AND condition is broken due to an output abnormality from the temperature sensor determined that ΔT 34 w is larger (for example, larger than the determination threshold Tb) compared to the determination threshold Tb. Perform processing to identify as a temperature sensor.
 第1の実施の形態による鉄道車両1の車両振動制御装置は、上述の如き構成を有するもので、次に、その作動について説明する。 The vehicle vibration control device of the railway vehicle 1 according to the first embodiment has the above-described configuration, and its operation will be described next.
 鉄道車両1がレール5に沿って図1、図2中の矢示A方向に走行しているときに、例えばロール(横揺れ)またはピッチ(前,後方向の揺れ)等の振動が発生すると、このときの上,下方向の振動を各加速度センサ9によって検出する。即ち、第1アクチュエータ7A側の加速度センサ9は、車体2の前部左側(FL)の振動を検出し、第2アクチュエータ7B側の加速度センサ9は車体2の前部右側(FR)の振動を検出する。第1アクチュエータ7C側の加速度センサ9は、車体2の後部左側(RL)の振動を検出し、第2アクチュエータ7D側の加速度センサ9は、車体2の後部右側(RR)の振動を検出する。 When the railway vehicle 1 travels along the rail 5 in the direction of arrow A in FIGS. 1 and 2, for example, if vibrations such as roll (rolling) or pitch (swinging in the front and rear directions) occur The vibrations in the upper and lower directions at this time are detected by the respective acceleration sensors 9. That is, the acceleration sensor 9 on the first actuator 7A side detects the vibration of the front left side (FL) of the vehicle body 2, and the acceleration sensor 9 on the second actuator 7B side vibrates the front right side (FR) of the vehicle body 2. To detect. The acceleration sensor 9 on the first actuator 7C side detects the vibration of the rear left side (RL) of the vehicle body 2, and the acceleration sensor 9 on the second actuator 7D side detects the vibration of the rear right side (RR) of the vehicle body 2.
 制御装置10の制御コントローラ13は、各加速度センサ9で検出した信号をそれぞれ個別な車両挙動(加速度)の検出信号として判別しつつ、鉄道車両1の振動を抑えるために、例えばFL,FR,RL,RR側の各アクチュエータ7(第1アクチュエータ7A,7Cと第2アクチュエータ7B,7D)で発生すべき目標減衰力を演算する。そして、第1アクチュエータ7A,7Cと第2アクチュエータ7B,7Dは、制御コントローラ13から個別に出力される指令信号に従って、それぞれの発生減衰力が目標減衰力に沿った特性となるように可変に制御される。 The controller 13 of the control device 10 determines, for example, FL, FR, and RL to suppress the vibration of the railway vehicle 1 while discriminating the signals detected by the respective acceleration sensors 9 as detection signals of the individual vehicle behavior (acceleration). The target damping forces to be generated by the actuators 7 (the first actuators 7A and 7C and the second actuators 7B and 7D) on the RR side are calculated. Then, the first actuators 7A, 7C and the second actuators 7B, 7D are variably controlled so that the generated damping forces have characteristics in accordance with the target damping forces, according to the command signals individually output from the controller 13. Be done.
 ところで、従来の車両振動制御装置(即ち、温度センサを2個配置してなるアクチュエータを用いた鉄道車両の車両振動制御装置)において、温度センサの故障パターン(例えば、図6,図7に示す第2,第3パターン)によっては、温度センサの出力値の平均値や偏差から複数の温度センサのうちいずれのセンサが故障しているかを特定することが困難な場合がある。そして、1個の温度センサが故障した場合、残余の温度センサは正常に動作しているにもかかわらず、従来技術では温度センサの全てが異常と判断される虞れがある。 By the way, in the conventional vehicle vibration control apparatus (that is, a vehicle vibration control apparatus of a railway vehicle using an actuator in which two temperature sensors are arranged), failure patterns of the temperature sensors (for example, the first shown in FIGS. Depending on the second and third patterns, it may be difficult to identify which sensor among the plurality of temperature sensors is broken from the average value or the deviation of the output values of the temperature sensors. And when one temperature sensor fails, in the prior art, there is a possibility that all temperature sensors may be judged as abnormal although the remaining temperature sensors operate normally.
 そこで、第1の実施の形態では、例えば図3に示す制御装置10が2つの台車間のセンサ値比較判定部14,同一の台車でのセンサ値比較判定部15およびセンサ異常判定部16を備え、図8~図10に示す制御処理を実施することにより、合計8個の温度センサ32,33のうち、いずれの温度センサが異常となっても、異常な温度センサを確実に特定することができるようにしている。 Therefore, in the first embodiment, for example, the control device 10 shown in FIG. 3 includes the sensor value comparison and determination unit 14 between two carriages, the sensor value comparison and determination unit 15 for the same carriage, and the sensor malfunction determination unit 16 By executing the control process shown in FIGS. 8 to 10, it is possible to reliably specify an abnormal temperature sensor even if any of the total eight temperature sensors 32 and 33 become abnormal. I am able to do it.
 2つの台車間のセンサ値比較判定部14は、図8に示す処理動作がスタートすると、ステップ1で合計8個の温度センサ32,33から出力される温度検出信号(出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4w)を読込む。即ち、前側の台車3に設けられた前部左側(FL)の第1アクチュエータ7Aにおいて、温度センサ32(FL)はu相コイル25A近傍の温度を出力値T1uとして検出し、温度センサ33(FL)はw相コイル25C近傍の温度を出力値T1wとして検出する。また、前側の台車3に設けられた前部右側(FR)の第2アクチュエータ7Bにおいて、温度センサ32(FR)はu相コイル25A近傍の温度を出力値T2uとして検出し、温度センサ33(FR)はw相コイル25C近傍の温度を出力値T2wとして検出する。 When the processing operation shown in FIG. 8 starts, the sensor value comparison / determination unit 14 between the two carts detects the temperature detection signals (output values T1u, T1w, T2u) output from a total of eight temperature sensors 32, 33 in step 1. , T2w, T3u, T3w, T4u, T4w). That is, in the first actuator 7A on the front left side (FL) provided on the front carriage 3, the temperature sensor 32 (FL) detects the temperature near the u-phase coil 25A as the output value T1u, and the temperature sensor 33 (FL ) Detects the temperature near the w-phase coil 25C as an output value T1w. In the second actuator 7B on the front right (FR) provided on the front carriage 3, the temperature sensor 32 (FR) detects the temperature near the u-phase coil 25A as an output value T2u, and the temperature sensor 33 (FR ) Detects the temperature near the w-phase coil 25C as an output value T2w.
 後側の台車3に設けられた後部左側(RL)の第1アクチュエータ7Cにおいて、温度センサ32(RL)はu相コイル25A近傍の温度を出力値T3uとして検出し、温度センサ33(RL)はw相コイル25C近傍の温度を出力値T3wとして検出する。また、後側の台車3に設けられた後部右側(RR)の第2アクチュエータ7Dにおいて、温度センサ32(RR)はu相コイル25A近傍の温度を出力値T4uとして検出し、温度センサ33(RR)はw相コイル25C近傍の温度を出力値T4wとして検出する。 In the rear left (RL) first actuator 7C provided on the rear carriage 3, the temperature sensor 32 (RL) detects the temperature near the u-phase coil 25A as an output value T3u, and the temperature sensor 33 (RL) The temperature near the w-phase coil 25C is detected as an output value T3w. In the rear right (RR) second actuator 7D provided on the rear carriage 3, the temperature sensor 32 (RR) detects the temperature near the u-phase coil 25A as an output value T4u, and the temperature sensor 33 (RR ) Detects the temperature near the w-phase coil 25C as an output value T4w.
 次のステップ2では、前側の第1アクチュエータ7Aに設けられた温度センサ32(FL)の出力値T1uと、後側の第1アクチュエータ7Cに設けられた温度センサ32(RL)の出力値T3uとの差を、絶対値(|T1u-T3u|)として算出し、この絶対値(|T1u-T3u|)が予め決められた判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 2, an output value T1u of the temperature sensor 32 (FL) provided in the front first actuator 7A and an output value T3u of the temperature sensor 32 (RL) provided in the rear first actuator 7C Is calculated as an absolute value (| T1u-T3u |), and it is determined whether the absolute value (| T1u-T3u |) is larger than a predetermined determination threshold Ta, ie, the determination threshold Ta It is determined whether it is larger than the above.
 ステップ2で「YES」と判定したときには、出力値T1u,T3uの差の絶対値(|T1u-T3u|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ3で出力値T1u,T3uの温度センサ32のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ2で「NO」と判定されるときには、出力値T1u,T3uの温度センサ32は、いずれも異常ではないと判断することができる。 When “YES” is determined in step 2, the absolute value (| T1u−T3u |) of the difference between the output values T1u and T3u is larger than the threshold value Ta for determination of abnormality, so the output value in the next step 3 It is possible to determine that one of the temperature sensors 32 of T1 u and T3 u is abnormal. Further, when it is determined “NO” in step 2, the temperature sensors 32 of the output values T1u and T3u can determine that neither is abnormal.
 次のステップ4では、前側の第1アクチュエータ7Aに設けられた温度センサ33(FL)の出力値T1wと、後側の第1アクチュエータ7Cに設けられた温度センサ33(RL)の出力値T3wとの差を、絶対値(|T1w-T3w|)として算出し、この絶対値(|T1w-T3w|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 4, the output value T1w of the temperature sensor 33 (FL) provided in the front first actuator 7A and the output value T3w of the temperature sensor 33 (RL) provided in the rear first actuator 7C Is calculated as an absolute value (| T1w-T3w |), and whether this absolute value (| T1w-T3w |) is larger than the threshold Ta for determination of abnormality or not, ie, more than the threshold Ta for determination It is determined whether or not it is large.
 ステップ4で「YES」と判定したときには、出力値T1w,T3wの差の絶対値(|T1w-T3w|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ5で出力値T1w,T3wの温度センサ33のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ4で「NO」と判定されるときには、出力値T1w,T3wの温度センサ33は、いずれも異常ではないと判断することができる。 When it is determined “YES” in step 4, the absolute value (| T1w−T3w |) of the difference between the output values T1w and T3w is larger than the threshold Ta for determination of abnormality, so the output value in the next step 5 One of the temperature sensors 33 of T1w and T3w can be determined to be abnormal. In addition, when it is determined “NO” in step 4, the temperature sensors 33 of the output values T1w and T3w can determine that neither is abnormal.
 次のステップ6では、前側の第2アクチュエータ7Bに設けられた温度センサ32(FR)の出力値T2uと、後側の第2アクチュエータ7Dに設けられた温度センサ32(RR)の出力値T4uとの差を、絶対値(|T2u-T4u|)として算出し、この絶対値(|T2u-T4u|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 6, the output value T2u of the temperature sensor 32 (FR) provided in the front second actuator 7B and the output value T4u of the temperature sensor 32 (RR) provided in the rear second actuator 7D Is calculated as an absolute value (| T2u-T4u |), and whether this absolute value (| T2u-T4u |) is larger than the threshold Ta for determination of abnormality or not, ie, more than the threshold Ta for determination It is determined whether or not it is large.
