WO2019106921A1 - Method for producing hydrocarbon oil - Google Patents

Method for producing hydrocarbon oil Download PDF

Info

Publication number
WO2019106921A1
WO2019106921A1 PCT/JP2018/035161 JP2018035161W WO2019106921A1 WO 2019106921 A1 WO2019106921 A1 WO 2019106921A1 JP 2018035161 W JP2018035161 W JP 2018035161W WO 2019106921 A1 WO2019106921 A1 WO 2019106921A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
feedstock
hydrodesulfurization
calculated
catalyst
Prior art date
Application number
PCT/JP2018/035161
Other languages
French (fr)
Japanese (ja)
Inventor
徹 ▲高▼村
康一 松下
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2019106921A1 publication Critical patent/WO2019106921A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen

Definitions

  • the present invention relates to a method of producing a hydrocarbon oil.
  • a desulfurized heavy oil in which a vacuum gas oil (Vacuum Gas Oil: VGO) is obtained by vacuum distillation of atmospheric residual oil, and the sulfur content is reduced by hydrotreating the vacuum gas oil.
  • a method of obtaining light hydrocarbons and light hydrocarbons mainly composed of gasoline by fluid catalytic cracking (FCC) of desulfurized heavy oil is disclosed.
  • Light olefins are compounds with higher added value than heavy oils and are used as feedstocks for gasoline bases such as alkylates or methyl-t-butyl ether.
  • CCG Catalytic Cracked Gasoline
  • LCO Light Cycle Oil
  • the present invention has been made in view of the problems of the above-mentioned prior art, and prior to fluid catalytic cracking, the hydrodesulfurization of a feedstock oil containing atmospheric residual oil is carried out while maintaining the reduction effect of sulfur content.
  • An object of the present invention is to provide a method for producing a hydrocarbon oil which can sufficiently reduce the content of metals in the oil.
  • the method for producing a hydrocarbon oil comprises the steps of obtaining a desulfurized heavy oil by hydrodesulfurization of a first feedstock oil containing atmospheric residual oil, and a second feedstock oil containing desulfurized heavy oil. of the fluid catalytic cracking, obtaining a product, with a liquid hourly space velocity in the hydrogenation desulfurization, and at 0.3h -1 or 1.0 h -1 or less, the deasphalted oil occupying the first feedstock The proportion is 30% by volume or more and 75% by volume or less, and the content of asphaltene in the first raw material oil is 0% by mass or more and 1% by mass or less.
  • the ratio of vacuum residue to the first feedstock oil may be 50% by volume or more and 85% by volume or less.
  • the content of metals in the feedstock oil is sufficiently reduced while maintaining the reduction effect of the sulfur content by hydrodesulfurization of the feedstock oil containing atmospheric residual oil.
  • FIG. 1 shows the relationship between the volume ratio of vacuum residue (VR) to the first feedstock oil and the metal removal rate in the hydrodesulfurization of the first feedstock oil.
  • FIG. 2 shows the relationship between the content of asphaltene in the first feedstock oil and the demetallization rate in the hydrodesulfurization of the first feedstock oil.
  • FIG. 3 shows the relationship between the reaction temperature T for hydrodesulfurization of the first feedstock oil and the content of metals (nickel and vanadium) in the desulfurized heavy oil obtained by hydrodesulfurization.
  • FIG. 4 shows the relationship between the desulfurization rate in the hydrodesulfurization of the first feedstock oil and the demetalization rate in the hydrodesulfurization.
  • FIG. 5 shows the relationship between the reaction temperature T for hydrodesulfurization of the first feedstock oil and the reaction rate constant kM of the demetalization reaction in the hydrodesulfurization.
  • FIG. 6 shows the relationship between the liquid hourly space velocity LHSV in hydrodesulfurization of the first feedstock oil and the demetallization rate in the hydrodesulfurization.
  • a step of obtaining a desulfurized heavy oil by hydrodesulfurization of a first feedstock oil containing atmospheric residual oil, and a flow of a second feedstock oil containing the desulfurized heavy oil Obtaining the product by catalytic decomposition.
  • hydrodesulfurization desulfurization reaction and demetallation reaction occur.
  • Hydrodesulfurization may be rephrased as residual oil desulfurization (RDS), for example.
  • the desulfurized heavy oil may be rephrased as RDS Bottom oil (RDS-BTM) obtained by distillation of RDS product oil.
  • the ratio of deasphalted oil (De-Asphalted Oil: DAO) to the first feedstock oil is 30% by volume or more and 75% by volume or less.
  • the metal content is maintained while maintaining the reduction effect of the sulfur content.
  • a sufficiently reduced desulfurized heavy oil can be obtained.
  • the liquid space velocity is about 0.3 h -1 and the reaction temperature is about 370 ° C.
  • the proportion of deasphalted oil in the first feedstock oil may be 35% by volume or more and 70% by volume or 46% by volume or more and 54% by volume or less.
  • the ratio of deasphalted oil to the first feedstock oil exceeds 75% by volume, the deterioration of the catalyst tends to be quick.
  • “Deterioration of the catalyst” means degradation of the hydrogen purification catalyst (demetallization catalyst and desulfurization catalyst) (particularly degradation of the desulfurization catalyst).
  • the sulfur content may be, for example, a sulfur-containing compound containing sulfur and a hydrocarbon.
  • the sulfur content in the desulfurized heavy oil may be measured, for example, according to JIS K 2541 "Crude oil and petroleum products-Sulfur content test method".
  • the metal component may be, for example, a metal-containing compound containing a metal and a hydrocarbon, or may be a simple metal.
  • the metal constituting the metal component is, for example, vanadium or nickel.
  • the structure of the metal-containing compound is not particularly limited. For example, in a metal-containing compound, a hydrocarbon and a metal may form a chemical bond (for example, a coordinate bond). In the metal-containing compound, the hydrocarbon may coat fine particles of metal.
  • the hydrocarbon constituting the metal-containing compound is not particularly limited, and may be, for example, a chain hydrocarbon or an isomer thereof, a cyclic hydrocarbon, a heterocyclic compound, an aromatic hydrocarbon or the like.
  • the heterocyclic compound may be, for example, porphyrin.
  • the metal-containing compound may be, for example, a metal porphyrin complex.
  • the contents of nickel and vanadium in the desulfurized heavy oil may be measured, for example, by wavelength dispersive X-ray fluorescence spectrometry (XRF method).
  • the density of the first feedstock (mixed oil) including atmospheric residual oil and deasphalted oil tends to be higher than the density of atmospheric residual oil, and in general, the metal content in the dense feedstock oil is It is difficult to remove by hydrodesulfurization as compared with the metal component in the low feedstock oil.
  • a desulfurized heavy oil (a second feedstock for fluid catalytic cracking) having a reduced metal content is obtained from a first feedstock including atmospheric residual oil and deasphalted oil.
  • the desulfurization weight whose metal content has been sufficiently reduced by subjecting deasphalted oil, which was conventionally difficult to be utilized sufficiently in fluid catalytic cracking, to hydrodesulfurization together with atmospheric residual oil, is achieved.
  • a quality oil is prepared. It is possible to obtain a gasoline fraction and a light oil fraction derived from deasphalted oil, which was conventionally difficult to use as a raw material for a gasoline fraction and a gas oil fraction, by fluid catalytic cracking of the second feedstock including the desulfurized heavy oil. It will be possible.
  • the low market value deasphalted oil is used together with the atmospheric residual oil as a raw material of hydrocarbon oil having high market value (such as gasoline fraction and gas oil fraction). it can. Moreover, according to the present embodiment, it is also possible to suppress the formation of coke in fluid catalytic cracking. Cork is a carbonaceous solid.
  • the deasphalted oil contained in the first feedstock may be obtained by solvent deasphalting (Solvent De-Asphalting: SDA) of vacuum resid.
  • the deasphalted oil may be rephrased as an extracted oil (a solvent deasphalted oil) in SDA.
  • the solvent used for deasphalting may be, for example, at least one selected from the group consisting of propane, normal butane, isobutane, normal pentane, isopentane and normal hexane.
  • the first feedstock may be prepared by mixing deasphalted oil and atmospheric residuum.
  • a vacuum residue is obtained by vacuum distillation of an atmospheric residue.
  • Atmospheric residual oil is obtained by atmospheric distillation of crude oil.
  • the crude oil may be, for example, at least one selected from the group consisting of, but not limited to, petroleum-based crude oil, synthetic crude oil derived from oil sands, and bitumen-modified oil.
  • V DAO / V 1 When the volume of the deasphalted oil contained in the first feedstock oil is represented as V DAO and the volume of the entire first feedstock oil is represented as V 1, V DAO / V 1 is 0.30 or more and 0.75 or less 0.35 or more and 0.70 or less, or 0.46 or more and 0.54 or less.
  • V DAO / V 1 the ratio of the gasoline fraction and gas oil fraction derived from deasphalted oil increases as V DAO / V1 increases.
  • V.sub.DAO / V.sub.1 decreases, dry gas and coke are easily generated in the fluid catalytic cracking of the second feedstock.
  • the first feedstock may consist of deasphalted oil and atmospheric residual oil.
  • V1 when the volume of normal pressure residual oil contained in the first feedstock is denoted as V AR , V1 may be equal to V DAO + V AR and V DAO / V1 is V DAO / (V DAO + V AR ) May be equal to Therefore, V DAO / (V DAO + V AR ) may be 0.30 or more and 0.75 or less, 0.35 or more and 0.70 or less, or 0.46 or more and 0.54 or less.
  • the volume fraction of deasphalted oil in the first feedstock (V DAO / V1) may be controlled based on the mixing ratio of deasphalted oil and atmospheric residual oil.
  • the first feedstock may comprise vacuum residuum. That is, according to the present embodiment, the feedstock oil (second feedstock oil) for fluid catalytic cracking can be prepared from the reduced pressure residual oil having a high sulfur content. In other words, according to the present embodiment, it is possible to use an inexpensive reduced pressure residual oil, which tends to be surplus in the conventional process, as a raw material of expensive hydrocarbon oils such as gasoline fractions and light oil fractions.
  • the ratio of the vacuum residue to the first feedstock oil may be 50% to 85% by volume, 55% to 80% by volume, or 65% to 71% by volume.
  • the volume of the vacuum residue oil contained in the first feedstock when it is expressed as V VR, V VR / V1 is 0.5 to 0.85, 0.55 or 0.80 or less, or 0 .65 or more and 0.71 or less.
  • the metal is hydrodesulfurized under the above-mentioned conditions, even though the ratio of the vacuum residue to the first feedstock (V VR / V 1) is high. It is possible to obtain a desulfurized heavy oil having a sufficiently reduced content.
  • the catalyst tends to deteriorate rapidly.
  • At least a portion of the vacuum residuum contained in the first feedstock may be derived from deasphalted oil.
  • Deasphalted oil is a type of vacuum residue.
  • at least a portion of the vacuum residuum contained in the first feedstock may be derived from an atmospheric residuum directly subjected to hydrodesulfurization.
  • Atmospheric residual oil includes, as a constituent fraction thereof, reduced pressure residual oil and reduced pressure gas oil.
  • the volume ratio (V VR / V 1) of the vacuum residue to the first feedstock may be controlled based on the mixing ratio of the deasphalted oil and the atmospheric residue.
  • Liquid hourly space velocity in the hydrogenation desulfurization of the first feedstock is 0.3h -1 or 1.0 h -1 or less.
  • the liquid hourly space velocity is a value obtained by dividing the feed rate (volume flow rate per short time) of the first feedstock to the hydrodesulfurization reactor by the volume of the catalyst (catalyst layer) installed in the reactor. .
  • the desulfurization weight in which the metal content is sufficiently reduced It is possible to obtain a quality oil.
  • liquid hourly space velocity When the liquid hourly space velocity is less than 0.3 h -1 , productivity declines due to a decrease in throughput of the reactor, or deterioration of the flow state of the first feedstock oil in the reactor causes uneven flow in the catalyst layer. There is a tendency to get up.
  • the liquid hourly space velocity exceeds 1.0 h -1 , the concentration of sulfur and metal in the desulfurized heavy oil tends to increase due to the decrease in contact time. Liquid hourly space velocity in the hydrodesulfurization, 0.3h -1 or 0.6 h -1 or less, or 0.3h -1 more 0.5h -1 may be less.
  • the content of asphaltenes in the first feedstock oil is 0% by mass or more and 1% by mass or less.
  • Asphaltene may be, for example, a component insoluble in pentane and soluble in toluene among asphalts.
  • the content of asphaltenes in the first feedstock oil is greater than 1% by mass, the content of metals in the desulfurized heavy oil tends to be high.
  • the content of asphaltene in the first feedstock oil is higher than 1% by mass, coke is easily generated in hydrodesulfurization and fluid catalytic cracking.
  • the yield of the gasoline fraction and the gas oil fraction in the fluid catalytic cracking tends to decrease.
  • the lower limit of the content of asphaltenes in the first feedstock oil is not particularly limited.
  • the content of asphaltenes in the first raw material oil may be, for example, 0.08% by mass or more and 0.22% by mass.
  • the content of asphaltenes in the first feedstock oil is the selection of crude oil used for preparation of the first feedstock oil, distillation conditions of crude oil, selection of fractions obtained by distillation, method of deburring of fractions, conditions of deburring Or, it is freely adjusted by the mixing ratio etc. of a plurality of kinds of fractions.
  • Asphaltene content may be measured, for example, by IP-143 (ASTM D6560) "Determination of Asphaltenes in Crude Petroleum and Petroleum Products".
  • the pressure in the reactor where the hydrodesulfurization of the first raw material oil is performed may be 10 MPa or more and 20 MPa or less, or 10 MPa or more and 15 MPa or less.
  • the pressure is less than 10 MPa, coking tends to deteriorate the activity of the desulfurization catalyst and the demetallization catalyst.
  • the pressure exceeds 20 MPa, the equipment investment and the increase in variable costs for the hydrogen supply become very large.
  • the output of the compressor is insufficient and the supply amount of hydrogen tends to be low, whereby the processing amount of hydrodesulfurization tends to be reduced.
  • the hydrodesulfurization hydrogen / oil ratio is preferably 3000-8000 scfb (standard cubic feet per barrel), more preferably 4000-7000 scfb, even more preferably 5000-6000 scfb. If it is less than 3000 scfb, it is not preferable because deterioration of the catalyst tends to progress. In addition, even if it exceeds 8000 scfb, the influence on the catalyst deterioration tends to disappear, which is not preferable.
  • the reaction temperature T for hydrodesulfurization may be 330 ° C. or more and 410 ° C. or less, 360 ° C. or more and 400 ° C. or less, or 364 ° C. or more and 384 ° C. or less.
  • the reaction temperature T for hydrodesulfurization can be rephrased as the average temperature of the catalyst (catalyst layer) installed in the hydrodesulfurization reactor.
  • the catalyst used for hydrodesulfurization of the first feedstock oil may include not only the desulfurization catalyst but also a demetalation catalyst having a function of removing metal components.
  • the first feedstock oil may be brought into contact with the desulfurization catalyst (desulfurizing catalyst layer). That is, using a hydrorefining catalyst (two-stage catalyst layer) combining the first stage metal removal catalyst (catalyst layer) and the second stage desulfurization catalyst (catalyst layer) as a catalyst for hydrodesulfurization of feedstock oil Good.
  • the demetallizing catalyst has a demetallizing activity and a desulfurizing activity, and is a catalyst having a relatively high demetallizing activity as compared to the desulfurizing catalyst.
  • the demetallizing catalyst By placing the desulfurization catalyst downstream of the demetalation catalyst, the demetalation catalyst protects the desulfurization catalyst from metal. Therefore, the demetallizing catalyst must have high performance to remove and capture metal components such as nickel and vanadium contained in the feedstock under hydrodesulfurization conditions.
  • a demetallizing catalyst demetallizing catalyst having resistance to metal components
  • the demetallizing catalyst having such characteristics may be provided, for example, with a porous support and an active metal supported on the support.
  • the demetallizing catalyst support may be, for example, at least one selected from the group consisting of alumina, silica, and silica-alumina.
  • the active metal of the demetallizing catalyst may be, for example, at least one selected from the group consisting of molybdenum, nickel and cobalt.
  • the active metal of the demetallizing catalyst may be only molybdenum, may be a combination of nickel and molybdenum, or may be a combination of cobalt and molybdenum.
  • the demetallation catalyst may further contain phosphorus.
  • the average pore size of the demetallizing catalyst is preferably 13 to 30 nm, and the pore volume of the demetallizing catalyst is 0.7 to 1.4 cm 3 / g
  • the surface area of the demetallizing catalyst is preferably 70 to 200 m 2 / g.
  • the desulfurization catalyst has a desulfurization activity, a denitrification activity and a demetallation activity, and is a catalyst having a relatively high desulfurization activity as compared to the demetalation catalyst. Because of the high desulfurization activity, the resistance of the desulfurization catalyst to metals is inferior to the demetallisation catalyst, so as mentioned above, the desulfurization catalyst is placed downstream of the demetallisation catalyst.
  • the desulfurization catalyst has the ability to highly remove sulfur and nitrogen contained in the feedstock under hydrodesulfurization conditions.
  • the desulfurization catalyst having such characteristics may include, for example, a porous carrier and an active metal supported on the carrier.
  • the desulfurization catalyst support may be, for example, at least one selected from the group consisting of alumina, silica, and silica-alumina.
  • the active metal of the desulfurization catalyst may include, for example, at least one of nickel and cobalt and at least one of molybdenum and tungsten.
  • the active metal of the desulfurization catalyst may be a combination of nickel and molybutene, may be a combination of cobalt and molybutene, or may be a combination of nickel, cobalt and molybutene.
  • the desulfurization catalyst may further contain phosphorus.
  • the surface area of the desulfurization catalyst is preferably larger than that of the metal removal catalyst, and the average pore diameter of the desulfurization catalyst is preferably 8 to 13 nm, and the pore volume of the desulfurization catalyst is 0.4 to 1.0 cm 3
  • the surface area of the desulfurization catalyst is preferably 170 to 250 m 2 / g.
  • the volume of the demetallizing catalyst layer can be 30% by volume or more and 60% by volume or less based on the total value of the volumes of the desulfurizing catalyst layer and the demetallizing catalyst layer.
  • the volume of the demetallizing catalyst layer is 30% by volume or more, the demetallizing reaction in the former stage side (demetallizing catalyst layer side) easily progresses sufficiently, and the inflow to the latter half side of the metal (desulfurizing catalyst layer) It tends to be suppressed, and rapid deterioration of the activity of the desulfurization catalyst layer tends to be suppressed.
  • the volume of the demetallizing catalyst layer is 60% by volume or less, the desulfurization reaction tends to proceed sufficiently, and the concentration of sulfur in the desulfurized heavy oil to be produced tends to be reduced.
  • the second feedstock may consist only of desulfurized heavy oil.
  • the second feedstock may include other oils in addition to the desulfurized heavy oil.
  • the second feedstock may further include desulfurized vacuum gas oil in addition to the desulfurized heavy oil obtained by hydrodesulfurization of the first feedstock.
  • Reduced pressure gas oil is obtained by reduced pressure distillation of atmospheric residue.
  • the desulfurized vacuum gas oil is obtained, for example, by hydrodesulfurization of vacuum gas oil.
  • V DSH volume of the desulfurized heavy oil contained in the secondary feed
  • V DSVGO volume of desulfurized vacuum gas oil contained in the second feedstock
  • V HDSVGO / V DSH May be 0/100 or more and 90/10 or less.
  • the reaction temperature for fluid catalytic cracking of the second feedstock oil may be 500 ° C. or more and 700 ° C. or less.
  • the reaction temperature is 500 ° C. or higher, the decomposition rate tends to be improved, and the yield of the gasoline fraction tends to be improved.
