WO2019106729A1 - Electric machine controlling method and electric machine controlling device - Google Patents

Electric machine controlling method and electric machine controlling device Download PDF

Info

Publication number
WO2019106729A1
WO2019106729A1 PCT/JP2017/042679 JP2017042679W WO2019106729A1 WO 2019106729 A1 WO2019106729 A1 WO 2019106729A1 JP 2017042679 W JP2017042679 W JP 2017042679W WO 2019106729 A1 WO2019106729 A1 WO 2019106729A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
control
value
axis
Prior art date
Application number
PCT/JP2017/042679
Other languages
French (fr)
Japanese (ja)
Inventor
正治 満博
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/042679 priority Critical patent/WO2019106729A1/en
Priority to JP2019556439A priority patent/JP6984663B2/en
Publication of WO2019106729A1 publication Critical patent/WO2019106729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a control method of a motor and a control device of the motor.
  • control method for controlling the motor for example, current vector control for feeding back a dq-axis current component obtained by converting the current supplied to the motor into rectangular coordinates, and changing the phase of the voltage vector related to the voltage supplied to the motor Voltage phase control is known.
  • current vector control for feeding back a dq-axis current component obtained by converting the current supplied to the motor into rectangular coordinates, and changing the phase of the voltage vector related to the voltage supplied to the motor Voltage phase control is known.
  • one of the controls is often selected and executed in accordance with the operating state of the motor.
  • the control device as described above is configured to feedback the d-axis current supplied to the motor to the voltage norm command value indicating the magnitude of the voltage supplied to the motor, so control is performed depending on the direction of the voltage generated in the motor.
  • the error of As a result there is a concern that the voltage norm command value, which is the output of feedback, diverges and the operation of the motor becomes unstable.
  • An object of the present invention is to provide a control method for suppressing the instability of the operation of the motor, and a control device for the motor.
  • a control method of a motor is a control method of executing any one control of current vector control and voltage phase control for controlling supplied power of the motor according to an operation state of the motor. is there.
  • This control method calculates a voltage command value of the voltage phase control based on a voltage norm command value indicating the magnitude of the supply voltage to the motor and a voltage phase command value indicating the phase of the supply voltage. Including control steps.
  • the voltage phase control step feeds back at least one of d-axis and q-axis components of the current supplied to the motor to the voltage norm command value according to the direction of the voltage generated in the motor.
  • FIG. 1 is a view showing a configuration example of a control device of a motor according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a partial configuration of a current vector control unit in the control device.
  • FIG. 3 is a block diagram showing an example of the configuration of the voltage phase control unit in the control device.
  • FIG. 4 is a diagram for explaining a method of generating a switching signal for switching the current deviation in the current FB control unit of voltage phase control.
  • FIG. 5 is a block diagram showing an example of the configuration of a PI controller in the current FB control unit.
  • FIG. 6 is a diagram showing the relationship between the flux norm and the voltage norm generated in the motor in the middle to high speed rotation region of the motor.
  • FIG. 1 is a view showing a configuration example of a control device of a motor according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a partial configuration of a current vector control unit in the control device.
  • FIG. 7 is a diagram showing the correlation of the d-axis and q-axis current components of the motor with respect to the voltage norm when the voltage phase of the motor is near 0 °.
  • FIG. 8 is a diagram showing the correlation of each current component to the voltage norm when the voltage phase of the motor is near ⁇ 90 °.
  • FIG. 9A is a diagram showing the correlation of the d-axis current with the voltage norm for each voltage phase of the motor.
  • FIG. 9B is a diagram showing the correlation of the q-axis current to the voltage norm for each voltage phase of the motor.
  • FIG. 10 is a block diagram showing an example of a configuration in which the PI controller executes anti-windup processing.
  • FIG. 10 is a block diagram showing an example of a configuration in which the PI controller executes anti-windup processing.
  • FIG. 11 is a diagram for explaining an example of a method of setting the voltage phase range in the voltage phase control unit.
  • FIG. 12 is a block diagram showing an example of a configuration of a switching determination unit that determines control switching to a current vector control unit or a voltage phase control unit.
  • FIG. 13 is a diagram showing an example of setting of a modulation factor threshold value used for determination of control switching.
  • FIG. 14 is a diagram for explaining an example of the determination method of the control mode determination unit in the control device.
  • FIG. 15 is a block diagram illustrating a detailed configuration of a control switch in the control device.
  • FIG. 16 is a flowchart showing an example of a control method of the motor in the present embodiment.
  • FIG. 17 is a flow chart showing an example of a processing procedure of voltage phase control processing included in the control method of the motor.
  • FIG. 18A is a diagram for explaining a general control switching determination method.
  • FIG. 18B is a diagram for explaining a control switching determination method in the present embodiment.
  • FIG. 19 is a diagram showing an example of the determination method of the control mode determination unit in the second embodiment of the present invention.
  • FIG. 20 is a block diagram illustrating the detailed configuration of the control switch in the present embodiment.
  • FIG. 21 is a diagram showing an example of the determination method of the control mode determination unit in the third embodiment of the present invention.
  • FIG. 22 is a block diagram illustrating the detailed configuration of the control switch in the present embodiment.
  • FIG. 23 is a diagram showing a configuration example of a control device in the fourth embodiment of the present invention.
  • FIG. 24 is a block diagram showing an example of the configuration of the switching determination unit in the present embodiment.
  • FIG. 25 is a diagram illustrating an example of the determination method of the control mode determination unit in the switching determination unit.
  • FIG. 1 is a view showing a configuration example of a control device 100 that controls the motor 9 in the first embodiment of the present invention.
  • the control device 100 controls the power supplied to the motor 9.
  • the controller 100 executes a process programmed to control the operation of the motor 9.
  • the control device 100 is configured of one or more controllers.
  • Control device 100 includes current vector control unit 1, voltage phase control unit 2, control switch 3, coordinate converter 4, PWM converter 5, inverter 6, battery voltage detector 7, motor current A detector 8 and a motor 9 are provided.
  • the control device 100 further includes a rotor detector 10, a rotational speed calculator 11, a coordinate converter 12, and a switching determination unit 13.
  • the current vector control unit 1 executes current vector control for controlling a vector related to the current supplied to the motor 9 so that the torque generated in the motor 9 converges on the torque target value T * .
  • the current vector control unit 1 executes feedback control to feed back the current value of the power supplied from the inverter 6 to the motor 9 to the voltage command value of the motor 9 based on the torque target value T * of the motor 9.
  • the current vector control unit 1 of the present embodiment uses the torque target value T * of the motor 9, the rotational speed detection value N, and the battery voltage detection value V dc to generate the d-axis current detection value id as the d-axis voltage command value.
  • v is fed back to Di_fin, it feeds back the detected q-axis current value i q on the q-axis voltage command value v Qi_fin.
  • the current vector control unit 1 outputs a d-axis voltage command value v Di_fin and q-axis voltage command value v Qi_fin as a voltage command value of the current vector control of the control switch 3.
  • the above-mentioned d-axis current detection value id and q-axis current detection value iq indicate the values of the d-axis component and the q-axis component of the current supplied from the inverter 6 to the motor 9, respectively.
  • the d-axis and the q-axis are coordinate axes orthogonal to each other.
  • the voltage phase control unit 2 executes voltage phase control to control the phase between the voltages supplied to the respective phases of the motor 9 so that the torque generated in the motor 9 converges on the torque target value T * .
  • the voltage phase control unit 2 performs feedback control of the value of the current supplied from the inverter 6 to the motor 9 to the voltage command value of the motor 9 based on the torque target value T * .
  • the voltage phase control unit 2 of the present embodiment uses the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc to generate the d-axis current detection value id and the q-axis current detection value iq . It feeds back to a predetermined voltage norm command value and a voltage phase command value.
  • the voltage phase control unit 2 converts the voltage norm command value and the voltage phase command value into the d-axis voltage command value vdv_fin and the q-axis voltage command value vqv_fin .
  • the voltage phase control unit 2 outputs the d-axis voltage command value vdv_fin and the q-axis voltage command value vqv_fin to the control switch 3 as voltage command values for voltage phase control.
  • the control switch 3 selects any one output from among the output of the current vector control unit 1 and the output of the voltage phase control unit 2 according to the determination result of the switching determination unit 13. Then, the control switch 3 outputs the voltage command values of the selected control as final voltage command values vd_fin * and vq_fin * of the d axis and the q axis.
  • Coordinate converter 4 on the basis of the electrical angle detection value ⁇ of the electric motor 9, the final voltage command value of the d-axis and q-axis v D_fin * and v Q_fin * the three-phase voltage values v Convert to u * , v v * and v w * .
  • the PWM converter 5 drives the power element for driving the power element provided in the inverter 6 for the three-phase voltage command values v u * , v v * and v w * based on the battery voltage detection value V dc.
  • the signals D uu * , D ul * , D vu * , D v1 * , D wu * and D wl * are converted.
  • the PWM converter 5 outputs the converted power element drive signals D uu * , D ul * , D vu * , D vl * , D wu * and D wl * to the inverter 6.
  • Inverter 6 generates a DC voltage of battery 61 based on power element drive signals D uu * , D ul * , D vu * , D v1 * , D wu * and D wl * to drive motor 9. Convert to phase alternating voltages v u , v v and v w . The inverter 6 supplies the converted three-phase AC voltages v u , v v and v w to the motor 9.
  • the battery voltage detector 7 detects the voltage of the battery 61 connected to the inverter 6.
  • the battery voltage detector 7 outputs a battery voltage detection value V dc indicating the detected voltage to each of the current vector control unit 1, the voltage phase control unit 2 and the switching determination unit 13.
  • the motor current detector 8 detects at least two-phase alternating current among three-phase alternating current i u , iv and i w supplied from the inverter 6 to the motor 9.
  • the motor current detector 8 of the present embodiment detects U-phase and V-phase AC currents i u and i v and outputs them to the coordinate converter 12.
  • the electric motor 9 is a motor provided with a winding (for example, three-phase winding of U, V and W) in each of a plurality of phases, and can be used as a drive source of an electric vehicle or the like.
  • the motor 9 is realized by an IPM (Interior Permanent Magnet) type three-phase synchronous motor.
  • the rotor detector 10 detects the electrical angle of the motor 9.
  • the rotor detector 10 outputs an electrical angle detection value ⁇ indicating the value of the detected electrical angle to each of the coordinate converter 4 and the coordinate converter 12, and outputs the electric angle detection value ⁇ to the rotational speed calculator 11. Do.
  • the rotational speed calculator 11 calculates the rotational speed of the motor 9 from the amount of change per unit time of the electric angle detection value ⁇ of the motor 9.
  • the rotational speed calculator 11 outputs the calculated rotational speed as the detected rotational speed N of the motor 9 to each of the current vector control unit 1, the voltage phase control unit 2 and the switching determination unit 13.
  • the coordinate converter 12 converts the U-phase and V-phase AC currents i u and i v into a d-axis current detection value id and q axis based on the electric angle detection value ⁇ of the motor 9 as in equation (2). Convert to current detection value iq .
  • the coordinate converter 12 outputs the d-axis current detection value id and the q-axis current detection value iq to each of the current vector control unit 1, the voltage phase control unit 2, and the switching determination unit 13.
  • the switching determination unit 13 determines the control to be applied to the motor 9 among the current vector control and the voltage phase control according to the operating state of the motor 9.
  • the battery voltage detection value Vdc, the rotational speed detection value N, and the like can be mentioned.
  • the switching determination unit 13 outputs a control mode signal indicating control to be applied to the motor 9 to the control switch 3 according to the determination result.
  • FIG. 2 is a block diagram illustrating a partial configuration of the current vector control unit 1 in the present embodiment.
  • the current vector control unit 1 includes a non-interference voltage computing unit 101, an LPF 102, a current target value computing unit 103, a subtractor 104, a PI controller 105, and an adder 106.
  • the non-interference voltage calculator 101 is a non-interference voltage value that cancels interference voltages that interfere with each other between the d-axis and the q-axis based on the torque target value T * , the rotational speed detection value N, and the battery voltage detection value Vdc.
  • v Calculate d_dcpl * .
  • the non-interference voltage calculator 101 stores, for example, a predetermined non-interference table. Specifically, the non-interference voltage value v d — dcpl * is associated with the non-interference table at each operation point specified by the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc .
  • the non-interference voltage computing unit 101 When the non-interference voltage computing unit 101 acquires each parameter of the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc , it refers to the non-interference table and corresponds to the operating point specified by each parameter. Calculate the attached non-interference voltage value v d — dcpl * . Then, the non-interference voltage computing unit 101 outputs the computed non-interference voltage value v d — dcpl * to the LPF 102.
  • the LPF 102 is a low pass filter that takes into consideration that the interference voltage generated in the motor 9 depends on the current supplied to the motor 9.
  • the time constant of the LPF 102 is set so as to ensure the response of the target d-axis current.
  • the LPF 102 outputs a non-interference voltage value v d _dcpl_flt * , which is a value obtained by performing low-pass filter processing on the non-interference voltage value v d _dcpl *, to the adder 106.
  • the current target value calculator 103 calculates the d-axis current target value id * of the motor 9 with reference to a predetermined current table.
  • a d-axis current target value id * is associated with each operation point determined by the torque target value T * , the rotational speed detection value N, and the battery voltage detection value Vdc .
  • the d-axis current target value id * of the current table stores a current value at which the efficiency of the motor 9 is maximized when the motor 9 operates at the torque target value T * .
  • the stored current value is obtained in advance by experimental data or simulation.
  • the target current value calculation unit 103 outputs the calculated d-axis current target value id * to the voltage phase control unit 2 and the switching determination unit 13, and outputs the d-axis current target value id * to the subtractor 104.
  • Subtractor 104 subtracts the d-axis current detection value i d from the d-axis current target value i d *.
  • the subtractor 104 outputs the subtracted value to the PI controller 105 as the d-axis current deviation id_err .
  • PI controller 105 executes the current feedback control d-axis current detection value i d is fed back to the d-axis current deviation i D_err to follow the d-axis current target value i d * in the d-axis voltage command value v Di_fin .
  • K dp is a d-axis proportional gain
  • K di is a d-axis integral gain.
  • the d-axis proportional gain K dp and the d-axis integral gain K di are obtained from experimental data, simulation results, and the like.
  • PI controller 105 outputs current FB voltage command value v di ′ to adder 106.
  • the adder 106 adds the non-interference voltage value v d_dcpl_flt * to the current FB voltage command value v di 'as in equation (4), and outputs the added value as the d-axis voltage command value v di_fin * of current vector control. Do.
  • the current vector control unit 1 based on torque target value T *, by feeding back the d-axis current detection value i d, and outputs the d-axis voltage command value v di_fin *.
  • FIG. 2 shows a configuration example for calculating the d-axis voltage command value vdi_fin * of current vector control
  • the figure also shows a configuration for calculating the q-axis voltage command value v qi_fin * of current vector control.
  • the configuration is the same as that shown in FIG.
  • current vector control unit 1 sets the d-axis and q-axis current components of the power supplied to motor 9 to the d-axis and q-axis voltage command values vdi_fin * and vqi_fin *, respectively . Feed back to the control switch 3 for output.
  • FIG. 3 is a block diagram showing an example of the configuration of the voltage phase control unit 2 in the present embodiment.
  • the voltage phase control unit 2 includes a voltage norm generation unit 210, a current FB control unit 220, a norm synthesizer 230, a norm limiter 240, a voltage phase generation unit 250, a torque FB control unit 260, and a phase synthesis unit. 270, a phase limiter 280, and a vector converter 290.
  • Voltage norm generation unit 210 generates voltage norm reference value Va_ff corresponding to reference modulation ratio M * based on battery voltage detection value Vdc by feedforward control.
  • the reference modulation factor M * referred to here indicates a reference value of the modulation factor in voltage phase control.
  • the modulation factor in voltage phase control is the ratio of the amplitude of the fundamental wave component in the interphase voltage of the motor 9 to the battery voltage detection value Vdc .
  • the inter-phase voltage of the motor 9 is, for example, the voltage v u ⁇ v v between the U phase and the V phase.
  • the range in which the modulation factor in voltage phase control is from 0.0 to 1.0 corresponds to a normal modulation area in which a pseudo sine wave voltage can be generated by PWM modulation.
  • the range in which the modulation ratio exceeds 1.0 corresponds to the overmodulation region, and the maximum value and the minimum value of the fundamental wave component of the interphase voltage are limited even if the pseudo sine wave is generated.
  • the modulation rate increases to about 1.1
  • the fundamental wave component of the interphase voltage has a waveform similar to a so-called rectangular wave voltage.
  • the voltage norm generation unit 210 in the present embodiment calculates the voltage norm reference value V a — ff as in equation (5).
  • the voltage norm generation unit 210 outputs the calculated voltage norm reference value V a — ff to the voltage phase generation unit 250 and also outputs it to the norm synthesizer 230.
  • Current FB control unit 220 outputs a voltage norm FB value V A_FB for feeding back the d-axis current detection value i d and the q-axis current detection value i q to the voltage norm command value V a *.
  • Current FB control unit 220 of the present embodiment correlation between the d-axis current detection value id and the voltage norm command value V a *, or correlation between q-axis current detection value i q and voltage norm command value V a * The detected value of one of the current components of the d-axis current detection value id and the q-axis current detection value iq is fed back according to the height of the sex.
  • the current FB control unit 220 includes a d-axis reference generator 221, a d-axis deviation calculator 222, a q-axis reference generator 223, an absolute value calculator 224, an absolute value calculator 225, and a q-axis deviation calculator 226, a current component switch 227, an FB selector 228, and a PI controller 229.
  • the d-axis reference generator 221 has the same configuration as the LPF 102 shown in FIG. d-axis reference generator 221 calculates a d-axis current reference value i d_ref * representing the target response of the d-axis current based on the d-axis current target value i d *. The d-axis reference generator 221 outputs the calculated d-axis current reference value id_ref * to the d-axis deviation calculator 222.
  • d-axis difference calculator 222 calculates a deviation in a d-axis current deviation i D_err the d-axis current reference value i d_ref * and d-axis current detection value i d, the current components computed d-axis current deviation i D_err It outputs to the switch 227.
  • the q-axis reference generator 223 is the same as the d-axis reference generator 221. q-axis reference generator 223 calculates a q-axis current reference value i q_ref * representing the target response of q-axis current based on the q-axis current target value i q *. The q-axis reference generator 223 outputs the calculated q-axis current reference value iq_ref * to the absolute value calculator 224.
  • the absolute value calculator 224 obtains the absolute value
  • Absolute value calculator 225 the absolute value of q-axis current detection value i q
  • and q-axis current absolute value deviation is a deviation Calculate
  • the q-axis deviation calculator 226 outputs the calculated q-axis current absolute value deviation
  • the current component switching device 227 sets the output to the PI controller 229 to one of the current deviation among the q-axis current absolute value deviation
  • the FB selector 228 of the present embodiment generates a switching signal based on the voltage phase command value ⁇ * indicating the phase of the voltage to be supplied to the motor 9. The method of generating the switching signal will be described later with reference to FIG.