 ステップ6で「YES」と判定したときには、出力値T2u,T4uの差の絶対値(|T2u-T4u|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ7で出力値T2u,T4uの温度センサ32のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ6で「NO」と判定されるときには、出力値T2u,T4uの温度センサ32は、いずれも異常ではないと判断することができる。 When it is determined “YES” in step 6, the absolute value (| T2u−T4u |) of the difference between the output values T2u and T4u is larger than the threshold value Ta for determination of abnormality, so the output value in the next step 7 It is possible to determine that one of the temperature sensors 32 of T2u and T4u is abnormal. Further, when it is judged “NO” in step 6, the temperature sensors 32 of the output values T2u and T4u can judge that neither is abnormal.
 次のステップ8では、前側の第2アクチュエータ7Bに設けられた温度センサ33(FR)の出力値T2wと、後側の第2アクチュエータ7Dに設けられた温度センサ33(RR)の出力値T4wとの差を、絶対値(|T2w-T4w|)として算出し、この絶対値(|T2w-T4w|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 8, the output value T2w of the temperature sensor 33 (FR) provided in the front second actuator 7B and the output value T4w of the temperature sensor 33 (RR) provided in the rear second actuator 7D Is calculated as an absolute value (| T2w-T4w |), and whether this absolute value (| T2w-T4w |) is larger than the threshold Ta for determination of abnormality or not, ie, more than the threshold Ta for determination It is determined whether or not it is large.
 ステップ8で「YES」と判定したときには、出力値T2w,T4wの差の絶対値(|T2w-T4w|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ9で出力値T2w,T4wの温度センサ33のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ8で「NO」と判定されるときには、出力値T2w,T4wの温度センサ33は、いずれも異常ではないと判断することができる。 When it is determined “YES” in step 8, the absolute value (| T2w−T4w |) of the difference between the output values T2w and T4w is larger than the threshold value Ta for determination of abnormality, so the output value in the next step 9 One of the temperature sensors 33 of T2w and T4w can be determined to be abnormal. Further, when it is determined “NO” in step 8, the temperature sensors 33 of the output values T2w and T4w can determine that neither is abnormal.
 次のステップ10では、前記各温度センサ32,33のいずれかに異常が発生しているか否かを判定し、「NO」と判定するときには、各温度センサ32,33のいずれにも異常は発生していないので、前記ステップ1に戻って、これ以降の処理を続行する。しかし、ステップ10で「YES」と判定するときには、前記ステップ3,5,7または9のいずれかで、温度センサ32または33が異常と判断されている場合である。 In the next step 10, it is determined whether or not any abnormality occurs in any of the temperature sensors 32, 33, and when “NO” is determined, an abnormality occurs in any of the temperature sensors 32, 33. Since the process has not been performed, the process returns to step 1 to continue the subsequent processes. However, when the determination in step 10 is “YES”, the temperature sensor 32 or 33 is determined to be abnormal in any one of the steps 3, 5, 7 or 9.
 そこで、次のステップ11では、異常と判断されている温度センサ32または33(即ち、出力値T1uまたはT3uの温度センサ32、出力値T1wまたはT3wの温度センサ33、出力値T2uまたはT4uの温度センサ32、出力値T2wまたはT4wの温度センサ33のいずれか)を、例えば図11に示すように「異常判断候補1」としてメモリ12に記憶させる。そして、ステップ12ではメインのフロー(図示せず)にリターンする。 Therefore, in the next step 11, the temperature sensor 32 or 33 judged to be abnormal (ie, the temperature sensor 32 with the output value T1u or T3u, the temperature sensor 33 with the output value T1w or T3w, the temperature sensor with the output value T2u or T4u For example, as shown in FIG. 11, the memory 12 stores the output value T2w or the temperature sensor 33 having the output value T2w or T4w in the memory 12 as the "abnormality determination candidate 1". Then, at step 12, the process returns to the main flow (not shown).
 次に、同一の台車でのセンサ値比較判定部15は、図9に示す処理動作がスタートすると、ステップ21で前記ステップ1と同様に合計8個の温度センサ32,33から出力される温度検出信号としての出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4w)を読込む。次のステップ22では、前側の台車3において、第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32の出力値T1u,T2uを相互比較すると共に、他の同相の温度センサ33の出力値T1w,T2wを相互比較し、かつ後側の台車3において、第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32の出力値T3u,T4uを相互比較すると共に、他の同相の温度センサ33の出力値T3w,T4wを相互比較する比較演算を行う。 Next, when the processing operation shown in FIG. 9 is started, the sensor value comparison / determination unit 15 in the same carriage detects the temperature output from the total of eight temperature sensors 32 and 33 in the same manner as step 1 in step 21. Output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w) as signals are read. In the next step 22, the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B are compared with each other in the front carriage 3, and the other in-phase temperature sensors 33 are compared. The output values T1w and T2w are compared with each other, and the output values T3u and T4u of the in-phase temperature sensor 32 provided in the first and second actuators 7C and 7D in the rear carriage 3 are compared with each other. A comparison operation is performed to compare the output values T3w and T4w of the in-phase temperature sensor 33 with each other.
 即ち、センサ値比較判定部15は、ステップ22において、前側の台車3の第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32の出力値T1u,T2uの出力差(両者の絶対値|T1u-T2u|=T12u)と、他の温度センサ33の出力値T1w,T2wの出力差(両者の絶対値|T1w-T2w|=T12w)とを演算する。また、後側の台車3において、第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32の出力値T3u,T4uの出力差(両者の絶対値|T3u-T4u|=T34u)と、他の温度センサ33の出力値T3w,T4wの出力差(両者の絶対値|T3w-T4w|=T34u)とを演算する。 That is, at step 22, the sensor value comparison and determination unit 15 outputs the difference between the output values T1u and T2u of the in-phase temperature sensors 32 provided on the first and second actuators 7A and 7B of the front carriage 3 (absolute value of both The value | T1u−T2u | = T12u) and the output difference between the output values T1w and T2w of the other temperature sensors 33 (the absolute value of the two | T1w−T2w | = T12w) is calculated. Further, in the carriage 3 on the rear side, the output difference between the output values T3u and T4u of the in-phase temperature sensors 32 provided to the first and second actuators 7C and 7D (absolute value | T3u−T4u | = T34u of both) The difference between the output values T3w and T4w of the other temperature sensors 33 (absolute value | T3w−T4w | = T34u of the two) is calculated.
 次のステップ23では、前記出力差T12u,T12w,T34u,T34wの平均値Taveを、前記数1式により演算して求める。次のステップ24では、前記各出力差(絶対値T12u,T12w,T34u,T34w)と平均値Taveとの偏差である差分ΔT12u,ΔT12w,ΔT34u,ΔT34wを前記数2式に従って演算する。そして、次のステップ25では、数2式による差分ΔT12u,ΔT12w,ΔT34u,ΔT34wのうち、最も大きな差分を最大値ΔTmax1として算出する。 In the next step 23, the average value Tave of the output differences T12u, T12w, T34u, T34w is calculated by the equation (1). In the next step 24, differences ΔT12u, ΔT12w, ΔT34u, ΔT34w, which are deviations between the output differences (absolute values T12u, T12w, T34u, T34w) and the average value Tave, are calculated according to the equation (2). Then, in the next step 25, the largest difference among the differences ΔT12u, ΔT12w, ΔT34u, and ΔT34w according to Equation 2 is calculated as the maximum value ΔTmax1.
 次のステップ26では、前記最大値ΔTmax1が予め決められた異常の判定用閾値Tbに比較して大きいか否か、例えば判定用閾値Tb以上まで大きくなっているか否かを判定する。ステップ26で「NO」と判定するときは、前記最大値ΔTmax1が判定用閾値Tbよりも小さく、この場合は、全ての差分ΔT12u,ΔT12w,ΔT34u,ΔT34wが判定用閾値Tbよりも小さいことになる。これによって、前記出力差T12u,T12w,T34u,T34wは、平均値Taveに近い値であり、平均値Taveとの偏差は無視できる程度に小さいと判断できる。 In the next step 26, it is determined whether the maximum value ΔTmax1 is larger than a predetermined threshold Tb for determination of abnormality, for example, whether it is larger than the threshold Tb for determination. When it is determined “NO” in step 26, the maximum value ΔTmax1 is smaller than the determination threshold Tb, and in this case, all differences ΔT12u, ΔT12w, ΔT34u, and ΔT34w are smaller than the determination threshold Tb. . Thus, the output differences T12u, T12w, T34u, and T34w are values close to the average value Tave, and it can be determined that the deviation from the average value Tave is small enough to be ignored.
 このため、前記出力値T1u,T2u,T3u,T4uの温度センサ32と出力値T1w,T2w,T3w,T4wの温度センサ33とは、いずれも異常ではなく、正常に動作していると判断することができる。そこで、ステップ26で「NO」と判定したときには、全ての温度センサ32,33は正常と判断して前記ステップ21に戻り、これ以降の処理を続行する。 Therefore, it is determined that the temperature sensors 32 for the output values T1u, T2u, T3u, and T4u and the temperature sensors 33 for the output values T1w, T2w, T3w, and T4w are not abnormal but are operating normally. Can. Therefore, when it is determined as "NO" in step 26, all the temperature sensors 32, 33 determine that they are normal, return to the step 21, and continue the subsequent processing.
 一方、ステップ26で「YES」と判定したときには、前記最大値ΔTmax1が異常の判定用閾値Tb以上となり、前記差分ΔT12u,ΔT12w,ΔT34u,ΔT34wのうち、最も大きな差分(最大値ΔTmax1)は、異常の判定用閾値Tb以上まで大きくなっている。このため、最大値ΔTmax1に該当する前記差分ΔT12u,ΔT12w,ΔT34u,ΔT34wのいずれか、即ち出力値T1u,T2uの温度センサ32、出力値T1w,T2wの温度センサ33、出力値T3u,T4uの温度センサ32または出力値T3w,T4wの温度センサ33のいずれかは、出力値が異常となって故障している。 On the other hand, when it is determined “YES” in step 26, the maximum value ΔTmax1 is equal to or greater than the threshold Tb for determining abnormality, and the largest difference (maximum value ΔTmax1) among the differences ΔT12u, ΔT12w, ΔT34u, ΔT34w is abnormal. The threshold value Tb is greater than or equal to the determination threshold Tb. Therefore, one of the differences ΔT12u, ΔT12w, ΔT34u, ΔT34w corresponding to the maximum value ΔTmax1, ie, the temperature sensor 32 with the output values T1u, T2u, the temperature sensor 33 with the output values T1w, T2w, the temperature with the output values T3u, T4u Either the sensor 32 or the temperature sensor 33 with the output values T3w and T4w is out of order as the output value becomes abnormal.