  • the reaction temperature exceeds 700 ° C., the decomposition reaction tends to be promoted and the formation of dry gas and coke tends to be promoted.
  • the catalyst / oil ratio in the fluid catalytic cracking may be 3 [mass / mass] or more and 50 [mass / mass] or less.
  • the catalyst / oil ratio is a value obtained by dividing the catalyst circulation amount (ton / h) by the feed rate of the second feedstock (ton / h).
  • the reaction time (contact time) of fluid catalytic cracking may be from 0.5 seconds to 10 seconds.
  • the reaction time is 0.5 seconds or more, the decomposition rate tends to be improved, and the yield of the gasoline fraction tends to be improved.
  • the reaction time exceeds 10 seconds, the decomposition reaction tends to be promoted and the formation of dry gas and coke tends to be promoted.
  • the mass of steam supplied to the fluid catalytic cracking may be 2 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the second feedstock oil.
  • the pressure in the reactor in which fluid catalytic cracking is performed may be 0.1013 MPa or more and 0.3 MPa or less. If the pressure is less than 0.1013 MPa (standard pressure), the pressure of the gas after decomposition tends to decrease and the operation of the recovery facility tends to be difficult.
  • the pressure exceeds 0.3 MPa the partial pressure of hydrocarbons in the reactor tends to be high, the decomposition rate becomes too high, and the formation of dry gas and coke tends to be promoted.
  • the fluid catalytic cracking of the second feedstock may be conventional fluid catalytic cracking.
  • a fluidizing gas for example, a gaseous second raw material oil
  • innumerable catalyst particles decomposition catalysts
  • the fluidized catalyst particles are raised by the fluidized gas in the riser type reaction tower.
  • the second feedstock oil is decomposed by bringing the catalyst particles into contact with the second feedstock oil in the reaction tower.
  • the catalyst particles used for the catalytic cracking are supplied to the regeneration tower for regeneration, and then reused for catalytic cracking of the second feedstock oil in the reaction tower. That is, catalyst particles are circulated between the regeneration tower and the reaction tower.
  • the fluid catalytic cracking of the second feedstock oil may be High-Severity Fluid Catalytic Cracking (HS-FCC).
  • HS-FCC High-Severity Fluid Catalytic Cracking
  • a downflow reactor is used instead of a riser reactor.
  • high severity fluid catalytic cracking is about the same as conventional fluid catalytic cracking.
  • back mixing is easily suppressed and the reaction time of the decomposition reaction of the second raw material oil tends to be uniform as compared with the riser type reaction column.
  • the cracking catalyst used for fluid catalytic cracking may, for example, comprise an inorganic oxide (matrix component) and a zeolite.
  • the inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmorillonite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania and silica alumina.
  • the zeolite may be, for example, at least one of natural zeolite and synthetic zeolite.
  • Natural zeolites such as gmelinite, shabasite, dakialdo fluorite, clinoptilolite, hojasite, quafluorite, borofluorite, leupinite, elionite, sodalite, cancrinite, ferrierite, briuester fluorite, offretite, soda fluoride It may be at least one selected from the group consisting of stone and mordenite.
  • Synthetic zeolites are X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4 type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ⁇ -type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite and It may be at least one selected from the group consisting of SAPO-34 zeolites.
  • the product obtained by fluid catalytic cracking of the second feedstock oil is separated into multiple components in a recovery facility.
  • the recovery facility may comprise, for example, a plurality of distillation columns, absorbers, compressors, strippers, and heat exchangers.
  • the products are, for example, dry gas, LP gas (LPG), gasoline fraction (CCG), light oil fraction (LCO), bottom fraction (CLarified Oil: CLO) and coke in a distillation column (atmospheric distillation column). It is fractionated.
  • [S] in the following table means the measured value of the content of sulfur in each oil.
  • [Ni] in the following table means the measured value of the content of nickel in each oil.
  • [V] in the following table means the measured value of the vanadium content in each oil.
  • [Asp] in the following table means the measured value of content of asphaltene in each oil.
  • the ratio of VR of each oil in the following table is a value at 538 ° C.
  • the mixed oil 1 was prepared by mixing AR2 and DAO1 in the volume ratio shown in Table 2 below.
  • Mixed oil 2 was prepared by mixing AR2 and DAO2 in the volume ratio shown in Table 2 below.
  • the mixed oil 3 was prepared by mixing AR2 and DAO3 in the volume ratio shown in Table 2 below.
  • the mixed oil 1, the mixed oil 2 and the mixed oil 3 all correspond to the first feedstock in the present invention.
  • Mixed oil 1, mixed oil 2 and mixed oil 3 each had the properties shown in Table 1 below.
  • Example 1 As the first feedstock oil of Example 1, mixed oil 1 was used. A catalyst layer comprising 44% by volume of a demetalation catalyst containing nickel and molybutene and 56% by volume of a desulfurization catalyst containing nickel, cobalt and molybutene Mo was placed in the reactor. The mixed oil 1 was hydrodesulfurized by supplying the mixed oil 1 and hydrogen gas into the reactor, and bringing the mixed oil 1 into contact with the catalyst layer under a hydrogen atmosphere. The hydrogen / oil ratio was adjusted to 5500 scfb. The pressure in the reactor was adjusted to 14.4 MPa. Desulfurized heavy oil was obtained by hydrodesulfurization of the mixed oil 1. The liquid space velocity LHSV in hydrodesulfurization was adjusted to the values shown in Table 3 below.
  • the reaction temperature T of hydrodesulfurization was adjusted.
  • the reaction temperature T for hydrodesulfurization was a value shown in Table 3 below.
  • the demetalization rate in the hydrodesulfurization of Example 1 was calculated by the following formula 1.
  • [M] is an actual measurement value of the metal content in the first feedstock oil (that is, [Ni] + [V] of the first feedstock oil).
  • [POM] is the measured value of the metal content in the desulfurized heavy oil (that is, [Ni] + [V] of the desulfurized heavy oil).
  • the demetalization rate of Example 1 was a value shown in Table 3 below.
  • Metal removal rate 100 ⁇ ([M]-[POM]) / [M] (1)
  • Fluid catalytic cracking of the second feedstock was carried out by bringing the second feedstock comprising only desulfurized heavy oil into contact with the cracked catalyst bed in the reactor in the presence of steam.
  • the product obtained by fluid catalytic cracking was fractionated to obtain dry gas, LP gas (LPG), gasoline fraction (CCG), light oil fraction (LCO), bottom fraction (CLO) and coke.
  • Example 2 In Example 2, mixed oil 2 was used in place of mixed oil 1 as the first feedstock oil.
  • the reaction temperature T of the hydrodesulfurization of Example 2 was a value shown in Table 3 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 2 were carried out in the same manner as Example 1 except for these matters.
  • the metal removal rate of Example 2 calculated by the same method as Example 1 was a value shown in Table 3 below.
  • Example 3 In Example 3, mixed oil 3 was used in place of mixed oil 1 as the first raw material oil.
  • the reaction temperature T of the hydrodesulfurization of Example 3 was a value shown in Table 3 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 3 were carried out in the same manner as in Example 1 except for these matters.
  • the metal removal rate of Example 3 calculated by the same method as Example 1 was a value shown in Table 3 below.
  • Comparative Example 1 In Comparative Example 1, only normal-pressure residual oil AR1 was used in place of mixed oil 1 as the first raw material oil.
  • the reaction temperature T of the hydrodesulfurization of Comparative Example 1 was a value shown in Table 3 below.
  • the hydrodesulfurization and fluid catalytic cracking of Comparative Example 1 were carried out in the same manner as in Example 1 except for these matters.
  • the metal removal rate of Comparative Example 1 calculated by the same method as Example 1 was a value shown in Table 3 below.
  • Comparative Example 2 In Comparative Example 2, only normal-pressure residual oil AR2 was used in place of mixed oil 1 as the first raw material oil.
  • the reaction temperature T of the hydrodesulfurization of Comparative Example 2 was a value shown in Table 3 below.
  • the hydrodesulfurization and fluid catalytic cracking of Comparative Example 2 were carried out in the same manner as in Example 1 except for these matters.
  • the metal removal rate of Comparative Example 2 calculated by the same method as that of Example 1 was a value shown in Table 3 below.
  • Example 1A, 1B, 1C The reaction temperature T and the liquid space velocity LHSV of Example 1A were the values shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 1A were performed in the same manner as in Example 1 except for these matters.
  • the sulfur content and metal content of the desulfurized heavy oil of Example 1A were values shown in Table 4 below.
  • the desulfurization rate in the hydrodesulfurization of Example 1A was calculated by the following formula 2.
  • the following [S] is an actual measurement value of the sulfur content in the first feedstock oil.
  • the following [POS] means the measured value of the sulfur content in the desulfurized heavy oil.
  • the desulfurization rate of Example 1 was a value shown in Table 5 below.
  • the demetalization rate of Example 1A calculated by the same method as Example 1 was a value shown in Table 5 below.
  • Desulfurization rate 100 ⁇ ([S]-[POS]) / [S] (2)
  • the reaction temperature T of Example 1 B was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 1B were carried out in the same manner as Example 1A except for the reaction temperature T.
  • the contents of sulfur content and metal content in the desulfurized heavy oil of Example 1 B were the values shown in Table 4 below.
  • the desulfurization ratio of Example 1B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 1B calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 1B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Example 1C was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 1C were carried out in the same manner as Example 1A except for the reaction temperature T.
  • the contents of sulfur content and metal content in the desulfurized heavy oil of Example 1C were values shown in Table 4 below.
  • the desulfurization ratio of Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 1C calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 1C calculated by the same method as Example 1A was a value shown in the following Table 5.
  • the kM of Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • Example 2A, 2B, 2C The reaction temperature T and the liquid space velocity LHSV of Example 2A were the values shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 2A were carried out in the same manner as in Example 2 except for these matters.
  • the sulfur content and the metal content of the desulfurized heavy oil of Example 2A were the values shown in Table 4 below.
  • the desulfurization ratio of Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 2A calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 2A calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Example 2B was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 2B were performed in the same manner as Example 2A except for the reaction temperature T.
  • the sulfur content and the metal content of the desulfurized heavy oil of Example 2B were the values shown in Table 4 below.
  • the desulfurization ratio of Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 2B calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Example 2C was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 2C were performed in the same manner as Example 2A except for the reaction temperature T.
  • the sulfur content and metal content of the desulfurized heavy oil of Example 2C were values shown in Table 4 below.
  • the desulfurization ratio of Example 2C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 2C calculated by the same method as that of Example 1 was a value shown in Table 5 below.
  • KS of Example 2C calculated by the same method as Example 1A was a value shown in the following Table 5.
  • the kM of Example 2C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • Examples 3A, 3B, 3C The reaction temperature T and the liquid space velocity LHSV of Example 3A were the values shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 3A were carried out in the same manner as in Example 3 except for these matters.
  • the sulfur content and metal content of the desulfurized heavy oil of Example 3A were the values shown in Table 4 below.
  • the desulfurization ratio of Example 3A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 3A calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 3A calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 3A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Example 3B was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 3B were performed in the same manner as Example 3A except for the reaction temperature T.
  • the sulfur content and metal content of the desulfurized heavy oil of Example 3B were the values shown in Table 4 below.
  • the desulfurization ratio of Example 3B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 3B calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 3B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 3B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Example 3C was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Example 3C were carried out in the same manner as Example 3A except for the reaction temperature T.
  • the sulfur content and metal content of the desulfurized heavy oil of Example 3C were values shown in Table 4 below.
  • the desulfurization ratio of Example 3C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Example 3C calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Example 3C calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Example 3C calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Comparative Example 1B was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Comparative Example 1B were performed in the same manner as Comparative Example 1A except for the reaction temperature T.
  • the contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 1 B were values shown in Table 4 below.
  • the desulfurization ratio of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Comparative Example 1B calculated by the same method as that of Example 1 was a value shown in Table 5 below.
  • KS of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the kM of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Comparative Example 1C was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Comparative Example 1C were performed in the same manner as Comparative Example 1A except for the reaction temperature T.
  • the contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 1C were values shown in Table 4 below.
  • the desulfurization rate of Comparative Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Comparative Example 1C calculated by the same method as Example 1 was a value shown in Table 5 below.
  • KS of Comparative Example 1C calculated by the same method as Example 1A was a value shown in Table 5 below.
  • KM of Comparative Example 1C calculated by the same method as Example 1A was a value shown in Table 5 below.
  • the reaction temperature T of Comparative Example 2B was a value shown in Table 4 below.
  • the hydrodesulfurization and fluid catalytic cracking of Comparative Example 2B were performed in the same manner as Comparative Example 2A except for the reaction temperature T.
  • the sulfur content and metal content of the desulfurized heavy oil of Comparative Example 2B were values shown in Table 4 below.
  • the desulfurization ratio of Comparative Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
  • the metal removal rate of Comparative Example 2B calculated by the same method as that of Example 1 was a value shown in Table 5 below.
  • KS of Comparative Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • KM of Comparative Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below.
  • FIG. 4 shows that even if the desulfurization rate in the hydrodesulfurization of mixed oil 1 to 3 is substantially equal to the desulfurization rate in the hydrodesulfurization of atmospheric residual oil AR1, AR2, hydrogen of mixed oil 1 to 3
  • the demetallization rate in the chemical desulfurization has been shown to be higher than the demetallization rate in the hydrodesulfurization of atmospheric residual oil AR1, AR2.
  • the correspondence between 1000 / T shown in Table 5 and the reaction rate constant kM of the demetallation reaction is shown in FIG. FIG.
  • Example 1D calculated from the Arrhenius plot are shown in Table 6 below. Based on the above equation 7, the reaction rate constant kM of the demetalization reaction at 370 ° C. (643.15 K) was calculated. The reaction rate constant kM of Example 1D calculated from the above equation 7 is shown in Table 6 below.
  • Example 2D The Arrhenius plot of Example 2D was made based on Examples 2A, 2B and 2C in the same manner as Example 1D. From the Arrhenius plot of Example 2D, the regression line of Example 2D represented by the formula 7 was calculated in the same manner as in Example 1D. Ea and A of Example 2D are shown in Table 6 below. The reaction rate constant kM of the above-mentioned equation 7 to example 2D was calculated by the same method as in example 1D. The reaction rate constant kM of Example 2D is shown in Table 6 below.
  • [POM] at each LHSV of Example 2D was calculated in the same manner as Example 1D.
  • [POM] in each LHSV of Example 2D is shown in Table 6 below.
  • the demetalization rate in each LHSV of Example 2D was calculated in the same manner as in Example 1D.
  • the demetalization rate in each LHSV of Example 2D is shown in Table 6 below.
  • Example 3D The Arrhenius plot of Example 3D was made based on Examples 3A, 3B and 3C in the same manner as Example 1D. From the Arrhenius plot of Example 3D, the regression line of Example 3D represented by the formula 7 was calculated in the same manner as in Example 1D. Ea and A of Example 3D are shown in Table 6 below. The reaction rate constant kM of Example 3D was calculated in the same manner as in Example 1D. The reaction rate constant kM of Example 3D is shown in Table 6 below.
  • [POM] at each LHSV of Example 3D was calculated in the same manner as Example 1D.
  • [POM] in each LHSV of Example 3D is shown in Table 6 below.
  • the demetalization rate at each LHSV of Example 3D was calculated in the same manner as in Example 1D.
  • the demetalation rate in each LHSV of Example 3D is shown in Table 6 below.
  • Comparative Example 1D An Arrhenius plot of Comparative Example 1D was created based on Comparative Examples 1A, 1B and 1C in the same manner as Example 1D. In the same manner as in Example 1D, a regression line of Comparative Example 1D represented by the above-described Formula 7 was calculated from the Arrhenius plot of Comparative Example 1D. Ea and A of Comparative Example 1D are shown in Table 6 below. The reaction rate constant kM of the comparative example 1D was calculated from the above equation 7 in the same manner as in the example 1D. The reaction rate constant kM of Comparative Example 1D is shown in Table 6 below.
  • [POM] at each LHSV of Comparative Example 1D was calculated in the same manner as Example 1D.
  • [POM] in each LHSV of Comparative Example 1D is shown in Table 6 below.
  • the demetalization rate in each LHSV of Comparative Example 1D was calculated in the same manner as in Example 1D.
  • the demetalization rate in each LHSV of Comparative Example 1D is shown in Table 6 below.
  • Comparative Example 2D An Arrhenius plot of Comparative Example 2D was created based on Comparative Examples 2A and 2B in the same manner as Example 1D.
  • the regression line of Comparative Example 2D represented by the above-described Formula 7 was calculated from the Arrhenius plot of Comparative Example 2D in the same manner as in Example 1D.
  • Ea and A of Comparative Example 2D are shown in Table 6 below.
  • the reaction rate constant kM of Comparative Example 2D was calculated from the above Formula 7 in the same manner as in Example 1D.
  • the reaction rate constant kM of Comparative Example 2D is shown in Table 6 below.
  • [POM] at each LHSV of Comparative Example 2D was calculated in the same manner as Example 1D.
  • [POM] in each LHSV of Comparative Example 2D is shown in Table 6 below.
  • the demetalation rate in each LHSV of Comparative Example 2D was calculated in the same manner as in Example 1D.
  • the demetalization rate in each LHSV of Comparative Example 2D is shown in Table 6 below.
  • FIG. 6 shows that, even in hydrodesulfurization under severe reaction conditions in which the liquid hourly space velocity is 0.3 h ⁇ 1 or more, the demetallization rates of Mixed Oils 1 to 3 are sufficiently high.
  • products with relatively high market prices such as gasoline and gas oil can be produced from heavy oils such as normal pressure residual oil and deasphalted oil.