  • the FB selector 228 outputs the generated switching signal to the current component switch 227 and the PI controller 229.
  • the PI controller 229 inputs the current deviation of the reference value and the estimated value regarding the current supplied to the motor 9, and calculates the voltage norm FB value Va_fb based on the current deviation.
  • the detailed configuration of the PI controller 229 will be described later with reference to FIG.
  • the PI controller 229 outputs the voltage norm FB value Va_fb to the norm synthesizer 230 by executing current feedback control.
  • the norm synthesizer 230 adds the voltage norm FB value Va_fb to the voltage norm reference value Va_ff, and outputs the added value to the norm limiter 240 as a voltage norm command value Va * .
  • the norm limiter 240 limits the voltage norm command value V a * from the lower limit (for example, 0) to the upper limit V a — max . As the battery voltage detection value Vdc decreases, the voltage norm upper limit value Va_max decreases.
  • the upper limit value Va_max described above is calculated based on the modulation factor upper limit value M max * , which is the maximum allowable setting value of the modulation factor in voltage phase control, and the battery voltage detection value V dc as shown in equation (6). .
  • the modulation factor upper limit value M max * is a predetermined value.
  • Norm restrictor 240 while the * voltage norm command value V a is above the upper limit value V a_max sets the voltage norm command value V a * to be output to the vector converter 290 to the upper limit value V a_max.
  • the torque increase or decrease of the motor 9 by the torque estimate T est by the torque FB control unit 260 is fed back to the voltage phase command value alpha * where * is a voltage norm command value V a is fixed to the upper limit value V a_max Be done.
  • Norm restrictor 240 while the * voltage norm command value V a is fixed to the upper limit value V a_max or lower limit value, a notification signal indicating that * the voltage norm command value V a is limited to the PI controller 229 Output.
  • the voltage phase generation unit 250 generates a voltage phase FF value ⁇ ff indicating the phase of the voltage to be supplied to the motor 9 based on the torque target value T * by feedforward control.
  • the voltage phase generation unit 250 of the present embodiment calculates the voltage phase FF value ⁇ ff using the torque target value T * , the voltage norm reference value V a — ff, and the rotational speed detection value N.
  • the voltage phase generation unit 250 stores a predetermined phase table.
  • a voltage phase FF value ⁇ ff is associated with each of the operating points determined by the torque target value T * , the voltage norm reference value Va_ff, and the rotational speed detection value N in the above-described phase table.
  • voltage phase FF value ⁇ ff of the phase table for example, voltage phase values measured in a nominal state for each operating point in the experiment are stored.
  • voltage phase generation unit 250 When voltage phase generation unit 250 obtains each parameter of torque target value T * , voltage norm reference value Va_ff and rotational speed detection value N, it refers to the phase table and is associated with the operating point specified by each parameter. The voltage phase FF value ⁇ ff is calculated. Then, the voltage phase generation unit 250 outputs the calculated voltage phase FF value ⁇ ff to the phase synthesizer 270.
  • the torque FB control unit 260 outputs a voltage phase FB value ⁇ fb for feeding back the estimated torque value Test of the motor 9 to the voltage phase command value ⁇ * based on the torque target value T * .
  • the torque FB control unit 260 includes a reference torque generation unit 261, a torque calculator 262, a torque deviation calculator 263, and a PI controller 264.
  • the reference torque generation unit 261 has the same configuration as the LPF 102 shown in FIG.
  • the reference torque generation unit 261 calculates a torque reference value T ref * representing a target response of the torque of the motor 9 based on the torque target value T * .
  • the reference torque generation unit 261 outputs the calculated torque reference value T ref * to the torque deviation calculator 263.
  • Torque calculator 262 calculates the torque estimated value T est based on the d-axis current detection value i d and the q-axis current detection value i q.
  • the torque calculator 262 stores a predetermined torque table.
  • the torque table, torque estimation value T est for each operating point defined Patent is associated with d-axis current detection value i d and the q-axis current detection value i q. For example, measurement values of torque measured for each operating point of the dq axis current in the experiment are stored in advance in the torque estimated value T est of the torque table.
  • Torque unit 262 acquires the parameters of the d-axis current detection value i d and the q-axis current detection value i q, referring to the torque table, torque estimation value associated with the operating point specified by the parameters Calculate T est .
  • the torque calculator 262 outputs the calculated torque estimated value T est to the torque deviation calculator 263.
  • the torque deviation calculator 263 calculates a torque deviation T err between the torque reference value T ref * and the torque estimated value T est, and outputs the calculated torque deviation T err to the PI controller 264.
  • the PI controller 264 executes torque feedback control for feeding back the torque deviation T err from the torque deviation calculator 263 to the voltage phase command value ⁇ * so that the torque estimated value T est follows the torque reference value T ref *. Do.
  • the PI controller 264 calculates the voltage phase FB value ⁇ fb based on the torque deviation T err (T ref * ⁇ T est ), as in equation (7).
  • the PI controller 264 outputs the calculated voltage phase FB value ⁇ fb to the phase synthesizer 270.
  • K ⁇ p is a proportional gain
  • K ⁇ i is an integral gain.
  • the proportional gain K ⁇ p and the integral gain K ⁇ i are determined by experimental data, simulation results, and the like.
  • Phase combiner 270 adds the voltage phase FB value alpha fb to voltage phase FF value alpha ff, and outputs the sum value as * voltage voltage phase command value of the phase control alpha phase limiter 280.
  • Phase limiter 280 limits voltage phase command value ⁇ * to a predetermined voltage phase range from voltage phase lower limit value ⁇ min to voltage phase upper limit value ⁇ max . The method of setting the predetermined voltage phase range will be described later with reference to FIG. Phase limiter 280 outputs, to vector converter 290, voltage phase command value ⁇ * restricted within the voltage phase range.
  • the vector converter 290 sets the voltage norm command value Va * from the norm limiter 240 and the voltage phase command value ⁇ * from the phase limiter 280 to the d-axis voltage command value v dv * and It converts into q-axis voltage command value v qv *, and outputs it as a voltage command value of voltage phase control.
  • voltage phase control unit 2 changes voltage phase command value ⁇ * such that torque deviation T err converges to zero.
  • the torque of the motor 9 can be increased or decreased.
  • voltage phase control unit 2 selects one of the current deviations of the d axis and q axis according to voltage phase command value ⁇ * , and the voltage norm command is performed so that the selected current deviation converges to zero. Change the value V a * .
  • V a * the voltage norm command value
  • FIG. 4 is a diagram for explaining a method of generating the switching signal output from the FB selector 228.
  • the vertical axis indicates the level of the switching signal
  • the horizontal axis indicates the voltage phase command value ⁇ * .
  • the torque T of the motor 9 is approximately 0 when the voltage phase ⁇ is 0 °
  • the leading side is the positive torque
  • the lag side is the negative torque.
  • the reference of the voltage phase ⁇ at which the torque T00 is 180 ° the lead side becomes positive torque and the lag side becomes torque with respect to 180 °.
  • the d-axis current feedback control is executed by outputting the d-axis current deviation id_err from the current component switch 227 to the PI controller 229. Ru.
  • the q-axis current feedback control is executed by the q-axis current absolute value deviation
  • err being output from the current component switching device 227 to the PI controller 229.
  • hysteresis is provided to the voltage phase command value ⁇ * using two thresholds of the first threshold ⁇ th1 and the second threshold ⁇ th2 .
  • the FB selector 228 selects q-axis current feedback control when the voltage phase command value ⁇ * is near ⁇ 90 degrees, and d when the voltage phase command value ⁇ * is near 0 degrees. Select axis current feedback control.
  • FIG. 5 is a block diagram showing an example of a functional configuration of the PI controller 229. As shown in FIG.
  • the PI controller 229 includes a variable gain calculator 91, a variable gain multiplier 92, an inductance switch 93, an inductance multiplier 94, a proportional gain multiplier 95, an integral gain multiplier 96, and an integrator 97. , And an adder 98.
  • the gains set in variable gain multiplier 92, inductance multiplier 94, proportional gain multiplier 95, and integral gain multiplier 96 are collectively referred to as a control gain of PI controller 229.
  • variable gain computing unit 91 computes the electric angular velocity ⁇ re as a variable gain that configures the control gain of the PI controller 229 based on the rotational speed detection value N of the motor 9 as shown in equation (9).
  • Variable gain multiplier 92 sets an electrical angular velocity ⁇ re which is a variable gain with respect to the current deviation output from current component switching device 227 out of q axis current absolute value deviation
  • the inductance switching device 93 selects one of the d-axis inductance L d and the q-axis inductance L q as an inductance L x which is a gain constant set in the inductance multiplier 94 in accordance with the switching signal from the FB selector 228. Switch to
  • the inductance switch 93 sets the d-axis inductance Ld as the inductance Lx.
  • the inductance switch 93 sets the q-axis inductance Lq as the inductance Lx.
  • the inductance multiplier 94 multiplies the output of the variable gain multiplier 92 by the inductance Lx. Then, the proportional gain multiplier 95 multiplies the output of the inductance multiplier 94 by the proportional gain K ip .
  • the integral gain multiplier 96 multiplies the output of the inductance multiplier 94 by the integral gain K ii .
  • the integrator 97 sequentially integrates the output of the integral gain multiplier 96.
  • the adder 98 adds the output of the proportional gain multiplier 95 and the output of the integrator 97 and outputs the added value as a voltage norm FB value Va_fb .
  • the PI controller 229 calculates the voltage norm FB value Va_fb based on the d-axis current deviation id_err as in equation (10). Do.
  • the PI controller 229 calculates the voltage norm FB based on the q-axis current absolute value deviation
  • err as shown in equation (11).
  • the value Va_fb is calculated.
  • the electric angular velocity ⁇ re constituting the control gain of the PI controller 229 is used as a variable gain that fluctuates according to the rotational speed detection value N of the motor 9.
  • d-axis current feedback control is selected, d-axis inductance L d is used as a constant of control gain, and when q-axis current feedback control is selected, q-axis inductance L q is selected as a constant of control gain. Is used. That is, the control gain is switched according to the switching signal.
  • FIG. 6 is a diagram showing the relationship between the magnetic flux norm ⁇ 0 and the voltage norm V a generated in the motor 9 in the middle high speed rotation region of the motor 9.
  • the horizontal axis indicates the d axis in the dq axis orthogonal coordinate system
  • the vertical axis indicates the other q axis.
  • the voltage drop due to the winding resistance of the motor 9 can be neglected compared to the magnitude ⁇ re ⁇ 0 of the induced voltage. As it becomes smaller, the voltage drop due to the winding resistance of the motor 9 is omitted. That is, the voltage norm V a indicating the magnitude of the terminal voltage of the motor 9 can be regarded as being proportional to the magnetic flux norm ⁇ 0 and the electrical angular velocity ⁇ re .
  • Flux norm phi 0 is the magnitude of the magnetic flux which combines the current magnetic flux generated by the d-axis current i d and the q-axis current i q, a magnetic flux [Phi a caused by a magnet provided in the motor 9.
  • Flux norm phi based the d-axis flux L d i d by the d-axis current i d and the d-axis inductance L d, the q-axis flux L q i q by the q-axis current i q and the q-axis inductance L q It is decided.
  • Current FB control unit 220 of the present embodiment voltage using the relationship current component of the current supplied to the motor 9 shown in FIG. 6 and (i d and i q) and flux norm phi 0 and the voltage norm V a
  • the norm command value V a * is configured to increase or decrease.
  • Figure 7 is a diagram illustrating the correlation to the voltage norm V a of the current component of the d-axis and q-axis i d and i q when the voltage phase ⁇ of the electric motor 9 is in the 0 degree vicinity.
  • the d-axis current id becomes dominant with respect to the sensitivity of the flux norm ⁇ 0 proportional to the voltage norm V a , that is, the correlation with the flux norm ⁇ 0 . Therefore, if the voltage phase ⁇ in near 0 °, the correlation of the d-axis current i d is increased relative to the voltage norm V a, the correlation of the q-axis current i q is lowered.
  • the PI controller 229 performs d-axis current feedback control when the voltage phase command value ⁇ * indicating the direction of the voltage generated in the motor 9 is near 0. Is set to L level so that is selected.
  • Figure 8 is a graph showing the correlation with respect to the voltage norm V a of the current components i d and i q of the motor 9 when the voltage phase ⁇ of the electric motor 9 is in the vicinity ⁇ 90 °.
  • the variation width of the flux norm phi 0 relative increase or decrease of the d-axis current i d is As it becomes smaller, the variation width of the flux norm ⁇ 0 becomes larger with respect to the increase and decrease of the q-axis current iq .
  • the q-axis current i q is dominant in the sensitivity of the flux norm ⁇ 0 which is proportional to the voltage norm V a . Therefore, if the voltage phase ⁇ is near ⁇ 90 °, the correlation of the q-axis current i q becomes higher than the voltage norm V a, the correlation of the d-axis current i d is lowered.
  • the PI controller 229 of this embodiment switches so that q-axis current feedback control is selected. Set the signal to H level.
  • Figure 9 is a graph illustrating the correlation between the supply current and voltage norm V a of the motor 9.
  • Figure 9A is a diagram illustrating the correlation to the voltage norm V a d-axis current i d for each voltage phase ⁇ of the electric motor 9.
  • FIG. 9B is a diagram showing the correlation of the q-axis current i q to the voltage norm V a for each voltage phase ⁇ .
  • a voltage norm command value V a * may be appropriately increased or decreased according to the change of the d-axis current i d.
  • the correlation between the q-axis current i q and voltage norm V a becomes a power running region where the voltage phase ⁇ takes a positive value, the inverse relationship between the regeneration region in which the voltage phase ⁇ takes a negative value .
  • the correlation q-axis current iq is symmetrical relative to 0A (amperes) by applying the absolute value processing for determining the absolute value of q-axis current i q, in the regenerative region at the power running region It can be realized by a common feedback configuration.
  • the current FB controller 220 taking into account the correlation of the current component i d and i q for flux norm phi 0, the current FB controller 220, d-axis inductance constant control gain of the PI controller 229 on the basis of the voltage phase command value alpha * L d or q axis inductance L q is set.
  • the response speed in the control of the motor 9 can be secured regardless of the voltage phase command value ⁇ * .
  • FIG. 10 is a block diagram showing an example of a functional configuration for performing anti-windup processing in the PI controller 229 shown in FIG.
  • the norm limiter 240 outputs a notification signal indicating that the voltage norm command value V a * is limited to the PI controller 229, as shown in FIG. 10, the PI controller 229 performs anti-windup processing. Run.
  • 0 (zero) is input to the integrator 97 so that the integrator 97 is not updated with respect to the input of the PI controller 229. Then, the initialization process is executed so that the sum of voltage norm FB value Va_fb output from PI controller 229 and voltage norm reference value Va_ff becomes voltage norm upper limit value Va_max or voltage norm lower limit value 0.
  • PI controller 229 calculates a voltage norm FB value V A_FB by the configuration shown in FIG. 5.
  • FIG. 11 is a diagram for explaining an example of a method of setting the voltage phase range set in phase limiter 280 shown in FIG. 3.
  • FIG. 11 illustrates voltage phase characteristics indicating the relationship between the voltage phase ⁇ and the torque T in the motor 9.
  • the horizontal axis indicates the voltage phase ⁇ of the motor 9
  • the vertical axis indicates the torque T of the motor 9.
  • the range of the voltage phase in which the correlation between the voltage phase ⁇ of the motor 9 and the torque T is maintained is in the range of approximately ⁇ 105 degrees to +105 degrees.
  • the voltage phase lower limit value ⁇ min and the voltage phase upper limit value ⁇ max of the voltage phase range for the phase limiter 280 described with reference to FIG. 3 are set to ⁇ 105 degrees and +105 degrees, respectively.
  • FIG. 12 is a block diagram showing an example of the configuration of the switching determination unit 13 shown in FIG.
  • the switching determination unit 13 includes first to third norm threshold calculators 131 to 133, averaging processing filters 134 and 135, a norm calculator 136, a noise processing filter 137, a reference current filter 138, and current threshold calculation. And a control mode determination unit 140.
  • the first norm threshold calculator 131 based on the modulation rate threshold M th1 for switching from the voltage phase control to the current vector control calculates a first norm threshold V A_th1 a threshold for voltage norm.
  • the first norm threshold value Va_th1 is used as a switching condition from voltage phase control to current vector control.
  • the second norm threshold calculator 132 calculates a second norm threshold V A_th2 a threshold for voltage norm.
  • the second norm threshold value Va_th2 is used as a switching condition from current vector control to voltage phase control.
  • Third norm threshold calculator 133 based on the modulation rate threshold M th3 for switching from the voltage phase control to the protection control, and calculates a third norm threshold V A_th3 a threshold for voltage norm.
  • the third norm threshold value Va_th3 is used as a switching condition from current vector control to protection control.
  • the first to third modulation factor thresholds M th1 to M th3 are set, for example, to have a relationship as shown in equation (12).
  • the modulation factor upper limit value M max * is set to a value larger than 1.0.
  • the first to third norm threshold calculators 131 to 133 respectively use the battery voltage detection value V dc and the first to third modulation factor thresholds M th1 to M th3 as shown in equation (13). based on, to calculate the first to third norm threshold V A_th1 to V a_th3.
  • the averaging processing filter 134 is a filter that performs averaging processing on input values and outputs the result.
  • the averaging processing filter 134 of the present embodiment performs noise cutting processing for removing the noise component of the input value on the final voltage command value v d_fin * of the d axis output from the control switch 3 to perform noise cutting processing.
  • the value v d — fin — flt obtained by the above is output to the norm calculator 136.
  • the averaging process filter 134 is realized by, for example, a low pass filter.
  • the averaging process filter 135 has the same configuration as the averaging process filter 134.
  • Averaging filter 135 performs a noise cut process to the control switch final voltage command value of the q-axis output from the 3 v d_fin *, outputs the value v Q_fin_flt subjected to noise cut process norm calculator 136 Do.
  • the norm calculator 136 calculates the averaged voltage norm Va_fin_flt * indicating the norm component of the voltage command value based on the output values vd_fin_flt and vq_fin_flt of the averaging processing filters 134 and 135 as shown in equation (14) .
  • the noise processing filter 137 is a filter that performs averaging processing on input values and outputs the result.
  • Noise processing filter 137 of the present embodiment by performing the noise cut process on the d-axis current detection value i d from the coordinate converter 12 shown in FIG. 1, calculates the average d-axis current value i D_flt .
  • the noise processing filter 137 is realized by, for example, a low pass filter.
  • the reference current filter 138 performs d-axis current reference by performing filter processing in consideration of the responsiveness of the motor 9 with respect to the d-axis current target value id * from the current target value calculation unit 103 shown in FIG. 2. Calculate the value id_ref * .
  • the reference current filter 138 is realized by, for example, a low pass filter.
  • the current threshold calculator 139 is a filter that performs averaging on the input value and outputs the result.