 そこで、次のステップ27では、出力値T1uまたはT2uの温度センサ32、出力値T1wまたはT2wの温度センサ33、出力値T3uまたはT4uの温度センサ32、出力値T3wまたはT4wの温度センサ33のいずれかを、例えば図11に示すように「異常判断候補2」としてメモリ12に記憶させる。そして、ステップ28ではメインのフロー(図示せず)にリターンする。 Therefore, in the next step 27, the temperature sensor 32 with the output value T1u or T2u, the temperature sensor 33 with the output value T1w or T2w, the temperature sensor 32 with the output value T3u or T4u, or the temperature sensor 33 with the output value T3w or T4w Are stored in the memory 12 as “abnormality judgment candidate 2” as shown in FIG. 11, for example. Then, at step 28, the process returns to the main flow (not shown).
 次に、制御装置10のセンサ異常判定部16は、図10に示す処理動作がスタートすると、ステップ31において前記ステップ11(図8参照)による「異常判断候補1」を読込む。また、ステップ32において前記ステップ27(図9参照)による「異常判断候補2」を読込む。 Next, when the processing operation shown in FIG. 10 starts, the sensor malfunction determination unit 16 of the control device 10 reads “fault decision candidate 1” in step 31 (see FIG. 8). Further, at step 32, "abnormality determination candidate 2" at step 27 (see FIG. 9) is read.
 次のステップ33では、前述した「異常判断候補1」と「異常判断候補2」とに重複する温度センサ32または33があるか否かを判定する。ステップ33で「NO」と判定するときには、前記ステップ31に戻って、これ以降の処理を続行する。しかし、ステップ33で「YES」と判定するときには、例えば図11に示す判定テーブル40のように、2つの異常判断候補1,2で重複したアンド条件を満たす温度センサがあるので、次のステップ34で該当する温度センサを故障と確定する。 In the next step 33, it is determined whether or not there are overlapping temperature sensors 32 or 33 between the aforementioned "abnormality judgment candidate 1" and "abnormality judgment candidate 2". When it is determined at step 33 that the result is "NO", the process returns to step 31 to continue the subsequent processing. However, when “YES” is determined in step 33, there is a temperature sensor that satisfies the AND condition that is duplicated in the two abnormality determination candidates 1 and 2 as in the determination table 40 shown in FIG. 11, for example. And determine that the corresponding temperature sensor is at fault.
 即ち、制御装置10のセンサ異常判定部16は、図11に示す判定テーブル40により2つの異常判断候補1,2で重複したアンド条件を満たす温度センサを故障確定の温度センサとして、上から順に出力値T1uの温度センサ32、出力値T1wの温度センサ33、出力値T4uの温度センサ32、出力値T4wの温度センサ33、出力値T3uの温度センサ32、出力値T3wの温度センサ33、出力値T2uの温度センサ32、出力値T2wの温度センサ33のいずれかとして特定することができる。 That is, the sensor abnormality determination unit 16 of the control device 10 outputs the temperature sensors satisfying the AND condition overlapping in the two abnormality determination candidates 1 and 2 as the temperature sensor for determining the failure in order from the top according to the determination table 40 shown in FIG. Temperature sensor 32 with value T1u, temperature sensor 33 with output T1w, temperature sensor 32 with output T4u, temperature sensor 33 with output T4w, temperature sensor 32 with output T3u, temperature sensor 32 with output T3w, temperature sensor 33 with output T3w, output T2u And the temperature sensor 33 of the output value T2w.
 かくして、第1の実施の形態によれば、2つ台車3の間で第1アクチュエータ7A,7Cに設けられた同相の温度センサ32,33のそれぞれの出力値T1u,T1w,T3u,T3wを比較し、かつ第2アクチュエータ7B,7Dに設けられた同相の温度センサ32,33のそれぞれの出力値T2u,T2w,T4u,T4wを比較する2つの台車間のセンサ値比較判定部14と、前側の台車3において第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32,33のそれぞれの出力値T1u,T1w,T2u,T2wを比較し、かつ後側の台車3において第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32,33のそれぞれの出力値T3u,T3w,T4u,T4wを比較する同一の台車でのセンサ値比較判定部15と、前記比較判定部14,15の判定結果(異常判断候補1,2)に基づいて前記各温度センサ32,33のうち異常な温度センサを特定するセンサ異常判定部16とを備えている。 Thus, according to the first embodiment, the output values T1u, T1w, T3u, T3w of the in- phase temperature sensors 32, 33 provided on the first actuators 7A, 7C between the two carriages 3 are compared And the sensor value comparison and determination unit 14 between the two bogies for comparing the output values T2u, T2w, T4u, and T4w of the in- phase temperature sensors 32, 33 provided in the second actuators 7B and 7D; The output values T1u, T1w, T2u, T2w of the in- phase temperature sensors 32, 33 provided in the first and second actuators 7A, 7B in the carriage 3 are compared, and in the rear carriage 3, the first, second 2) The sensor value comparison and determination unit 15 with the same carriage that compares the output values T3u, T3w, T4u, and T4w of the in- phase temperature sensors 32, 33 provided in the actuators 7C and 7D, and the comparison and determination unit 14 Based on the 15 of the determination result (abnormality judgment candidates 1, 2) and a sensor abnormality determination unit 16 that identifies an abnormal temperature sensor of the respective temperature sensors 32, 33.
 即ち、第1の実施の形態では、2つの台車間のセンサ値比較判定部14により異常と判断された異常判断候補1と、同一の台車でのセンサ値比較判定部15により異常と判断された異常判断候補2とから、センサ異常判定部16により異常判断候補1,2で重複する温度センサ32または33があるか否かを判定する。これにより、合計8個の温度センサ32,33のうち、いずれの温度センサが異常となっても、異常な温度センサを確実に特定することができる。 That is, in the first embodiment, the abnormality judgment candidate 1 judged to be abnormal by the sensor value comparison judgment unit 14 between the two bogies and the sensor value comparison judgment unit 15 with the same bogie are judged as abnormalities. From the abnormality determination candidate 2, it is determined by the sensor abnormality determination unit 16 whether or not there is a temperature sensor 32 or 33 overlapping in the abnormality determination candidates 1 and 2. As a result, even if any of the eight temperature sensors 32 and 33 in total becomes abnormal, an abnormal temperature sensor can be identified with certainty.
 この上で、例えば1個の温度センサが故障し、他の温度センサが正常に動作している場合には、制御コントローラ13の制御可能温度変更部13Bにより、制御可能温度閾値を前記第1の温度上限値Tαより小さい第2の温度上限値Tβに変更する。そして、前記制御可能温度閾値の変更後は、複数の温度センサ32,33のうち異常が検出されてない正常な温度センサの検出信号(出力値)に基づいて、アクチュエータ7の駆動制御を継続して行うことができる。これにより、本来期待すべき車両の乗り心地を確保することが可能となる。 If, for example, one temperature sensor fails and the other temperature sensor operates normally, the controllable temperature changing portion 13B of the controller 13 controls the first controllable temperature threshold value. It is changed to a second temperature upper limit value Tβ which is smaller than the temperature upper limit value Tα. Then, after the change of the controllable temperature threshold value, drive control of the actuator 7 is continued based on a detection signal (output value) of a normal temperature sensor among the plurality of temperature sensors 32 and 33 in which no abnormality is detected. Can be done. This makes it possible to secure the ride comfort of the vehicle that is originally expected.
 従って、第1の実施の形態によれば、第1アクチュエータ7A,7C、第2アクチュエータ7B,7Dの各コイル25A,25C近傍に取付けた温度センサ32,33のうち、いずれかのセンサが異常となっても、異常なセンサ(故障した温度センサ)を適切に特定することができる。また、温度センサの異常(異常が発生している温度センサ)が特定されることで、第1アクチュエータ7A,7C、第2アクチュエータ7B,7Dの発火・発煙という故障モードのリスクが減るので、信頼性を高めることができる。 Therefore, according to the first embodiment, any one of the temperature sensors 32 and 33 mounted in the vicinity of the coils 25A and 25C of the first actuators 7A and 7C and the second actuators 7B and 7D is considered to be abnormal. Even in this case, an abnormal sensor (failed temperature sensor) can be properly identified. In addition, by identifying the abnormality of the temperature sensor (the temperature sensor in which the abnormality is occurring), the risk of the failure mode of firing and smoking of the first actuators 7A and 7C and the second actuators 7B and 7D is reduced. Can be enhanced.
 なお、前記第1の実施の形態では、図9に示すステップ26で差分ΔT12u,ΔT12w,ΔT34u,ΔT34wの最大値ΔTmax2を算出する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば判定用閾値Tbに比較して、差分ΔT12u,ΔT12w,ΔT34u,ΔT34wのいずれかが閾値Tb以上となっているか否かを判定し、これによって「異常判断候補2」を検知(判別)する構成としてもよい。 In the first embodiment, the case where the maximum value ΔTmax2 of the differences ΔT12u, ΔT12w, ΔT34u, ΔT34w is calculated in the step 26 shown in FIG. 9 has been described as an example. However, the present invention is not limited to this, and for example, it is determined whether or not any of the differences ΔT12u, ΔT12w, ΔT34u, ΔT34w is greater than or equal to the threshold Tb in comparison with the determination threshold Tb. It may be configured to detect (determine) the abnormality judgment candidate 2 ".
 次に、図12および図13は第2の実施の形態を示している。この実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略する。しかし、第2の実施の形態の特徴は、各温度センサの出力値の差を当該温度センサ毎の一定時間当りの出力変化の差から算出し、一定時間内における温度変化をもとにした温度勾配を使用して異常な温度センサを特定する構成としたことにある。 Next, FIGS. 12 and 13 show a second embodiment. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted. However, the feature of the second embodiment is that the difference between the output value of each temperature sensor is calculated from the difference in output change per fixed time for each temperature sensor, and the temperature based on the temperature change within the fixed time A gradient is used to identify an abnormal temperature sensor.
 前記第1の実施の形態においては、温度センサ32,33の検出信号は夫々の瞬時値を、出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4wとして使用し、これらの出力値の差からセンサの故障判別の演算を行うようにしている。このため、温度センサ32,33の検出信号にノイズが入った場合、温度センサ32,33の故障を誤検知する虞れがある。そこで、このような不具合を改善した第2の実施の形態による制御処理を、図12および図13を参照して説明する。 In the first embodiment, the detection signals of the temperature sensors 32 and 33 use the respective instantaneous values as output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w, and these output values are used. The calculation of the failure determination of the sensor is performed from the difference of Therefore, when noise is included in the detection signals of the temperature sensors 32, 33, there is a possibility that the failure of the temperature sensors 32, 33 may be erroneously detected. Therefore, control processing according to the second embodiment in which such a defect is improved will be described with reference to FIGS. 12 and 13.