Abstract

A method for producing a hydrocarbon oil is provided with a step for obtaining desulfurized heavy oil by hydrodesulfurization of a first feedstock including atmospheric residue, and a step for obtaining a product by fluid catalytic cracking of a second feedstock including desulfurized heavy oil. The liquid-space velocity in the hydrodesulfurization is 0.3 h-1 to 1.0 h-1. The proportion of deasphalted oil in the first feedstock is 30-75% by volume. The asphaltene content in the first feedstock is 0-1% by mass.

Description

炭化水素油の製造方法Method of producing hydrocarbon oil
 本発明は、炭化水素油の製造方法に関する。 The present invention relates to a method of producing a hydrocarbon oil.
 石油の精製過程では、原油の常圧蒸留により、ガス(メタン及びエタン)、LPガス、ナフサ留分、灯油留分、軽油留分及び常圧残油(Atmospheric Residue: AR)が得られる。ナフサ留分、灯油留分及び軽油留分からは、ナフサ、ガソリン、灯油、ジェット燃料及び軽油等が製造される。一方、常圧残油(いわゆる重質油)からは、主として、船舶燃料、ボイラー燃料及びアスファルト等が製造される。重質油の価格、及び重質油から得られる上記製品の市場価格はいずれも、重質油よりも軽い留分から得られる製品に比べて低い。したがって、重質油から、より付加価値の高い製品を製造することが望まれる。 In the petroleum refining process, atmospheric distillation of crude oil produces gas (methane and ethane), LP gas, naphtha fraction, kerosene fraction, light oil fraction and atmospheric residue (AR). From the naphtha fraction, the kerosene fraction and the light oil fraction, naphtha, gasoline, kerosene, jet fuel and gas oil are produced. On the other hand, marine fuel, boiler fuel and asphalt are mainly produced from normal pressure residual oil (so-called heavy oil). The price of heavy oil, and the market price of the above-mentioned product obtained from heavy oil, are both lower than the product obtained from fractions lighter than heavy oil. Therefore, it is desirable to produce higher value-added products from heavy oil.
 例えば、下記特許文献1には、常圧残油の減圧蒸留により減圧軽油(Vacuum Gas Oil: VGO)を得て、減圧軽油の水素化処理により硫黄分の含有量が低減された脱硫重質油を得て、脱硫重質油の流動接触分解(Fluid Catalytic Cracking: FCC)により、軽質オレフィンやガソリンを主体とした軽質な炭化水素を得る方法が開示されている。軽質オレフィンは、重質油よりも付加価値が高い化合物であり、アルキレート又はメチル‐t‐ブチルエーテル等のガソリン基材の原料として利用される。 For example, in Patent Document 1 below, a desulfurized heavy oil in which a vacuum gas oil (Vacuum Gas Oil: VGO) is obtained by vacuum distillation of atmospheric residual oil, and the sulfur content is reduced by hydrotreating the vacuum gas oil. And a method of obtaining light hydrocarbons and light hydrocarbons mainly composed of gasoline by fluid catalytic cracking (FCC) of desulfurized heavy oil is disclosed. Light olefins are compounds with higher added value than heavy oils and are used as feedstocks for gasoline bases such as alkylates or methyl-t-butyl ether.
特許第4223690号公報Patent No. 4223690
 流動接触分解によって得られる留分のうち、Catalytic Cracked Gasoline(CCG)は、多量のオレフィン成分を含み、オクタン価の高いガソリン基材である。また、流動接触分解によって得られる留分のうち、Light Cycle Oil(LCO)は、軽油基材である。脱硫重質油から付加価値の高い製品を製造する方法の一つは、脱硫重質油の流動接触分解によりCCG及びLCO等を得ることである。以下では、CCGを「ガソリン留分」と表記する場合がある。LCOを「軽油留分」と表記する場合がある。 Among the fractions obtained by fluid catalytic cracking, Catalytic Cracked Gasoline (CCG) is a high octane gasoline base that contains a large amount of olefin components. Moreover, among the fractions obtained by fluid catalytic cracking, Light Cycle Oil (LCO) is a light oil base material. One of the methods for producing high value-added products from desulfurized heavy oil is to obtain CCG and LCO etc. by fluid catalytic cracking of desulfurized heavy oil. Below, CCG may be described as a "gasoline fraction." LCO may be described as "diesel oil fraction".
 しかしながら、従来の脱硫重質油の流動接触分解の場合、脱硫重質油に残存する硫黄分が多くなると、流動接触分解の生成物(ガソリン留分及び軽油留分等)の品質を劣化させる。また脱硫重質油に残存する金属分は、流動接触分解用の分解触媒の活性を劣化させることもある。 However, in the case of conventional fluid catalytic cracking of desulfurized heavy oil, if the amount of sulfur remaining in the desulfurized heavy oil increases, the quality of fluid catalytic cracking products (such as gasoline fraction and gas oil fraction) is degraded. In addition, the metal remaining in the desulfurized heavy oil may degrade the activity of the cracking catalyst for fluid catalytic cracking.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、流動接触分解の前に、常圧残油を含む原料油の水素化脱硫により、硫黄分の低減効果を維持しながら原料油における金属分の含有量を十分に低減することができる炭化水素油の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the above-mentioned prior art, and prior to fluid catalytic cracking, the hydrodesulfurization of a feedstock oil containing atmospheric residual oil is carried out while maintaining the reduction effect of sulfur content. An object of the present invention is to provide a method for producing a hydrocarbon oil which can sufficiently reduce the content of metals in the oil.
 本発明の一側面に係る炭化水素油の製造方法は、常圧残油を含む第一原料油の水素化脱硫により、脱硫重質油を得る工程と、脱硫重質油を含む第二原料油の流動接触分解により、生成物を得る工程と、を備え、水素化脱硫における液空間速度が、0.3h-1以上1.0h-1以下であり、第一原料油に占める脱れき油の割合が、30体積%以上75体積%以下であり、第一原料油におけるアスファルテンの含有量が、0質量%以上1質量%以下である。 The method for producing a hydrocarbon oil according to one aspect of the present invention comprises the steps of obtaining a desulfurized heavy oil by hydrodesulfurization of a first feedstock oil containing atmospheric residual oil, and a second feedstock oil containing desulfurized heavy oil. of the fluid catalytic cracking, obtaining a product, with a liquid hourly space velocity in the hydrogenation desulfurization, and at 0.3h -1 or 1.0 h -1 or less, the deasphalted oil occupying the first feedstock The proportion is 30% by volume or more and 75% by volume or less, and the content of asphaltene in the first raw material oil is 0% by mass or more and 1% by mass or less.
 本発明の一側面においては、第一原料油に占める減圧残油の割合が、50体積%以上85体積%以下であってよい。 In one aspect of the present invention, the ratio of vacuum residue to the first feedstock oil may be 50% by volume or more and 85% by volume or less.
 本発明によれば、流動接触分解の前に、常圧残油を含む原料油の水素化脱硫により、硫黄分の低減効果を維持しながら原料油における金属分の含有量を十分に低減することができる炭化水素油の製造方法が提供される。 According to the present invention, prior to fluid catalytic cracking, the content of metals in the feedstock oil is sufficiently reduced while maintaining the reduction effect of the sulfur content by hydrodesulfurization of the feedstock oil containing atmospheric residual oil. There is provided a method of producing a hydrocarbon oil capable of
図1は、第一原料油に占める減圧残油(Vacuum Residue: VR)の体積の割合と、第一原料油の水素化脱硫における脱メタル率と、の関係を示す。FIG. 1 shows the relationship between the volume ratio of vacuum residue (VR) to the first feedstock oil and the metal removal rate in the hydrodesulfurization of the first feedstock oil. 図2は、第一原料油におけるアスファルテンの含有量と、第一原料油の水素化脱硫における脱メタル率と、の関係を示す。FIG. 2 shows the relationship between the content of asphaltene in the first feedstock oil and the demetallization rate in the hydrodesulfurization of the first feedstock oil. 図3は、第一原料油の水素化脱硫の反応温度Tと、水素化脱硫によって得られる脱硫重質油中の金属分(ニッケル及びバナジウム)の含有量と、の関係を示す。FIG. 3 shows the relationship between the reaction temperature T for hydrodesulfurization of the first feedstock oil and the content of metals (nickel and vanadium) in the desulfurized heavy oil obtained by hydrodesulfurization. 図4は、第一原料油の水素化脱硫における脱硫率と、当該水素化脱硫における脱メタル率と、の関係を示す。FIG. 4 shows the relationship between the desulfurization rate in the hydrodesulfurization of the first feedstock oil and the demetalization rate in the hydrodesulfurization. 図5は、第一原料油の水素化脱硫の反応温度Tと、当該水素化脱硫における脱メタル反応の反応速度定数kMと、の関係を示す。FIG. 5 shows the relationship between the reaction temperature T for hydrodesulfurization of the first feedstock oil and the reaction rate constant kM of the demetalization reaction in the hydrodesulfurization. 図6は、第一原料油の水素化脱硫における液空間速度LHSVと、当該水素化脱硫における脱メタル率と、の関係を示す。FIG. 6 shows the relationship between the liquid hourly space velocity LHSV in hydrodesulfurization of the first feedstock oil and the demetallization rate in the hydrodesulfurization.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は下記実施形態に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiment.
 本実施形態に係る炭化水素油の製造方法は、常圧残油を含む第一原料油の水素化脱硫により、脱硫重質油を得る工程と、脱硫重質油を含む第二原料油の流動接触分解により、生成物を得る工程と、を備える。水素化脱硫では、脱硫反応と脱メタル反応とが起こる。水素化脱硫とは、例えば、残油水素化脱硫(Residual Oil Desulfurization: RDS)と言い換えられてよい。脱硫重質油は、RDS生成油を蒸留したRDS Bottom oil(RDS‐BTM)と言い換えられてよい。 In the method for producing a hydrocarbon oil according to the present embodiment, a step of obtaining a desulfurized heavy oil by hydrodesulfurization of a first feedstock oil containing atmospheric residual oil, and a flow of a second feedstock oil containing the desulfurized heavy oil Obtaining the product by catalytic decomposition. In hydrodesulfurization, desulfurization reaction and demetallation reaction occur. Hydrodesulfurization may be rephrased as residual oil desulfurization (RDS), for example. The desulfurized heavy oil may be rephrased as RDS Bottom oil (RDS-BTM) obtained by distillation of RDS product oil.
 第一原料油に占める脱れき油(De‐Asphalted Oil: DAO)の割合は、30体積%以上75体積%以下である。 The ratio of deasphalted oil (De-Asphalted Oil: DAO) to the first feedstock oil is 30% by volume or more and 75% by volume or less.
 本実施形態では、常圧残油及び脱れき油を含む上記の第一原料油を上記の諸条件下で水素化脱硫することにより、硫黄分の低減効果を維持しながら金属分の含有量が十分に低減された脱硫重質油を得ることができる。例えば、液空間速度が0.3h-1程度であり、反応温度が370℃程度である場合、脱硫重質油中の硫黄分の含有量を0.3質量%以下に低減することが可能であり、且つ水素化脱硫における脱メタル率を88質量%以上に高めることが可能である。仮に第一原料油に占める脱れき油の割合が30体積%未満である場合、金属分の含有量が十分に低減された脱硫重質油を得ることが困難である。第一原料油に占める脱れき油の割合は、35体積%以上70体積%以下、又は46体積%以上54体積%以下であってもよい。第一原料油に占める脱れき油の割合が75体積%を超える場合、触媒の劣化が早くなる傾向がある。「触媒の劣化」とは、水素精製触媒(脱メタル触媒及び脱硫触媒)の劣化(特に脱硫触媒の劣化)を意味する。 In the present embodiment, by hydrodesulfurizing the above-described first feedstock including the atmospheric residual oil and the deasphalted oil under the above conditions, the metal content is maintained while maintaining the reduction effect of the sulfur content. A sufficiently reduced desulfurized heavy oil can be obtained. For example, when the liquid space velocity is about 0.3 h -1 and the reaction temperature is about 370 ° C., it is possible to reduce the content of sulfur in the desulfurized heavy oil to 0.3 mass% or less It is possible to increase the metal removal rate in hydrodesulfurization to 88% by mass or more. If the proportion of deasphalted oil in the first feedstock oil is less than 30% by volume, it is difficult to obtain a desulfurized heavy oil in which the metal content is sufficiently reduced. The proportion of deasphalted oil in the first feedstock oil may be 35% by volume or more and 70% by volume or 46% by volume or more and 54% by volume or less. When the ratio of deasphalted oil to the first feedstock oil exceeds 75% by volume, the deterioration of the catalyst tends to be quick. "Deterioration of the catalyst" means degradation of the hydrogen purification catalyst (demetallization catalyst and desulfurization catalyst) (particularly degradation of the desulfurization catalyst).
 硫黄分は、例えば、硫黄と炭化水素とを含む含硫黄化合物であってよい。脱硫重質油中の硫黄分の含有量は、例えばJIS K2541「原油及び石油製品‐硫黄分試験方法」によって測定されてよい。金属分は、例えば、金属と炭化水素とを含む含メタル化合物であってよく、金属単体であってもよい。金属分を構成する金属は、例えば、バナジウム又はニッケルである。含メタル化合物の構造は特に限定されない。例えば、含メタル化合物では、炭化水素と金属とが化学結合(例えば配位結合)を形成していてもよい。含メタル化合物では、炭化水素が金属の微粒子を被覆していてもよい。含メタル化合物を構成する炭化水素は、特に限定されないが、例えば、鎖状炭化水素若しくはその異性体、環状炭化水素、ヘテロ環式化合物、又は芳香族炭化水素等であればよい。ヘテロ環式化合物は、例えば、ポルフィリンであってよい。含メタル化合物は、例えば、金属ポルフィリン錯体であってよい。脱硫重質油中のニッケル及びバナジウム其々の含有量は、例えば、波長分散型の蛍光X線分析法(XRF法)によって測定されてよい。 The sulfur content may be, for example, a sulfur-containing compound containing sulfur and a hydrocarbon. The sulfur content in the desulfurized heavy oil may be measured, for example, according to JIS K 2541 "Crude oil and petroleum products-Sulfur content test method". The metal component may be, for example, a metal-containing compound containing a metal and a hydrocarbon, or may be a simple metal. The metal constituting the metal component is, for example, vanadium or nickel. The structure of the metal-containing compound is not particularly limited. For example, in a metal-containing compound, a hydrocarbon and a metal may form a chemical bond (for example, a coordinate bond). In the metal-containing compound, the hydrocarbon may coat fine particles of metal. The hydrocarbon constituting the metal-containing compound is not particularly limited, and may be, for example, a chain hydrocarbon or an isomer thereof, a cyclic hydrocarbon, a heterocyclic compound, an aromatic hydrocarbon or the like. The heterocyclic compound may be, for example, porphyrin. The metal-containing compound may be, for example, a metal porphyrin complex. The contents of nickel and vanadium in the desulfurized heavy oil may be measured, for example, by wavelength dispersive X-ray fluorescence spectrometry (XRF method).
 常圧残油及び脱れき油を含む第一原料油(混合油)の密度は、常圧残油の密度よりも高い傾向があり、一般的に密度の高い原料油中の金属分は、密度の低い原料油中の金属分に比べて、水素化脱硫によって除去され難い。しかし本実施形態よれば、常圧残油及び脱れき油を含む第一原料油から、金属分の含有量が低減された脱硫重質油(流動接触分解用の第二原料油)を得ることができる。つまり本実施形態によれば、従来は流動接触分解に十分に利用され難かった脱れき油を常圧残油と共に水素化脱硫に供することにより、金属分の含有量が十分に低減された脱硫重質油が調製される。この脱硫重質油を含む第二原料油の流動接触分解により、従来はガソリン留分及び軽油留分の原料として利用し難かった脱れき油に由来するガソリン留分及び軽油留分を得ることが可能になる。換言すれば、本実施形態によれば、市場価値の低い脱れき油を、常圧残油と共に、市場価値の高い炭化水素油(ガソリン留分及び軽油留分等)の原料として利用することができる。また本実施形態によれば、流動接触分解におけるコーク(Coke)の生成を抑制することもできる。コークとは、炭素質の固体である。 The density of the first feedstock (mixed oil) including atmospheric residual oil and deasphalted oil tends to be higher than the density of atmospheric residual oil, and in general, the metal content in the dense feedstock oil is It is difficult to remove by hydrodesulfurization as compared with the metal component in the low feedstock oil. However, according to this embodiment, a desulfurized heavy oil (a second feedstock for fluid catalytic cracking) having a reduced metal content is obtained from a first feedstock including atmospheric residual oil and deasphalted oil. Can. That is, according to the present embodiment, the desulfurization weight whose metal content has been sufficiently reduced by subjecting deasphalted oil, which was conventionally difficult to be utilized sufficiently in fluid catalytic cracking, to hydrodesulfurization together with atmospheric residual oil, is achieved. A quality oil is prepared. It is possible to obtain a gasoline fraction and a light oil fraction derived from deasphalted oil, which was conventionally difficult to use as a raw material for a gasoline fraction and a gas oil fraction, by fluid catalytic cracking of the second feedstock including the desulfurized heavy oil. It will be possible. In other words, according to the present embodiment, the low market value deasphalted oil is used together with the atmospheric residual oil as a raw material of hydrocarbon oil having high market value (such as gasoline fraction and gas oil fraction). it can. Moreover, according to the present embodiment, it is also possible to suppress the formation of coke in fluid catalytic cracking. Cork is a carbonaceous solid.
 第一原料油に含まれる脱れき油は、減圧残油の溶剤脱れき(Solvent De‐Asphalting: SDA)によって得られてよい。つまり脱れき油は、SDAにおける抽出油(溶剤脱れき油)と言い換えてもよい。溶剤脱れきに用いる溶剤は、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン及びノルマルヘキサンからなる群より選ばれる少なくとも一種であればよい。第一原料油は、脱れき油及び常圧残油の混合によって調製されてよい。 The deasphalted oil contained in the first feedstock may be obtained by solvent deasphalting (Solvent De-Asphalting: SDA) of vacuum resid. In other words, the deasphalted oil may be rephrased as an extracted oil (a solvent deasphalted oil) in SDA. The solvent used for deasphalting may be, for example, at least one selected from the group consisting of propane, normal butane, isobutane, normal pentane, isopentane and normal hexane. The first feedstock may be prepared by mixing deasphalted oil and atmospheric residuum.