  • the current threshold calculator 139 of this embodiment performs the same noise cut processing as the noise processing filter 137 on the d-axis current reference value id_ref * from the reference current filter 138 to obtain an averaged d-axis current value. calculating a d-axis current threshold i D_TH * with i D_flt equivalent delay characteristics.
  • the d-axis current threshold id_th * is used as one of the switching conditions from voltage phase control to current vector control.
  • the current threshold calculator 139 is realized, for example, by the same low pass filter as the noise processing filter 137.
  • the control mode determination unit 140 determines the control suitable for the motor 9 according to the operating state of the motor 9 among the voltage phase control, the current vector control, and the protection control. Then, the control mode determination unit 140 outputs the control mode indicating the determination result to the control switch 3.
  • the control mode determiner 140 of this embodiment switches the control of the motor 9 between the current vector control and the voltage phase control based on the averaged voltage norm Va_fin_flt * and the averaged d-axis current value id_flt. . Further, the control mode determination unit 140 switches control of the motor 9 to protection control for protecting the motor 9 from voltage phase control based on the averaged voltage norm Va_fin_flt * and the rotational speed detection value N.
  • FIG. 13 is a diagram showing a setting example of the first to third modulation factor thresholds M th1 to M th3 .
  • the modulation factor upper limit value M max * is set to 1.1
  • the second modulation factor threshold M th2 is set to 1.0
  • the first modulation factor threshold M th1 is set to 0.9
  • the third modulation rate threshold M th3 is set to 0.5.
  • the reference modulation factor M * of the voltage norm generation unit 210 shown in FIG. 3 is from the second modulation factor threshold M th2 which occupies most of the operation of the motor 9 in the operation area of voltage phase control, to the modulation factor upper limit M It is preferable to set in the range up to max * .
  • FIG. 14 is a diagram for explaining an example of a control mode determination method by the control mode determination unit 140. As shown in FIG. 14
  • the control mode discriminator 140 controls the voltage phase suitable for the motor 9. It determines that it is control. Then, the control mode determination unit 140 outputs a control mode signal indicating voltage phase control to the control switch 3. Thereby, control of the motor 9 is switched from current vector control to voltage phase control.
  • control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control. Then, the control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3. Thereby, control of the motor 9 is switched from voltage phase control to current vector control.
  • the control mode is performed when the averaged voltage norm V a_fin_flt * becomes less than or equal to the third norm threshold V a — th3 or the absolute value of the rotational speed detection value N falls below the rotational speed threshold Nth.
  • the determiner 140 determines that the control suitable for the motor 9 is protection control.
  • Rotational speed threshold N th above is a predetermined threshold for determining whether or not the rotational speed of the electric motor 9 is too down.
  • the control mode determination unit 140 outputs a control mode signal indicating protection control to the control switch 3. As a result, control of the motor 9 is switched from voltage phase control to protection control.
  • the control mode determination unit 140 performs control suitable for the motor 9. It is determined that current vector control is performed. That is, the control of the motor 9 returns from protection control to current vector control.
  • FIG. 15 is a block diagram illustrating a detailed configuration of control switch 3 shown in FIG.
  • Control switch 3 the voltage command value v Di_fin and v Qi_fin from the current vector control unit 1, the voltage command value v Dv_fin and v Qv_fin from voltage phase control unit 2, and the voltage command value for the protective control,
  • the control mode signal from the control mode determination unit 140 is acquired.
  • the d-axis voltage command value and the q-axis voltage command value for protection control are set to zero voltage values that indicate zero (0) to each other.
  • the control switch 3 drives the motor 9 using the output of the current vector control unit 1 according to the control mode signal from the control mode determination unit 140 or drives the motor using the output of the voltage phase control unit 2 Choose what to do.
  • control switch 3 selects a zero voltage that does not depend on the motor current detector 8 and the rotor detector 10 or the like. Thereby, the alternating current power supplied from the inverter 6 to the motor 9 can be suppressed.
  • control device 100 executes a check as to whether or not the motor 9 or the control device 100 itself is in an abnormal state, a failure diagnosis, and the like.
  • FIG. 16 is a flowchart showing an example of a control method of the motor 9 in the present embodiment.
  • step S1 the coordinate converter 12 converts the U- and V-phase currents i u and i v detected by the motor current detector 8 into d-axis and q-axis current detection values id and i q .
  • step S2 the rotational speed calculator 11 calculates the rotational speed detection value N of the motor 9 based on the electrical angle detection value ⁇ detected by the rotor detector 10.
  • control device 100 obtains torque target value T * of electric motor 9 and battery voltage detection value Vdc from battery voltage detector 7.
  • step S ⁇ b> 4 the switching determination unit 13 determines the control to be applied to the motor 9 in accordance with the operating state of the motor 9.
  • step S5 the switching determination unit 13 determines whether the control to be applied to the motor 9 is current vector control.
  • step S7 the current vector control unit 1 calculates the d-axis current FB voltage command value v di * according to the deviation between the d-axis current target value id * and the d-axis current detection value id, and the q-axis current calculating the current FB voltage command value v qi of q-axis * in accordance with the deviation between the target value i q * and the q-axis current detection value i q.
  • Step current vector control unit 1 in S8 the non-interference voltage value of d-axis and q-axis v D_dcpl * and v computes a Q_dcpl * based on the torque target value T *. Then, the current vector control unit 1 outputs non-interference voltage values vd_dcpl_flt * and vq_dcpl_flt * obtained by performing low-pass filter processing on the respective non-interference voltage values vd_dcpl * and vq_dcpl * .
  • step S9 the current vector control unit 1 adds non-interference voltage values v d_dcpl_flt * and v q_dcpl_flt * to the d-axis and q-axis current FB voltage command values v qi * and v qi * , respectively.
  • the d-axis and q-axis voltage command values vdi_fin * and vqi_fin * of the current vector control are output.
  • step S10 the coordinate converter 4 converts the d-axis and q-axis voltage command values v di — fin * and v qi _ fin * into three-phase voltage command values v u * , v v * and v w * .
  • step S5 when it is determined in step S5 that the control to be applied to the motor 9 is not the current vector control, the control device 100 proceeds to the process of step S11.
  • step S11 the switching determination unit 13 determines whether the control to be applied to the motor 9 is voltage phase control.
  • step S12 When it is determined in step S12 that the control to be applied to the motor 9 is voltage phase control, the voltage phase control unit 2 executes the voltage phase control process in the present embodiment.
  • the voltage phase control process will be described later with reference to FIG.
  • step S13 the voltage phase control unit 2 outputs d-axis and q-axis voltage command values v dv _fin * and v qv _fin * for voltage phase control. Thereafter, the control device 100 proceeds to the process of step S10.
  • step S11 when it is determined in step S11 that the control to be applied to the motor 9 is neither current vector control nor voltage phase control, the control device 100 proceeds to the process of step S14.
  • step S14 If it is determined in step S14 that the control to be applied to the motor 9 is neither current vector control nor voltage phase control, the d-axis and q-axis voltage command values for protection control are respectively determined. Set to zero. Thereafter, the control device 100 proceeds to the process of step S10 and ends the control method of the control device 100.
  • FIG. 17 is a flowchart showing an example of a processing procedure relating to the voltage phase control process of step S12.
  • Voltage phase control unit 2 in step S121 as described in FIG. 3, a * d-axis and q-axis current target value i d * and i q from the current vector control unit 1, and a voltage norm reference value V A_ff, voltage
  • the phase FF value ⁇ ff is acquired.
  • step S122 the voltage phase control unit 2 calculates the torque reference value T ref and the torque estimated value T est .
  • step S123 the voltage phase control unit 2 calculates a voltage phase FB value ⁇ fb using the torque deviation T err between the torque reference value T ref and the torque estimated value T est .
  • step S124 voltage phase control unit 2 limits voltage phase command value ⁇ * obtained by adding voltage phase FB value ⁇ fb to voltage phase FF value ⁇ ff within a predetermined voltage phase range.
  • step S125 voltage phase control unit 2 determines whether or not voltage phase command value ⁇ * is limited to the upper limit value of the voltage phase range. When voltage phase command value ⁇ * is not limited to the upper limit value of the voltage phase range, voltage phase control unit 2 proceeds to the process of step S126.
  • Voltage phase control unit in step S126 2 the voltage phase when the command value alpha * is limited to the upper limit value of the voltage phase range, the torque deviation T err voltage phase command value alpha PI controller for feedback to * Initialize H.264.
  • Step voltage phase control unit 2 in S127 includes a d-axis current deviation i D_err between d-axis current reference value i d_ref * and d-axis current detection value i d, the absolute value of q-axis current reference value
  • of the d-axis current detection value is calculated.
  • Step voltage phase control unit 2 in S128 is, d-axis or for feeding back a current deviation voltage norm command value V a * of the q-axis, based on the voltage phase command value alpha * d-axis current deviation i D_err and q-axis current
  • One of the current deviations is selected from the absolute value deviation
  • step S129 voltage phase control unit 2 calculates voltage norm FB value Va_fb using the selected current deviation.
  • Step voltage phase control unit 2 in S130 limits the voltage norm FB value V A_FB voltage norm reference value V A_ff in addition the voltage norm command value V a * within a predetermined voltage norm range.
  • Step voltage phase control unit 2 in S131 it is determined whether the voltage norm command value V a * is limited to the upper limit value V a_max voltage norm range.
  • the voltage phase control unit 2 when the voltage norm command value V a * are not limited to the upper limit value V a_max, the process proceeds to step S133.
  • Voltage phase control unit 2 in step S132 when the * voltage norm command value V a is limited to the upper limit value V a_max is a PI controller 229 for feeding back the current deviation in voltage norm command value V a * initialize.
  • Step voltage phase control unit 2 in S133 the conversion of the voltage command vector is specified by a voltage norm command value V a * and the voltage phase command value alpha * the d-axis and q-axis voltage command value v dv_fin * and v qv_fin * Do.
  • step S133 the control device 100 ends the voltage phase control process, and returns to the process procedure of the control method shown in FIG.
  • FIG. 18A and FIG. 18B are diagrams for explaining a switching method between voltage phase control and current vector control.
  • the horizontal axis indicates the rotational speed of the motor 9
  • the vertical axis indicates the voltage norm related to the interphase voltage of the power supplied to each phase of the motor 9.
  • FIG. 18A is a diagram for explaining a general control switching method as a comparative example with the present embodiment.
  • the control of the motor 9 is performed such that the supply current to the motor 9 is minimized or the operation efficiency of the motor 9 is maximized, and in the voltage phase control, the voltage norm of the motor 9 is Control of the motor 9 is performed so as to be constant. Therefore, it is ideal to switch the control of the motor 9 at the intersection where the current vector control operation line and the voltage phase control operation line cross each other.
  • chattering may occur at the intersection, as shown in FIG. 18A, even if any control exceeds the intersection, it is permitted to continue the control to some extent or as hysteresis. It is general to give a predetermined time width to the switching cycle in order to have it.
  • the voltage phase control is mainly used from the overmodulation region to the rectangular wave region, the harmonic current included in the current supplied to the motor 9 is increased. As a result, it is necessary to increase the time constant of the low-pass filter that removes harmonic components from the current value used to determine control switching, and the delay in switching determination tends to increase with respect to the ideal switching timing. is there.
  • FIG. 18B is a diagram for describing a method of switching control of the motor 9 in the present embodiment.
  • the current target values id * and iq * of the d axis and the q axis, and the detected current values id and id are voltage norms.
  • a configuration for feedback to the command value V a * is provided.
  • the voltage norm of the motor 9 follows the vicinity of the current vector control operation line during the execution of voltage phase control, so the first to third voltage norm thresholds V serving as control switching points.
  • A_th1 * to Va_th3 * can be set to any modulation rate or voltage norm value.
  • the voltage norm command value V a * is monitored to reduce the voltage norm. It becomes possible to detect and detect abnormalities. When an abnormality is detected, the motor 9 can be protected by shifting control of the motor 9 from voltage phase control to protection control.
  • the control method for controlling the motor 9 is any one of current vector control and voltage phase control for controlling the supplied power of the motor 9 according to the operating state of the motor 9.
  • a control method for executing Voltage phase control unit 2 in this control method a voltage norm command value V a * indicating the magnitude of the supply voltage to the electric motor 9, the voltage phase control based on the voltage phase command value alpha * indicating a phase of the supply voltage Calculate the voltage command value of.
  • voltage phase control unit 2 detects a current detection value id or i q indicating at least one of d-axis and q-axis components of the current supplied to motor 9 according to the direction of the voltage generated in motor 9. Are fed back to the voltage norm command value V a * .
  • the direction of the voltage generated in the electric motor 9 is closer to the d-axis, the higher the correlation of the d-axis current detection value i d for the voltage norm V a, the direction of the voltage generated in the electric motor 9 is closer to the q-axis voltage
  • the correlation between the q-axis current detection value i q and the norm V a becomes high.
  • voltage phase control unit 2 feeds back q-axis current detection value iq to voltage norm command value V a * as the direction of the voltage generated in motor 9 approaches the d axis, and the direction of the voltage generated in motor 9 Becomes closer to the q-axis, the q-axis current detection value iq can be fed back to the voltage norm command value V a * .
  • the d-axis target regarding the current of the motor 9 is calculated based on the torque target value T * of the motor 9.
  • a d-axis current target value id * indicating a value and a q-axis target value and a q-axis current target value iq * are calculated.
  • voltage phase control unit 2 calculates the voltage norm command value V a * to converge to the d-axis current target value i d * and FB process
  • q-axis current detection value i q executes a q-axis FB process of calculating a voltage norm command value V a * to converge to the q-axis current target value i q *.
  • the current FB control unit 220 of the voltage phase control unit 2 selects one of the d-axis FB processing and the q-axis FB processing using the voltage phase command value ⁇ * , and executes the selected FB processing.
  • the voltage norm command value V a * is changed.
  • the d-axis deviation calculator 222 in the current FB control unit 220 calculates the d-axis current deviation between the d-axis current detection value id and the d-axis current target value id * .
  • the q-axis deviation calculator 226 calculates the q-axis current deviation between the q-axis current detection value iq and the q-axis current target value iq * .
  • the FB selector 228 selects one of the d-axis current deviation and the q-axis current deviation according to the voltage phase command value ⁇ *
  • the PI controller 229 selects the current selected by the FB selector 228.
  • the voltage norm command value V a * is increased or decreased according to the deviation.
  • one of the PI controller 229 can be fed back to the voltage norm command value V a * using.
  • it can increase or decrease the voltage norm command value V a * in accordance with a change in the high current deviation correlated against voltage norm V a of the motor 9.
  • the motor current detector 8 detects a three-phase alternating current supplied to the motor 9.
  • the coordinate converter 12 converts the three-phase alternating current detected by the motor current detector 8 into a q-axis current detection value iq , and the q-axis deviation calculator 226 calculates the absolute value
  • a q- axis current deviation which is an absolute value difference between q
  • the regeneration region and powering region can be stably controlled in any of the regions.
  • the PI controller 229 is changed in accordance with the control gain at the time of feeding back the d-axis current detection value i d or q-axis current detection value i q to the electrical angular velocity omega re of the motor 9 .
  • the PI controller 229 is changed in accordance with the control gain at the time of feeding back the d-axis current detection value i d or q-axis current detection value i q to the electrical angular velocity omega re of the motor 9 .
  • the PI controller 229 a constant L q of the control gain when feedback q-axis current detection value i q is the control gain when feedback d-axis current detection value i d
  • the constant L d is set to a different value.
  • the current magnetic flux generated by the d-axis current detection value i d is dependent on the d-axis inductance L d as shown in FIG. 6, the current magnetic flux generated by the q-axis current detection value i q depends on the q-axis inductance L q .
  • the difference between the d-axis inductance L d and q-axis inductance L q is larger.
  • control gain of the q-axis FB process is set to a different value with respect to the control gain of the d-axis FB process after taking into consideration the d-axis inductance L d and the q-axis inductance L q .
  • the same response speed can be secured in both the d-axis FB processing and the q-axis FB control.
  • PI controller 229 integrates with integrator 97 when feeding back d-axis current deviation or q-axis current deviation to voltage norm command value V a *. Execute the process The norm restrictor 240, along with the voltage norm command value V a * if above a predetermined upper limit value V a_max limits the voltage norm command value V a * to the upper limit value V a_max, PI controller 229, The integration process by the integrator 97 is stopped.
  • norm limiter 240 serves to limit the voltage norm command value V a * to the upper limit value V a_max, PI controller 229, as shown in FIG. 10, executes a predetermined anti-windup processing.
  • the anti-windup processing so that the * previous voltage norm command value V a is limited by the norm limiter 240 matches the upper limit value V a_max, the integrator held integral value to output buffer 97 (previous value Process of updating).
  • control mode determination unit 140 determines that the correlation parameter or voltage norm command value V a * having a correlation with the voltage norm command value V a * during execution of the voltage phase control has a first norm threshold value.
  • V a_th1 is less than, control of the motor 9 is switched to current vector control.
  • the voltage norm command value V a * follows the voltage norm V a of the motor 9, so voltage distortion due to overmodulation of the voltage supplied to the motor 9 It is possible to set the first norm threshold value Va_th1 in an operation area where the harmonic current is small and the harmonic current is small. As a result, the noise component included in the voltage norm command value V a * for switching determination or a parameter correlated therewith is reduced.
  • the averaging processing filters 134 and 135 for removing noise components can be omitted, and the time constants of the averaging processing filters 134 and 135 can be reduced, so that the delay in control switching can be shortened. Therefore, even when the load of the motor 9 changes suddenly, it is possible to suppress that the rotational speed of the motor 9 exceeds the allowable range of voltage phase control and voltage phase control is performed, and the overcurrent to the motor 9 Can be suppressed.
  • the voltage command vector that is specified by the averaging process value subjected to averaging processing in a voltage norm command value V a *, d-axis and q-axis voltage command value v d_fin * and v q_fin * And an averaged value Va_fin_flt * of the norm component.
  • the first norm threshold V A_th1 is set to a value smaller than the upper limit value of the voltage norm command value V a *.
  • the control mode determiner 140 if it is one current component of the electric motor 9 d-axis current detection value i d or this averaging process value exceeds the * predetermined current threshold i D_TH Switches from voltage phase control to current vector control. This makes it possible to detect that the load of the motor 9 has suddenly changed, so that it is possible to suppress the influence on the motor 9 when switching from voltage phase control to current vector control.
  • * the predetermined current threshold value i D_TH is set to d-axis current target value i d *, or the averaging process value of the current vector control.
  • the control mode determination unit 140 determines the norm component of the voltage command vector specified by the voltage command values vd_fin * and vq_fin * of the d axis and the q axis during the execution of the current vector control. Switches to voltage phase control when it exceeds the second norm threshold V a — th 2.
  • the second norm threshold V A_th2 is smaller than the upper limit value V a_max voltage norm command value V a *, and is set to a particular voltage threshold greater than the first norm threshold V a_th1.