 第2の実施の形態では、図12に示す処理手順が2つの台車間のセンサ値比較判定部14による比較判定処理の具体例を示し、図13に示す処理手順が同一の台車でのセンサ値比較判定部15による比較判定処理の具体例を示している。 In the second embodiment, the processing procedure shown in FIG. 12 shows a specific example of the comparison determination processing by the sensor value comparison / determination unit 14 between two carriages, and the sensor value in the carriage having the same processing procedure shown in FIG. The specific example of the comparison determination process by the comparison determination part 15 is shown.
 2つの台車間のセンサ値比較判定部14は、図12に示す処理動作がスタートすると、ステップ41で合計8個の温度センサ32,33から出力される温度検出信号(出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4w)を、当該温度センサ32,33毎の一定時間当りの出力変化の差ΔT1u,ΔT1w,ΔT2u,ΔT2w,ΔT3u,ΔT3w,ΔT4u,ΔT4wとして算出する。 When the processing operation shown in FIG. 12 starts, the sensor value comparison / determination unit 14 between the two bogies detects the temperature detection signals (output values T1u, T1w, T2u) output from a total of eight temperature sensors 32, 33 in step 41. , T2w, T3u, T3w, T4u, T4w) are calculated as differences ΔT1u, ΔT1w, ΔT2u, ΔT2w, ΔT3u, ΔT3w, ΔT4u, ΔT4w between the output changes per fixed time for each of the temperature sensors 32 and 33.
 次のステップ42では、前側の第1アクチュエータ7Aに設けられた温度センサ32(FL)の一定時間当りの出力変化の差ΔT1u(出力値T1uに相当)と、後側の第1アクチュエータ7Cに設けられた温度センサ32(RL)の一定時間当りの出力変化の差ΔT1u(出力値T3uに相当)との偏差を、絶対値(|ΔT1u-ΔT3u|)として算出し、この算出値としての絶対値(|ΔT1u-ΔT3u|)が予め決められた判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 42, the difference ΔT1u (corresponding to the output value T1u) of the change in output per unit time of the temperature sensor 32 (FL) provided in the front first actuator 7A and the first actuator 7C on the rear side are provided. The deviation from the difference ΔT1u (corresponding to the output value T3u) of the change in output per fixed time of the detected temperature sensor 32 (RL) is calculated as an absolute value (| ΔT1u-ΔT3u |), and the absolute value as this calculation value It is determined whether (| .DELTA.T1u-.DELTA.T3u |) is larger than a predetermined determination threshold Ta, that is, whether it is larger than the determination threshold Ta or not.
 ステップ42で「YES」と判定したときには、出力変化の差ΔT1u,ΔT3uの偏差の絶対値(|ΔT1u-ΔT3u|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ43で出力値T1u,T3uの温度センサ32のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ42で「NO」と判定されるときには、出力値T1u,T3uの温度センサ32は、いずれも異常ではなく正常と判断することができる。 When it is determined “YES” in step 42, the absolute value (| ΔT1u−ΔT3u |) of the deviation of the output change differences ΔT1u and ΔT3u is larger than the threshold value Ta for determination of abnormality, so in the next step 43 It is possible to determine that one of the temperature sensors 32 of the output values T1u and T3u is abnormal. Further, when it is judged “NO” in the step 42, it is possible to judge that the temperature sensors 32 of the output values T1u and T3u are not abnormal but normal.
 次のステップ44では、前側の第1アクチュエータ7Aに設けられた温度センサ33(FL)の一定時間当りの出力変化の差ΔT1w(出力値T1wに相当)と、後側の第1アクチュエータ7Cに設けられた温度センサ33(RL)の一定時間当りの出力変化の差ΔT3w(出力値T3wに相当)との偏差を、絶対値(|ΔT1w-ΔT3w|)として算出し、この算出値としての絶対値(|ΔT1w-ΔT3w|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 44, the difference .DELTA.T1w (corresponding to the output value T1w) of the change in output per unit time of the temperature sensor 33 (FL) provided in the first actuator 7A on the front side and the first actuator 7C on the rear side are provided. The deviation from the difference ΔT3w (corresponding to the output value T3w) of the change in output per fixed time of the detected temperature sensor 33 (RL) is calculated as an absolute value (| ΔT1w-ΔT3w |), and the absolute value as this calculated value It is determined whether (.vertline..DELTA.T1w-.DELTA.T3w.vertline.) Is larger than the threshold value Ta for determination of abnormality, that is, whether or not it is larger than the threshold value Ta for determination.
 ステップ44で「YES」と判定したときには、出力変化の差ΔT1w,ΔT3wの偏差の絶対値(|T1w-T3w|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ45で出力値T1w,T3wの温度センサ33のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ44で「NO」と判定されるときには、出力値T1w,T3wの温度センサ33は、いずれも異常ではなく正常と判断することができる。 When it is determined “YES” in step 44, the absolute value (| T1w−T3w |) of the deviation of the difference between the output changes ΔT1w and ΔT3w is larger than the threshold value Ta for determination of abnormality. One of the temperature sensors 33 having the output values T1w and T3w can be determined to be abnormal. Further, when the determination in step 44 is “NO”, the temperature sensors 33 of the output values T1w and T3w can be determined to be normal, not abnormal.
 次のステップ46では、前側の第2アクチュエータ7Bに設けられた温度センサ32(FR)の一定時間当りの出力変化の差ΔT2u(出力値T2uに相当)と、後側の第2アクチュエータ7Dに設けられた温度センサ32(RR)の一定時間当りの出力変化の差ΔT4u(出力値T4uに相当)との偏差を、絶対値(|ΔT2u-ΔT4u|)として算出し、この算出値としての絶対値(|ΔT2u-ΔT4u|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 46, the difference ΔT2u (corresponding to the output value T2u) of the change in output per unit time of the temperature sensor 32 (FR) provided in the second actuator 7B on the front side and the second actuator 7D on the rear side The deviation from the difference ΔT4u (corresponding to the output value T4u) of the change in output per fixed time of the detected temperature sensor 32 (RR) is calculated as an absolute value (| ΔT2u-ΔT4u |), and the absolute value as this calculated value It is determined whether (| .DELTA.T2u-.DELTA.T4u |) is larger than the threshold value Ta for determination of abnormality, that is, whether or not it is larger than the threshold value Ta for determination.
 ステップ46で「YES」と判定したときには、出力変化の差ΔT2u,ΔT4uの偏差の絶対値(|ΔT2u-ΔT4u|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ47で出力値T2u,T4uの温度センサ32のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ46で「NO」と判定されるときには、出力値T2u,T4uの温度センサ32は、いずれも異常ではなく正常と判断することができる。 When it is determined “YES” in step 46, the absolute value (| ΔT2u−ΔT4u |) of the deviation of the output change differences ΔT2u and ΔT4u is larger than the threshold value Ta for determination of abnormality, so in the next step 47 It is possible to determine that one of the temperature sensors 32 of the output values T2u and T4u is abnormal. Further, when the determination in step 46 is "NO", the temperature sensors 32 of the output values T2u and T4u can be determined to be normal, not abnormal.
 次のステップ48では、前側の第2アクチュエータ7Bに設けられた温度センサ33(FR)の一定時間当りの出力変化の差ΔT2w(出力値T2wに相当)と、後側の第2アクチュエータ7Dに設けられた温度センサ33(RR)の一定時間当りの出力変化の差ΔT4w(出力値T4wに相当)との偏差を、絶対値(|ΔT2w-ΔT4w|)として算出し、この算出値としての絶対値(|ΔT2w-ΔT4w|)が異常の判定用閾値Taに比較して大きいか否か、即ち判定用閾値Ta以上に大きいか否かを判定する。 In the next step 48, the difference ΔT2w (corresponding to the output value T2w) of the change in output per unit time of the temperature sensor 33 (FR) provided in the second actuator 7B on the front side and the second actuator 7D on the rear side The deviation from the difference ΔT4w (corresponding to the output value T4w) of the change in output per fixed time of the detected temperature sensor 33 (RR) is calculated as an absolute value (| ΔT2w-ΔT4w |), and the absolute value as this calculated value It is determined whether (| .DELTA.T2w-.DELTA.T4w |) is larger than the threshold value Ta for determination of abnormality, that is, whether or not it is larger than the threshold value Ta for determination.
 ステップ48で「YES」と判定したときには、出力変化の差ΔT2w,ΔT4wの偏差の絶対値(|ΔT2w-ΔT4w|)が異常の判定用閾値Ta以上に大きくなっているので、次のステップ49で出力値T2w,T4wの温度センサ33のうち、いずれか一方のセンサが異常と判断することができる。また、ステップ48で「NO」と判定されるときには、出力値T2w,T4wの温度センサ33は、いずれも異常ではなく正常と判断することができる。 When it is determined “YES” in step 48, the absolute value (| ΔT2w−ΔT4w |) of the deviation of the difference between the output changes ΔT2w and ΔT4w is larger than the threshold value Ta for determination of abnormality. It is possible to determine that one of the temperature sensors 33 having the output values T2w and T4w is abnormal. Further, when the determination in step 48 is “NO”, the temperature sensors 33 for the output values T2w and T4w can both be determined as normal, not abnormal.
 次のステップ50では、前記各温度センサ32,33のいずれかに異常が発生しているか否かを判定し、「NO」と判定するときには、各温度センサ32,33のいずれにも異常は発生していないので、前記ステップ41に戻って、これ以降の処理を続行する。しかし、ステップ50で「YES」と判定するときには、前記ステップ43,45,47または49のいずれかで、温度センサ32または33が異常と判断されている場合である。 In the next step 50, it is determined whether or not an abnormality has occurred in any of the temperature sensors 32, 33. When the determination is "NO", an abnormality occurs in any of the temperature sensors 32, 33. Since the process has not been performed, the process returns to step 41 to continue the subsequent processes. However, when the determination in step 50 is "YES", the temperature sensor 32 or 33 is determined to be abnormal in any of the steps 43, 45, 47 or 49.
 そこで、次のステップ51では、異常と判断されている温度センサ32または33(即ち、出力値T1uまたはT3uの温度センサ32、出力値T1wまたはT3wの温度センサ33、出力値T2uまたはT4uの温度センサ32、出力値T2wまたはT4wの温度センサ33のいずれか)を、例えば図11に示すように「異常判断候補1」としてメモリ12に記憶させる。そして、ステップ52ではメインのフロー(図示せず)にリターンする。 Therefore, in the next step 51, the temperature sensor 32 or 33 judged to be abnormal (ie, the temperature sensor 32 with the output value T1u or T3u, the temperature sensor 33 with the output value T1w or T3w, the temperature sensor with the output value T2u or T4u For example, as shown in FIG. 11, the memory 12 stores the output value T2w or the temperature sensor 33 having the output value T2w or T4w in the memory 12 as the "abnormality determination candidate 1". Then, at step 52, the process returns to the main flow (not shown).