 減圧残油は、常圧残油の減圧蒸留によって得られる。常圧残油は、原油の常圧蒸留によって得られる。原油は、限定されないが、例えば、石油系の原油、オイルサンド由来の合成原油及びビチューメン改質油からなる群より選ばれる少なくとも一種であってよい。 A vacuum residue is obtained by vacuum distillation of an atmospheric residue. Atmospheric residual oil is obtained by atmospheric distillation of crude oil. The crude oil may be, for example, at least one selected from the group consisting of, but not limited to, petroleum-based crude oil, synthetic crude oil derived from oil sands, and bitumen-modified oil.
 第一原料油に含まれる脱れき油の体積が、VDAOと表記され、第一原料油全体の体積が、V1と表記されるとき、VDAO/V1は、0.30以上0.75以下、0.35以上0.70以下、又は0.46以上0.54以下であってよい。VDAO/V1の増加に伴い、第二原料油の流動接触分解によって得られるガソリン留分及び軽油留分のうち、脱れき油に由来するガソリン留分及び軽油留分の割合が増加する。VDAO/V1の減少に伴い、第二原料油の流動接触分解においてドライガス及びコークが生成し易い。第一原料油は、脱れき油と、常圧残油と、からなっていてよい。つまり、第一原料油に含まれる常圧残油の体積が、VARと表記されるとき、V1はVDAO+VARに等しくてよく、VDAO/V1はVDAO/(VDAO+VAR)に等しくてよい。したがって、VDAO/(VDAO+VAR)は、0.30以上0.75以下、0.35以上0.70以下、又は0.46以上0.54以下であってよい。第一原料油に占める脱れき油の体積割合(VDAO/V1)は、脱れき油及び常圧残油の混合比に基づいて制御されてよい。 When the volume of the deasphalted oil contained in the first feedstock oil is represented as V DAO and the volume of the entire first feedstock oil is represented as V 1, V DAO / V 1 is 0.30 or more and 0.75 or less 0.35 or more and 0.70 or less, or 0.46 or more and 0.54 or less. Among the gasoline fraction and gas oil fraction obtained by fluid catalytic cracking of the second feedstock oil, the ratio of the gasoline fraction and gas oil fraction derived from deasphalted oil increases as V DAO / V1 increases. As V.sub.DAO / V.sub.1 decreases, dry gas and coke are easily generated in the fluid catalytic cracking of the second feedstock. The first feedstock may consist of deasphalted oil and atmospheric residual oil. That is, when the volume of normal pressure residual oil contained in the first feedstock is denoted as V AR , V1 may be equal to V DAO + V AR and V DAO / V1 is V DAO / (V DAO + V AR ) May be equal to Therefore, V DAO / (V DAO + V AR ) may be 0.30 or more and 0.75 or less, 0.35 or more and 0.70 or less, or 0.46 or more and 0.54 or less. The volume fraction of deasphalted oil in the first feedstock (V DAO / V1) may be controlled based on the mixing ratio of deasphalted oil and atmospheric residual oil.
 第一原料油は減圧残油を含んでよい。つまり、本実施形態によれば、硫黄分の含有量が多い減圧残油から、流動接触分解用の原料油(第二原料油)を調製することができる。換言すれば、本実施形態によれば、従来のプロセスでは余剰になり易く安価な減圧残油を、ガソリン留分及び軽油留分等の高価な炭化水素油の原料として利用することができる。第一原料油に占める減圧残油の割合は、50体積%以上85体積%以下、55体積%以上80体積%以下、又は65体積%以上71体積%以下であってよい。つまり、第一原料油に含まれる減圧残油の体積が、VVRと表記されるとき、VVR/V1は、0.5以上0.85以下、0.55以上0.80以下、又は0.65以上0.71以下であってよい。本実施形態によれば、第一原料油に占める減圧残油の割合(VVR/V1)が高いにもかかわらず、第一原料油を上記の諸条件下で水素化脱硫することにより、金属分の含有量が十分に低減された脱硫重質油を得ることができる。第一原料油に占める減圧残油の割合が85体積%を超える場合、触媒の劣化が早くなる傾向がある。第一原料油に含まれる減圧残油の少なくとも一部は、脱れき油に由来してよい。脱れき油は減圧残油の一種である。また第一原料油に含まれる減圧残油の少なくとも一部は、水素化脱硫に直接供される常圧残油に由来してもよい。常圧残油はそれを構成する留分として減圧残油及び減圧軽油等を包含する。第一原料油に占める減圧残油の体積割合(VVR/V1)は、脱れき油及び常圧残油の混合比に基づいて制御されてよい。 The first feedstock may comprise vacuum residuum. That is, according to the present embodiment, the feedstock oil (second feedstock oil) for fluid catalytic cracking can be prepared from the reduced pressure residual oil having a high sulfur content. In other words, according to the present embodiment, it is possible to use an inexpensive reduced pressure residual oil, which tends to be surplus in the conventional process, as a raw material of expensive hydrocarbon oils such as gasoline fractions and light oil fractions. The ratio of the vacuum residue to the first feedstock oil may be 50% to 85% by volume, 55% to 80% by volume, or 65% to 71% by volume. In other words, the volume of the vacuum residue oil contained in the first feedstock, when it is expressed as V VR, V VR / V1 is 0.5 to 0.85, 0.55 or 0.80 or less, or 0 .65 or more and 0.71 or less. According to the present embodiment, the metal is hydrodesulfurized under the above-mentioned conditions, even though the ratio of the vacuum residue to the first feedstock (V VR / V 1) is high. It is possible to obtain a desulfurized heavy oil having a sufficiently reduced content. When the ratio of the vacuum residue to the first feedstock exceeds 85% by volume, the catalyst tends to deteriorate rapidly. At least a portion of the vacuum residuum contained in the first feedstock may be derived from deasphalted oil. Deasphalted oil is a type of vacuum residue. In addition, at least a portion of the vacuum residuum contained in the first feedstock may be derived from an atmospheric residuum directly subjected to hydrodesulfurization. Atmospheric residual oil includes, as a constituent fraction thereof, reduced pressure residual oil and reduced pressure gas oil. The volume ratio (V VR / V 1) of the vacuum residue to the first feedstock may be controlled based on the mixing ratio of the deasphalted oil and the atmospheric residue.
 第一原料油の水素化脱硫における液空間速度(Liquid Hourly Space Velocity: LHSV)は、0.3h-1以上1.0h-1以下である。液空間速度は、水素化脱硫の反応器への第一原料油の供給速度(短時間当たりの容積流量)を、反応器内に設置される触媒(触媒層)の容積で除した値である。本実施形態では、液空間速度が0.3h-1以上である過酷な反応条件下で第一原料油を水素化脱硫するにも係わらず、金属分の含有量が十分に低減された脱硫重質油を得ることができる。液空間速度が0.3h-1未満である場合、反応器の処理量の低下により生産性が低下したり、反応器内での第一原料油の流動状態の悪化により触媒層内で偏流が起きたりする傾向がある。液空間速度が1.0h-1を超える場合、接触時間の減少により脱硫重質油中の硫黄分の濃度及び金属分の濃度が上昇する傾向がある。水素化脱硫における液空間速度は、0.3h-1以上0.6h-1以下、又は0.3h-1以上0.5h-1以下であってもよい。 Liquid hourly space velocity in the hydrogenation desulfurization of the first feedstock (Liquid Hourly Space Velocity: LHSV) is 0.3h -1 or 1.0 h -1 or less. The liquid hourly space velocity is a value obtained by dividing the feed rate (volume flow rate per short time) of the first feedstock to the hydrodesulfurization reactor by the volume of the catalyst (catalyst layer) installed in the reactor. . In this embodiment, despite the hydrodesulfurization of the first feedstock oil under severe reaction conditions in which the liquid hourly space velocity is 0.3 h −1 or more, the desulfurization weight in which the metal content is sufficiently reduced It is possible to obtain a quality oil. When the liquid hourly space velocity is less than 0.3 h -1 , productivity declines due to a decrease in throughput of the reactor, or deterioration of the flow state of the first feedstock oil in the reactor causes uneven flow in the catalyst layer. There is a tendency to get up. When the liquid hourly space velocity exceeds 1.0 h -1 , the concentration of sulfur and metal in the desulfurized heavy oil tends to increase due to the decrease in contact time. Liquid hourly space velocity in the hydrodesulfurization, 0.3h -1 or 0.6 h -1 or less, or 0.3h -1 more 0.5h -1 may be less.
 第一原料油におけるアスファルテン(Asphaltene)の含有量は、0質量%以上1質量%以下である。アスファルテンとは、例えば、アスファルトのうちペンタンに不溶であり、かつトルエンに可溶な成分であってよい。第一原料油におけるアスファルテンの含有量が1質量%よりも大きい場合、脱硫重質油における金属分の含有量が高い傾向がある。また第一原料油におけるアスファルテンの含有量が1質量%よりも高い場合、水素化脱硫及び流動接触分解においてコークが生成し易い。また第一原料油におけるアスファルテンの含有量が1質量%よりも高い場合、流動接触分解におけるガソリン留分及び軽油留分の収率が低下し易い。第一原料油におけるアスファルテンの含有量の下限値は特に限定されない。第一原料油におけるアスファルテンの含有量は、例えば、0.08質量%以上0.22質量%であってもよい。第一原料油におけるアスファルテンの含有量は、第一原料油の調製に用いる原油の選定、原油の蒸留条件、蒸留によって得られる留分の選定、留分の脱れきの方法、脱れきの諸条件、又は複数種の留分の混合比等によって自在に調整される。アスファルテンの含有量は、例えば、IP-143(ASTM D6560)「Determination of Asphaltenes in Crude Petroleum and Petroleum Products」によって測定されてよい。 The content of asphaltenes in the first feedstock oil is 0% by mass or more and 1% by mass or less. Asphaltene may be, for example, a component insoluble in pentane and soluble in toluene among asphalts. When the content of asphaltenes in the first feedstock oil is greater than 1% by mass, the content of metals in the desulfurized heavy oil tends to be high. In addition, when the content of asphaltene in the first feedstock oil is higher than 1% by mass, coke is easily generated in hydrodesulfurization and fluid catalytic cracking. In addition, when the content of asphaltene in the first feedstock oil is higher than 1% by mass, the yield of the gasoline fraction and the gas oil fraction in the fluid catalytic cracking tends to decrease. The lower limit of the content of asphaltenes in the first feedstock oil is not particularly limited. The content of asphaltenes in the first raw material oil may be, for example, 0.08% by mass or more and 0.22% by mass. The content of asphaltenes in the first feedstock oil is the selection of crude oil used for preparation of the first feedstock oil, distillation conditions of crude oil, selection of fractions obtained by distillation, method of deburring of fractions, conditions of deburring Or, it is freely adjusted by the mixing ratio etc. of a plurality of kinds of fractions. Asphaltene content may be measured, for example, by IP-143 (ASTM D6560) "Determination of Asphaltenes in Crude Petroleum and Petroleum Products".
 第一原料油の水素化脱硫が行われる反応器内の圧力は、10MPa以上20MPa以下、又は10MPa以上15MPa以下であってよい。圧力が10MPa未満である場合、コーキングにより脱硫触媒及び脱メタル触媒の活性が劣化し易い傾向がある。圧力が20MPaを超える場合、水素供給に対する設備投資・変動費上昇等が非常に大きくなる。もしくは圧力が20MPaを超える場合、コンプレッサーの出力が不十分となり水素の供給量が不足することにより水素化脱硫の処理量が低下する傾向がある。 The pressure in the reactor where the hydrodesulfurization of the first raw material oil is performed may be 10 MPa or more and 20 MPa or less, or 10 MPa or more and 15 MPa or less. When the pressure is less than 10 MPa, coking tends to deteriorate the activity of the desulfurization catalyst and the demetallization catalyst. When the pressure exceeds 20 MPa, the equipment investment and the increase in variable costs for the hydrogen supply become very large. Alternatively, when the pressure exceeds 20 MPa, the output of the compressor is insufficient and the supply amount of hydrogen tends to be low, whereby the processing amount of hydrodesulfurization tends to be reduced.
水素化脱硫の水素/油比は3000~8000scfb(1バレルあたりの標準立方フィート)が好ましく、4000~7000scfbがより好ましく、5000~6000scfbがさらに好ましい。3000scfb未満の場合、触媒の劣化が進行する傾向にあるので好ましくない。また、8000scfbを超えても触媒劣化への影響がなくなる傾向にあるので、好ましくない。 The hydrodesulfurization hydrogen / oil ratio is preferably 3000-8000 scfb (standard cubic feet per barrel), more preferably 4000-7000 scfb, even more preferably 5000-6000 scfb. If it is less than 3000 scfb, it is not preferable because deterioration of the catalyst tends to progress. In addition, even if it exceeds 8000 scfb, the influence on the catalyst deterioration tends to disappear, which is not preferable.
 水素化脱硫の反応温度Tは、330℃以上410℃以下、360℃以上400℃以下又は364℃以上384℃以下であってよい。反応温度Tが330℃以上である場合、水素化脱硫の反応速度の増加により、脱硫重質油中の硫黄分及び金属分其々の含有量が低減され易い傾向がある。反応温度Tが410℃を超える場合、触媒が劣化し易い傾向がある。水素化脱硫の反応温度Tは、水素化脱硫の反応器内に設置される触媒(触媒層)の平均温度と言い換えてよい。 The reaction temperature T for hydrodesulfurization may be 330 ° C. or more and 410 ° C. or less, 360 ° C. or more and 400 ° C. or less, or 364 ° C. or more and 384 ° C. or less. When the reaction temperature T is 330 ° C. or more, the content of sulfur and metal components in the desulfurized heavy oil tends to be easily reduced due to an increase in the reaction rate of hydrodesulfurization. When the reaction temperature T exceeds 410 ° C., the catalyst tends to be deteriorated. The reaction temperature T for hydrodesulfurization can be rephrased as the average temperature of the catalyst (catalyst layer) installed in the hydrodesulfurization reactor.
 第一原料油の水素化脱硫に用いる触媒は、脱硫触媒のみならず、金属分を除去する機能を有する脱メタル触媒を含んでよい。例えば、第一原料油を脱メタル触媒(脱メタル触媒層)に接触させた後、第一原料油を脱硫触媒(脱硫触媒層)に接触させてよい。つまり、前段の脱メタル触媒(触媒層)と後段の脱硫触媒(触媒層)とを組み合わせた水素化精製触媒(二段の触媒層)を、原料油の水素化脱硫用の触媒として使用してよい。 The catalyst used for hydrodesulfurization of the first feedstock oil may include not only the desulfurization catalyst but also a demetalation catalyst having a function of removing metal components. For example, after the first feedstock oil is brought into contact with the demetallizing catalyst (demetallizing catalyst layer), the first feedstock oil may be brought into contact with the desulfurization catalyst (desulfurizing catalyst layer). That is, using a hydrorefining catalyst (two-stage catalyst layer) combining the first stage metal removal catalyst (catalyst layer) and the second stage desulfurization catalyst (catalyst layer) as a catalyst for hydrodesulfurization of feedstock oil Good.
 脱メタル触媒は、脱メタル活性と脱硫活性とを有しており、脱硫触媒に比べて相対的に高い脱メタル活性を有する触媒である。脱硫触媒を脱メタル触媒の後段に配置することにより、脱メタル触媒が脱硫触媒を金属分から保護する。したがって、脱メタル触媒は、水素化脱硫条件下で原料油中に含まれるニッケルやバナジウム等の金属分を除去・捕捉する高い性能を有しなければならない。加えて、金属分の除去に伴って劣化し難い脱メタル触媒(金属分に対する耐性を有する脱メタル触媒)が求められる。このような特性を有する脱メタル触媒は、例えば、多孔質の担体と、担体に担持された活性金属と、を備えればよい。脱メタル触媒の担体は、例えば、アルミナ、シリカ、及びシリカアルミナからなる群より選ばれる少なくとも一種であってよい。脱メタル触媒の活性金属は、例えば、モリブデン、ニッケル及びコバルトからなる群より選ばれる少なくとも一種であってよい。脱メタル触媒の活性金属は、モリブデンのみであってよく、ニッケル及びモリブテンの組合せであってもよく、コバルト及びモリブテンの組合せであってもよい。脱メタル触媒は更にリンを含んでもよい。多量の金属分を除去・捕捉するために、脱メタル触媒の平均細孔径は13~30nmであることが好ましく、脱メタル触媒の細孔容積は0.7~1.4cm/gであることが好ましく、脱メタル触媒の表面積は70~200m/gであることが好ましい。 The demetallizing catalyst has a demetallizing activity and a desulfurizing activity, and is a catalyst having a relatively high demetallizing activity as compared to the desulfurizing catalyst. By placing the desulfurization catalyst downstream of the demetalation catalyst, the demetalation catalyst protects the desulfurization catalyst from metal. Therefore, the demetallizing catalyst must have high performance to remove and capture metal components such as nickel and vanadium contained in the feedstock under hydrodesulfurization conditions. In addition, there is a need for a demetallizing catalyst (demetallizing catalyst having resistance to metal components) that is unlikely to deteriorate as the metal components are removed. The demetallizing catalyst having such characteristics may be provided, for example, with a porous support and an active metal supported on the support. The demetallizing catalyst support may be, for example, at least one selected from the group consisting of alumina, silica, and silica-alumina. The active metal of the demetallizing catalyst may be, for example, at least one selected from the group consisting of molybdenum, nickel and cobalt. The active metal of the demetallizing catalyst may be only molybdenum, may be a combination of nickel and molybdenum, or may be a combination of cobalt and molybdenum. The demetallation catalyst may further contain phosphorus. In order to remove and capture a large amount of metal, the average pore size of the demetallizing catalyst is preferably 13 to 30 nm, and the pore volume of the demetallizing catalyst is 0.7 to 1.4 cm 3 / g The surface area of the demetallizing catalyst is preferably 70 to 200 m 2 / g.
 脱硫触媒は、脱硫活性と脱窒素活性と脱メタル活性とを有しており、脱メタル触媒に比べて相対的に高い脱硫活性を有する触媒である。その高い脱硫活性ゆえに、金属分に対する脱硫触媒の耐性は脱メタル触媒に劣るので、上記の通り、脱硫触媒は脱メタル触媒の後流に配置される。脱硫触媒は、水素化脱硫条件下で原料油中に含まれる硫黄分及び窒素分を高度に除去する性能を有する。このような特性を有する脱硫触媒は、例えば、多孔質の担体と、担体に担持された活性金属と、を備えればよい。脱硫触媒の担体は、例えば、アルミナ、シリカ、及びシリカアルミナからなる群より選ばれる少なくとも一種であってよい。脱硫触媒の活性金属は、例えば、ニッケル及びコバルトのうち少なくとも一種と、モリブデン及びタングステンのうち少なくとも一種と、を含めばよい。脱硫触媒の活性金属は、ニッケル及びモリブテンの組合せであってよく、コバルト及びモリブテンの組合せであってもよく、ニッケル、コバルト及びモリブテンの組合せであってもよい。脱硫触媒は更にリンを含んでもよい。脱硫触媒の表面積は脱メタル触媒に比較して表面積が大きいことが好ましく、脱硫触媒の平均細孔径は8~13nmであることが好ましく、脱硫触媒の細孔容積は0.4~1.0cm/gであることが好ましく、脱硫触媒の表面積は170~250m/gであることが好ましい。 The desulfurization catalyst has a desulfurization activity, a denitrification activity and a demetallation activity, and is a catalyst having a relatively high desulfurization activity as compared to the demetalation catalyst. Because of the high desulfurization activity, the resistance of the desulfurization catalyst to metals is inferior to the demetallisation catalyst, so as mentioned above, the desulfurization catalyst is placed downstream of the demetallisation catalyst. The desulfurization catalyst has the ability to highly remove sulfur and nitrogen contained in the feedstock under hydrodesulfurization conditions. The desulfurization catalyst having such characteristics may include, for example, a porous carrier and an active metal supported on the carrier. The desulfurization catalyst support may be, for example, at least one selected from the group consisting of alumina, silica, and silica-alumina. The active metal of the desulfurization catalyst may include, for example, at least one of nickel and cobalt and at least one of molybdenum and tungsten. The active metal of the desulfurization catalyst may be a combination of nickel and molybutene, may be a combination of cobalt and molybutene, or may be a combination of nickel, cobalt and molybutene. The desulfurization catalyst may further contain phosphorus. The surface area of the desulfurization catalyst is preferably larger than that of the metal removal catalyst, and the average pore diameter of the desulfurization catalyst is preferably 8 to 13 nm, and the pore volume of the desulfurization catalyst is 0.4 to 1.0 cm 3 The surface area of the desulfurization catalyst is preferably 170 to 250 m 2 / g.