  • Voltage phase control of the present embodiment as shown in FIG. 18B, * voltage norm command value V a follows the voltage norm V a of the motor 9. Therefore, in switching between the voltage phase control and the current vector control, while a hysteresis with respect to the first norm threshold V A_th1, small voltage distortion due to overmodulation, and the harmonic current is small operation region It is possible to set the second norm threshold value Va_th2 . As a result, since the noise component included in voltage norm command value V a * for switching determination or a parameter correlated therewith becomes small, delay in switching determination can be suppressed, and the occurrence of chattering can be suppressed. it can.
  • the control mode determiner 140 during execution of the voltage phase control, when the voltage norm command value V a * below the third norm threshold V A_th3, or rotational speed detection value of the motor 9 When N falls below the rotation speed threshold value N th , the control is switched to protection control for suppressing the power supplied to the motor 9.
  • Third norm threshold V A_th3 is a first threshold value smaller than the first norm threshold V A_th1 for switching from the voltage phase control to the current vector control, the rotational speed threshold value N th is the second threshold value.
  • the determination processing is caused by the averaging processing of the parameters.
  • the load fluctuation of the motor 9 may have occurred due to the judgment delay. Therefore, when the voltage norm command value V a * or the rotational speed of the motor 9 is lower than expected, it is possible to shift to control for protecting the motor 9 promptly.
  • the control switch 3 sets the d-axis and q-axis voltage command values to zero as protection control of the motor 9, or the power supply line of each phase provided in the motor. Short circuit.
  • V a * or the rotational speed of the motor 9 is lower than expected, there may be some abnormality such as a failure of the motor current detector 8. Therefore, it is possible to avoid the occurrence of a torque that exceeds the durability of the motor 9 by stopping the energization of the motor 9 promptly.
  • the averaging processing value for the voltage norm command value V a * or the rotational speed of the motor 9 is lower than the value assumed during normal operation, transition from voltage phase control to protection control is made.
  • strict fail-safe is required for the control device 100, it may be considered to give priority to completely stopping the motor 9 when the motor 9 performs an unexpected operation.
  • the motor 9 is stopped as one of the protection control when the averaging processing value regarding the voltage norm command value V a * or the rotational speed of the motor 9 is lower than the value assumed during normal operation.
  • An example of executing stop control will be described with reference to FIG.
  • FIG. 19 is a diagram showing an example of a determination method by the control mode determination unit 140 in the second embodiment of the present invention.
  • the control mode determination unit 140 determines that the control suitable for the motor 9 is the stop control. Then, the control mode determination unit 140 outputs a control mode signal indicating the stop control to the control switch 3. As a result, the stop control of the motor 9 is executed, and the process shifts to the stop sequence.
  • FIG. 20 is a block diagram illustrating the detailed configuration of the control switch 3 in the present embodiment.
  • the control switch 3 of the present embodiment includes a voltage command value switch 31 and an output stop switch 32.
  • the voltage command value switching unit 31 is the same as the configuration shown in FIG. 15, so the description of the configuration will be omitted.
  • the output stop switch 32 When receiving the control mode signal indicating the stop control from the control mode determiner 140, the output stop switch 32 outputs a gate signal to the PWM converter 5 to stop (turn off) the output of the PWM converter 5. On the other hand, when receiving the control mode signal indicating voltage phase control or current vector control, the output stop switch 32 outputs, to the PWM converter 5, a gate signal for enabling (turning on) the output of the PWM converter 5.
  • the output stop switch 32 stops the gate current of the switching element provided in the inverter 6 as the protection control of the motor 9. Thereby, the motor 9 can be protected more reliably.
  • FIG. 21 is a diagram showing an example of the determination method by the control mode determination unit 140 in the third embodiment of the present invention.
  • the control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control.
  • control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3.
  • FIG. 22 is a block diagram illustrating the detailed configuration of the control switch 3 in the present embodiment.
  • control switch 3 of this embodiment the input of the zero voltage value of the protection control shown in FIG. 15 is deleted. Therefore, when receiving the control mode signal from the control mode determination unit 140, the control switch 3 outputs one of voltage command values of current vector control or voltage phase control.
  • the control mode determiner 140 averaging voltage norm V A_fin_flt during the voltage phase control * becomes less third norm threshold V A_th3, or rotational speed detection value N
  • the control is switched to current vector control.
  • FIG. 23 is a view showing a configuration example of a control device 110 of the motor 9 in the fourth embodiment of the present invention.
  • the d-axis target current id is supplied to the switching determination unit 13 from the current vector control unit 1 of the control device 100 shown in FIG.
  • the difference is that q is supplied to the switching determination unit 13.
  • the other configuration is the same as that of the control device 100.
  • FIG. 24 is a block diagram showing an example of the configuration of the switching determination unit 13 in the present embodiment.
  • the switching determination unit 13 of the present embodiment includes absolute value calculators 141 and 142 in addition to the configuration shown in FIG.
  • the other configuration is the same as the configuration shown in FIG. 12, and thus the description thereof is omitted here.
  • the absolute value calculator 141 calculates an absolute value
  • the absolute value calculator 142 calculates an absolute value
  • Control mode discriminator 140 performs motor 9 between current vector control and voltage phase control and protection control based on averaged voltage norm V a_fin_flt * and the absolute value of averaged q-axis current value
  • the control mode determination unit 140 determines whether or not to switch from voltage phase control to current phase control by confirming that the current detection value of the motor 9 has reached the vicinity of the current target value.
  • the detection value iq and the target value i q * related to the q-axis current used for the switching determination have opposite signs in the regeneration region and the power running region of the motor 9. Is equipped.
  • control switching can be determined even using the q-axis current.
  • the determination of control switching can be performed by using both the d-axis current as well as the q-axis current.
  • FIG. 25 is a diagram showing an example of a determination method by the control mode determination unit 140 in the present embodiment.
  • the control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control. Then, the control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3. Thereby, control of the motor 9 is switched from voltage phase control to current vector control.
  • the control switch 3 the absolute value of the averaging process value of which is one of the current components of the electric motor 9 q-axis current detection value i q
  • is the q-axis current threshold is a predetermined current threshold
  • is the averaging process value i q_ref * of the absolute value of the absolute value or the q-axis current target value of the current vector control q-axis current target value i q *.
  • the voltage norm command value V a * may be fed back to the voltage norm command value V a * using both d-axis current i d and the q-axis current i q.
  • the control gain of the d-axis current feedback is reduced and the control gain of the q-axis current feedback is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A control device 100, which performs either a voltage phase control or an electric current vector control so as to control electric power supply to an electric machine 9 according to the operating state of the electric machine 9, calculates a voltage command value for the voltage phase control on the basis of a voltage norm command value indicating the magnitude of a supply voltage for the electric machine 9 and of a voltage phase command value indicating the phase of the supply voltage. According to the orientation of the voltage generated in the electric machine 9, the control device 100 feeds back, to the voltage norm command value, at least one electric current component of d-axis and q-axis components of an electric current that is supplied to the electric machine 9.

Description

電動機の制御方法、及び電動機の制御装置Control method of motor and control device of motor
 本発明は、電動機の制御方法、及び電動機の制御装置に関する。 The present invention relates to a control method of a motor and a control device of the motor.
 電動機を制御するための制御手法としては、例えば、電動機に供給される電流を直交座標に変換したdq軸電流成分をフィードバックする電流ベクトル制御、及び、電動機への供給電圧に関する電圧ベクトルの位相を変更する電圧位相制御などが知られている。これらの制御については、電動機の作動状態に合わせていずれか一つの制御が選択されて実行されることが多い。 As a control method for controlling the motor, for example, current vector control for feeding back a dq-axis current component obtained by converting the current supplied to the motor into rectangular coordinates, and changing the phase of the voltage vector related to the voltage supplied to the motor Voltage phase control is known. Regarding these controls, one of the controls is often selected and executed in accordance with the operating state of the motor.
 上述の電圧位相制御においては、d軸電流フィードバック値を用いて、電動機の電圧指令値の大きさを示す振幅を補正する制御装置が提案されている(JP2003-264999A)。 In the above-described voltage phase control, there has been proposed a control device that corrects an amplitude indicating the magnitude of a voltage command value of a motor using a d-axis current feedback value (JP2003-264999A).
 上述のような制御装置は、電動機への供給電圧の大きさを示す電圧ノルム指令値に対して電動機に供給されるd軸電流をフィードバックする構成であるため、電動機に生じる電圧の向きによっては制御の誤差が大きくなる。その結果、フィードバックの出力である電圧ノルム指令値が発散し、電動機の動作が不安定になることが懸念される。 The control device as described above is configured to feedback the d-axis current supplied to the motor to the voltage norm command value indicating the magnitude of the voltage supplied to the motor, so control is performed depending on the direction of the voltage generated in the motor The error of As a result, there is a concern that the voltage norm command value, which is the output of feedback, diverges and the operation of the motor becomes unstable.
 本発明の目的は、電動機の動作が不安定になることを抑制する制御方法、及び電動機の制御装置を提供することにある。 An object of the present invention is to provide a control method for suppressing the instability of the operation of the motor, and a control device for the motor.
 本発明のある態様によれば、電動機の制御方法は、電動機の作動状態に応じて前記電動機の供給電力を制御する電流ベクトル制御及び電圧位相制御のうちいずれか一つの制御を実行する制御方法である。この制御方法は、前記電動機に対する供給電圧の大きさを示す電圧ノルム指令値と、当該供給電圧の位相を示す電圧位相指令値とに基づいて、前記電圧位相制御の電圧指令値を演算する電圧位相制御ステップを含む。前記電圧位相制御ステップは、前記電動機に生じる電圧の向きに応じて、前記電動機に供給される電流のd軸及びq軸成分のうち少なくとも一方の電流成分を前記電圧ノルム指令値にフィードバックする。 According to an aspect of the present invention, a control method of a motor is a control method of executing any one control of current vector control and voltage phase control for controlling supplied power of the motor according to an operation state of the motor. is there. This control method calculates a voltage command value of the voltage phase control based on a voltage norm command value indicating the magnitude of the supply voltage to the motor and a voltage phase command value indicating the phase of the supply voltage. Including control steps. The voltage phase control step feeds back at least one of d-axis and q-axis components of the current supplied to the motor to the voltage norm command value according to the direction of the voltage generated in the motor.
図1は、本発明の第1実施形態における電動機の制御装置の構成例を示す図である。FIG. 1 is a view showing a configuration example of a control device of a motor according to a first embodiment of the present invention. 図2は、制御装置における電流ベクトル制御部の一部構成を例示するブロック図である。FIG. 2 is a block diagram illustrating a partial configuration of a current vector control unit in the control device. 図3は、制御装置における電圧位相制御部の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of the voltage phase control unit in the control device. 図4は、電圧位相制御の電流FB制御部における電流偏差を切り替える切替信号の生成手法を説明する図である。FIG. 4 is a diagram for explaining a method of generating a switching signal for switching the current deviation in the current FB control unit of voltage phase control. 図5は、電流FB制御部におけるPI制御器の構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of a PI controller in the current FB control unit. 図6は、電動機の中高速回転領域での電動機に生じる磁束ノルムと電圧ノルムとの関係を示す図である。FIG. 6 is a diagram showing the relationship between the flux norm and the voltage norm generated in the motor in the middle to high speed rotation region of the motor. 図7は、電動機での電圧位相が0°近傍にある場合における電動機におけるd軸及びq軸の各電流成分の電圧ノルムに対する相関性を示す図である。FIG. 7 is a diagram showing the correlation of the d-axis and q-axis current components of the motor with respect to the voltage norm when the voltage phase of the motor is near 0 °. 図8は、電動機の電圧位相が±90°近傍にある場合における各電流成分の電圧ノルムに対する相関性を示す図である。FIG. 8 is a diagram showing the correlation of each current component to the voltage norm when the voltage phase of the motor is near ± 90 °. 図9Aは、電動機の電圧位相ごとにd軸電流の電圧ノルムに対する相関性を示す図である。FIG. 9A is a diagram showing the correlation of the d-axis current with the voltage norm for each voltage phase of the motor. 図9Bは、電動機の電圧位相ごとにq軸電流の電圧ノルムに対する相関性を示す図である。FIG. 9B is a diagram showing the correlation of the q-axis current to the voltage norm for each voltage phase of the motor. 図10は、PI制御器がアンチワインドアップ処理を実行する構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of a configuration in which the PI controller executes anti-windup processing. 図11は、電圧位相制御部における電圧位相範囲の設定手法の一例を説明する図である。FIG. 11 is a diagram for explaining an example of a method of setting the voltage phase range in the voltage phase control unit. 図12は、電流ベクトル制御部又は電圧位相制御部への制御切替えの判定を行う切替判定部の構成の一例を示すブロック図である。FIG. 12 is a block diagram showing an example of a configuration of a switching determination unit that determines control switching to a current vector control unit or a voltage phase control unit. 図13は、制御切替えの判定に用いられる変調率閾値の設定例を示す図である。FIG. 13 is a diagram showing an example of setting of a modulation factor threshold value used for determination of control switching. 図14は、制御装置における制御モード判定器の判定手法の一例を説明する図である。FIG. 14 is a diagram for explaining an example of the determination method of the control mode determination unit in the control device. 図15は、制御装置における制御切替器の詳細構成を例示するブロック図である。FIG. 15 is a block diagram illustrating a detailed configuration of a control switch in the control device. 図16は、本実施形態における電動機の制御方法の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of a control method of the motor in the present embodiment. 図17は、電動機の制御方法に含まれる電圧位相制御処理の処理手順例を示すフローチャートである。FIG. 17 is a flow chart showing an example of a processing procedure of voltage phase control processing included in the control method of the motor. 図18Aは、一般的な制御切替えの判定手法を説明する図である。FIG. 18A is a diagram for explaining a general control switching determination method. 図18Bは、本実施形態における制御切替えの判定手法を説明する図である。FIG. 18B is a diagram for explaining a control switching determination method in the present embodiment. 図19は、本発明の第2実施形態における制御モード判定器の判定手法の一例を示す図である。FIG. 19 is a diagram showing an example of the determination method of the control mode determination unit in the second embodiment of the present invention. 図20は、本実施形態における制御切替器の詳細構成を例示するブロック図である。FIG. 20 is a block diagram illustrating the detailed configuration of the control switch in the present embodiment. 図21は、本発明の第3実施形態における制御モード判定器の判定手法の一例を示す図である。FIG. 21 is a diagram showing an example of the determination method of the control mode determination unit in the third embodiment of the present invention. 図22は、本実施形態における制御切替器の詳細構成を例示するブロック図である。FIG. 22 is a block diagram illustrating the detailed configuration of the control switch in the present embodiment. 図23は、本発明の第4実施形態における制御装置の構成例を示す図である。FIG. 23 is a diagram showing a configuration example of a control device in the fourth embodiment of the present invention. 図24は、本実施形態における切替判定部の構成の一例を示すブロック図である。FIG. 24 is a block diagram showing an example of the configuration of the switching determination unit in the present embodiment. 図25は、切替判定部における制御モード判定器の判定手法の一例を示す図である。FIG. 25 is a diagram illustrating an example of the determination method of the control mode determination unit in the switching determination unit.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態における電動機9を制御する制御装置100の構成例を示す図である。
First Embodiment
FIG. 1 is a view showing a configuration example of a control device 100 that controls the motor 9 in the first embodiment of the present invention.
 制御装置100は、電動機9に供給される電力を制御する。制御装置100は、電動機9の動作を制御するようにプログラムされた処理を実行する。制御装置100は、1又は複数のコントローラにより構成される。 The control device 100 controls the power supplied to the motor 9. The controller 100 executes a process programmed to control the operation of the motor 9. The control device 100 is configured of one or more controllers.
 制御装置100は、電流ベクトル制御部1と、電圧位相制御部2と、制御切替器3と、座標変換器4と、PWM変換器5と、インバータ6と、バッテリ電圧検出器7と、電動機電流検出器8と、電動機9と、を備える。さらに制御装置100は、回転子検出器10と、回転速度演算器11と、座標変換器12と、切替判定部13と、を備える。 Control device 100 includes current vector control unit 1, voltage phase control unit 2, control switch 3, coordinate converter 4, PWM converter 5, inverter 6, battery voltage detector 7, motor current A detector 8 and a motor 9 are provided. The control device 100 further includes a rotor detector 10, a rotational speed calculator 11, a coordinate converter 12, and a switching determination unit 13.
 電流ベクトル制御部1は、電動機9に生じるトルクがトルク目標値T*に収束するよう、電動機9に供給される電流に関するベクトルを制御する電流ベクトル制御を実行する。電流ベクトル制御部1は、電動機9のトルク目標値T*に基づいて、インバータ6から電動機9に供給される電力の電流値を電動機9の電圧指令値にフィードバックするフィードバック制御を実行する。 The current vector control unit 1 executes current vector control for controlling a vector related to the current supplied to the motor 9 so that the torque generated in the motor 9 converges on the torque target value T * . The current vector control unit 1 executes feedback control to feed back the current value of the power supplied from the inverter 6 to the motor 9 to the voltage command value of the motor 9 based on the torque target value T * of the motor 9.
 本実施形態の電流ベクトル制御部1は、電動機9のトルク目標値T*と回転速度検出値Nとバッテリ電圧検出値Vdcとを用いて、d軸電流検出値idをd軸電圧指令値vdi_finにフィードバックし、q軸電流検出値iqをq軸電圧指令値vqi_finにフィードバックする。これにより、電流ベクトル制御部1は、電流ベクトル制御の電圧指令値としてd軸電圧指令値vdi_fin及びq軸電圧指令値vqi_finを制御切替器3に出力する。 The current vector control unit 1 of the present embodiment uses the torque target value T * of the motor 9, the rotational speed detection value N, and the battery voltage detection value V dc to generate the d-axis current detection value id as the d-axis voltage command value. v is fed back to Di_fin, it feeds back the detected q-axis current value i q on the q-axis voltage command value v Qi_fin. Thus, the current vector control unit 1 outputs a d-axis voltage command value v Di_fin and q-axis voltage command value v Qi_fin as a voltage command value of the current vector control of the control switch 3.
 上述のd軸電流検出値id及びq軸電流検出値iqは、それぞれ、インバータ6から電動機9に供給される電流のd軸成分及びq軸成分の値を示す。d軸及びq軸は、互いに直交する座標軸である。 The above-mentioned d-axis current detection value id and q-axis current detection value iq indicate the values of the d-axis component and the q-axis component of the current supplied from the inverter 6 to the motor 9, respectively. The d-axis and the q-axis are coordinate axes orthogonal to each other.
 電圧位相制御部2は、電動機9に生じるトルクがトルク目標値T*に収束するよう、電動機9の各相に供給される電圧間の位相を制御する電圧位相制御を実行する。電圧位相制御部2は、トルク目標値T*に基づいて、インバータ6から電動機9に供給される電流の値を電動機9の電圧指令値に対してフィードバック制御を実行する。 The voltage phase control unit 2 executes voltage phase control to control the phase between the voltages supplied to the respective phases of the motor 9 so that the torque generated in the motor 9 converges on the torque target value T * . The voltage phase control unit 2 performs feedback control of the value of the current supplied from the inverter 6 to the motor 9 to the voltage command value of the motor 9 based on the torque target value T * .