 次に、同一の台車でのセンサ値比較判定部15は、図13に示す処理動作がスタートすると、ステップ61で前記ステップ41と同様に合計8個の温度センサ32,33から出力される温度検出信号(出力値T1u,T1w,T2u,T2w,T3u,T3w,T4u,T4w)を、当該温度センサ32,33毎の一定時間当りの出力変化の差ΔT1u,ΔT1w,ΔT2u,ΔT2w,ΔT3u,ΔT3w,ΔT4u,ΔT4wとして算出する。 Next, when the processing operation shown in FIG. 13 is started, the sensor value comparison / determination unit 15 in the same carriage detects the temperature output from the total of eight temperature sensors 32 and 33 in the same manner as step 41 in step 61. The signals (output values T1u, T1w, T2u, T2w, T3u, T3w, T4u, T4w) are output difference differences ΔT1u, ΔT1w, ΔT2u, ΔT2w, ΔT3u, ΔT3w, ΔT3w, ΔT3w, ΔT3w, ΔT3w Calculated as ΔT4u and ΔT4w.
 次のステップ62では、前側の台車3において、第1,第2アクチュエータ7A,7Bに設けられた同相の温度センサ32のそれぞれの一定時間当りの出力変化の差ΔT1u,ΔT2uを比較すると共に、他の同相の温度センサ33の一定時間当りの出力変化の差ΔT1w,ΔT2wを比較し、かつ後側の台車3において、第1,第2アクチュエータ7C,7Dに設けられた同相の温度センサ32のそれぞれの一定時間当りの出力変化の差ΔT3u,ΔT4uを比較すると共に、他の同相の温度センサ33の一定時間当りの出力変化の差ΔT3w,ΔT4wを比較する比較演算を行う。 In the next step 62, the differences ΔT1u and ΔT2u in the output change per fixed time of the in-phase temperature sensors 32 provided in the first and second actuators 7A and 7B in the front carriage 3 are compared with each other The differences ΔT1w, ΔT2w of the output change per fixed time of the in-phase temperature sensor 33 are compared, and the in-phase temperature sensors 32 provided on the first and second actuators 7C and 7D in the rear carriage 3 respectively A comparison operation is performed to compare the differences .DELTA.T3u and .DELTA.T4u in the output change per fixed time, and to compare the differences .DELTA.T3w and .DELTA.T4w in the output change per fixed time of the other in-phase temperature sensor 33.
 即ち、センサ値比較判定部15は、ステップ22において、前側の台車3の第1,第2アクチュエータ7A,7Bに設けられた温度センサ32の一定時間当りの出力変化の差ΔT1u(出力値T1uに相当)と出力変化の差ΔT2u(出力値T2uに相当)との出力差(両者の絶対値|ΔT1u-ΔT2u|=ΔT12u)と、他の温度センサ33の一定時間当りの出力変化の差ΔT1w(出力値T1wに相当)と出力変化の差ΔT2w(出力値T2wに相当)との出力差(両者の絶対値|ΔT1w-ΔT2w|=ΔT12w)とを演算する。 That is, in step 22, the sensor value comparison and determination unit 15 determines the difference .DELTA.T1u (the output value T1u) of the output change per unit time of the temperature sensor 32 provided in the first and second actuators 7A and 7B of the front carriage 3. The difference between the output difference (equivalent to the absolute value | ΔT1u−ΔT2u | = ΔT12u) of the output change ΔT2u (corresponding to the output value T2u) and the output change difference ΔT1w (the output change per other time of the other temperature sensor 33) An output difference (absolute value | ΔT1w−ΔT2w | = ΔT12w) of the difference ΔT2w (corresponding to the output value T2w) between the output value T1w and the output change is calculated.
 また、後側の台車3において、第1,第2アクチュエータ7C,7Dに設けられた温度センサ32の一定時間当りの出力変化の差ΔT3u(出力値T3uに相当)と出力変化の差ΔT4u(出力値T4uに相当)との出力差(両者の絶対値|ΔT3u-ΔT4u|=ΔT34u)と、他の温度センサ33の一定時間当りの出力変化の差ΔT3w(出力値T3wに相当)と出力変化の差ΔT4w(出力値T4wに相当)との出力差(両者の絶対値|ΔT3w-ΔT4w|=ΔT34w)とを演算する。 In addition, in the carriage 3 on the rear side, the difference ΔT3u (corresponding to the output value T3u) of the change in output of the temperature sensor 32 provided in the first and second actuators 7C and 7D per unit time and the difference ΔT4u (the output change) The difference between the output (equivalent to the value T4u) (the absolute value of both of | ΔT3u−ΔT4u | = ΔT34u), the difference ΔT3w (corresponding to the output value T3w) of the change in the output of the other temperature sensor 33 per fixed time, and the change in the output An output difference (absolute value | ΔT3w−ΔT4w | = ΔT34w) of the difference ΔT4w (corresponding to the output value T4w) is calculated.
 次のステップ63では、前記出力差(絶対値ΔT12u,ΔT12w,ΔT34u,ΔT34w)の平均値Taveを、下記の数3式により演算して求める。次のステップ64では、前記各出力差(絶対値ΔT12u,ΔT12w,ΔT34u,ΔT34w)と平均値Taveとの偏差である差分dΔT12u,dΔT12w,dΔT34u,dΔT34wを下記の数4式に従って演算する。そして、次のステップ65では、数4式による差分dΔT12u,dΔT12w,dΔT34u,dΔT34wのうち、最も大きな差分を最大値ΔTmax2として算出する。 In the next step 63, the average value Tave of the output differences (absolute values ΔT12u, ΔT12w, ΔT34u, ΔT34w) is calculated by the following equation (3). In the next step 64, differences d.DELTA.T12u, d.DELTA.T12w, d.DELTA.T34u, d.DELTA.T34w, which are deviations between the respective output differences (absolute values .DELTA.T12u, .DELTA.T12w, .DELTA.T34u, .DELTA.T34w) and the average value Tave, are calculated according to the following equation (4). Then, in the next step 65, the largest difference among the differences d.DELTA.T12u, d.DELTA.T12w, d.DELTA.T34u, d.DELTA.T34w according to equation 4 is calculated as the maximum value .DELTA.Tmax2.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次のステップ66では、前記最大値ΔTmax2が予め決められた異常の判定用閾値Tbに比較して大きいか否か、例えば判定用閾値Tb以上まで大きくなっているか否かを判定する。ステップ66で「NO」と判定するときは、前記最大値ΔTmax2が判定用閾値Tbよりも小さく、この場合は、全ての差分dΔT12u,dΔT12w,dΔT34u,dΔT34wが判定用閾値Tbよりも小さいことになる。これによって、前記出力差(絶対値ΔT12u,ΔT12w,ΔT34u,ΔT34w)は、平均値Taveに近い値であり、平均値Taveとの偏差は無視できる程度に小さいと判断できる。 In the next step 66, it is determined whether the maximum value ΔTmax2 is larger than a predetermined threshold Tb for determination of abnormality, for example, whether it is larger than the threshold Tb for determination. When it is determined “NO” in step 66, the maximum value ΔTmax2 is smaller than the determination threshold Tb, and in this case, all differences dΔT12u, dΔT12w, dΔT34u, dΔT34w are smaller than the determination threshold Tb. . Thus, it can be determined that the output difference (absolute values ΔT12u, ΔT12w, ΔT34u, ΔT34w) is a value close to the average value Tave, and the deviation from the average value Tave is small enough to be ignored.
 このため、前記出力値T1u,T2u,T3u,T4uの温度センサ32と出力値T1w,T2w,T3w,T4wの温度センサ33とは、いずれも異常ではなく、正常に動作していると判断することができる。そこで、ステップ66で「NO」と判定したときには、全ての温度センサ32,33は正常と判断して前記ステップ61に戻り、これ以降の処理を続行する。 Therefore, it is determined that the temperature sensors 32 for the output values T1u, T2u, T3u, and T4u and the temperature sensors 33 for the output values T1w, T2w, T3w, and T4w are not abnormal but are operating normally. Can. Therefore, when it is determined as "NO" in step 66, all the temperature sensors 32, 33 determine that they are normal, return to the step 61, and continue the processing thereafter.
 一方、ステップ66で「YES」と判定したときには、前記最大値ΔTmax2が異常の判定用閾値Tb以上となり、前記差分dΔT12u,dΔT12w,dΔT34u,dΔT34wのうち、最も大きな差分(最大値dΔTmax2)は、異常の判定用閾値Tb以上まで大きくなっている。このため、最大値dΔTmax2に該当する前記差分dΔT12u,dΔT12w,dΔT34u,dΔT34wのいずれか、即ち出力値T1u,T2uの温度センサ32、出力値T1w,T2wの温度センサ33、出力値T3u,T4uの温度センサ32または出力値T3w,T4wの温度センサ33のいずれかは、出力値が異常となって故障している。 On the other hand, when it is determined “YES” in step 66, the maximum value ΔTmax2 is equal to or greater than the threshold Tb for determining abnormality, and the largest difference (maximum value dΔTmax2) among the differences dΔT12u, dΔT12w, dΔT34u, dΔT34w is an abnormality. The threshold value Tb is greater than or equal to the determination threshold Tb. Therefore, one of the differences d.DELTA.T12u, d.DELTA.T12w, d.DELTA.T34u, d.DELTA.T34w corresponding to the maximum value d.DELTA.Tmax2, that is, the temperature sensor 32 of the output values T1u, T2u, the temperature sensor 33 of the output values T1w, T2w, the temperature of the output values T3u, T4u Either the sensor 32 or the temperature sensor 33 with the output values T3w and T4w is out of order as the output value becomes abnormal.
 そこで、次のステップ67では、出力値T1uまたはT2uの温度センサ32、出力値T1wまたはT2wの温度センサ33、出力値T3uまたはT4uの温度センサ32、出力値T3wまたはT4wの温度センサ33のいずれかを、例えば図11に示すように「異常判断候補2」としてメモリ12に記憶させる。そして、ステップ68ではメインのフロー(図示せず)にリターンする。 Therefore, in the next step 67, the temperature sensor 32 with the output value T1u or T2u, the temperature sensor 33 with the output value T1w or T2w, the temperature sensor 32 with the output value T3u or T4u, or the temperature sensor 33 with the output value T3w or T4w Are stored in the memory 12 as “abnormality judgment candidate 2” as shown in FIG. 11, for example. Then, at step 68, the process returns to the main flow (not shown).
 次に、制御装置10のセンサ異常判定部16は、前記第1の実施の形態で図10を参照して述べたように、前述した「異常判断候補1」と「異常判断候補2」とに重複する温度センサ32または33があるか否かを判定し、例えば図11に示す判定テーブル40のように、2つの異常判断候補1,2で重複したアンド条件を満たす温度センサがある場合には、該当する温度センサを故障と確定する。 Next, as described with reference to FIG. 10 in the first embodiment, the sensor malfunction determination unit 16 of the control device 10 converts the “fault determination candidate 1” and the “fault determination candidate 2” described above. It is determined whether or not there are overlapping temperature sensors 32 or 33. For example, as in the determination table 40 shown in FIG. , Determine the corresponding temperature sensor as failure.