 本実施形態によれば、水素化脱硫に用いる触媒全量に占める脱メタル触媒の割合が少ない場合であっても、脱硫重質油における硫黄分及びメタル分の含有量を十分に低減することができる。例えば、脱メタル触媒層の容積が、脱硫触媒層及び脱メタル触媒層の容積の合計値に対して、30体積%以上60体積%以下とすることができる。脱メタル触媒層の容積が30体積%以上である場合、前段側(脱メタル触媒層側)での脱メタル反応が十分に進行し易く、金属分の後段側(脱硫触媒層)への流入が抑制され、脱硫触媒層の活性の急劣化が抑制され易い傾向がある。脱メタル触媒層の容積が60体積%以下である場合、脱硫反応が十分に進行易く、生成する脱硫重質油中の硫黄分濃度が低減され易い傾向がある。 According to the present embodiment, even when the ratio of the demetallizing catalyst to the total amount of the catalyst used for hydrodesulfurization is small, the content of sulfur and metal in the desulfurized heavy oil can be sufficiently reduced. . For example, the volume of the demetallizing catalyst layer can be 30% by volume or more and 60% by volume or less based on the total value of the volumes of the desulfurizing catalyst layer and the demetallizing catalyst layer. When the volume of the demetallizing catalyst layer is 30% by volume or more, the demetallizing reaction in the former stage side (demetallizing catalyst layer side) easily progresses sufficiently, and the inflow to the latter half side of the metal (desulfurizing catalyst layer) It tends to be suppressed, and rapid deterioration of the activity of the desulfurization catalyst layer tends to be suppressed. When the volume of the demetallizing catalyst layer is 60% by volume or less, the desulfurization reaction tends to proceed sufficiently, and the concentration of sulfur in the desulfurized heavy oil to be produced tends to be reduced.
 第二原料油は、脱硫重質油のみからなっていてよい。第二原料油は、脱硫重質油に加えて他の油を含んでよい。例えば、第二原料油は、第一原料油の水素化脱硫によって得られた脱硫重質油に加えて、脱硫された減圧軽油を更に含んでもよい。減圧軽油は、常圧残油の減圧蒸留によって得られる。脱硫された減圧軽油は、例えば、減圧軽油の水素化脱硫によって得られる。 The second feedstock may consist only of desulfurized heavy oil. The second feedstock may include other oils in addition to the desulfurized heavy oil. For example, the second feedstock may further include desulfurized vacuum gas oil in addition to the desulfurized heavy oil obtained by hydrodesulfurization of the first feedstock. Reduced pressure gas oil is obtained by reduced pressure distillation of atmospheric residue. The desulfurized vacuum gas oil is obtained, for example, by hydrodesulfurization of vacuum gas oil.
 第二原料油に含まれる脱硫重質油の体積が、VDSHと表記され、第二原料油に含まれる脱硫された減圧軽油の体積が、VDSVGOと表記されるとき、VHDSVGO/VDSHは、0/100以上90/10以下であってよい。VHDSVGO/VDSHの増加に伴い、流動接触分解におけるコークの生成が抑制され易く、流動接触分解装置(反応塔及び再生塔)の運転が容易である傾向がある。VHDSVGO/VDSHの減少に伴い、流動接触分解によって生成するガス(例えばドライガス)が減少し易く、またコークが生成し易い傾向がある。 The volume of the desulfurized heavy oil contained in the secondary feed may be denoted as V DSH, when the volume of desulfurized vacuum gas oil contained in the second feedstock, which is denoted as V DSVGO, V HDSVGO / V DSH May be 0/100 or more and 90/10 or less. With the increase of V HDSVGO / V DSH , the formation of coke in fluid catalytic cracking tends to be suppressed, and the operation of the fluid catalytic cracker (reaction tower and regeneration tower) tends to be easy. With the decrease of V HDSVGO / V DSH , the gas (eg, dry gas) generated by fluid catalytic cracking tends to decrease, and coke tends to form.
 第二原料油の流動接触分解の反応温度は、500℃以上700℃以下であってよい。反応温度が500℃以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。反応温度が700℃を超える場合、分解反応が促進され、ドライガス及びコークの生成が促進される傾向がある。流動接触分解における触媒/油比は、3[質量/質量]以上50[質量/質量]以下であってよい。触媒/油比は、触媒循環量(ton/h)を、第二原料油の供給速度(ton/h)で除した値である。触媒/油比が3[質量/質量]以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。触媒/油比が50[質量/質量]を超える場合、分解反応が促進され、ドライガス及びコークの生成が促進される傾向がある。流動接触分解の反応時間(接触時間)は、0.5秒以上10秒以下であってよい。反応時間が0.5秒以上である場合、分解率が向上し易く、ガソリン留分の収率が向上し易い傾向がある。反応時間が10秒を超える場合、分解反応が促進され、ドライガス及びコークの生成が促進される傾向がある。流動接触分解へ供給される水蒸気の質量は、第二原料油100質量部に対して、2質量部以上50質量部以下であってよい。水蒸気の質量が2質量部未満である場合、第二原料油が十分に分散され難く、コーキングが促進される傾向がある。水蒸気の質量が50質量部を超える場合、接触時間が短くなり、分解率が低下する傾向がある。流動接触分解が行われる反応器内の圧力は、0.1013MPa以上0.3MPa以下であってよい。圧力が0.1013MPa(標準圧力)未満である場合、分解後のガスの圧力が下がり、回収設備の運転が困難になる傾向がある。圧力が0.3MPaを超える場合、反応器内での炭化水素の分圧が高くなり、分解率が高くなり過ぎて、ドライガス及びコークの生成が促進される傾向がある。 The reaction temperature for fluid catalytic cracking of the second feedstock oil may be 500 ° C. or more and 700 ° C. or less. When the reaction temperature is 500 ° C. or higher, the decomposition rate tends to be improved, and the yield of the gasoline fraction tends to be improved. When the reaction temperature exceeds 700 ° C., the decomposition reaction tends to be promoted and the formation of dry gas and coke tends to be promoted. The catalyst / oil ratio in the fluid catalytic cracking may be 3 [mass / mass] or more and 50 [mass / mass] or less. The catalyst / oil ratio is a value obtained by dividing the catalyst circulation amount (ton / h) by the feed rate of the second feedstock (ton / h). When the catalyst / oil ratio is 3 [mass / mass] or more, the decomposition rate tends to be improved, and the yield of the gasoline fraction tends to be improved. When the catalyst / oil ratio exceeds 50 [mass / mass], the decomposition reaction tends to be promoted and the formation of dry gas and coke tends to be promoted. The reaction time (contact time) of fluid catalytic cracking may be from 0.5 seconds to 10 seconds. When the reaction time is 0.5 seconds or more, the decomposition rate tends to be improved, and the yield of the gasoline fraction tends to be improved. When the reaction time exceeds 10 seconds, the decomposition reaction tends to be promoted and the formation of dry gas and coke tends to be promoted. The mass of steam supplied to the fluid catalytic cracking may be 2 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the second feedstock oil. When the mass of the water vapor is less than 2 parts by mass, the second feedstock oil is difficult to be sufficiently dispersed, and coking tends to be promoted. When the mass of the water vapor exceeds 50 parts by mass, the contact time tends to be short, and the decomposition rate tends to decrease. The pressure in the reactor in which fluid catalytic cracking is performed may be 0.1013 MPa or more and 0.3 MPa or less. If the pressure is less than 0.1013 MPa (standard pressure), the pressure of the gas after decomposition tends to decrease and the operation of the recovery facility tends to be difficult. When the pressure exceeds 0.3 MPa, the partial pressure of hydrocarbons in the reactor tends to be high, the decomposition rate becomes too high, and the formation of dry gas and coke tends to be promoted.
 第二原料油の流動接触分解は、従来型の流動接触分解であってよい。従来型の流動接触分解では、例えば、無数の触媒粒子(分解触媒)からなる層の下部から流動化ガス(例えば、ガス状の第二原料油)を吹き込んで、触媒粒子を流動化する。流動化した触媒粒子をライザー型反応塔内で流動化ガスにより上昇させる。反応塔内で触媒粒子に第二原料油を接触させることにより、第二原料油を分解する。接触分解に用いた触媒粒子を再生塔へ供給して再生した後、反応塔内での第二原料油の接触分解に再利用する。つまり、触媒粒子を再生塔と反応塔との間で循環させる。第二原料油の流動接触分解は、高過酷度流動接触分解(High‐Severity Fluid Catalytic Cracking: HS-FCC)であってもよい。高過酷度流動接触分解では、ライザー型反応塔の代わりに、ダウンフロー型反応塔を用いる。反応塔を除いて、高過酷度流動接触分解は従来型の流動接触分解とほぼ同じである。ダウンフロー型反応塔では、ライザー型反応塔の場合に比べて、バックミキシングが抑制され易く、第二原料油の分解反応の反応時間が均一になり易い。 The fluid catalytic cracking of the second feedstock may be conventional fluid catalytic cracking. In the conventional fluid catalytic cracking, for example, a fluidizing gas (for example, a gaseous second raw material oil) is blown from the lower part of a bed of innumerable catalyst particles (decomposition catalysts) to fluidize the catalyst particles. The fluidized catalyst particles are raised by the fluidized gas in the riser type reaction tower. The second feedstock oil is decomposed by bringing the catalyst particles into contact with the second feedstock oil in the reaction tower. The catalyst particles used for the catalytic cracking are supplied to the regeneration tower for regeneration, and then reused for catalytic cracking of the second feedstock oil in the reaction tower. That is, catalyst particles are circulated between the regeneration tower and the reaction tower. The fluid catalytic cracking of the second feedstock oil may be High-Severity Fluid Catalytic Cracking (HS-FCC). In high severity fluid catalytic cracking, a downflow reactor is used instead of a riser reactor. With the exception of the reaction tower, high severity fluid catalytic cracking is about the same as conventional fluid catalytic cracking. In the downflow type reaction column, back mixing is easily suppressed and the reaction time of the decomposition reaction of the second raw material oil tends to be uniform as compared with the riser type reaction column.
 流動接触分解に用いる分解触媒は、例えば、無機酸化物(マトリックス成分)とゼオライトとを含んでよい。無機酸化物は、例えば、カオリン、モンモリナイト、ハロイサイト、ベントナイト、アルミナ、シリカ、ボリア、クロミア、マグネシア、ジルコニア、チタニア及びシリカアルミナからなる群より選ばれる少なくとも一種であってよい。ゼオライトは、例えば、天然ゼオライト及び合成ゼオライトのうち少なくともいずれかであってよい。天然ゼオライトは、グメリナイト、シャバサイト、ダキアルドフッ石、クリノプチロライト、ホージャサイト、キフッ石、ホウフッ石、レピナイト、エリオナイト、ソーダライト、カンクリナイト、フェリエライト、ブリゥースターフッ石、オフレタイト、ソーダフッ石、及びモルデナイトからなる群より選ばれる少なくとも一種であってよい。合成ゼオライトは、X型ゼオライト、Y型ゼオライト、USY型ゼオライト、A型ゼオライト、L型ゼオライト、ZK-4型ゼオライト、B型ゼオライト、E型ゼオライト、F型ゼオライト、H型ゼオライト、J型ゼオライト、M型ゼオライト、Q型ゼオライト、T型ゼオライト、W型ゼオライト、Z型ゼオライト、α型ゼオライト、β型ゼオライト、ω型ゼオライト、ZSM-5型ゼオライト、SAPO-5型ゼオライト、SAPO-11型ゼオライト及びSAPO-34型ゼオライトからなる群より選ばれる少なくとも一種であってよい。 The cracking catalyst used for fluid catalytic cracking may, for example, comprise an inorganic oxide (matrix component) and a zeolite. The inorganic oxide may be, for example, at least one selected from the group consisting of kaolin, montmorillonite, halloysite, bentonite, alumina, silica, boria, chromia, magnesia, zirconia, titania and silica alumina. The zeolite may be, for example, at least one of natural zeolite and synthetic zeolite. Natural zeolites such as gmelinite, shabasite, dakialdo fluorite, clinoptilolite, hojasite, quafluorite, borofluorite, leupinite, elionite, sodalite, cancrinite, ferrierite, briuester fluorite, offretite, soda fluoride It may be at least one selected from the group consisting of stone and mordenite. Synthetic zeolites are X-type zeolite, Y-type zeolite, USY-type zeolite, A-type zeolite, L-type zeolite, ZK-4 type zeolite, B-type zeolite, E-type zeolite, F-type zeolite, H-type zeolite, H-type zeolite, J-type zeolite, M-type zeolite, Q-type zeolite, T-type zeolite, W-type zeolite, Z-type zeolite, α-type zeolite, β-type zeolite, ω-type zeolite, ZSM-5 type zeolite, SAPO-5 type zeolite, SAPO-11 type zeolite and It may be at least one selected from the group consisting of SAPO-34 zeolites.
 第二原料油の流動接触分解によって得られた生成物は、回収設備おいて複数の成分に分離される。回収設備は、例えば、複数の蒸留塔、吸収塔、コンプレッサー、ストリッパー、及び熱交換器を備えていてよい。生成物は、例えば、蒸留塔(常圧蒸留塔)においてドライガス、LPガス(LPG)、ガソリン留分(CCG)、軽油留分(LCO)、ボトム留分(CLarified Oil: CLO)及びコークに分留される。 The product obtained by fluid catalytic cracking of the second feedstock oil is separated into multiple components in a recovery facility. The recovery facility may comprise, for example, a plurality of distillation columns, absorbers, compressors, strippers, and heat exchangers. The products are, for example, dry gas, LP gas (LPG), gasoline fraction (CCG), light oil fraction (LCO), bottom fraction (CLarified Oil: CLO) and coke in a distillation column (atmospheric distillation column). It is fractionated.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.
 [第一原料油の調製]
 二種類の常圧残油AR1及びAR2と、三種類の脱れき油DAO1,DAO2及びDAO3と、を準備した。AR1、AR2、DAO1,DAO2及びDAO3其々の諸性状は、下記表1に示される。下記表中の[S]とは、各油における硫黄の含有量の実測値を意味する。下記表中の[Ni]とは、各油におけるニッケルの含有量の実測値を意味する。下記表中の[V]とは、各油におけるバナジウムの含有量の実測値を意味する。下記表中の[Asp]とは、各油におけるアスファルテンの含有量の実測値を意味する。下記表中の各油のVRの割合は、538℃における値である。
[Preparation of first feedstock oil]
Two types of normal pressure residual oils AR1 and AR2 and three types of deasphalted oils DAO1, DAO2 and DAO3 were prepared. Properties of AR1, AR2, DAO1, DAO2 and DAO3 are shown in Table 1 below. [S] in the following table means the measured value of the content of sulfur in each oil. [Ni] in the following table means the measured value of the content of nickel in each oil. [V] in the following table means the measured value of the vanadium content in each oil. [Asp] in the following table means the measured value of content of asphaltene in each oil. The ratio of VR of each oil in the following table is a value at 538 ° C.
 AR2とDAO1とを下記表2に示される体積比で混合することにより、混合油1を調製した。 The mixed oil 1 was prepared by mixing AR2 and DAO1 in the volume ratio shown in Table 2 below.
 AR2とDAO2とを下記表2に示される体積比で混合することにより、混合油2を調製した。 Mixed oil 2 was prepared by mixing AR2 and DAO2 in the volume ratio shown in Table 2 below.
 AR2とDAO3とを下記表2に示される体積比で混合することにより、混合油3を調製した。 The mixed oil 3 was prepared by mixing AR2 and DAO3 in the volume ratio shown in Table 2 below.
 混合油1、混合油2及び混合油3のいずれも、本発明における第一原料油に相当する。混合油1、混合油2及び混合油3其々は、下記表1に示される諸性状を有していた。 The mixed oil 1, the mixed oil 2 and the mixed oil 3 all correspond to the first feedstock in the present invention. Mixed oil 1, mixed oil 2 and mixed oil 3 each had the properties shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例1]
 実施例1の第一原料油として、混合油1を用いた。ニッケル及びモリブテンを含有する脱メタル触媒44体積%と、ニッケル、コバルト及びモリブテンMoを含有する脱硫触媒56体積%とを含む触媒層を反応器内に設置した。混合油1と水素ガスとを反応器内へ供給し、混合油1を、水素雰囲気下で触媒層に接触させることにより、混合油1を水素化脱硫した。水素/油比は5500scfbに調整した。反応器内の気圧は、14.4MPaに調整した。この混合油1の水素化脱硫により、脱硫重質油を得た。水素化脱硫における液空間速度LHSVは、下記表3に示される値に調整した。水素化脱硫の実施中、脱硫重質油中の硫黄分の含有量を測定して、脱硫重質油中の硫黄分の含有量[POS]が0.3質量%に維持されるように、水素化脱硫の反応温度Tを調整した。水素化脱硫の反応温度Tは、下記表3に示される値であった。下記式1により、実施例1の水素化脱硫における脱メタル率を算出した。下記の[M]とは、第一原料油中の金属分の含有量の実測値(つまり、第一原料油の[Ni]+[V])である。[POM]とは、脱硫重質油中の金属分の含有量の実測値(つまり、脱硫重質油の[Ni]+[V])である。実施例1の脱メタル率は、下記表3に示される値であった。
 脱メタル率=100×([M]-[POM])/[M]   (1)
Example 1
As the first feedstock oil of Example 1, mixed oil 1 was used. A catalyst layer comprising 44% by volume of a demetalation catalyst containing nickel and molybutene and 56% by volume of a desulfurization catalyst containing nickel, cobalt and molybutene Mo was placed in the reactor. The mixed oil 1 was hydrodesulfurized by supplying the mixed oil 1 and hydrogen gas into the reactor, and bringing the mixed oil 1 into contact with the catalyst layer under a hydrogen atmosphere. The hydrogen / oil ratio was adjusted to 5500 scfb. The pressure in the reactor was adjusted to 14.4 MPa. Desulfurized heavy oil was obtained by hydrodesulfurization of the mixed oil 1. The liquid space velocity LHSV in hydrodesulfurization was adjusted to the values shown in Table 3 below. During the hydrodesulfurization, the sulfur content in the desulfurized heavy oil is measured to maintain the sulfur content [POS] in the desulfurized heavy oil at 0.3 mass%, The reaction temperature T of hydrodesulfurization was adjusted. The reaction temperature T for hydrodesulfurization was a value shown in Table 3 below. The demetalization rate in the hydrodesulfurization of Example 1 was calculated by the following formula 1. The following [M] is an actual measurement value of the metal content in the first feedstock oil (that is, [Ni] + [V] of the first feedstock oil). [POM] is the measured value of the metal content in the desulfurized heavy oil (that is, [Ni] + [V] of the desulfurized heavy oil). The demetalization rate of Example 1 was a value shown in Table 3 below.