 本実施形態の電圧位相制御部2は、トルク目標値T*と回転速度検出値Nとバッテリ電圧検出値Vdcとを用いて、d軸電流検出値id及びq軸電流検出値iqを所定の電圧ノルム指令値及び電圧位相指令値にフィードバックする。そして電圧位相制御部2は、電圧ノルム指令値及び電圧位相指令値をd軸電圧指令値vdv_fin及びq軸電圧指令値vqv_finに変換する。これにより、電圧位相制御部2は、電圧位相制御の電圧指令値としてd軸電圧指令値vdv_fin及びq軸電圧指令値vqv_finを制御切替器3に出力する。 The voltage phase control unit 2 of the present embodiment uses the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc to generate the d-axis current detection value id and the q-axis current detection value iq . It feeds back to a predetermined voltage norm command value and a voltage phase command value. The voltage phase control unit 2 converts the voltage norm command value and the voltage phase command value into the d-axis voltage command value vdv_fin and the q-axis voltage command value vqv_fin . Thus, the voltage phase control unit 2 outputs the d-axis voltage command value vdv_fin and the q-axis voltage command value vqv_fin to the control switch 3 as voltage command values for voltage phase control.
 制御切替器3は、電流ベクトル制御部1の出力及び電圧位相制御部2の出力などの中から、切替判定部13の判定結果に応じていずれか一つの出力を選択する。そして制御切替器3は、選択した制御の電圧指令値を、d軸及びq軸の最終電圧指令値vd_fin *及びvq_fin *として出力する。 The control switch 3 selects any one output from among the output of the current vector control unit 1 and the output of the voltage phase control unit 2 according to the determination result of the switching determination unit 13. Then, the control switch 3 outputs the voltage command values of the selected control as final voltage command values vd_fin * and vq_fin * of the d axis and the q axis.
 座標変換器4は、式(1)のように、電動機9の電気角検出値θに基づいて、d軸及びq軸の最終電圧指令値vd_fin *及びvq_fin *を三相電圧指令値vu *、vv *及びvw *に変換する。 Coordinate converter 4, as shown in Equation (1), on the basis of the electrical angle detection value θ of the electric motor 9, the final voltage command value of the d-axis and q-axis v D_fin * and v Q_fin * the three-phase voltage values v Convert to u * , v v * and v w * .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 PWM変換器5は、バッテリ電圧検出値Vdcに基づいて、三相電圧指令値vu *、vv *及びvw *を、インバータ6に備えられたパワー素子を駆動するためのパワー素子駆動信号Duu *、Dul *、Dvu *、Dvl *、Dwu *及びDwl *に変換する。PWM変換器5は、変換したパワー素子駆動信号Duu *、Dul *、Dvu *、Dvl *、Dwu *及びDwl *をインバータ6に出力する。 The PWM converter 5 drives the power element for driving the power element provided in the inverter 6 for the three-phase voltage command values v u * , v v * and v w * based on the battery voltage detection value V dc. The signals D uu * , D ul * , D vu * , D v1 * , D wu * and D wl * are converted. The PWM converter 5 outputs the converted power element drive signals D uu * , D ul * , D vu * , D vl * , D wu * and D wl * to the inverter 6.
 インバータ6は、パワー素子駆動信号Duu *、Dul *、Dvu *、Dvl *、Dwu *及びDwl *に基づいて、バッテリ61の直流電圧を、電動機9を駆動するための三相交流電圧vu、vv及びvwに変換する。インバータ6は、変換した三相交流電圧vu、vv及びvwを電動機9に供給する。 Inverter 6 generates a DC voltage of battery 61 based on power element drive signals D uu * , D ul * , D vu * , D v1 * , D wu * and D wl * to drive motor 9. Convert to phase alternating voltages v u , v v and v w . The inverter 6 supplies the converted three-phase AC voltages v u , v v and v w to the motor 9.
 バッテリ電圧検出器7は、インバータ6に接続されたバッテリ61の電圧を検出する。バッテリ電圧検出器7は、検出した電圧を示すバッテリ電圧検出値Vdcを、電流ベクトル制御部1、電圧位相制御部2及び切替判定部13の各々に出力する。 The battery voltage detector 7 detects the voltage of the battery 61 connected to the inverter 6. The battery voltage detector 7 outputs a battery voltage detection value V dc indicating the detected voltage to each of the current vector control unit 1, the voltage phase control unit 2 and the switching determination unit 13.
 電動機電流検出器8は、インバータ6から電動機9に供給される三相の交流電流iu、iv及びiwのうち少なくとも二相の交流電流を検出する。本実施形態の電動機電流検出器8は、U相及びV相の交流電流iu及びivを検出して座標変換器12に出力する。 The motor current detector 8 detects at least two-phase alternating current among three-phase alternating current i u , iv and i w supplied from the inverter 6 to the motor 9. The motor current detector 8 of the present embodiment detects U-phase and V-phase AC currents i u and i v and outputs them to the coordinate converter 12.
 電動機9は、複数の相の各々に巻線(例えば、U、V及びWの3相の巻線)を備えるモータであり、電動車両などの駆動源として用いることが可能である。例えば、電動機9は、IPM(Interior Permanent Magnet)型の三相同期電動機により実現される。 The electric motor 9 is a motor provided with a winding (for example, three-phase winding of U, V and W) in each of a plurality of phases, and can be used as a drive source of an electric vehicle or the like. For example, the motor 9 is realized by an IPM (Interior Permanent Magnet) type three-phase synchronous motor.
 回転子検出器10は、電動機9の電気角を検出する。回転子検出器10は、検出した電気角の値を示す電気角検出値θを座標変換器4及び座標変換器12の各々に出力するとともに、電気角検出値θを回転速度演算器11に出力する。 The rotor detector 10 detects the electrical angle of the motor 9. The rotor detector 10 outputs an electrical angle detection value θ indicating the value of the detected electrical angle to each of the coordinate converter 4 and the coordinate converter 12, and outputs the electric angle detection value θ to the rotational speed calculator 11. Do.
 回転速度演算器11は、電動機9の電気角検出値θの時間当たりの変化量から電動機9の回転速度を演算する。回転速度演算器11は、演算した回転速度を、電動機9の回転速度検出値Nとして、電流ベクトル制御部1、電圧位相制御部2及び切替判定部13の各々に出力する。 The rotational speed calculator 11 calculates the rotational speed of the motor 9 from the amount of change per unit time of the electric angle detection value θ of the motor 9. The rotational speed calculator 11 outputs the calculated rotational speed as the detected rotational speed N of the motor 9 to each of the current vector control unit 1, the voltage phase control unit 2 and the switching determination unit 13.
 座標変換器12は、式(2)のように、電動機9の電気角検出値θに基づいて、U相及びV相の交流電流iu及びivをd軸電流検出値id及びq軸電流検出値iqに変換する。座標変換器12は、d軸電流検出値id及びq軸電流検出値iqを、電流ベクトル制御部1、電圧位相制御部2及び切替判定部13の各々に出力する。 The coordinate converter 12 converts the U-phase and V-phase AC currents i u and i v into a d-axis current detection value id and q axis based on the electric angle detection value θ of the motor 9 as in equation (2). Convert to current detection value iq . The coordinate converter 12 outputs the d-axis current detection value id and the q-axis current detection value iq to each of the current vector control unit 1, the voltage phase control unit 2, and the switching determination unit 13.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 切替判定部13は、電動機9の作動状態に応じて、電流ベクトル制御、及び電圧位相制御などのうち電動機9に適用すべき制御を判定する。電動機9の作動状態を示すパラメータとして、本実施形態では、d軸電流目標値id *、d軸電流検出値id、d軸電圧指令値vd_fin *、q軸電圧指令値vq_fin *、バッテリ電圧検出値Vdc及び回転速度検出値Nなどが挙げられる。切替判定部13は、判定結果に応じて電動機9に適用すべき制御を示す制御モード信号を制御切替器3に出力する。 The switching determination unit 13 determines the control to be applied to the motor 9 among the current vector control and the voltage phase control according to the operating state of the motor 9. As a parameter indicating the operating state of the electric motor 9, in the present embodiment, d-axis current target value i d *, d-axis current detection value i d, d-axis voltage command value v d_fin *, q-axis voltage command value v q_fin *, The battery voltage detection value Vdc, the rotational speed detection value N, and the like can be mentioned. The switching determination unit 13 outputs a control mode signal indicating control to be applied to the motor 9 to the control switch 3 according to the determination result.
 図2は、本実施形態における電流ベクトル制御部1の一部構成を例示するブロック図である。 FIG. 2 is a block diagram illustrating a partial configuration of the current vector control unit 1 in the present embodiment.
 電流ベクトル制御部1は、非干渉電圧演算器101と、LPF102と、電流目標値演算部103と、減算器104と、PI制御器105と、加算器106と、を備える。 The current vector control unit 1 includes a non-interference voltage computing unit 101, an LPF 102, a current target value computing unit 103, a subtractor 104, a PI controller 105, and an adder 106.
 非干渉電圧演算器101は、トルク目標値T*と回転速度検出値Nとバッテリ電圧検出値Vdcとに基づいて、d軸及びq軸の間で互いに干渉する干渉電圧を打ち消す非干渉電圧値vd_dcpl *を演算する。非干渉電圧演算器101には、例えば、あらかじめ定められた非干渉テーブルが記憶されている。具体的には、トルク目標値T*、回転速度検出値N及びバッテリ電圧検出値Vdcにより特定される動作点ごとに、非干渉電圧値vd_dcpl *が非干渉テーブルに対応付けられている。 The non-interference voltage calculator 101 is a non-interference voltage value that cancels interference voltages that interfere with each other between the d-axis and the q-axis based on the torque target value T * , the rotational speed detection value N, and the battery voltage detection value Vdc. v Calculate d_dcpl * . The non-interference voltage calculator 101 stores, for example, a predetermined non-interference table. Specifically, the non-interference voltage value v d — dcpl * is associated with the non-interference table at each operation point specified by the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc .
 非干渉電圧演算器101は、トルク目標値T*、回転速度検出値N及びバッテリ電圧検出値Vdcの各パラメータを取得すると、非干渉テーブルを参照し、各パラメータにより特定される動作点に対応付けられた非干渉電圧値vd_dcpl *を演算する。そして非干渉電圧演算器101は、演算した非干渉電圧値vd_dcpl *をLPF102に出力する。 When the non-interference voltage computing unit 101 acquires each parameter of the torque target value T * , the rotational speed detection value N, and the battery voltage detection value V dc , it refers to the non-interference table and corresponds to the operating point specified by each parameter. Calculate the attached non-interference voltage value v d — dcpl * . Then, the non-interference voltage computing unit 101 outputs the computed non-interference voltage value v d — dcpl * to the LPF 102.
 LPF102は、電動機9に生じる干渉電圧が電動機9への供給電流に依存することを考慮したローパスフィルタである。LPF102の時定数は、目標とするd軸電流の応答性が確保されるように設定される。LPF102は、非干渉電圧値vd_dcpl *に対してローパスフィルタ処理を施した値である非干渉電圧値vd_dcpl_flt *を加算器106に出力する。 The LPF 102 is a low pass filter that takes into consideration that the interference voltage generated in the motor 9 depends on the current supplied to the motor 9. The time constant of the LPF 102 is set so as to ensure the response of the target d-axis current. The LPF 102 outputs a non-interference voltage value v d _dcpl_flt * , which is a value obtained by performing low-pass filter processing on the non-interference voltage value v d _dcpl *, to the adder 106.
 電流目標値演算部103は、非干渉電圧演算器101と同様、あらかじめ定められた電流テーブルを参照し、電動機9のd軸電流目標値id *を演算する。電流テーブルには、トルク目標値T*、回転速度検出値N及びバッテリ電圧検出値Vdcによって定められる動作点ごとに、d軸電流目標値id *が対応付けられている。 Similar to the non-interference voltage calculator 101, the current target value calculator 103 calculates the d-axis current target value id * of the motor 9 with reference to a predetermined current table. In the current table, a d-axis current target value id * is associated with each operation point determined by the torque target value T * , the rotational speed detection value N, and the battery voltage detection value Vdc .
 電流テーブルのd軸電流目標値id *には、電動機9がトルク目標値T*で動作するにあたり、電動機9の効率が最大となる電流値が格納される。格納される電流値は、実験データやシミュレーションなどによってあらかじめ求められる。電流目標値演算部103は、演算したd軸電流目標値id *を電圧位相制御部2及び切替判定部13に出力するとともに、d軸電流目標値id *を減算器104に出力する。 The d-axis current target value id * of the current table stores a current value at which the efficiency of the motor 9 is maximized when the motor 9 operates at the torque target value T * . The stored current value is obtained in advance by experimental data or simulation. The target current value calculation unit 103 outputs the calculated d-axis current target value id * to the voltage phase control unit 2 and the switching determination unit 13, and outputs the d-axis current target value id * to the subtractor 104.
 減算器104は、d軸電流目標値id *からd軸電流検出値idを減算する。減算器104は、減算した値をd軸電流偏差id_errとしてPI制御器105に出力する。 Subtractor 104 subtracts the d-axis current detection value i d from the d-axis current target value i d *. The subtractor 104 outputs the subtracted value to the PI controller 105 as the d-axis current deviation id_err .
 PI制御器105は、d軸電流検出値idがd軸電流目標値id *に追従するようにd軸電流偏差id_errをd軸電圧指令値vdi_finにフィードバックする電流フィードバック制御を実行する。本実施形態のPI制御器105は、式(3)のように、d軸電流偏差id_err(=id *-id)に基づいて、電流FB電圧指令値vdi’を算出する。 PI controller 105 executes the current feedback control d-axis current detection value i d is fed back to the d-axis current deviation i D_err to follow the d-axis current target value i d * in the d-axis voltage command value v Di_fin . PI controller 105 of the present embodiment, as shown in equation (3), based on the d-axis current deviation i d_err (= i d * -i d), calculates the current FB voltage command value v di '.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、Kdpはd軸比例ゲインであり、Kdiはd軸積分ゲインである。d軸比例ゲインKdp及びd軸積分ゲインKdiは、実験データやシミュレーション結果などにより求められる。PI制御器105は、電流FB電圧指令値vdi’を加算器106に出力する。 Where K dp is a d-axis proportional gain and K di is a d-axis integral gain. The d-axis proportional gain K dp and the d-axis integral gain K di are obtained from experimental data, simulation results, and the like. PI controller 105 outputs current FB voltage command value v di ′ to adder 106.
 加算器106は、式(4)のように電流FB電圧指令値vdi’に非干渉電圧値vd_dcpl_flt *を加算し、加算した値を電流ベクトル制御のd軸電圧指令値vdi_fin *として出力する。 The adder 106 adds the non-interference voltage value v d_dcpl_flt * to the current FB voltage command value v di 'as in equation (4), and outputs the added value as the d-axis voltage command value v di_fin * of current vector control. Do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように、電流ベクトル制御部1は、トルク目標値T*に基づいて、d軸電流検出値idをフィードバックすることにより、d軸電圧指令値vdi_fin *を出力する。 Thus, the current vector control unit 1 based on torque target value T *, by feeding back the d-axis current detection value i d, and outputs the d-axis voltage command value v di_fin *.
 なお、図2には電流ベクトル制御のd軸電圧指令値vdi_fin *を演算する構成例が示されているが、電流ベクトル制御のq軸電圧指令値vqi_fin *を演算する構成についても、図2に示した構成と同様の構成である。 Although FIG. 2 shows a configuration example for calculating the d-axis voltage command value vdi_fin * of current vector control, the figure also shows a configuration for calculating the q-axis voltage command value v qi_fin * of current vector control. The configuration is the same as that shown in FIG.
 したがって、電流ベクトル制御部1は、トルク目標値T*に基づいて、電動機9に供給される電力のd軸及びq軸電流成分をそれぞれd軸及びq軸電圧指令値vdi_fin *及びvqi_fin *にフィードバックして制御切替器3に出力する。 Therefore, based on torque target value T * , current vector control unit 1 sets the d-axis and q-axis current components of the power supplied to motor 9 to the d-axis and q-axis voltage command values vdi_fin * and vqi_fin *, respectively . Feed back to the control switch 3 for output.
 図3は、本実施形態における電圧位相制御部2の構成の一例を示すブロック図である。 FIG. 3 is a block diagram showing an example of the configuration of the voltage phase control unit 2 in the present embodiment.
 電圧位相制御部2は、電圧ノルム生成部210と、電流FB制御部220と、ノルム合成器230と、ノルム制限器240と、電圧位相生成部250と、トルクFB制御部260と、位相合成器270と、位相制限器280と、ベクトル変換器290と、を備える。 The voltage phase control unit 2 includes a voltage norm generation unit 210, a current FB control unit 220, a norm synthesizer 230, a norm limiter 240, a voltage phase generation unit 250, a torque FB control unit 260, and a phase synthesis unit. 270, a phase limiter 280, and a vector converter 290.
 電圧ノルム生成部210は、フィードフォワード制御により、バッテリ電圧検出値Vdcに基づいて基準変調率M*に相当する電圧ノルム基準値Va_ffを生成する。ここにいう基準変調率M*は、電圧位相制御における変調率の基準値を示す。電圧位相制御における変調率とは、バッテリ電圧検出値Vdcに対する電動機9の相間電圧における基本波成分の振幅の比率のことである。電動機9の相間電圧とは、例えば、U相とV相との間の電圧vu-vvのことである。 Voltage norm generation unit 210 generates voltage norm reference value Va_ff corresponding to reference modulation ratio M * based on battery voltage detection value Vdc by feedforward control. The reference modulation factor M * referred to here indicates a reference value of the modulation factor in voltage phase control. The modulation factor in voltage phase control is the ratio of the amplitude of the fundamental wave component in the interphase voltage of the motor 9 to the battery voltage detection value Vdc . The inter-phase voltage of the motor 9 is, for example, the voltage v u −v v between the U phase and the V phase.
 例えば、電圧位相制御における変調率が0.0から1.0までの範囲は、PWM変調により疑似正弦波電圧が生成可能な通常変調領域に該当する。これに対して変調率が1.0を上回る範囲は、過変調領域に該当し、疑似正弦波を生成しようとしても相間電圧の基本波成分の最大値及び最小値が制限される。例えば、変調率が約1.1まで大きくなると、相間電圧の基本波成分はいわゆる矩形波電圧と同様の波形になる。 For example, the range in which the modulation factor in voltage phase control is from 0.0 to 1.0 corresponds to a normal modulation area in which a pseudo sine wave voltage can be generated by PWM modulation. On the other hand, the range in which the modulation ratio exceeds 1.0 corresponds to the overmodulation region, and the maximum value and the minimum value of the fundamental wave component of the interphase voltage are limited even if the pseudo sine wave is generated. For example, when the modulation rate increases to about 1.1, the fundamental wave component of the interphase voltage has a waveform similar to a so-called rectangular wave voltage.