 かくして、このように構成される第2の実施の形態によれば、各温度センサ32,33の出力値の差を、当該温度センサ毎の一定時間当りの出力変化の差ΔT1u,ΔT1w,ΔT2u,ΔT2w,ΔT3u,ΔT3w,ΔT4u,ΔT4wから算出し、一定時間内における温度変化をもとにした温度勾配を使用して異常な温度センサ32または33を特定する構成としている。 Thus, according to the second embodiment configured as described above, the difference between the output values of the temperature sensors 32, 33 can be expressed as the difference ΔT1u, ΔT1w, ΔT2u, the change in output per fixed time for each temperature sensor. The abnormal temperature sensor 32 or 33 is specified using a temperature gradient calculated from ΔT2w, ΔT3u, ΔT3w, ΔT4u, ΔT4w and based on a temperature change in a fixed time.
 即ち、第2の実施の形態で採用した2つの台車間のセンサ値比較判定部14は、同一の車両における前,後の台車3間で、進行方向(矢示A方向)に対して左,右方向の同じ側(左側)に取付けられた第1アクチュエータ7A,7C間の同相温度勾配を比較すると共に、同じ右側に取付けられた第2アクチュエータ7B,7D間の同相温度勾配を比較し、この比較結果から温度センサ32または33の「異常判断候補1」を判定する。 That is, the sensor value comparison / determination unit 14 between the two bogies adopted in the second embodiment is left between the front and rear bogies 3 of the same vehicle with respect to the traveling direction (the direction of arrow A), While comparing the in-phase temperature gradient between the first actuators 7A and 7C mounted on the same side (left side) to the right and comparing the in-phase temperature gradient between the second actuators 7B and 7D mounted on the same right side, From the comparison result, the “abnormality judgment candidate 1” of the temperature sensor 32 or 33 is determined.
 また、第2の実施の形態で採用した同一の台車でのセンサ値比較判定部15は、同一の台車3の左,右方向に離間して取付けられた第1,第2アクチュエータ7A,7B間の同相温度センサの温度勾配を比較し、また、別の台車3の左,右方向に離間して取付けられた第1,第2アクチュエータ7C,7D間の同相温度センサの温度勾配を比較する。そして、これらの出力差(絶対値ΔT12u,ΔT12w,ΔT34u,ΔT34w)の平均値Taveを求め、この平均値Taveとの差分dΔT12u,dΔT12w,dΔT34u,dΔT34wが判定用閾値Tb以上に大きくなっているか否かにより、複数の温度センサ32または33の「異常判断候補2」を判定する。 Further, the sensor value comparison / determination unit 15 in the same carriage adopted in the second embodiment is between the first and second actuators 7A and 7B separately mounted in the left and right directions of the same carriage 3 The temperature gradients of the common-mode temperature sensors between the first and second actuators 7C and 7D separately mounted in the left and right directions of the other carriages 3 are compared. Then, an average value Tave of these output differences (absolute values ΔT12u, ΔT12w, ΔT34u, ΔT34w) is determined, and differences dΔT12u, dΔT12w, dΔT34u, dΔT34w with the average value Tave are larger than the determination threshold Tb or not. Then, the "abnormality judgment candidate 2" of the plurality of temperature sensors 32 or 33 is determined.
 この上で、センサ異常判定部16は、第1の実施の形態と同様に、2つの異常判断候補1,2のうち共通の異常候補と判定されたものを、異常となった故障の温度センサとして特定する。このため、第1の実施の形態のように温度センサ32,33の出力値として瞬時値ではなく、一定時間当りの出力変化の差ΔT1u,ΔT1w,ΔT2u,ΔT2w,ΔT3u,ΔT3w,ΔT4u,ΔT4wから、温度変化をもとにした温度勾配を使用して異常となった温度センサ32または33を特定することができる。 Further, as in the first embodiment, the sensor abnormality determination unit 16 determines that a common abnormality candidate among the two abnormality determination candidates 1 and 2 is a temperature sensor for a failure that has become abnormal. Identify as For this reason, the output values of the temperature sensors 32 and 33 are not instantaneous values as in the first embodiment, but differences from output change per fixed time ΔT1u, ΔT1w, ΔT2u, ΔT2w, ΔT3u, ΔT3w, ΔT4u, ΔT4w The temperature sensor 32 or 33 that has become abnormal can be identified using a temperature gradient based on a temperature change.
 従って、第2の実施の形態では、例えば温度センサ32,33の検出信号(即ち、出力値)にノイズが入るような場合でも、ノイズによる影響を抑えることができ、複数の温度センサ32,33のうち故障した温度センサの特定を安定して行うことができる。本実施の形態では、異常な温度センサの特定(検知)までに第1の実施の形態に比較して時間を要するが、第1の実施の形態に比べて温度センサの故障を確実に検知することができる。 Therefore, in the second embodiment, even when noise is included in the detection signals (ie, output values) of the temperature sensors 32 and 33, for example, the influence of the noise can be suppressed. In the above, identification of a failed temperature sensor can be stably performed. In the present embodiment, it takes more time to specify (detect) an abnormal temperature sensor as compared to the first embodiment, but the failure of the temperature sensor is detected more reliably than in the first embodiment. be able to.
 なお、前記第2の実施の形態では、図13に示すステップ65で差分dΔT12u,dΔT12w,dΔT34u,dΔT34wの最大値ΔTmax2を算出する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば判定用閾値Tbに比較して、差分dΔT12u,dΔT12w,dΔT34u,dΔT34wのいずれかが閾値Tb以上となっているか否かを判定し、これによって「異常判断候補2」を検知(判別)する構成としてもよい。 In the second embodiment, the case where the maximum value ΔTmax2 of the differences dΔT12u, dΔT12w, dΔT34u, dΔT34w is calculated in step 65 shown in FIG. 13 has been described as an example. However, the present invention is not limited to this, and for example, it is determined whether any of the differences dΔT12u, dΔT12w, dΔT34u, dΔT34w is greater than or equal to the threshold Tb in comparison with the determination threshold Tb. It may be configured to detect (determine) the abnormality judgment candidate 2 ".
 また、前記各実施の形態では、アクチュエータ7の電機子23に設けた複数のコイル部材25のうちu相コイル25A近傍にu相の温度センサ32を配置し、w相コイル25Cの近傍にはw相の温度センサ33を配置する場合を例に挙げて説明した。しかし、本発明はこれに限られるものではなく、例えば3個以上の温度センサを1つのアクチュエータに設け、このうち少なくとも一つの温度センサが正常であれば、異常が検出されない温度センサに基づいてアクチュエータの制御を、可能な限り継続して行う構成としてもよい。 In each of the embodiments, the u-phase temperature sensor 32 is disposed in the vicinity of the u-phase coil 25A among the plurality of coil members 25 provided in the armature 23 of the actuator 7, and w is disposed in the vicinity of the w-phase coil 25C. The case where the phase temperature sensor 33 is disposed is described as an example. However, the present invention is not limited to this, and for example, three or more temperature sensors are provided in one actuator, and if at least one of the temperature sensors is normal, an actuator based on the temperature sensor in which no abnormality is detected. The control of the above may be performed as continuously as possible.
 以上説明した実施形態に基づく車両振動制御装置として、例えば、以下に述べる態様のものが考えられる。第1の態様としては、車両振動制御装置は、一両の鉄道車両が有する2つの台車のうち一方の台車に設けられて力を発生する第1および第2アクチュエータと、前記2つの台車のうち他方の台車に設けられて力を発生する他の第1および第2アクチュエータと、前記各第1アクチュエータと前記各第2アクチュエータとを制御する制御装置と、を備えている。前記各第1アクチュエータおよび前記各第2アクチュエータは、少なくとも一相のコイルに温度センサを備えた三相リニアモータを備えている。前記制御装置は、前記一方の台車と前記他方の台車との間で前記各第1アクチュエータに設けられた同相の前記温度センサのそれぞれの出力値を比較し、かつ前記各第2アクチュエータに設けられた同相の前記温度センサのそれぞれの出力値を比較する2つの台車間のセンサ値比較判定部と、前記一方の台車において前記第1および第2アクチュエータに設けられた前記同相の温度センサのそれぞれの出力値を比較し、かつ前記他方の台車において前記第1および第2アクチュエータに設けられた前記同相の温度センサのそれぞれの出力値を比較する同一の台車でのセンサ値比較判定部と、前記2つの台車間のセンサ値比較判定部および前記同一の台車でのセンサ値比較判定部の判定結果に基づいて前記各温度センサのうち異常な温度センサを特定するセンサ異常判定部と、を備えている。前記同相の温度センサは、前記少なくとも1相のコイルのうちの同相の電流が流れるコイルにそれぞれ設けられた温度センサである。これにより、異常な温度センサを特定することができる。 As a vehicle vibration control device based on the embodiment described above, for example, one having an aspect described below can be considered. In a first aspect, the vehicle vibration control device includes first and second actuators provided on one of the two bogies of one of the rail cars to generate force, and the two bogies. The other carriage is provided with other first and second actuators that generate a force, and a control device that controls the first actuators and the second actuators. Each of the first and second actuators includes a three-phase linear motor having a temperature sensor in at least one phase coil. The control device compares output values of the in-phase temperature sensors provided to the first actuators between the one carriage and the other carriage, and is provided to the second actuators. A sensor value comparison and determination unit between two bogies for comparing the output values of the respective in-phase temperature sensors, and the respective in-phase temperature sensors provided in the first and second actuators in the one bogie A sensor value comparison and determination unit for the same truck that compares output values and compares output values of the in-phase temperature sensors provided in the first and second actuators in the other truck, and An abnormal temperature sensor among the temperature sensors based on the determination results of the sensor value comparison and determination unit between two bogies and the sensor value comparison and determination unit of the same bogie And a, and the sensor abnormality determination unit that identifies. The in-phase temperature sensors are temperature sensors respectively provided in coils through which the in-phase current of the at least one-phase coils flows. Thereby, an abnormal temperature sensor can be identified.
 車両振動制御装置の第2の態様としては、前記第1の態様において、前記2つの台車間のセンサ値比較判定部は、前記各第1アクチュエータに設けられた前記各温度センサの出力値の差が予め決められた判定用閾値に比較して大きいか否かを判定すると共に、前記各第2アクチュエータに設けられた前記各温度センサの出力値の差が前記判定用閾値に比較して大きいか否かを判定し、前記同一の台車でのセンサ値比較判定部は、前記第1および第2アクチュエータに設けられた前記各温度センサの出力値の差を前記同一の台車毎にそれぞれ算出して前記各出力値の差の平均値を求めると共に、前記各出力値の差と前記平均値との差分をそれぞれ算出し、これらの差分のいずれかが予め決められた他の判定用閾値に比較して大きいか否かを判定し、前記センサ異常判定部は、前記各温度センサのうち、前記2つの台車間のセンサ値比較判定部と前記同一の台車でのセンサ値比較判定部とによりそれぞれの前記判定用閾値に比較して大きいと判定された温度センサを、異常な温度センサとして特定する処理を行う。これにより、いずれの温度センサが異常となっても、異常な温度センサを確実に特定することができる。 As a second aspect of the vehicle vibration control device, in the first aspect, the sensor value comparison and determination unit between the two bogies is a difference between output values of the respective temperature sensors provided in the respective first actuators. Is determined by comparison with a predetermined determination threshold, and it is determined whether the difference between the output values of the respective temperature sensors provided to the respective second actuators is larger than the determination threshold It is determined whether or not the sensor value comparison and determination unit in the same carriage calculates the difference between the output values of the temperature sensors provided in the first and second actuators for each of the same carriages. The average value of the differences between the output values is determined, and the differences between the differences between the output values and the average value are calculated, respectively, and any one of these differences is compared with another predetermined threshold value for determination. Whether it is large or not The sensor abnormality determination unit compares each of the temperature sensors with the determination threshold value by the sensor value comparison determination unit between the two carriages and the sensor value comparison determination unit with the same carriage among the temperature sensors. The temperature sensor determined to be large is identified as an abnormal temperature sensor. Thereby, even if any temperature sensor becomes abnormal, an abnormal temperature sensor can be specified certainly.