Metal removal rate = 100 × ([M]-[POM]) / [M] (1)
 脱硫重質油のみからなる第二原料油を、水蒸気の存在下で反応器内の分解触媒層に接触させることにより、第二原料油の流動接触分解を行った。流動接触分解によって得られた生成物を分留して、ドライガス、LPガス(LPG)、ガソリン留分(CCG)、軽油留分(LCO)、ボトム留分(CLO)及びコークを得た。 Fluid catalytic cracking of the second feedstock was carried out by bringing the second feedstock comprising only desulfurized heavy oil into contact with the cracked catalyst bed in the reactor in the presence of steam. The product obtained by fluid catalytic cracking was fractionated to obtain dry gas, LP gas (LPG), gasoline fraction (CCG), light oil fraction (LCO), bottom fraction (CLO) and coke.
 [実施例2]
 実施例2では、第一原料油として、混合油1の代わりに混合油2を用いた。実施例2の水素化脱硫の反応温度Tは下記表3に示される値であった。これらの事項を除いて実施例1と同様の方法で実施例2の水素化脱硫及び流動接触分解を実施した。実施例1と同様の方法で算出した実施例2の脱メタル率は、下記表3に示される値であった。
Example 2
In Example 2, mixed oil 2 was used in place of mixed oil 1 as the first feedstock oil. The reaction temperature T of the hydrodesulfurization of Example 2 was a value shown in Table 3 below. The hydrodesulfurization and fluid catalytic cracking of Example 2 were carried out in the same manner as Example 1 except for these matters. The metal removal rate of Example 2 calculated by the same method as Example 1 was a value shown in Table 3 below.
 [実施例3]
 実施例3では、第一原料油として、混合油1の代わりに混合油3を用いた。実施例3の水素化脱硫の反応温度Tは下記表3に示される値であった。これらの事項を除いて実施例1と同様の方法で実施例3の水素化脱硫及び流動接触分解を実施した。実施例1と同様の方法で算出した実施例3の脱メタル率は、下記表3に示される値であった。
[Example 3]
In Example 3, mixed oil 3 was used in place of mixed oil 1 as the first raw material oil. The reaction temperature T of the hydrodesulfurization of Example 3 was a value shown in Table 3 below. The hydrodesulfurization and fluid catalytic cracking of Example 3 were carried out in the same manner as in Example 1 except for these matters. The metal removal rate of Example 3 calculated by the same method as Example 1 was a value shown in Table 3 below.
 [比較例1]
 比較例1では、第一原料油として、混合油1の代わりに常圧残油AR1のみを用いた。比較例1の水素化脱硫の反応温度Tは下記表3に示される値であった。これらの事項を除いて実施例1と同様の方法で比較例1の水素化脱硫及び流動接触分解を実施した。実施例1と同様の方法で算出した比較例1の脱メタル率は、下記表3に示される値であった。
Comparative Example 1
In Comparative Example 1, only normal-pressure residual oil AR1 was used in place of mixed oil 1 as the first raw material oil. The reaction temperature T of the hydrodesulfurization of Comparative Example 1 was a value shown in Table 3 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 1 were carried out in the same manner as in Example 1 except for these matters. The metal removal rate of Comparative Example 1 calculated by the same method as Example 1 was a value shown in Table 3 below.
 [比較例2]
 比較例2では、第一原料油として、混合油1の代わりに常圧残油AR2のみを用いた。比較例2の水素化脱硫の反応温度Tは下記表3に示される値であった。これらの事項を除いて実施例1と同様の方法で比較例2の水素化脱硫及び流動接触分解を実施した。実施例1と同様の方法で算出した比較例2の脱メタル率は、下記表3に示される値であった。
Comparative Example 2
In Comparative Example 2, only normal-pressure residual oil AR2 was used in place of mixed oil 1 as the first raw material oil. The reaction temperature T of the hydrodesulfurization of Comparative Example 2 was a value shown in Table 3 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 2 were carried out in the same manner as in Example 1 except for these matters. The metal removal rate of Comparative Example 2 calculated by the same method as that of Example 1 was a value shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示された第一原料油におけるVRの体積の割合と脱メタル率との対応関係は、図1に示される。表3に示された第一原料油におけるアスファルテンの含有量と脱メタル率との対応関係は、図2に示される。 The correspondence between the volume fraction of VR in the first feedstock shown in Table 3 and the rate of demetalation is shown in FIG. The correspondence between the content of asphaltenes in the first feedstock shown in Table 3 and the demetallization rate is shown in FIG.
 [実施例1A、1B、1C]
 実施例1Aの反応温度T及び液空間速度LHSVは、下記表4に示される値であった。これらの事項を除いて実施例1と同様方法で、実施例1Aの水素化脱硫及び流動接触分解を実施した。実施例1Aの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。下記式2により、実施例1Aの水素化脱硫における脱硫率を算出した。下記の[S]とは、第一原料油中の硫黄分の含有量の実測値である。下記の[POS]とは、脱硫重質油中の硫黄分の含有量の実測値を意味する。実施例1の脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例1Aの脱メタル率は、下記表5に示される値であった。
 脱硫率=100×([S]-[POS])/[S]   (2)
[Examples 1A, 1B, 1C]
The reaction temperature T and the liquid space velocity LHSV of Example 1A were the values shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 1A were performed in the same manner as in Example 1 except for these matters. The sulfur content and metal content of the desulfurized heavy oil of Example 1A were values shown in Table 4 below. The desulfurization rate in the hydrodesulfurization of Example 1A was calculated by the following formula 2. The following [S] is an actual measurement value of the sulfur content in the first feedstock oil. The following [POS] means the measured value of the sulfur content in the desulfurized heavy oil. The desulfurization rate of Example 1 was a value shown in Table 5 below. The demetalization rate of Example 1A calculated by the same method as Example 1 was a value shown in Table 5 below.
Desulfurization rate = 100 × ([S]-[POS]) / [S] (2)
 第一原料油の水素化脱硫において進行する脱硫反応の反応速度rsは、下記式3で表される。反応速度rsは、単位時間あたりに第一原料油中の硫黄分が反応する速度であるので、反応速度定数kSは、下記式4で表される。
rs=kS×[S]   (3)
kS=LHSV/(n-1)×{[POS]1-n-[S]1-n}   (4)
式3及び式4中のkSは、脱硫反応の反応速度定数である。式3及び式4中のnは反応次数であり、nは1.5とした。
The reaction rate rs of the desulfurization reaction that proceeds in the hydrodesulfurization of the first feedstock oil is represented by the following formula 3. Since the reaction rate rs is a rate at which the sulfur content in the first feedstock oil reacts per unit time, the reaction rate constant kS is represented by the following formula 4.
rs = kS × [S] n (3)
kS = LHSV / (n-1) × {[POS] 1-n- [S] 1-n } (4)
KS in Formula 3 and Formula 4 is a reaction rate constant of the desulfurization reaction. In Equations 3 and 4, n is the reaction order, and n is 1.5.
 上記式4に基づき、上記表1中の第一原料油(混合油1)の[S](実測値)と、下記表4中の実施例1Aの[POS](実測値)及び液空間速度LHSVと、から、実施例1AのkSを算出した。実施例1AのkSは、下記表5に示される。 Based on the formula 4, [S] (measured value) of the first raw material oil (mixed oil 1) in the above Table 1, and [POS] (measured value) and liquid space velocity of Example 1A in the following Table 4 From LHSV, kS of Example 1A was calculated. The kS of Example 1A is shown in Table 5 below.
 第一原料油の水素化脱硫において進行する脱メタル反応の反応速度rmは、下記式5で表される。反応速度rmは、単位時間あたりに第一原料油中の金属分(ニッケル及びバナジウム)が反応する速度であるので、反応速度定数kMは、下記式6で表される。
rm=kM×[M]   (5)
kM=LHSV/(n-1)×{[POM]1-n-[M]1-n}   (6)
式5及び式6中のkMは、脱メタル反応の反応速度定数である。式5及び式6中のnは反応次数であり、nは1.5とした。
The reaction rate rm of the demetalization reaction that proceeds in the hydrodesulfurization of the first feedstock oil is represented by the following formula 5. Since the reaction rate rm is a rate at which the metal components (nickel and vanadium) in the first feedstock oil react per unit time, the reaction rate constant kM is represented by the following formula 6.
rm = kM × [M] n (5)
kM = LHSV / (n-1) × {[POM] 1-n- [M] 1-n } (6)
KM in Formula 5 and Formula 6 is a reaction rate constant of demetallation reaction. In the formulas 5 and 6, n is the order of reaction, and n is 1.5.
 上記式5に基づき、上記表1中の第一原料油(混合油1)の[M](実測値)と、下記表4中の実施例1Aの[POM](実測値)及び液空間速度LHSVと、から、実施例1AのkMを算出した。実施例1AのkMは、下記表5に示される。 Based on the above equation 5, [M] (measured value) of the first raw material oil (mixed oil 1) in the above Table 1, and [POM] (measured value) and liquid space velocity of Example 1A in the following Table 4 From LHSV, kM of Example 1A was calculated. The kM of Example 1A is shown in Table 5 below.
 実施例1Bの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例1Aと同様の方法で、実施例1Bの水素化脱硫及び流動接触分解を実施した。実施例1Bの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例1Bの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例1Bの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例1BのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例1BのkMは、下記表5に示される値であった。 The reaction temperature T of Example 1 B was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 1B were carried out in the same manner as Example 1A except for the reaction temperature T. The contents of sulfur content and metal content in the desulfurized heavy oil of Example 1 B were the values shown in Table 4 below. The desulfurization ratio of Example 1B calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 1B calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 1B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 実施例1Cの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例1Aと同様の方法で、実施例1Cの水素化脱硫及び流動接触分解を実施した。実施例1Cの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例1Cの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例1Cの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例1CのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例1CのkMは、下記表5に示される値であった。 The reaction temperature T of Example 1C was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 1C were carried out in the same manner as Example 1A except for the reaction temperature T. The contents of sulfur content and metal content in the desulfurized heavy oil of Example 1C were values shown in Table 4 below. The desulfurization ratio of Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 1C calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 1C calculated by the same method as Example 1A was a value shown in the following Table 5. The kM of Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 [実施例2A、2B、2C]
 実施例2Aの反応温度T及び液空間速度LHSVは、下記表4に示される値であった。これらの事項を除いて実施例2と同様方法で、実施例2Aの水素化脱硫及び流動接触分解を実施した。実施例2Aの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例2Aの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例2Aの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2AのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2AのkMは、下記表5に示される値であった。
[Examples 2A, 2B, 2C]
The reaction temperature T and the liquid space velocity LHSV of Example 2A were the values shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 2A were carried out in the same manner as in Example 2 except for these matters. The sulfur content and the metal content of the desulfurized heavy oil of Example 2A were the values shown in Table 4 below. The desulfurization ratio of Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 2A calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 2A calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 実施例2Bの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例2Aと同様の方法で、実施例2Bの水素化脱硫及び流動接触分解を実施した。実施例2Bの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例2Bの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例2Bの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2BのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2BのkMは、下記表5に示される値であった。 The reaction temperature T of Example 2B was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 2B were performed in the same manner as Example 2A except for the reaction temperature T. The sulfur content and the metal content of the desulfurized heavy oil of Example 2B were the values shown in Table 4 below. The desulfurization ratio of Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 2B calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 実施例2Cの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例2Aと同様の方法で、実施例2Cの水素化脱硫及び流動接触分解を実施した。実施例2Cの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例2Cの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例2Cの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2CのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例2CのkMは、下記表5に示される値であった。 The reaction temperature T of Example 2C was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 2C were performed in the same manner as Example 2A except for the reaction temperature T. The sulfur content and metal content of the desulfurized heavy oil of Example 2C were values shown in Table 4 below. The desulfurization ratio of Example 2C calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 2C calculated by the same method as that of Example 1 was a value shown in Table 5 below. KS of Example 2C calculated by the same method as Example 1A was a value shown in the following Table 5. The kM of Example 2C calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 [実施例3A、3B、3C]
 実施例3Aの反応温度T及び液空間速度LHSVは、下記表4に示される値であった。これらの事項を除いて実施例3と同様方法で、実施例3Aの水素化脱硫及び流動接触分解を実施した。実施例3Aの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例3Aの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例3Aの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3AのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3AのkMは、下記表5に示される値であった。
[Examples 3A, 3B, 3C]
The reaction temperature T and the liquid space velocity LHSV of Example 3A were the values shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 3A were carried out in the same manner as in Example 3 except for these matters. The sulfur content and metal content of the desulfurized heavy oil of Example 3A were the values shown in Table 4 below. The desulfurization ratio of Example 3A calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 3A calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 3A calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 3A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 実施例3Bの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例3Aと同様の方法で、実施例3Bの水素化脱硫及び流動接触分解を実施した。実施例3Bの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例3Bの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例3Bの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3BのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3BのkMは、下記表5に示される値であった。 The reaction temperature T of Example 3B was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 3B were performed in the same manner as Example 3A except for the reaction temperature T. The sulfur content and metal content of the desulfurized heavy oil of Example 3B were the values shown in Table 4 below. The desulfurization ratio of Example 3B calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 3B calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 3B calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 3B calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 実施例3Cの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて実施例3Aと同様の方法で、実施例3Cの水素化脱硫及び流動接触分解を実施した。実施例3Cの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した実施例3Cの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した実施例3Cの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3CのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した実施例3CのkMは、下記表5に示される値であった。 The reaction temperature T of Example 3C was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Example 3C were carried out in the same manner as Example 3A except for the reaction temperature T. The sulfur content and metal content of the desulfurized heavy oil of Example 3C were values shown in Table 4 below. The desulfurization ratio of Example 3C calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Example 3C calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Example 3C calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Example 3C calculated by the same method as Example 1A was a value shown in Table 5 below.
 [比較例1A、1B、1C]