 本実施形態における電圧ノルム生成部210は、式(5)のように、電圧ノルム基準値Va_ffを算出する。電圧ノルム生成部210は、算出した電圧ノルム基準値Va_ffを電圧位相生成部250に出力するとともにノルム合成器230に出力する。 The voltage norm generation unit 210 in the present embodiment calculates the voltage norm reference value V a — ff as in equation (5). The voltage norm generation unit 210 outputs the calculated voltage norm reference value V a — ff to the voltage phase generation unit 250 and also outputs it to the norm synthesizer 230.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 電流FB制御部220は、d軸電流検出値id及びq軸電流検出値iqを電圧ノルム指令値Va *にフィードバックするための電圧ノルムFB値Va_fbを出力する。本実施形態の電流FB制御部220は、d軸電流検出値idと電圧ノルム指令値Va *との相関性、又は、q軸電流検出値iqと電圧ノルム指令値Va *との相関性の高さに応じて、d軸電流検出値id及びq軸電流検出値iqのうち一方の電流成分の検出値をフィードバックする。 Current FB control unit 220 outputs a voltage norm FB value V A_FB for feeding back the d-axis current detection value i d and the q-axis current detection value i q to the voltage norm command value V a *. Current FB control unit 220 of the present embodiment, correlation between the d-axis current detection value id and the voltage norm command value V a *, or correlation between q-axis current detection value i q and voltage norm command value V a * The detected value of one of the current components of the d-axis current detection value id and the q-axis current detection value iq is fed back according to the height of the sex.
 電流FB制御部220は、d軸参照生成器221と、d軸偏差演算器222と、q軸参照生成器223と、絶対値演算器224と、絶対値演算器225と、q軸偏差演算器226と、電流成分切替器227と、FB選択器228と、PI制御器229と、を備える。 The current FB control unit 220 includes a d-axis reference generator 221, a d-axis deviation calculator 222, a q-axis reference generator 223, an absolute value calculator 224, an absolute value calculator 225, and a q-axis deviation calculator 226, a current component switch 227, an FB selector 228, and a PI controller 229.
 d軸参照生成器221は、図2に示したLPF102と同様の構成である。d軸参照生成器221は、d軸電流目標値id *に基づいてd軸電流の目標応答を表すd軸電流参照値id_ref *を算出する。d軸参照生成器221は、算出したd軸電流参照値id_ref *をd軸偏差演算器222に出力する。 The d-axis reference generator 221 has the same configuration as the LPF 102 shown in FIG. d-axis reference generator 221 calculates a d-axis current reference value i d_ref * representing the target response of the d-axis current based on the d-axis current target value i d *. The d-axis reference generator 221 outputs the calculated d-axis current reference value id_ref * to the d-axis deviation calculator 222.
 d軸偏差演算器222は、d軸電流参照値id_ref *とd軸電流検出値idとの偏差であるd軸電流偏差id_errを演算し、演算したd軸電流偏差id_errを電流成分切替器227に出力する。 d-axis difference calculator 222 calculates a deviation in a d-axis current deviation i D_err the d-axis current reference value i d_ref * and d-axis current detection value i d, the current components computed d-axis current deviation i D_err It outputs to the switch 227.
 q軸参照生成器223は、d軸参照生成器221と同じものである。q軸参照生成器223は、q軸電流目標値iq *に基づいてq軸電流の目標応答を表すq軸電流参照値iq_ref *を算出する。q軸参照生成器223は、算出したq軸電流参照値iq_ref *を絶対値演算器224に出力する。 The q-axis reference generator 223 is the same as the d-axis reference generator 221. q-axis reference generator 223 calculates a q-axis current reference value i q_ref * representing the target response of q-axis current based on the q-axis current target value i q *. The q-axis reference generator 223 outputs the calculated q-axis current reference value iq_ref * to the absolute value calculator 224.
 絶対値演算器224は、q軸電流参照値の絶対値|iq_ref *|を取得してq軸偏差演算器226に出力する。絶対値演算器225は、q軸電流検出値iqの絶対値|iq|を取得してq軸偏差演算器226に出力する。 The absolute value calculator 224 obtains the absolute value | iq_ref * | of the q-axis current reference value, and outputs it to the q-axis deviation calculator 226. Absolute value calculator 225, the absolute value of q-axis current detection value i q | i q | the acquired outputs the q-axis deviation calculation unit 226.
 q軸偏差演算器226は、q軸電流参照値iq_ref *の絶対値|iq_ref *|とq軸電流検出値iqの絶対値|iq|との偏差であるq軸電流絶対値偏差|iq|errを演算する。q軸偏差演算器226は、演算したq軸電流絶対値偏差|iq|errを電流成分切替器227に出力する。 q-axis difference calculator 226, q-axis current reference value i q_ref * absolute value | i q_ref * | and the absolute value of q-axis current detection value i q | i q | and q-axis current absolute value deviation is a deviation Calculate | i q | err . The q-axis deviation calculator 226 outputs the calculated q-axis current absolute value deviation | i q | err to the current component switch 227.
 電流成分切替器227は、FB選択器228の指示に従って、PI制御器229への出力を、q軸電流絶対値偏差|iq|errとd軸電流偏差id_errとのうち一方の電流偏差に切り替える。 According to the instruction of the FB selector 228, the current component switching device 227 sets the output to the PI controller 229 to one of the current deviation among the q-axis current absolute value deviation | i q | err and the d-axis current deviation id_err. Switch.
 FB選択器228は、電動機9に生じる電圧の向きと相関のあるパラメータに基づいてq軸電流絶対値偏差|id|errとd軸電流偏差id_errとのうち一方の偏差を選択し、選択した偏差を示す切替信号を生成する。 FB selector 228, q-axis current absolute value deviation based on a correlation with the direction of the voltage generated in the electric motor 9 parameter | i d | Select err and d-axis current deviation i D_err Tonouchi one deviation selection The switching signal indicating the deviation is generated.
 本実施形態のFB選択器228は、電動機9に供給すべき電圧の位相を示す電圧位相指令値α*に基づいて切替信号を生成する。切替信号の生成手法については図4を参照して後述する。FB選択器228は、生成した切替信号を電流成分切替器227及びPI制御器229に出力する。 The FB selector 228 of the present embodiment generates a switching signal based on the voltage phase command value α * indicating the phase of the voltage to be supplied to the motor 9. The method of generating the switching signal will be described later with reference to FIG. The FB selector 228 outputs the generated switching signal to the current component switch 227 and the PI controller 229.
 PI制御器229は、電流成分切替器227から出力される電流偏差が無くなるよう、その電流偏差を電圧ノルム指令値va *にフィードバックするための電流フィードバック制御を実行する。 PI controller 229, so that the current deviation outputted from the current component switcher 227 is eliminated, executes current feedback control for feeding back the current deviation in voltage norm command value v a *.
 すなわち、PI制御器229は、電動機9に供給される電流に関する参照値と推定値の電流偏差を入力し、電流偏差に基づき電圧ノルムFB値Va_fbを算出する。PI制御器229の詳細構成については図5を参照して後述する。PI制御器229は、電流フィードバック制御を実行することにより、電圧ノルムFB値Va_fbをノルム合成器230に出力する。 That is, the PI controller 229 inputs the current deviation of the reference value and the estimated value regarding the current supplied to the motor 9, and calculates the voltage norm FB value Va_fb based on the current deviation. The detailed configuration of the PI controller 229 will be described later with reference to FIG. The PI controller 229 outputs the voltage norm FB value Va_fb to the norm synthesizer 230 by executing current feedback control.
 ノルム合成器230は、電圧ノルムFB値Va_fbを電圧ノルム基準値Va_ffに加算し、加算した値を電圧ノルム指令値Va *としてノルム制限器240に出力する。 The norm synthesizer 230 adds the voltage norm FB value Va_fb to the voltage norm reference value Va_ff, and outputs the added value to the norm limiter 240 as a voltage norm command value Va * .
 ノルム制限器240は、電圧ノルム指令値Va *を下限値(例えば0)から上限値Va_maxまでの間に制限する。バッテリ電圧検出値Vdcが低下するほど、電圧ノルム上限値Va_maxは小さくなる。 The norm limiter 240 limits the voltage norm command value V a * from the lower limit (for example, 0) to the upper limit V a — max . As the battery voltage detection value Vdc decreases, the voltage norm upper limit value Va_max decreases.
 上述の上限値Va_maxは、式(6)のように、電圧位相制御における変調率の最大許容設定値である変調率上限値Mmax *とバッテリ電圧検出値Vdcとに基づいて算出される。変調率上限値Mmax *はあらかじめ定められた値である。 The upper limit value Va_max described above is calculated based on the modulation factor upper limit value M max * , which is the maximum allowable setting value of the modulation factor in voltage phase control, and the battery voltage detection value V dc as shown in equation (6). . The modulation factor upper limit value M max * is a predetermined value.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ノルム制限器240は、電圧ノルム指令値Va *が上限値Va_maxを上回っている間は、ベクトル変換器290に出力される電圧ノルム指令値Va *を上限値Va_maxに設定する。電圧ノルム指令値Va *が上限値Va_maxに固定されている間は、トルクFB制御部260によりトルク推定値Testが電圧位相指令値α*にフィードバックされることで電動機9のトルクが増減される。 Norm restrictor 240, while the * voltage norm command value V a is above the upper limit value V a_max sets the voltage norm command value V a * to be output to the vector converter 290 to the upper limit value V a_max. During the torque increase or decrease of the motor 9 by the torque estimate T est by the torque FB control unit 260 is fed back to the voltage phase command value alpha * where * is a voltage norm command value V a is fixed to the upper limit value V a_max Be done.
 ノルム制限器240は、電圧ノルム指令値Va *が上限値Va_max又は下限値に固定さている間は、電圧ノルム指令値Va *が制限されている旨の通知信号をPI制御器229に出力する。 Norm restrictor 240, while the * voltage norm command value V a is fixed to the upper limit value V a_max or lower limit value, a notification signal indicating that * the voltage norm command value V a is limited to the PI controller 229 Output.
 電圧位相生成部250は、フィードフォワード制御により、トルク目標値T*に基づいて、電動機9に供給すべき電圧の位相を示す電圧位相FF値αffを生成する。本実施形態の電圧位相生成部250は、トルク目標値T*と電圧ノルム基準値Va_ffと回転速度検出値Nとを用いて電圧位相FF値αffを算出する。電圧位相生成部250には、あらかじめ定められた位相テーブルが記憶されている。 The voltage phase generation unit 250 generates a voltage phase FF value α ff indicating the phase of the voltage to be supplied to the motor 9 based on the torque target value T * by feedforward control. The voltage phase generation unit 250 of the present embodiment calculates the voltage phase FF value α ff using the torque target value T * , the voltage norm reference value V a — ff, and the rotational speed detection value N. The voltage phase generation unit 250 stores a predetermined phase table.
 上述の位相テーブルには、トルク目標値T*、電圧ノルム基準値Va_ff及び回転速度検出値Nによって定まる動作点ごとに電圧位相FF値αffが対応付けられている。位相テーブルの電圧位相FF値αffには、例えば、実験において動作点ごとにノミナル状態で計測された電圧位相値が格納される。 A voltage phase FF value α ff is associated with each of the operating points determined by the torque target value T * , the voltage norm reference value Va_ff, and the rotational speed detection value N in the above-described phase table. In the voltage phase FF value α ff of the phase table, for example, voltage phase values measured in a nominal state for each operating point in the experiment are stored.
 電圧位相生成部250は、トルク目標値T*、電圧ノルム基準値Va_ff及び回転速度検出値Nの各パラメータを取得すると、位相テーブルを参照し、各パラメータにより特定される動作点に対応付けられた電圧位相FF値αffを算出する。そして電圧位相生成部250は、算出した電圧位相FF値αffを位相合成器270に出力する。 When voltage phase generation unit 250 obtains each parameter of torque target value T * , voltage norm reference value Va_ff and rotational speed detection value N, it refers to the phase table and is associated with the operating point specified by each parameter. The voltage phase FF value α ff is calculated. Then, the voltage phase generation unit 250 outputs the calculated voltage phase FF value α ff to the phase synthesizer 270.
 トルクFB制御部260は、トルク目標値T*に基づいて電動機9のトルク推定値Testを電圧位相指令値α*にフィードバックするための電圧位相FB値αfbを出力する。トルクFB制御部260は、参照トルク生成部261と、トルク演算器262と、トルク偏差演算器263と、PI制御器264と、を備える。 The torque FB control unit 260 outputs a voltage phase FB value αfb for feeding back the estimated torque value Test of the motor 9 to the voltage phase command value α * based on the torque target value T * . The torque FB control unit 260 includes a reference torque generation unit 261, a torque calculator 262, a torque deviation calculator 263, and a PI controller 264.
 参照トルク生成部261は、図2に示したLPF102と同様の構成である。参照トルク生成部261は、トルク目標値T*に基づいて電動機9でのトルクの目標応答を表すトルク参照値Tref *を算出する。参照トルク生成部261は、算出したトルク参照値Tref *をトルク偏差演算器263に出力する。 The reference torque generation unit 261 has the same configuration as the LPF 102 shown in FIG. The reference torque generation unit 261 calculates a torque reference value T ref * representing a target response of the torque of the motor 9 based on the torque target value T * . The reference torque generation unit 261 outputs the calculated torque reference value T ref * to the torque deviation calculator 263.
 トルク演算器262は、d軸電流検出値id及びq軸電流検出値iqに基づいてトルク推定値Testを演算する。トルク演算器262には、あらかじめ定められたトルクテーブルが記憶されている。トルクテーブルには、d軸電流検出値id及びq軸電流検出値iqにより特定められる動作点ごとにトルク推定値Testが対応付けられている。トルクテーブルのトルク推定値Testには、例えば、実験においてdq軸電流の動作点ごとに計測したトルクの計測値があらかじめ格納される。 Torque calculator 262 calculates the torque estimated value T est based on the d-axis current detection value i d and the q-axis current detection value i q. The torque calculator 262 stores a predetermined torque table. The torque table, torque estimation value T est for each operating point defined Patent is associated with d-axis current detection value i d and the q-axis current detection value i q. For example, measurement values of torque measured for each operating point of the dq axis current in the experiment are stored in advance in the torque estimated value T est of the torque table.
 トルク演算器262は、d軸電流検出値id及びq軸電流検出値iqの各パラメータを取得すると、トルクテーブルを参照し、各パラメータにより特定される動作点に対応付けられたトルク推定値Testを算出する。トルク演算器262は、算出したトルク推定値Testをトルク偏差演算器263に出力する。 Torque unit 262 acquires the parameters of the d-axis current detection value i d and the q-axis current detection value i q, referring to the torque table, torque estimation value associated with the operating point specified by the parameters Calculate T est . The torque calculator 262 outputs the calculated torque estimated value T est to the torque deviation calculator 263.
 トルク偏差演算器263は、トルク参照値Tref *とトルク推定値Testとのトルク偏差Terrを演算し、演算したトルク偏差TerrをPI制御器264に出力する。 The torque deviation calculator 263 calculates a torque deviation T err between the torque reference value T ref * and the torque estimated value T est, and outputs the calculated torque deviation T err to the PI controller 264.
 PI制御器264は、トルク参照値Tref *にトルク推定値Testが追従するようトルク偏差演算器263からのトルク偏差Terrを電圧位相指令値α*にフィードバックするためのトルクフィードバック制御を実行する。 The PI controller 264 executes torque feedback control for feeding back the torque deviation T err from the torque deviation calculator 263 to the voltage phase command value α * so that the torque estimated value T est follows the torque reference value T ref *. Do.
 本実施形態のPI制御器264は、式(7)のように、トルク偏差Terr(Tref *-Test)に基づいて電圧位相FB値αfbを算出する。PI制御器264は、算出した電圧位相FB値αfbを位相合成器270に出力する。 The PI controller 264 according to the present embodiment calculates the voltage phase FB value α fb based on the torque deviation T err (T ref * −T est ), as in equation (7). The PI controller 264 outputs the calculated voltage phase FB value α fb to the phase synthesizer 270.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、Kαpは比例ゲインであり、Kαiは積分ゲインである。比例ゲインKαp及び積分ゲインKαiは、実験データやシミュレーション結果などによって求められる。 Here , K αp is a proportional gain, and K αi is an integral gain. The proportional gain K αp and the integral gain K αi are determined by experimental data, simulation results, and the like.
 位相合成器270は、電圧位相FB値αfbを電圧位相FF値αffに加算し、加算した値を電圧位相制御の電圧位相指令値α*として位相制限器280に出力する。 Phase combiner 270 adds the voltage phase FB value alpha fb to voltage phase FF value alpha ff, and outputs the sum value as * voltage voltage phase command value of the phase control alpha phase limiter 280.
 位相制限器280は、電圧位相下限値αminから電圧位相上限値αmaxまでの所定の電圧位相範囲に電圧位相指令値α*を制限する。所定の電圧位相範囲の設定手法については、図10で後述する。位相制限器280は、電圧位相範囲内に制限した電圧位相指令値α*をベクトル変換器290に出力する。 Phase limiter 280 limits voltage phase command value α * to a predetermined voltage phase range from voltage phase lower limit value α min to voltage phase upper limit value α max . The method of setting the predetermined voltage phase range will be described later with reference to FIG. Phase limiter 280 outputs, to vector converter 290, voltage phase command value α * restricted within the voltage phase range.
 ベクトル変換器290は、式(8)のように、ノルム制限器240からの電圧ノルム指令値Va*と位相制限器280からの電圧位相指令値α*とをd軸電圧指令値vdv *及びq軸電圧指令値vqv *に変換し、電圧位相制御の電圧指令値として出力する。 The vector converter 290 sets the voltage norm command value Va * from the norm limiter 240 and the voltage phase command value α * from the phase limiter 280 to the d-axis voltage command value v dv * and It converts into q-axis voltage command value v qv *, and outputs it as a voltage command value of voltage phase control.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このように、電圧位相制御部2は、トルク偏差Terrがゼロに収束するように電圧位相指令値α*を変更する。これにより、電圧ノルム指令値Va *が過変調領域において固定された状態であっても、電動機9のトルクを増減することができる。 Thus, voltage phase control unit 2 changes voltage phase command value α * such that torque deviation T err converges to zero. As a result, even if the voltage norm command value V a * is fixed in the overmodulation region, the torque of the motor 9 can be increased or decreased.
 さらに本実施形態では電圧位相制御部2は、電圧位相指令値α*に応じてd軸及びq軸の電流偏差のうち一方を選択し、選択した電流偏差がゼロに収束するように電圧ノルム指令値Va *を変更する。これにより、電動機9の電圧位相指令値α*に応じて、適切に電圧ノルム指令値Va *を増減させることができる。 Furthermore, in the present embodiment, voltage phase control unit 2 selects one of the current deviations of the d axis and q axis according to voltage phase command value α * , and the voltage norm command is performed so that the selected current deviation converges to zero. Change the value V a * . Thus, in accordance with the voltage phase command value of the motor 9 alpha *, it is possible to appropriately increase or decrease the voltage norm command value V a *.