 第3の態様としては、前記第1の態様において、前記2つの台車間のセンサ値比較判定部は、前記各第1アクチュエータに設けられた前記各温度センサの出力値の差を当該温度センサ毎の一定時間当りの出力変化の差から算出し、この算出値が予め決められた判定用閾値に比較して大きいか否かを判定すると共に、前記各第2アクチュエータに設けられた前記各温度センサの出力値の差を当該温度センサ毎の一定時間当りの出力変化の差から算出し、この算出値が前記判定用閾値に比較して大きいか否かを判定し、前記同一の台車でのセンサ値比較判定部は、前記温度センサ毎の一定時間当りの出力変化の差から前記各台車における前記各温度センサの出力差をそれぞれ算出して出力差の平均値を求めると共に、この平均値と前記各出力差との差分をそれぞれ算出し、これらの差分のいずれかが予め決められた他の判定用閾値に比較して大きいか否かを判定し、前記センサ異常判定部は、前記各温度センサのうち、前記2つの台車間のセンサ値比較判定部と前記同一の台車でのセンサ値比較判定部とによりそれぞれの前記判定用閾値に比較して大きいと判定された温度センサを、異常な温度センサとして特定する処理を行う。これにより、温度センサの検出信号(即ち、出力値)にノイズが入るような場合でも、ノイズによる影響を抑えることができ、複数の温度センサのうち故障した温度センサの特定を安定して行うことができる。 As a third aspect, in the first aspect, the sensor value comparison and determination unit between the two bogies is configured such that the difference between the output values of the respective temperature sensors provided in the respective first actuators is Calculated from the difference in output change per fixed time, and it is determined whether or not this calculated value is larger than a predetermined determination threshold, and each temperature sensor provided to each The difference between the output values of the sensors is calculated from the difference in the output change per fixed time for each temperature sensor, and it is determined whether the calculated value is larger than the threshold value for determination and the sensor with the same truck The value comparison / determination unit calculates the output difference of each of the temperature sensors in each of the bogies from the difference in output change per fixed time for each of the temperature sensors to obtain an average value of the output differences, and Each output difference The difference between the two is calculated, and it is determined whether or not any of these differences is larger than other predetermined determination threshold values, and the sensor abnormality determination unit determines that the sensor abnormality determination unit A temperature sensor that is determined to be larger than each of the determination threshold values by the sensor value comparison and determination unit between the two bogies and the sensor value comparison and determination unit in the same bogie is specified as an abnormal temperature sensor Do the processing. Thereby, even when noise is included in the detection signal (that is, the output value) of the temperature sensor, the influence of the noise can be suppressed, and the identification of the failed temperature sensor among the plurality of temperature sensors can be stably performed. Can.
 第4の態様としては、前記第1乃至3の態様のいずれかにおいて、前記各第1アクチュエータおよび前記各第2アクチュエータの前記三相リニアモータは、少なくとも二相のコイルに前記温度センサを備えている。第5の態様としては、前記第1乃至4の態様のいずれかにおいて、前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両の車体と前記各台車との間に取付けられている。第6の態様としては、前記第1乃至5の態様のいずれかにおいて、前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両に対して上,下方向に取付けられ、前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両の進行方向に対して前記各台車の左,右方向に離間して設けられている。 According to a fourth aspect, in any one of the first to third aspects, the three-phase linear motor of each of the first and second actuators includes the temperature sensor in at least a two-phase coil. There is. According to a fifth aspect, in any one of the first to fourth aspects, each of the first actuators and each of the second actuators is attached between a car body of the railway vehicle and each of the bogies. As a sixth aspect, in any one of the first to fifth aspects, each of the first actuators and each of the second actuators is attached to the railcar in the upper and lower directions, and each of the first actuators The actuator and the second actuators are spaced apart in the left and right directions of the bogies with respect to the traveling direction of the railway vehicle.
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 While some embodiments of the present invention have been described above, the above-described embodiments of the present invention are for the purpose of facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be modified and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification is possible within a range in which at least a part of the above-mentioned problems can be solved, or in a range that exerts at least a part of the effect. It is.
 本願は、2017年11月28日出願の日本特許出願番号2017-227992号に基づく優先権を主張する。2017年11月28日出願の日本特許出願番号2017-227992号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims the priority based on Japanese Patent Application No. 2017-227992 filed on November 28, 2017. The disclosure of Japanese Patent Application No. 2017-227992 filed on November 28, 2017, including the specification, claims, drawings, and abstract is incorporated herein by reference in its entirety.
 1 鉄道車両、 2 車体、 3 台車、 4 車輪、 5 レール、 6 懸架ばね、 7 アクチュエータ、 7A,7C 第1アクチュエータ、 7B,7D 第2アクチュエータ、 10 制御装置、 11 通信回線、 12 メモリ、 13 制御コントローラ、 14 2つの台車間のセンサ値比較判定部、 15 同一の台車でのセンサ値比較判定部、 16 センサ異常判定部、 21 固定子、 22 ロッド、 23 電機子、 24 コア、 25A u相コイル、 25B v相コイル、 25C w相コイル、 26 可動子、 32,33 温度センサ、 Ta,Tb 判定用閾値、 T12u,T12w,T34u,T34w 出力差(出力値の差)、 Tave 平均値、 ΔT12u,ΔT12w,ΔT34u,ΔT34w 差分、 ΔT1u,ΔT1w,ΔT2u,ΔT2w,ΔT3u,ΔT3w,ΔT4u,ΔT4w 出力変化の差、 ΔT12u,ΔT12w,ΔT34u,ΔT34w 出力差、 dΔT12u,dΔT12w,dΔT34u,dΔT34w 差分 DESCRIPTION OF SYMBOLS 1 Rail vehicle, 2 car bodies, 3 carts, 4 wheels, 5 rails, 6 suspension springs, 7 actuators, 7A, 7C 1st actuators, 7B, 7D 2nd actuators, 10 controllers, 11 communication lines, 12 memories, 13 controls Controller, 14 sensor value comparison judgment unit between two cars, 15 sensor value comparison judgment unit with the same car, 16 sensor abnormality judgment unit, 21 stator, 22 rods, 23 armatures, 24 cores, 25A u phase coil , 25 B v-phase coil, 25 C w-phase coil, 26 movers, 32, 33 temperature sensor, threshold for Ta, Tb determination, T12u, T12w, T34u, T34w output difference (difference in output value), Tave average value, ΔT12u, ΔT12w, ΔT34u, ΔT34w Difference, ΔT1u, T1w, ΔT2u, ΔT2w, ΔT3u, ΔT3w, ΔT4u, difference ΔT4w output change, ΔT12u, ΔT12w, ΔT34u, ΔT34w output difference, dΔT12u, dΔT12w, dΔT34u, dΔT34w difference

Claims (6)

  1.  車両振動制御装置であって、
     一両の鉄道車両が有する2つの台車のうち一方の台車に設けられて力を発生する第1および第2アクチュエータと、
     前記2つの台車のうち他方の台車に設けられて力を発生する他の第1および第2アクチュエータと、
     前記各第1アクチュエータと前記各第2アクチュエータとを制御する制御装置と、
     を備え、
     前記各第1アクチュエータおよび前記各第2アクチュエータは、少なくとも一相のコイルに温度センサを備えた三相リニアモータを備え、
     前記制御装置は、
     前記一方の台車と前記他方の台車との間で前記各第1アクチュエータに設けられた同相の温度センサのそれぞれの出力値を比較し、かつ前記各第2アクチュエータに設けられた同相の前記温度センサのそれぞれの出力値を比較する2つの台車間のセンサ値比較判定部と、
     前記一方の台車において前記第1および第2アクチュエータに設けられた前記同相の温度センサのそれぞれの出力値を比較し、かつ前記他方の台車において前記第1および第2アクチュエータに設けられた前記同相の温度センサのそれぞれの出力値を比較する同一の台車でのセンサ値比較判定部と、
     前記2つの台車間のセンサ値比較判定部および前記同一の台車でのセンサ値比較判定部の判定結果に基づいて前記各温度センサのうち異常な温度センサを特定するセンサ異常判定部と、
     を備え、
     前記同相の温度センサは、前記少なくとも1相のコイルのうちの同相の電流が流れるコイルにそれぞれ設けられた温度センサである
     車両振動制御装置。
    A vehicle vibration control device,
    First and second actuators provided on one of the two bogies of one rail car and generating force;
    The other first and second actuators provided on the other of the two carriages for generating a force;
    A control device that controls each of the first actuators and each of the second actuators;
    Equipped with
    Each of the first actuator and the second actuator includes a three-phase linear motor having a temperature sensor in at least one phase coil,
    The controller is
    The respective output values of the in-phase temperature sensors provided in the respective first actuators are compared between the one carriage and the other carriage, and the in-phase temperature sensors provided in the respective second actuators A sensor value comparison / determination unit between two carriages that compares respective output values of
    The output values of the in-phase temperature sensors provided to the first and second actuators in one of the bogies are compared, and the in-phase ones provided on the first and second actuators in the other bogie A sensor value comparison and determination unit for the same carriage that compares the output values of the temperature sensors;
    A sensor abnormality determination unit that specifies an abnormal temperature sensor among the temperature sensors based on the determination results of the sensor value comparison determination unit between the two carriages and the sensor value comparison determination unit of the same carriage;
    Equipped with
    The said in-phase temperature sensor is a temperature sensor provided in the coil in which the in-phase electric current of the said at least 1 phase coils flows respectively. Vehicle vibration control apparatus.