 比較例1Aの反応温度T及び液空間速度LHSVは、下記表4に示される値であった。これらの事項を除いて比較例1と同様方法で、比較例1Aの水素化脱硫及び流動接触分解を実施した。比較例1Aの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した比較例1Aの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した比較例1Aの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1AのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1AのkMは、下記表5に示される値であった。
[Comparative Examples 1A, 1B, 1C]
The reaction temperature T and the liquid space velocity LHSV of Comparative Example 1A were the values shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 1A were performed in the same manner as Comparative Example 1 except for these matters. The contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 1A were the values shown in Table 4 below. The desulfurization rate of Comparative Example 1A calculated by the same method as Example 1A was a value shown in Table 5 below. The metal removal rate of Comparative Example 1A calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Comparative Example 1A calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Comparative Example 1A calculated by the same method as Example 1A was a value shown in Table 5 below.
 比較例1Bの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて比較例1Aと同様の方法で、比較例1Bの水素化脱硫及び流動接触分解を実施した。比較例1Bの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した比較例1Bの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した比較例1Bの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1BのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1BのkMは、下記表5に示される値であった。 The reaction temperature T of Comparative Example 1B was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 1B were performed in the same manner as Comparative Example 1A except for the reaction temperature T. The contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 1 B were values shown in Table 4 below. The desulfurization ratio of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below. The metal removal rate of Comparative Example 1B calculated by the same method as that of Example 1 was a value shown in Table 5 below. KS of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Comparative Example 1B calculated by the same method as Example 1A was a value shown in Table 5 below.
 比較例1Cの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて比較例1Aと同様の方法で、比較例1Cの水素化脱硫及び流動接触分解を実施した。比較例1Cの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した比較例1Cの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した比較例1Cの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1CのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例1CのkMは、下記表5に示される値であった。 The reaction temperature T of Comparative Example 1C was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 1C were performed in the same manner as Comparative Example 1A except for the reaction temperature T. The contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 1C were values shown in Table 4 below. The desulfurization rate of Comparative Example 1C calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Comparative Example 1C calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Comparative Example 1C calculated by the same method as Example 1A was a value shown in Table 5 below. KM of Comparative Example 1C calculated by the same method as Example 1A was a value shown in Table 5 below.
 [比較例2A、2B]
 比較例2Aの反応温度T及び液空間速度LHSVは、下記表4に示される値であった。これらの事項を除いて比較例2と同様方法で、比較例2Aの水素化脱硫及び流動接触分解を実施した。比較例2Aの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した比較例2Aの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した比較例2Aの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例2AのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例2AのkMは、下記表5に示される値であった。
[Comparative Examples 2A, 2B]
The reaction temperature T and the liquid space velocity LHSV of Comparative Example 2A were the values shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 2A were performed in the same manner as in Comparative Example 2 except for these matters. The contents of sulfur content and metal content in the desulfurized heavy oil of Comparative Example 2A were values shown in Table 4 below. The desulfurization ratio of Comparative Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Comparative Example 2A calculated by the same method as Example 1 was a value shown in Table 5 below. KS of Comparative Example 2A calculated by the same method as Example 1A was a value shown in Table 5 below. The kM of Comparative Example 2A calculated by the same method as that of Example 1A was a value shown in Table 5 below.
 比較例2Bの反応温度Tは、下記表4に示される値であった。反応温度Tを除いて比較例2Aと同様の方法で、比較例2Bの水素化脱硫及び流動接触分解を実施した。比較例2Bの脱硫重質油における硫黄分及び金属分其々の含有量は、下記表4に示される値であった。実施例1Aと同様の方法で算出した比較例2Bの脱硫率は、下記表5に示される値であった。実施例1と同様の方法で算出した比較例2Bの脱メタル率は、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例2BのkSは、下記表5に示される値であった。実施例1Aと同様の方法で算出した比較例2BのkMは、下記表5に示される値であった。 The reaction temperature T of Comparative Example 2B was a value shown in Table 4 below. The hydrodesulfurization and fluid catalytic cracking of Comparative Example 2B were performed in the same manner as Comparative Example 2A except for the reaction temperature T. The sulfur content and metal content of the desulfurized heavy oil of Comparative Example 2B were values shown in Table 4 below. The desulfurization ratio of Comparative Example 2B calculated by the same method as that of Example 1A was a value shown in Table 5 below. The metal removal rate of Comparative Example 2B calculated by the same method as that of Example 1 was a value shown in Table 5 below. KS of Comparative Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below. KM of Comparative Example 2B calculated by the same method as Example 1A was a value shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示された水素化脱硫の反応温度Tと脱硫重質油中の金属分の含有量との対応関係は、図3に示される。 The correspondence between the reaction temperature T of hydrodesulfurization shown in Table 4 and the content of metal in the desulfurized heavy oil is shown in FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示された水素化脱硫の脱硫率と脱メタル率との対応関係は、図4に示される。図4は、混合油1~3の水素化脱硫における脱硫率が、常圧残油AR1,AR2の水素化脱硫における脱硫率と略同等である場合であっても、混合油1~3の水素化脱硫における脱メタル率は、常圧残油AR1,AR2の水素化脱硫における脱メタル率よりも高いことを示している。表5に示された1000/Tと脱メタル反応の反応速度定数kMとの対応関係は、図5に示される。図5は、混合油1~3の水素化脱硫の反応温度Tが、常圧残油AR1,AR2の水素化脱硫の反応温度Tと略同等である場合、混合油1~3の脱メタル反応の速度定数kMは、常圧残油AR1,AR2の脱メタル反応の速度定数kMよりも高いことを示している。 The correspondence between the desulfurization rate and the demetalization rate of the hydrodesulfurization shown in Table 5 is shown in FIG. FIG. 4 shows that even if the desulfurization rate in the hydrodesulfurization of mixed oil 1 to 3 is substantially equal to the desulfurization rate in the hydrodesulfurization of atmospheric residual oil AR1, AR2, hydrogen of mixed oil 1 to 3 The demetallization rate in the chemical desulfurization has been shown to be higher than the demetallization rate in the hydrodesulfurization of atmospheric residual oil AR1, AR2. The correspondence between 1000 / T shown in Table 5 and the reaction rate constant kM of the demetallation reaction is shown in FIG. FIG. 5 shows that when the reaction temperature T of hydrodesulfurization of mixed oils 1 to 3 is substantially equal to the reaction temperature T of hydrodesulfurization of atmospheric residuals AR1 and AR2, the demetallation reaction of mixed oils 1 to 3 The rate constant kM of is higher than the rate constant kM of the demetalization reaction of the atmospheric pressure residual oils AR1 and AR2.
 [実施例1D]
 表5に示される実施例1A,1B及び1C其々のkMから、kMの自然対数lnkMを算出した。表4に示される実施例1A,1B及び1C其々の反応温度T(K)から、1000/T(K-1)を算出した。実施例1A,1B及び1C其々の各反応温度TにおけるlnkMと1000/Tとから、アレニウスプロットを作成した。最小二乗法により、アレニウスプロットから、下記の式7(一次式)で表される回帰直線を算出した。
lnkM=-(Ea/R)×(1/T)+lnA   (7)
式7中のkMは、脱メタル反応の反応速度定数である。式7中のEaは、脱メタル反応の活性化エネルギーである。式7中のRは、気体定数である。式7中のTは、反応温度である。式7中のAは、頻度因子である。
Example 1D
From kM of each of Examples 1A, 1B and 1C shown in Table 5, natural logarithm lnkM of kM was calculated. From the reaction temperatures T (K) of Examples 1A, 1B and 1C shown in Table 4, 1000 / T (K −1 ) was calculated. Arrhenius plots were made from lnk M and 1000 / T at each reaction temperature T in each of Examples 1A, 1B and 1C. The regression line represented by the following equation 7 (linear expression) was calculated from the Arrhenius plot by the least squares method.
lnkM =-(Ea / R) × (1 / T) + lnA (7)
KM in Equation 7 is a reaction rate constant of the demetallation reaction. Ea in Formula 7 is the activation energy of the demetallation reaction. R in Formula 7 is a gas constant. T in Formula 7 is a reaction temperature. A in Equation 7 is a frequency factor.
 アレニウスプロットから算出された実施例1DのEa及びAは、下記表6に示される。上記式7に基づき、370℃(643.15K)における脱メタル反応の反応速度定数kMを算出した。上記式7から算出された実施例1Dの反応速度定数kMは、下記表6に示される。 Ea and A of Example 1D calculated from the Arrhenius plot are shown in Table 6 below. Based on the above equation 7, the reaction rate constant kM of the demetalization reaction at 370 ° C. (643.15 K) was calculated. The reaction rate constant kM of Example 1D calculated from the above equation 7 is shown in Table 6 below.
 上記式7から算出された反応速度定数kMと、上記式6と、から、下記表6に示される4通りの液空間速度LHSV其々における[POM]を算出した。[POM]の算出では、[M]が100質量ppmであると仮定した。つまり、下記表6に示されるkM、LHSV及び[M]其々の数値を、上記式6に代入することにより、[POM]を算出した。実施例1Dの各LHSVにおける[POM]は、下記表6に示される。上記式1に基づき、下記表6中の[POM]及び[M]から、各LHSVにおける脱メタル率を算出した。各LHSVにおける脱メタル率は、下記表6に示される。 From the reaction rate constant kM calculated from the above equation 7 and the above equation 6, [POM] in each of four liquid space velocity LHSV shown in Table 6 below was calculated. In the calculation of [POM], it was assumed that [M] was 100 mass ppm. That is, [POM] was calculated by substituting the numerical values of kM, LHSV and [M] shown in Table 6 below into the above-mentioned Equation 6. [POM] in each LHSV of Example 1 D is shown in Table 6 below. Based on the above equation 1, the demetalization rate in each LHSV was calculated from [POM] and [M] in Table 6 below. The demetalization rate in each LHSV is shown in Table 6 below.
 [実施例2D]
 実施例1Dと同様の方法で、実施例2A,2B及び2Cに基づき、実施例2Dのアレニウスプロットを作成した。実施例1Dと同様の方法で、実施例2Dのアレニウスプロットから、上記式7で表される実施例2Dの回帰直線を算出した。実施例2DのEa及びAは、下記表6に示される。実施例1Dと同様の方法で、上記式7から実施例2Dの反応速度定数kMを算出した。実施例2Dの反応速度定数kMは、下記表6に示される。
Example 2D
The Arrhenius plot of Example 2D was made based on Examples 2A, 2B and 2C in the same manner as Example 1D. From the Arrhenius plot of Example 2D, the regression line of Example 2D represented by the formula 7 was calculated in the same manner as in Example 1D. Ea and A of Example 2D are shown in Table 6 below. The reaction rate constant kM of the above-mentioned equation 7 to example 2D was calculated by the same method as in example 1D. The reaction rate constant kM of Example 2D is shown in Table 6 below.
 実施例1Dと同様の方法で、実施例2Dの各LHSVにおける[POM]を算出した。実施例2Dの各LHSVにおける[POM]は、下記表6に示される。実施例1Dと同様の方法で、実施例2Dの各LHSVにおける脱メタル率を算出した。実施例2Dの各LHSVにおける脱メタル率は、下記表6に示される。 [POM] at each LHSV of Example 2D was calculated in the same manner as Example 1D. [POM] in each LHSV of Example 2D is shown in Table 6 below. The demetalization rate in each LHSV of Example 2D was calculated in the same manner as in Example 1D. The demetalization rate in each LHSV of Example 2D is shown in Table 6 below.
 [実施例3D]
 実施例1Dと同様の方法で、実施例3A,3B及び3Cに基づき、実施例3Dのアレニウスプロットを作成した。実施例1Dと同様の方法で、実施例3Dのアレニウスプロットから、上記式7で表される実施例3Dの回帰直線を算出した。実施例3DのEa及びAは、下記表6に示される。実施例1Dと同様の方法で、上記式7から実施例3Dの反応速度定数kMを算出した。実施例3Dの反応速度定数kMは、下記表6に示される。
Example 3D
The Arrhenius plot of Example 3D was made based on Examples 3A, 3B and 3C in the same manner as Example 1D. From the Arrhenius plot of Example 3D, the regression line of Example 3D represented by the formula 7 was calculated in the same manner as in Example 1D. Ea and A of Example 3D are shown in Table 6 below. The reaction rate constant kM of Example 3D was calculated in the same manner as in Example 1D. The reaction rate constant kM of Example 3D is shown in Table 6 below.
 実施例1Dと同様の方法で、実施例3Dの各LHSVにおける[POM]を算出した。実施例3Dの各LHSVにおける[POM]は、下記表6に示される。実施例1Dと同様の方法で、実施例3Dの各LHSVにおける脱メタル率を算出した。実施例3Dの各LHSVにおける脱メタル率は、下記表6に示される。 [POM] at each LHSV of Example 3D was calculated in the same manner as Example 1D. [POM] in each LHSV of Example 3D is shown in Table 6 below. The demetalization rate at each LHSV of Example 3D was calculated in the same manner as in Example 1D. The demetalation rate in each LHSV of Example 3D is shown in Table 6 below.
 [比較例1D]
 実施例1Dと同様の方法で、比較例1A,1B及び1Cに基づき、比較例1Dのアレニウスプロットを作成した。実施例1Dと同様の方法で、比較例1Dのアレニウスプロットから、上記式7で表される比較例1Dの回帰直線を算出した。比較例1DのEa及びAは、下記表6に示される。実施例1Dと同様の方法で、上記式7から比較例1Dの反応速度定数kMを算出した。比較例1Dの反応速度定数kMは、下記表6に示される。
Comparative Example 1D
An Arrhenius plot of Comparative Example 1D was created based on Comparative Examples 1A, 1B and 1C in the same manner as Example 1D. In the same manner as in Example 1D, a regression line of Comparative Example 1D represented by the above-described Formula 7 was calculated from the Arrhenius plot of Comparative Example 1D. Ea and A of Comparative Example 1D are shown in Table 6 below. The reaction rate constant kM of the comparative example 1D was calculated from the above equation 7 in the same manner as in the example 1D. The reaction rate constant kM of Comparative Example 1D is shown in Table 6 below.
 実施例1Dと同様の方法で、比較例1Dの各LHSVにおける[POM]を算出した。比較例1Dの各LHSVにおける[POM]は、下記表6に示される。実施例1Dと同様の方法で、比較例1Dの各LHSVにおける脱メタル率を算出した。比較例1Dの各LHSVにおける脱メタル率は、下記表6に示される。 [POM] at each LHSV of Comparative Example 1D was calculated in the same manner as Example 1D. [POM] in each LHSV of Comparative Example 1D is shown in Table 6 below. The demetalization rate in each LHSV of Comparative Example 1D was calculated in the same manner as in Example 1D. The demetalization rate in each LHSV of Comparative Example 1D is shown in Table 6 below.
 [比較例2D]
 実施例1Dと同様の方法で、比較例2A及び2Bに基づき、比較例2Dのアレニウスプロットを作成した。実施例1Dと同様の方法で、比較例2Dのアレニウスプロットから、上記式7で表される比較例2Dの回帰直線を算出した。比較例2DのEa及びAは、下記表6に示される。実施例1Dと同様の方法で、上記式7から比較例2Dの反応速度定数kMを算出した。比較例2Dの反応速度定数kMは、下記表6に示される。
Comparative Example 2D
An Arrhenius plot of Comparative Example 2D was created based on Comparative Examples 2A and 2B in the same manner as Example 1D. The regression line of Comparative Example 2D represented by the above-described Formula 7 was calculated from the Arrhenius plot of Comparative Example 2D in the same manner as in Example 1D. Ea and A of Comparative Example 2D are shown in Table 6 below. The reaction rate constant kM of Comparative Example 2D was calculated from the above Formula 7 in the same manner as in Example 1D. The reaction rate constant kM of Comparative Example 2D is shown in Table 6 below.
 実施例1Dと同様の方法で、比較例2Dの各LHSVにおける[POM]を算出した。比較例2Dの各LHSVにおける[POM]は、下記表6に示される。実施例1Dと同様の方法で、比較例2Dの各LHSVにおける脱メタル率を算出した。比較例2Dの各LHSVにおける脱メタル率は、下記表6に示される。 [POM] at each LHSV of Comparative Example 2D was calculated in the same manner as Example 1D. [POM] in each LHSV of Comparative Example 2D is shown in Table 6 below. The demetalation rate in each LHSV of Comparative Example 2D was calculated in the same manner as in Example 1D. The demetalization rate in each LHSV of Comparative Example 2D is shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示された水素化脱硫の液空間速度LHSVと脱メタル率との対応関係は、図6に示される。図6は、液空間速度が0.3h-1以上である過酷な反応条件下での水素化脱硫においても、混合油1~3の脱メタル率が十分に高いことを示している。 The correspondence between the liquid hourly space velocity LHSV of hydrodesulfurization and the demetallization rate shown in Table 6 is shown in FIG. FIG. 6 shows that, even in hydrodesulfurization under severe reaction conditions in which the liquid hourly space velocity is 0.3 h −1 or more, the demetallization rates of Mixed Oils 1 to 3 are sufficiently high.
 本発明に係る炭化水素油の製造方法によれば、例えば、常圧残油及び脱れき油等の重質油からガソリン及び軽油等の市場価格が比較的高い製品を製造することができる。