 図4は、FB選択器228から出力される切替信号の生成手法を説明する図である。 FIG. 4 is a diagram for explaining a method of generating the switching signal output from the FB selector 228.
 図4では、縦軸が切替信号のレベルを示し、横軸が電圧位相指令値α*を示す。この例では、電動機9が正回転、力行動作である場合、電圧位相α=0°であるときに電動機9のトルクT≒0であり、進み側が正トルクとなり、遅れ側は負トルクとなる。なお、電動機が逆回転、回生動作である場合、トルクT≒0となる電圧位相αの基準は180°となり、180°に対して進み側が正トルクとなり、遅れ側がトルクとなる。 In FIG. 4, the vertical axis indicates the level of the switching signal, and the horizontal axis indicates the voltage phase command value α * . In this example, when the motor 9 is in the positive rotation or power running operation, the torque T of the motor 9 is approximately 0 when the voltage phase α is 0 °, the leading side is the positive torque, and the lag side is the negative torque. When the motor is in reverse rotation and regeneration operation, the reference of the voltage phase α at which the torque T00 is 180 °, the lead side becomes positive torque and the lag side becomes torque with respect to 180 °.
 図4に示すように、切替信号がLレベルである場合には、電流成分切替器227からPI制御器229にd軸電流偏差id_errが出力されることにより、d軸電流フィードバック制御が実行される。一方、切替信号がHレベルである場合には、電流成分切替器227からPI制御器229にq軸電流絶対値偏差|iq|errが出力されることにより、q軸電流フィードバック制御が実行される。 As shown in FIG. 4, when the switching signal is L level, the d-axis current feedback control is executed by outputting the d-axis current deviation id_err from the current component switch 227 to the PI controller 229. Ru. On the other hand, when the switching signal is at the H level, the q-axis current feedback control is executed by the q-axis current absolute value deviation | i q | err being output from the current component switching device 227 to the PI controller 229. Ru.
 電流成分切替器227でのチャタリングの発生を回避するために、電圧位相指令値α*に対して第1閾値αth1と第2閾値αth2との2つの閾値を用いてヒステリシスを持たせている。 In order to avoid the occurrence of chattering in the current component switching device 227, hysteresis is provided to the voltage phase command value α * using two thresholds of the first threshold α th1 and the second threshold α th2 .
 そしてFB選択器228は、電圧位相指令値α*が±90度の近傍にある場合にはq軸電流フィードバック制御を選択し、電圧位相指令値α*が0度の近傍にある場合にはd軸電流フィードバック制御を選択する。 Then, the FB selector 228 selects q-axis current feedback control when the voltage phase command value α * is near ± 90 degrees, and d when the voltage phase command value α * is near 0 degrees. Select axis current feedback control.
 図5は、PI制御器229の機能構成の一例を示すブロック図である。 FIG. 5 is a block diagram showing an example of a functional configuration of the PI controller 229. As shown in FIG.
 PI制御器229は、可変ゲイン演算器91と、可変ゲイン乗算器92と、インダクタンス切替器93と、インダクタンス乗算器94と、比例ゲイン乗算器95と、積分ゲイン乗算器96と、積分器97と、加算器98と、を備える。なお、可変ゲイン乗算器92、インダクタンス乗算器94、比例ゲイン乗算器95、及び積分ゲイン乗算器96に設定される各ゲインを総じてPI制御器229の制御ゲインと称する。 The PI controller 229 includes a variable gain calculator 91, a variable gain multiplier 92, an inductance switch 93, an inductance multiplier 94, a proportional gain multiplier 95, an integral gain multiplier 96, and an integrator 97. , And an adder 98. The gains set in variable gain multiplier 92, inductance multiplier 94, proportional gain multiplier 95, and integral gain multiplier 96 are collectively referred to as a control gain of PI controller 229.
 可変ゲイン演算器91は、式(9)のように、電動機9の回転速度検出値Nに基づいて、PI制御器229の制御ゲインを構成する可変ゲインとして電気角速度ωreを演算する。 The variable gain computing unit 91 computes the electric angular velocity ω re as a variable gain that configures the control gain of the PI controller 229 based on the rotational speed detection value N of the motor 9 as shown in equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 可変ゲイン乗算器92は、q軸電流絶対値偏差|iq|err及びd軸電流偏差id_errのうち、電流成分切替器227から出力される電流偏差に対して可変ゲインである電気角速度ωreを乗算する。 Variable gain multiplier 92 sets an electrical angular velocity ω re which is a variable gain with respect to the current deviation output from current component switching device 227 out of q axis current absolute value deviation | i q | err and d axis current deviation id_err. Multiply.
 インダクタンス切替器93は、FB選択器228からの切替信号に応じて、インダクタンス乗算器94に設定されるゲイン定数であるインダクタンスLxをd軸インダクタンスLd及びq軸インダクタンスLqのうち一方の値に切り替える。 The inductance switching device 93 selects one of the d-axis inductance L d and the q-axis inductance L q as an inductance L x which is a gain constant set in the inductance multiplier 94 in accordance with the switching signal from the FB selector 228. Switch to
 例えば、インダクタンス切替器93は、切替信号がLレベルである場合、すなわちFB選択器228によりd軸電流フィードバック制御が選択された場合には、インダクタンスLxとしてd軸インダクタンスLdを設定する。一方、インダクタンス切替器93は、切替信号がHレベルである場合、すなわちFB選択器228によりq軸電流フィードバック制御が選択された場合には、インダクタンスLxとしてq軸インダクタンスLqを設定する。 For example, when the switching signal is L level, that is, when the d-axis current feedback control is selected by the FB selector 228, the inductance switch 93 sets the d-axis inductance Ld as the inductance Lx. On the other hand, when the switching signal is at H level, that is, when q-axis current feedback control is selected by the FB selector 228, the inductance switch 93 sets the q-axis inductance Lq as the inductance Lx.
 インダクタンス乗算器94は、可変ゲイン乗算器92の出力に対してインダクタンスLxを乗算する。そして比例ゲイン乗算器95は、インダクタンス乗算器94の出力に対して比例ゲインKipを乗算する。 The inductance multiplier 94 multiplies the output of the variable gain multiplier 92 by the inductance Lx. Then, the proportional gain multiplier 95 multiplies the output of the inductance multiplier 94 by the proportional gain K ip .
 積分ゲイン乗算器96は、インダクタンス乗算器94の出力に対して積分ゲインKiiを乗算する。積分器97は、積分ゲイン乗算器96の出力を順次積分する。 The integral gain multiplier 96 multiplies the output of the inductance multiplier 94 by the integral gain K ii . The integrator 97 sequentially integrates the output of the integral gain multiplier 96.
 加算器98は、比例ゲイン乗算器95の出力と積分器97の出力とを加算し、加算した値を電圧ノルムFB値Va_fbとして出力する。 The adder 98 adds the output of the proportional gain multiplier 95 and the output of the integrator 97 and outputs the added value as a voltage norm FB value Va_fb .
 したがって、FB選択器228がd軸電流フィードバック制御を選択した場合には、PI制御器229は、式(10)のように、d軸電流偏差id_errに基づいて電圧ノルムFB値Va_fbを算出する。 Therefore, when the FB selector 228 selects d-axis current feedback control, the PI controller 229 calculates the voltage norm FB value Va_fb based on the d-axis current deviation id_err as in equation (10). Do.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 一方、FB選択器228がq軸電流フィードバック制御を選択した場合には、PI制御器229は、式(11)のように、q軸電流絶対値偏差|iq|errに基づいて電圧ノルムFB値Va_fbを算出する。 On the other hand, when the FB selector 228 selects q-axis current feedback control, the PI controller 229 calculates the voltage norm FB based on the q-axis current absolute value deviation | i q | err as shown in equation (11). The value Va_fb is calculated.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以上のように、PI制御器229の制御ゲインを構成する電気角速度ωreは、電動機9の回転速度検出値Nに応じて変動する可変ゲインとして用いられる。また、d軸電流フィードバック制御が選択された場合は、制御ゲインの定数としてd軸インダクタンスLdが用いられ、q軸電流フィードバック制御が選択された場合は、制御ゲインの定数としてq軸インダクタンスLqが用いられる。すなわち、切替信号に応じて制御ゲインが切り替えられる。 As described above, the electric angular velocity ω re constituting the control gain of the PI controller 229 is used as a variable gain that fluctuates according to the rotational speed detection value N of the motor 9. When d-axis current feedback control is selected, d-axis inductance L d is used as a constant of control gain, and when q-axis current feedback control is selected, q-axis inductance L q is selected as a constant of control gain. Is used. That is, the control gain is switched according to the switching signal.
 次に、電動機9の電圧位相指令値α*を用いてd軸電流フィードバック制御及びq軸電流フィードバック制御のうち一方の制御を実行する手法の一例を説明する。 Next, an example of a method for executing one of the d-axis current feedback control and the q-axis current feedback control using the voltage phase command value α * of the motor 9 will be described.
 図6は、電動機9の中高速回転領域において電動機9に生じる磁束ノルムφ0と電圧ノルムVaとの関係を示す図である。図6では、横軸がdq軸の直交座標系におけるd軸を示し、縦軸がもう一方のq軸を示す。 FIG. 6 is a diagram showing the relationship between the magnetic flux norm φ 0 and the voltage norm V a generated in the motor 9 in the middle high speed rotation region of the motor 9. In FIG. 6, the horizontal axis indicates the d axis in the dq axis orthogonal coordinate system, and the vertical axis indicates the other q axis.
 図6に示すように、電動機9の回転速度検出値Nが中高回転領域にある場合は、電動機9の巻線抵抗による電圧降下は、誘起電圧の大きさωreφ0に比べて無視できるほど小さくなるので、電動機9の巻線抵抗による電圧降下を省略している。すなわち、電動機9の端子電圧の大きさを示す電圧ノルムVaは、磁束ノルムφ0及び電気角速度ωreに比例しているとみなすことができる。 As shown in FIG. 6, when the rotational speed detection value N of the motor 9 is in the middle-high range, the voltage drop due to the winding resistance of the motor 9 can be neglected compared to the magnitude ω re φ 0 of the induced voltage. As it becomes smaller, the voltage drop due to the winding resistance of the motor 9 is omitted. That is, the voltage norm V a indicating the magnitude of the terminal voltage of the motor 9 can be regarded as being proportional to the magnetic flux norm φ 0 and the electrical angular velocity ω re .
 磁束ノルムφ0は、d軸電流id及びq軸電流iqにより生じる電流磁束と、電動機9に設けられた磁石により生じる磁石磁束Φaとを合成した磁束の大きさである。磁束ノルムφ0は、d軸電流id及びd軸インダクタンスLdによるd軸磁束Lddと、q軸電流iq及びq軸インダクタンスLqによるq軸磁束Lqqとに基づいて決まる。 Flux norm phi 0 is the magnitude of the magnetic flux which combines the current magnetic flux generated by the d-axis current i d and the q-axis current i q, a magnetic flux [Phi a caused by a magnet provided in the motor 9. Flux norm phi 0, based the d-axis flux L d i d by the d-axis current i d and the d-axis inductance L d, the q-axis flux L q i q by the q-axis current i q and the q-axis inductance L q It is decided.
 本実施形態の電流FB制御部220は、図6に示した電動機9への供給電流の電流成分(id及びiq)と磁束ノルムφ0と電圧ノルムVaとの関係を利用して電圧ノルム指令値Va *が増減するように構成されている。 Current FB control unit 220 of the present embodiment, voltage using the relationship current component of the current supplied to the motor 9 shown in FIG. 6 and (i d and i q) and flux norm phi 0 and the voltage norm V a The norm command value V a * is configured to increase or decrease.
 図7は、電動機9の電圧位相αが0度近傍にある場合におけるd軸及びq軸の各電流成分id及びiqの電圧ノルムVaに対する相関性を示す図である。 Figure 7 is a diagram illustrating the correlation to the voltage norm V a of the current component of the d-axis and q-axis i d and i q when the voltage phase α of the electric motor 9 is in the 0 degree vicinity.
 図7に示すように、電圧位相αが0°近傍にある場合は、q軸磁束Lqqが小さいため、q軸電流iqの増減に対して磁束ノルムφ0の変化幅は小さくなるのに対して、d軸電流idの増減に対して磁束ノルムφ0の変化幅は大きくなる。 As shown in FIG. 7, when the voltage phase α is near 0 °, the q-axis magnetic flux L q i q is small, so the variation width of the flux norm φ 0 becomes small with respect to the increase or decrease of the q-axis current i q whereas, the variation width of the flux norm phi 0 relative increase or decrease of the d-axis current i d is increased.
 このように、電圧ノルムVaに比例する磁束ノルムφ0の感度、すなわち磁束ノルムφ0との相関性についてはd軸電流idが支配的になる。したがって、電圧位相αが0°近傍にある場合は、電圧ノルムVaに対してd軸電流idの相関性が高くなり、q軸電流iqの相関性が低くなる。 As described above, the d-axis current id becomes dominant with respect to the sensitivity of the flux norm φ 0 proportional to the voltage norm V a , that is, the correlation with the flux norm φ 0 . Therefore, if the voltage phase α in near 0 °, the correlation of the d-axis current i d is increased relative to the voltage norm V a, the correlation of the q-axis current i q is lowered.
 このため、本実施形態のPI制御器229は、図4に示したように、電動機9に生じる電圧の向きを示す電圧位相指令値α*が0近傍にある場合には、d軸電流フィードバック制御が選択されるように切替信号をLレベルに設定する。 For this reason, as shown in FIG. 4, the PI controller 229 according to the present embodiment performs d-axis current feedback control when the voltage phase command value α * indicating the direction of the voltage generated in the motor 9 is near 0. Is set to L level so that is selected.
 図8は、電動機9の電圧位相αが±90°近傍にある場合における電動機9の各電流成分id及びiqの電圧ノルムVaに対する相関性を示す図である。 Figure 8 is a graph showing the correlation with respect to the voltage norm V a of the current components i d and i q of the motor 9 when the voltage phase α of the electric motor 9 is in the vicinity ± 90 °.
 図8に示すように、電圧位相αが±90度近傍にある場合は、d軸磁束Lddが大きくなるため、d軸電流idの増減に対して磁束ノルムφ0の変化幅は小さくなるとともに、q軸電流iqの増減に対して磁束ノルムφ0の変化幅は大きくなる。 As shown in FIG. 8, if the voltage phase α is near 90 degrees ±, since the d-axis flux L d i d is increased, the variation width of the flux norm phi 0 relative increase or decrease of the d-axis current i d is As it becomes smaller, the variation width of the flux norm φ 0 becomes larger with respect to the increase and decrease of the q-axis current iq .
 このように、電圧ノルムVaに比例する磁束ノルムφ0の感度についてはq軸電流iqが支配的になる。したがって、電圧位相αが±90°近傍にある場合は、電圧ノルムVaに対してq軸電流iqの相関性が高くなり、d軸電流idの相関性が低くなる。 Thus, the q-axis current i q is dominant in the sensitivity of the flux norm φ 0 which is proportional to the voltage norm V a . Therefore, if the voltage phase α is near ± 90 °, the correlation of the q-axis current i q becomes higher than the voltage norm V a, the correlation of the d-axis current i d is lowered.
 このため、本実施形態のPI制御器229は、図4に示したように、電圧位相指令値α*が±90°近傍にある場合には、q軸電流フィードバック制御が選択されるように切替信号をHレベルに設定する。 Therefore, as shown in FIG. 4, when the voltage phase command value α * is in the vicinity of ± 90 °, the PI controller 229 of this embodiment switches so that q-axis current feedback control is selected. Set the signal to H level.
 図9は、電動機9の供給電流と電圧ノルムVaとの相関性を示す図である。図9Aは、電動機9の電圧位相αごとにd軸電流idの電圧ノルムVaに対する相関性を示す図である。図9Bは、電圧位相αごとにq軸電流iqの電圧ノルムVaに対する相関性を示す図である。 Figure 9 is a graph illustrating the correlation between the supply current and voltage norm V a of the motor 9. Figure 9A is a diagram illustrating the correlation to the voltage norm V a d-axis current i d for each voltage phase α of the electric motor 9. FIG. 9B is a diagram showing the correlation of the q-axis current i q to the voltage norm V a for each voltage phase α.
 例えば、電圧位相αが±90°の近傍では、図9Aに示すように、d軸電流idと電圧ノルム指令値Va *との間には相関性がない。このため、仮にd軸電流idを電圧ノルム指令値Va *にフィードバックすると、相関性がないにもかかわらずd軸電流idの変化に応じて電圧ノルム指令値Va *が変化してしまう。 For example, in the vicinity of the voltage phase alpha ± 90 °, as shown in FIG. 9A, there is no correlation between the d-axis current i d and the voltage norm command value V a *. Therefore, if when feeding back the d-axis current i d to a voltage norm command value V a *, and * the voltage norm command value V a changes in accordance with changes in spite of the d-axis current i d is no correlation I will.
 これに対して、図9Bに示すように、電圧位相αが±90°の近傍では、q軸電流iqと電圧ノルム指令値Va *との間には相関性がある。このため、q軸電流iqを電圧ノルム指令値Va *にフィードバックすることにより、q軸電流iqの変化に応じて電圧ノルム指令値Va *を適切に増減させることができる。 In contrast, as shown in FIG. 9B, in the vicinity of the voltage phase alpha ± 90 °, there is a correlation between the q-axis current i q and the voltage norm command value V a *. Therefore, by feeding back the q-axis current i q to a voltage norm command value V a *, a voltage norm command value V a * may be appropriately increased or decreased according to the change of the q-axis current i q.
 また、電圧位相αが0°の近傍では、図9Aに示すように、d軸電流idと電圧ノルム指令値Va *との間には十分な相関性がある。このため、d軸電流idを電圧ノルム指令値Va *にフィードバックすることにより、d軸電流idの変化に応じて電圧ノルム指令値Va *を適切に増減させることができる。 Further, in the vicinity of the voltage phase alpha 0 °, as shown in FIG. 9A, there is sufficient correlation between the d-axis current i d and the voltage norm command value V a *. Therefore, by feeding back the d-axis current i d to a voltage norm command value V a *, a voltage norm command value V a * may be appropriately increased or decreased according to the change of the d-axis current i d.
 これに対して、電圧位相αが±0°の近傍では、図9Bに示すように、q軸電流iqと電圧ノルム指令値Va *との間には相関性がない。このため、仮にq軸電流iqを電圧ノルム指令値Va *にフィードバックすると、電動機9に生じる電圧ノルムVaが一定である状況でもq軸電流iqの変化に応じて電圧ノルム指令値Va *が変化してしまう。 In contrast, the voltage phase α in the vicinity of ± 0 °, as shown in FIG. 9B, there is no correlation between the q-axis current i q and the voltage norm command value V a *. Therefore, if the q-axis current i q is fed back to the voltage norm command value V a * , even if the voltage norm V a generated in the motor 9 is constant, the voltage norm command value V according to the change of the q-axis current i q a * changes.