  2.  請求項1に記載の車両振動制御装置であって、
     前記2つの台車間のセンサ値比較判定部は、前記各第1アクチュエータに設けられた前記各温度センサの出力値の差が予め決められた判定用閾値に比較して大きいか否かを判定すると共に、前記各第2アクチュエータに設けられた前記各温度センサの出力値の差が前記判定用閾値に比較して大きいか否かを判定し、
     前記同一の台車でのセンサ値比較判定部は、前記第1および第2アクチュエータに設けられた前記各温度センサの出力値の差を前記同一の台車毎にそれぞれ算出して前記各出力値の差の平均値を求めると共に、前記各出力値の差と前記平均値との差分をそれぞれ算出し、これらの差分のいずれかが予め決められた他の判定用閾値に比較して大きいか否かを判定し、
     前記センサ異常判定部は、前記各温度センサのうち、前記2つの台車間のセンサ値比較判定部と前記同一の台車でのセンサ値比較判定部とによりそれぞれの前記判定用閾値に比較して大きいと判定された温度センサを、異常な温度センサとして特定する処理を行う
     車両振動制御装置。
    The vehicle vibration control device according to claim 1, wherein
    The sensor value comparison and determination unit between the two bogies determines whether or not the difference between the output values of the temperature sensors provided to the first actuators is larger than a predetermined determination threshold. And determining whether the difference between the output values of the temperature sensors provided in the second actuators is larger than the threshold value for determination.
    The sensor value comparison / determination unit for the same carriage calculates the difference between the output values of the temperature sensors provided to the first and second actuators for each of the carriages, and the difference between the output values And calculating the difference between the difference between the output values and the average value, and determining whether any one of these differences is larger than another predetermined determination threshold. Judge
    The sensor abnormality determination unit is larger than the respective determination threshold values by the sensor value comparison determination unit between the two carriages and the sensor value comparison determination unit with the same carriage among the temperature sensors. A vehicle vibration control device that performs processing for specifying a temperature sensor that is determined as an abnormal temperature sensor.
  3.  請求項1に記載の車両振動制御装置であって、
     前記2つの台車間のセンサ値比較判定部は、前記各第1アクチュエータに設けられた前記各温度センサの出力値の差を当該温度センサ毎の一定時間当りの出力変化の差から算出し、この算出値が予め決められた判定用閾値に比較して大きいか否かを判定すると共に、前記各第2アクチュエータに設けられた前記各温度センサの出力値の差を当該温度センサ毎の一定時間当りの出力変化の差から算出し、この算出値が前記判定用閾値に比較して大きいか否かを判定し、
     前記同一の台車でのセンサ値比較判定部は、前記温度センサ毎の一定時間当りの出力変化の差から前記各台車における前記各温度センサの出力差をそれぞれ算出して出力差の平均値を求めると共に、この平均値と前記各出力差との差分をそれぞれ算出し、これらの差分のいずれかが予め決められた他の判定用閾値に比較して大きいか否かを判定し、
     前記センサ異常判定部は、前記各温度センサのうち、前記2つの台車間のセンサ値比較判定部と前記同一の台車でのセンサ値比較判定部とによりそれぞれの前記判定用閾値に比較して大きいと判定された温度センサを、異常な温度センサとして特定する処理を行う
     車両振動制御装置。
    The vehicle vibration control device according to claim 1, wherein
    The sensor value comparison and determination unit between the two bogies calculates the difference between the output value of each of the temperature sensors provided to each of the first actuators from the difference in output change per fixed time for each of the temperature sensors, and It is determined whether the calculated value is larger than a predetermined determination threshold value and it is determined whether the difference between the output values of the temperature sensors provided in the second actuators is equal to the predetermined time for each temperature sensor. Calculating from the difference of the output change of and determining whether the calculated value is larger than the threshold value for the determination,
    The sensor value comparison / determination unit in the same carriage calculates the output difference of each of the temperature sensors in each of the carriages from the difference in output change per fixed time for each of the temperature sensors, and finds the average value of the output differences In addition, the difference between the average value and each of the output differences is calculated, and it is determined whether any one of these differences is larger than another predetermined determination threshold value.
    The sensor abnormality determination unit is larger than the respective determination threshold values by the sensor value comparison determination unit between the two carriages and the sensor value comparison determination unit with the same carriage among the temperature sensors. A vehicle vibration control device that performs processing for specifying a temperature sensor that is determined as an abnormal temperature sensor.
  4.  請求項1乃至3のいずれかに記載の車両振動制御装置であって、
     前記各第1アクチュエータおよび前記各第2アクチュエータの前記三相リニアモータは、少なくとも二相のコイルに前記温度センサを備えている
     車両振動制御装置。
    The vehicle vibration control device according to any one of claims 1 to 3, wherein
    A vehicle vibration control device, wherein the three-phase linear motor of each of the first actuators and each of the second actuators includes the temperature sensor in at least two-phase coils.
  5.  請求項1乃至4のいずれかに記載の車両振動制御装置であって、
     前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両の車体と前記各台車との間に取付けられている
     車両振動制御装置。
    The vehicle vibration control device according to any one of claims 1 to 4, wherein
    A vehicle vibration control device, wherein each of the first actuators and each of the second actuators is mounted between a vehicle body of the railway vehicle and each of the bogies.
  6.  請求項1乃至5のいずれかに記載の車両振動制御装置であって、
     前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両に対して上,下方向に取付けられ、
     前記各第1アクチュエータおよび前記各第2アクチュエータは、前記鉄道車両の進行方向に対して前記各台車の左,右方向に離間して設けられている
     車両振動制御装置。
    The vehicle vibration control device according to any one of claims 1 to 5, wherein
    The first actuators and the second actuators are attached to the railcar in the upper and lower directions,
    A vehicle vibration control device, wherein the first actuators and the second actuators are provided separately in the left and right directions of the bogies with respect to the traveling direction of the railway vehicle.
PCT/JP2018/043513 2017-11-28 2018-11-27 Vehicle vibration control device WO2019107337A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019557227A JP6876149B2 (en) 2017-11-28 2018-11-27 Vehicle vibration control device
CN201880076716.6A CN111433059B (en) 2017-11-28 2018-11-27 Vehicle vibration control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-227992 2017-11-28
JP2017227992 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107337A1 true WO2019107337A1 (en) 2019-06-06

Family

ID=66663981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043513 WO2019107337A1 (en) 2017-11-28 2018-11-27 Vehicle vibration control device

Country Status (3)

Country Link
JP (1) JP6876149B2 (en)
CN (1) CN111433059B (en)
WO (1) WO2019107337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617637A (en) * 2022-08-11 2023-10-18 Libertine Fpe Ltd A sensor device and method for controlling a free piston mover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163031A (en) * 2014-02-28 2015-09-07 日立オートモティブシステムズ株式会社 electromagnetic suspension apparatus
JP2016022880A (en) * 2014-07-23 2016-02-08 日立オートモティブシステムズ株式会社 Control device for attenuation force adjusting type damper
JP2016125960A (en) * 2015-01-07 2016-07-11 株式会社デンソー Abnormality detection unit and abnormality detection method of vehicular motor temperature sensor
JP2017156330A (en) * 2016-03-04 2017-09-07 本田技研工業株式会社 Temperature measurement device for coil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794566B2 (en) * 1987-10-12 1998-09-10 株式会社豊田中央研究所 Vibration control device
JP4519113B2 (en) * 2006-09-12 2010-08-04 トヨタ自動車株式会社 Vehicle suspension system
JP2009120026A (en) * 2007-11-14 2009-06-04 Toyota Motor Corp Vehicular electric suspension system
JP5463263B2 (en) * 2009-11-30 2014-04-09 日立オートモティブシステムズ株式会社 Suspension control device for vehicle
JP5603807B2 (en) * 2011-03-07 2014-10-08 Ntn株式会社 Electric vehicle drive motor diagnosis device and diagnosis method, and electric vehicle drive motor diagnosis device
JP5985178B2 (en) * 2011-11-24 2016-09-06 Ntn株式会社 Motor control device
JP5919008B2 (en) * 2012-01-31 2016-05-18 日立オートモティブシステムズ株式会社 Electric suspension control device
US8755971B2 (en) * 2012-03-21 2014-06-17 GM Global Technology Operations LLC System and method for detecting a fault in a ride height sensor
CN102616104A (en) * 2012-03-27 2012-08-01 万向钱潮股份有限公司 Electronic control semi-active suspension ECU (electronic control unit) system based on magnetorheological fluid shock absorber
JP6277013B2 (en) * 2014-02-21 2018-02-07 日立オートモティブシステムズ株式会社 Actuator control device
JP5883490B1 (en) * 2014-09-30 2016-03-15 富士重工業株式会社 Vehicle control apparatus and vehicle control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163031A (en) * 2014-02-28 2015-09-07 日立オートモティブシステムズ株式会社 electromagnetic suspension apparatus
JP2016022880A (en) * 2014-07-23 2016-02-08 日立オートモティブシステムズ株式会社 Control device for attenuation force adjusting type damper
JP2016125960A (en) * 2015-01-07 2016-07-11 株式会社デンソー Abnormality detection unit and abnormality detection method of vehicular motor temperature sensor
JP2017156330A (en) * 2016-03-04 2017-09-07 本田技研工業株式会社 Temperature measurement device for coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617637A (en) * 2022-08-11 2023-10-18 Libertine Fpe Ltd A sensor device and method for controlling a free piston mover

Also Published As

Publication number Publication date
JPWO2019107337A1 (en) 2020-10-22
CN111433059B (en) 2023-06-30
CN111433059A (en) 2020-07-17
JP6876149B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
Lin et al. Active suspension system based on linear switched reluctance actuator and control schemes
US9616770B2 (en) Electric vehicle drive apparatus, method of driving an electric vehicle, and program
JP5255780B2 (en) Railway vehicle vibration control device
WO2019107337A1 (en) Vehicle vibration control device
CN109278567B (en) Fault-tolerant control method for permanent magnet and electromagnetic mixed type high-speed maglev train end electromagnet
JP4431061B2 (en) Derailment prevention device
JP7217350B2 (en) electric linear actuator
JP6906423B2 (en) Vibration damping device
WO2017158971A1 (en) Braking device for moving body
CN107207196A (en) Elevator device apparatus for evaluating
JP2012076553A (en) Vibration control device for railroad vehicle
JP4788923B2 (en) Railway vehicle vibration control system
JP6187823B2 (en) Electromagnetic suspension device
JP6025402B2 (en) Electromagnetic suspension
JP4085368B2 (en) Body vibration suppression device
JP2011166880A (en) Linear actuator, and suspension device using the same
JP2017058212A (en) Shaft bearing abnormality diagnosing apparatus, and railroad vehicle
JP2012044774A (en) Magnetomotive force control system of superconducting magnet of maglev train
JPWO2018155329A1 (en) Actuator device
JP5152467B2 (en) Electromagnetic suspension system for railway vehicles
CN112334784A (en) Method and apparatus for monitoring wear of long stator linear motor system
JP5565666B2 (en) Suspension control device diagnosis method
Hou et al. Fault detection of accelerometer and fault-tolerant control for maglev
JP5812591B2 (en) Railway vehicle vibration control system
WO2020110846A1 (en) Railway vehicle vibration suppressing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882394

Country of ref document: EP

Kind code of ref document: A1