 
According to the method for producing a hydrocarbon oil according to the present invention, for example, products with relatively high market prices such as gasoline and gas oil can be produced from heavy oils such as normal pressure residual oil and deasphalted oil.

Claims (2)

  1.  常圧残油を含む第一原料油の水素化脱硫により、脱硫重質油を得る工程と、
     前記脱硫重質油を含む第二原料油の流動接触分解により、生成物を得る工程と、
    を備え、
     前記水素化脱硫における液空間速度が、0.3h-1以上1.0h-1以下であり、
     前記第一原料油に占める脱れき油の割合が、30体積%以上75体積%以下であり、
     前記第一原料油におけるアスファルテンの含有量が、0質量%以上1質量%以下である、
    炭化水素油の製造方法。
    Obtaining a desulfurized heavy oil by hydrodesulfurization of a first feedstock oil containing atmospheric residual oil;
    Obtaining a product by fluid catalytic cracking of the second feedstock including the desulfurized heavy oil;
    Equipped with
    Liquid hourly space velocity in the hydrodesulfurization is, is at 0.3h -1 or 1.0 h -1 or less,
    The proportion of deasphalted oil in the first feedstock oil is 30% by volume or more and 75% by volume or less,
    The content of asphaltene in the first feedstock oil is 0% by mass or more and 1% by mass or less.
    Method of producing hydrocarbon oil.
  2.  前記第一原料油に占める減圧残油の割合が、50体積%以上85体積%以下である、
    請求項1に記載の炭化水素油の製造方法。

     
    The ratio of vacuum residue to the first feedstock oil is 50% by volume or more and 85% by volume or less.
    The manufacturing method of the hydrocarbon oil of Claim 1.

PCT/JP2018/035161 2017-11-29 2018-09-21 Method for producing hydrocarbon oil WO2019106921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-229026 2017-11-29
JP2017229026A JP2019099611A (en) 2017-11-29 2017-11-29 Method of producing hydrocarbon oil

Publications (1)

Publication Number Publication Date
WO2019106921A1 true WO2019106921A1 (en) 2019-06-06

Family

ID=66663902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035161 WO2019106921A1 (en) 2017-11-29 2018-09-21 Method for producing hydrocarbon oil

Country Status (2)

Country Link
JP (1) JP2019099611A (en)
WO (1) WO2019106921A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
WO2022050976A1 (en) * 2020-09-01 2022-03-10 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US11352573B2 (en) 2017-05-31 2022-06-07 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711259A (en) * 1993-06-22 1995-01-13 Idemitsu Kosan Co Ltd Method for treating heavy oil
JP2003238970A (en) * 2001-12-13 2003-08-27 Idemitsu Kosan Co Ltd Method for producing low-sulfur gasoline base material
WO2016194686A1 (en) * 2015-05-29 2016-12-08 Jxエネルギー株式会社 Method for producing hydrotreated oil and method for producing catalytic cracked oil
JP2017186408A (en) * 2016-04-01 2017-10-12 Jxtgエネルギー株式会社 Manufacturing method of hydrocarbon oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711259A (en) * 1993-06-22 1995-01-13 Idemitsu Kosan Co Ltd Method for treating heavy oil
JP2003238970A (en) * 2001-12-13 2003-08-27 Idemitsu Kosan Co Ltd Method for producing low-sulfur gasoline base material
WO2016194686A1 (en) * 2015-05-29 2016-12-08 Jxエネルギー株式会社 Method for producing hydrotreated oil and method for producing catalytic cracked oil
JP2017186408A (en) * 2016-04-01 2017-10-12 Jxtgエネルギー株式会社 Manufacturing method of hydrocarbon oil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352573B2 (en) 2017-05-31 2022-06-07 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
WO2022050976A1 (en) * 2020-09-01 2022-03-10 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
US11505754B2 (en) 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues

Also Published As

Publication number Publication date
JP2019099611A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2019106921A1 (en) Method for producing hydrocarbon oil
AU657567B2 (en) A method of treatment of heavy hydrocarbon oil
KR102447300B1 (en) A conversion process comprising fixed bed hydrotreating for the manufacture of marine fuels, separation of the hydrotreated resid fraction and catalytic cracking steps
EP2828358B1 (en) Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil
US9605218B2 (en) Integrated hydrocracking and slurry hydroconversion of heavy oils
EP2821462B1 (en) Additives for the maximization of light olefins in fluid catalytic cracking units, and process
US20060157386A1 (en) Hydrocracking catalysts for vacuum gas oil & de-metalized oil blend
US20190078027A1 (en) Hydroprocessing of high density cracked fractions
TWI558806B (en) Processing vacuum residuum and vacuum gas oil in ebullated bed reactor systems
CN105820840A (en) Method for processing heavy oil and residual oil and material containing heavy hydrocarbon
JP6770953B2 (en) Method for producing hydrotreated oil and method for producing catalytically cracked oil
JP5460224B2 (en) Method for producing highly aromatic hydrocarbon oil
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
KR102444820B1 (en) How to Optimize Catalyst Loading for Hydrocracking Processes
JP5563491B2 (en) Method for hydrotreating heavy hydrocarbon oil
JP6548223B2 (en) Method of producing fuel oil base material
Trambouze Engineering of hydrotreating processes
JP6426027B2 (en) Fluid catalytic cracking device and catalytic cracking method of feedstock using the device
JP2017186408A (en) Manufacturing method of hydrocarbon oil
JP5314355B2 (en) Method for producing hydrocarbon oil
JP6283561B2 (en) Method for producing fuel oil base material
CN112745953B (en) Method and system for hydrotreating deoiled asphalt
JP2003238970A (en) Method for producing low-sulfur gasoline base material
JP2023501180A (en) Method and system for hydrotreating deoiled asphalt
US20200199464A1 (en) Naphthenic compositions derived from fcc process fractions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883702

Country of ref document: EP

Kind code of ref document: A1