 このため、本実施形態では、図4に示したように、FB選択器228により電圧位相指令値α*が±90°近傍にある場合にはq軸電流フィードバック制御が選択され、電圧位相指令値α*が0°近傍にある場合には、d軸電流フィードバック制御が選択される。これにより、電動機9の動作に応じた適切な電圧ノルム指令値Va *に対し電動機9の電圧ノルムVaが過大になるのを抑制することができる。 For this reason, in the present embodiment, as shown in FIG. 4, when the voltage phase command value α * is near ± 90 ° by the FB selector 228, q-axis current feedback control is selected, and the voltage phase command value is selected. If α * is near 0 °, d-axis current feedback control is selected. Thus, the voltage norm V a of the motor 9 to a suitable voltage norm command value V a * corresponding to the operation of the electric motor 9 can be prevented from becoming excessive.
 なお、q軸電流iqと電圧ノルムVaとの相関は、電圧位相αが正の値をとる力行領域と、電圧位相αが負の値をとる回生領域との間で逆の関係になる。これに対しては、相関関係がq軸電流iqが0A(アンペア)を基準に対称となるので、q軸電流iqの絶対値を求める絶対値処理を施すことにより、力行領域でも回生領域でも共通のフィードバック構成で実現することができる。 Incidentally, the correlation between the q-axis current i q and voltage norm V a becomes a power running region where the voltage phase α takes a positive value, the inverse relationship between the regeneration region in which the voltage phase α takes a negative value . For this, the correlation q-axis current iq is symmetrical relative to 0A (amperes) by applying the absolute value processing for determining the absolute value of q-axis current i q, in the regenerative region at the power running region It can be realized by a common feedback configuration.
 図6乃至図9に示したように、電動機9が中高速回転領域にある場合に、電圧ノルムVaは、磁束ノルムφ0と比例関係にある。このため、電流FB制御部220は、磁束ノルムφ0に対して相関性の高い電流成分のみでフィードバック制御を実行するので、電圧ノルム指令値Va *の応答速度を確保しつつ、電圧ノルム指令値Va *の演算負荷を低減することができる。 As shown in FIGS. 6 to 9, when the motor 9 is in the middle or high speed region, the voltage norm V a, is proportional to the flux norm phi 0. For this reason, current FB control unit 220 executes feedback control only with current components having high correlation to magnetic flux norm φ 0 , so that the voltage norm command is ensured while the response speed of voltage norm command value V a * is ensured. it is possible to reduce the calculation load value V a *.
 さらに電圧ノルムVaは、磁束ノルムφ0だけでなく電気角速度ωreと比例関係にあるため、電流FB制御部220は、PI制御器229の制御ゲインを回転速度検出値Nに応じて変更する。これにより、電動機9の制御における応答速度を向上させることができる。 Furthermore, since voltage norm V a is proportional to not only magnetic flux norm φ 0 but also electrical angular velocity ω re , current FB control unit 220 changes the control gain of PI controller 229 according to rotational speed detection value N. . Thereby, the response speed in control of the motor 9 can be improved.
 そして、磁束ノルムφ0に対する電流成分id及びiqの相関性を考慮し、電流FB制御部220は、電圧位相指令値α*に基づいてPI制御器229の制御ゲインの定数にd軸インダクタンスLd又はq軸インダクタンスLqを設定する。これにより、電圧位相指令値α*にかかわらず電動機9の制御における応答速度を確保することができる。 Then, taking into account the correlation of the current component i d and i q for flux norm phi 0, the current FB controller 220, d-axis inductance constant control gain of the PI controller 229 on the basis of the voltage phase command value alpha * L d or q axis inductance L q is set. Thus, the response speed in the control of the motor 9 can be secured regardless of the voltage phase command value α * .
 図10は、図3に示したPI制御器229においてアンチワインドアップ処理を実行する機能構成の一例を示すブロック図である。 FIG. 10 is a block diagram showing an example of a functional configuration for performing anti-windup processing in the PI controller 229 shown in FIG.
 ノルム制限器240が電圧ノルム指令値Va *を制限している旨の通知信号をPI制御器229に出力している間、図10に示すように、PI制御器229はアンチワインドアップ処理を実行する。 While the norm limiter 240 outputs a notification signal indicating that the voltage norm command value V a * is limited to the PI controller 229, as shown in FIG. 10, the PI controller 229 performs anti-windup processing. Run.
 この例では、PI制御器229の入力に対して積分器97が更新されないよう0(ゼロ)が積分器97に入力される。そしてPI制御器229の出力である電圧ノルムFB値Va_fbと電圧ノルム基準値Va_ffとの和が電圧ノルム上限値Va_max又は電圧ノルム下限値0となるように初期化処理が実行される。 In this example, 0 (zero) is input to the integrator 97 so that the integrator 97 is not updated with respect to the input of the PI controller 229. Then, the initialization process is executed so that the sum of voltage norm FB value Va_fb output from PI controller 229 and voltage norm reference value Va_ff becomes voltage norm upper limit value Va_max or voltage norm lower limit value 0.
 なお、ノルム制限器240が電圧ノルム指令値Va *を制限していない間は、PI制御器229は、図5に示した構成により電圧ノルムFB値Va_fbを算出する。 Incidentally, while the norm limiter 240 does not limit the voltage norm command value V a *, PI controller 229 calculates a voltage norm FB value V A_FB by the configuration shown in FIG. 5.
 図11は、図3に示した位相制限器280に設定される電圧位相範囲の設定手法の一例を説明する図である。 FIG. 11 is a diagram for explaining an example of a method of setting the voltage phase range set in phase limiter 280 shown in FIG. 3.
 図11には、電動機9における電圧位相αとトルクTとの関係を示す電圧位相特性が例示されている。ここでは、横軸が電動機9の電圧位相αを示し、縦軸が電動機9のトルクTを示す。 FIG. 11 illustrates voltage phase characteristics indicating the relationship between the voltage phase α and the torque T in the motor 9. Here, the horizontal axis indicates the voltage phase α of the motor 9, and the vertical axis indicates the torque T of the motor 9.
 図11に示すように、電動機9の電圧位相αとトルクTとの相関が維持される電圧位相の範囲が凡そ-105度から+105度までの範囲である。このような例では、図3で述べた位相制限器280に関する電圧位相範囲の電圧位相下限値αmin及び電圧位相上限値αmaxは、それぞれ、-105度及び+105度に設定される。 As shown in FIG. 11, the range of the voltage phase in which the correlation between the voltage phase α of the motor 9 and the torque T is maintained is in the range of approximately −105 degrees to +105 degrees. In such an example, the voltage phase lower limit value α min and the voltage phase upper limit value α max of the voltage phase range for the phase limiter 280 described with reference to FIG. 3 are set to −105 degrees and +105 degrees, respectively.
 図12は、図1に示した切替判定部13の構成の一例を示すブロック図である。 FIG. 12 is a block diagram showing an example of the configuration of the switching determination unit 13 shown in FIG.
 切替判定部13は、第1乃至第3ノルム閾値演算器131乃至133と、平均化処理フィルタ134及び135と、ノルム演算器136と、ノイズ処理フィルタ137と、参照電流フィルタ138と、電流閾値演算器139と、制御モード判定器140とを備える。 The switching determination unit 13 includes first to third norm threshold calculators 131 to 133, averaging processing filters 134 and 135, a norm calculator 136, a noise processing filter 137, a reference current filter 138, and current threshold calculation. And a control mode determination unit 140.
 第1ノルム閾値演算器131は、電圧位相制御から電流ベクトル制御へ切り替えるための変調率閾値Mth1に基づいて、電圧ノルムに関する閾値である第1ノルム閾値Va_th1を演算する。第1ノルム閾値Va_th1は、電圧位相制御から電流ベクトル制御への切替え条件として用いられる。 The first norm threshold calculator 131, based on the modulation rate threshold M th1 for switching from the voltage phase control to the current vector control calculates a first norm threshold V A_th1 a threshold for voltage norm. The first norm threshold value Va_th1 is used as a switching condition from voltage phase control to current vector control.
 第2ノルム閾値演算器132は、電流ベクトル制御から電圧位相制御へ切り替えるための変調率閾値Mth2に基づいて、電圧ノルムに関する閾値である第2ノルム閾値Va_th2を演算する。第2ノルム閾値Va_th2は、電流ベクトル制御から電圧位相制御への切替え条件として用いられる。 The second norm threshold calculator 132, based on the modulation rate threshold M th2 for switching from the current vector control to the voltage phase control, calculates a second norm threshold V A_th2 a threshold for voltage norm. The second norm threshold value Va_th2 is used as a switching condition from current vector control to voltage phase control.
 第3ノルム閾値演算器133は、電圧位相制御から保護制御へ切り替えるための変調率閾値Mth3に基づいて、電圧ノルムに関する閾値である第3ノルム閾値Va_th3を演算する。第3ノルム閾値Va_th3は、電流ベクトル制御から保護制御への切替え条件として用いられる。 Third norm threshold calculator 133, based on the modulation rate threshold M th3 for switching from the voltage phase control to the protection control, and calculates a third norm threshold V A_th3 a threshold for voltage norm. The third norm threshold value Va_th3 is used as a switching condition from current vector control to protection control.
 第1乃至第3変調率閾値Mth1乃至Mth3は、例えば、式(12)のような関係になるように設定される。なお、変調率上限値Mmax *は、1.0よりも大きな値に設定される。 The first to third modulation factor thresholds M th1 to M th3 are set, for example, to have a relationship as shown in equation (12). The modulation factor upper limit value M max * is set to a value larger than 1.0.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本実施形態の第1乃至第3ノルム閾値演算器131乃至133は、それぞれ、式(13)のように、バッテリ電圧検出値Vdcと第1乃至第3変調率閾値Mth1乃至Mth3とに基づいて、第1乃至第3ノルム閾値Va_th1乃至Va_th3を算出する。 The first to third norm threshold calculators 131 to 133 according to the present embodiment respectively use the battery voltage detection value V dc and the first to third modulation factor thresholds M th1 to M th3 as shown in equation (13). based on, to calculate the first to third norm threshold V A_th1 to V a_th3.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 平均化処理フィルタ134は、入力値に対して平均化処理を施して出力するフィルタである。本実施形態の平均化処理フィルタ134は、制御切替器3から出力されたd軸の最終電圧指令値vd_fin *に対して、入力値のノイズ成分を除去するノイズカット処理を施し、ノイズカット処理を施した値vd_fin_fltをノルム演算器136に出力する。平均化処理フィルタ134は、例えば、ローパスフィルタにより実現される。 The averaging processing filter 134 is a filter that performs averaging processing on input values and outputs the result. The averaging processing filter 134 of the present embodiment performs noise cutting processing for removing the noise component of the input value on the final voltage command value v d_fin * of the d axis output from the control switch 3 to perform noise cutting processing. The value v d — fin — flt obtained by the above is output to the norm calculator 136. The averaging process filter 134 is realized by, for example, a low pass filter.
 平均化処理フィルタ135は、平均化処理フィルタ134と同様の構成である。平均化処理フィルタ135は、制御切替器3から出力されたq軸の最終電圧指令値vd_fin *に対してノイズカット処理を施し、ノイズカット処理を施した値vq_fin_fltをノルム演算器136に出力する。 The averaging process filter 135 has the same configuration as the averaging process filter 134. Averaging filter 135 performs a noise cut process to the control switch final voltage command value of the q-axis output from the 3 v d_fin *, outputs the value v Q_fin_flt subjected to noise cut process norm calculator 136 Do.
 ノルム演算器136は、式(14)のように、平均化処理フィルタ134及び135の各出力値vd_fin_flt及びvq_fin_fltに基づいて、電圧令指令値のノルム成分を示す平均化電圧ノルムVa_fin_flt *を算出する。 The norm calculator 136 calculates the averaged voltage norm Va_fin_flt * indicating the norm component of the voltage command value based on the output values vd_fin_flt and vq_fin_flt of the averaging processing filters 134 and 135 as shown in equation (14) . Calculate
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 なお、制御切替器3から電圧位相制御の電圧指令値が出力される場合には、平均化電圧ノルムVa_fin_flt *に代えて、図3に示したベクトル変換器290に入力される電圧ノルム指令値Va *を用いるようにしてもよい。 In addition, when the voltage command value of voltage phase control is output from the control switch 3, the voltage norm command value input to the vector converter 290 shown in FIG. 3 instead of the averaged voltage norm Va_fin_flt * . it is also possible to use a V a *.
 ノイズ処理フィルタ137は、入力値に対して平均化処理を施して出力するフィルタである。本実施形態のノイズ処理フィルタ137は、図1に示した座標変換器12からのd軸電流検出値idに対してノイズカット処理を施すことにより、平均化d軸電流値id_fltを算出する。ノイズ処理フィルタ137は、例えば、ローパスフィルタにより実現される。 The noise processing filter 137 is a filter that performs averaging processing on input values and outputs the result. Noise processing filter 137 of the present embodiment, by performing the noise cut process on the d-axis current detection value i d from the coordinate converter 12 shown in FIG. 1, calculates the average d-axis current value i D_flt . The noise processing filter 137 is realized by, for example, a low pass filter.
 参照電流フィルタ138は、図2に示した電流目標値演算部103からのd軸電流目標値id *に対して、電動機9の応答性を考慮したフィルタ処理を施すことにより、d軸電流参照値id_ref *を算出する。参照電流フィルタ138は、例えば、ローパスフィルタにより実現される。 The reference current filter 138 performs d-axis current reference by performing filter processing in consideration of the responsiveness of the motor 9 with respect to the d-axis current target value id * from the current target value calculation unit 103 shown in FIG. 2. Calculate the value id_ref * . The reference current filter 138 is realized by, for example, a low pass filter.
 電流閾値演算器139は、入力値に対して平均化処理を施して出力するフィルタである。本実施形態の電流閾値演算器139は、参照電流フィルタ138からのd軸電流参照値id_ref *に対して、ノイズ処理フィルタ137と同様のノイズカット処理を施すことにより、平均化d軸電流値id_fltと同等の遅延特性を有するd軸電流閾値id_th *を算出する。 The current threshold calculator 139 is a filter that performs averaging on the input value and outputs the result. The current threshold calculator 139 of this embodiment performs the same noise cut processing as the noise processing filter 137 on the d-axis current reference value id_ref * from the reference current filter 138 to obtain an averaged d-axis current value. calculating a d-axis current threshold i D_TH * with i D_flt equivalent delay characteristics.
 d軸電流閾値id_th *は、電圧位相制御から電流ベクトル制御への切替条件のひとつとして用いられる。電流閾値演算器139は、例えば、ノイズ処理フィルタ137と同一のローパスフィルタにより実現される。 The d-axis current threshold id_th * is used as one of the switching conditions from voltage phase control to current vector control. The current threshold calculator 139 is realized, for example, by the same low pass filter as the noise processing filter 137.
 制御モード判定器140は、電圧位相制御、電流ベクトル制御、及び保護制御のうち電動機9の作動状態に応じて、電動機9に適した制御を判定する。そして制御モード判定器140は、判定結果を示す制御モードを制御切替器3に出力する。 The control mode determination unit 140 determines the control suitable for the motor 9 according to the operating state of the motor 9 among the voltage phase control, the current vector control, and the protection control. Then, the control mode determination unit 140 outputs the control mode indicating the determination result to the control switch 3.
 本実施形態の制御モード判定器140は、平均化電圧ノルムVa_fin_flt *と、平均化d軸電流値id_fltとに基づいて、電流ベクトル制御と電圧位相制御との間で電動機9の制御を切り替える。また、制御モード判定器140は、平均化電圧ノルムVa_fin_flt *と、回転速度検出値Nとに基づいて、電動機9の制御を電圧位相制御から電動機9を保護するための保護制御に切り替える。 The control mode determiner 140 of this embodiment switches the control of the motor 9 between the current vector control and the voltage phase control based on the averaged voltage norm Va_fin_flt * and the averaged d-axis current value id_flt. . Further, the control mode determination unit 140 switches control of the motor 9 to protection control for protecting the motor 9 from voltage phase control based on the averaged voltage norm Va_fin_flt * and the rotational speed detection value N.
 図13は、第1乃至第3の変調率閾値Mth1乃至Mth3の設定例を示す図である。 FIG. 13 is a diagram showing a setting example of the first to third modulation factor thresholds M th1 to M th3 .
 図13に示すように、変調率上限値Mmax *は1.1に設定され、第2変調率閾値Mth2は1.0に設定され、第1変調率閾値Mth1は0.9に設定され、第3変調率閾値Mth3は0.5に設定される。 As shown in FIG. 13, the modulation factor upper limit value M max * is set to 1.1, the second modulation factor threshold M th2 is set to 1.0, and the first modulation factor threshold M th1 is set to 0.9 And the third modulation rate threshold M th3 is set to 0.5.
 なお、図3に示した電圧ノルム生成部210の基準変調率M*は、電圧位相制御の動作領域のうち電動機9の動作の大部分を占める第2変調率閾値Mth2から変調率上限値Mmax *までの範囲内に設定するのが好ましい。 The reference modulation factor M * of the voltage norm generation unit 210 shown in FIG. 3 is from the second modulation factor threshold M th2 which occupies most of the operation of the motor 9 in the operation area of voltage phase control, to the modulation factor upper limit M It is preferable to set in the range up to max * .
 図14は、制御モード判定器140による制御モードの判定手法の一例を説明する図である。 FIG. 14 is a diagram for explaining an example of a control mode determination method by the control mode determination unit 140. As shown in FIG.
 図14に示すように、電流ベクトル制御の実行中において平均化電圧ノルムVa_fin_flt *が第2ノルム閾値Va_th2以上になったときに制御モード判定器140は、電動機9に適した制御が電圧位相制御であると判定する。そして制御モード判定器140は、電圧位相制御を示す制御モード信号を制御切替器3に出力する。これにより、電動機9の制御は、電流ベクトル制御から電圧位相制御へ切り替えられる。 As shown in FIG. 14, when the averaging voltage norm Va_fin_flt * becomes equal to or higher than the second norm threshold Va_th2 during execution of the current vector control, the control mode discriminator 140 controls the voltage phase suitable for the motor 9. It determines that it is control. Then, the control mode determination unit 140 outputs a control mode signal indicating voltage phase control to the control switch 3. Thereby, control of the motor 9 is switched from current vector control to voltage phase control.
 電圧位相制御の実行中において、平均化電圧ノルムVa_fin_flt *が第1ノルム閾値Va_th1以下になり、かつ、平均化d軸電流値id_fltがd軸電流閾値id_th *以上になったときに制御モード判定器140は、電動機9に適した制御が電流ベクトル制御であると判定する。そして制御モード判定器140は、電流ベクトル制御を示す制御モード信号を制御切替器3に出力する。これにより、電動機9の制御は、電圧位相制御から電流ベクトル制御へ切り替えられる。 During execution of voltage phase control, when the averaged voltage norm V a_fin_flt * becomes less than or equal to the first norm threshold V a_th 1 and the averaged d-axis current value id_flt becomes more than the d-axis current threshold id_th * The control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control. Then, the control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3. Thereby, control of the motor 9 is switched from voltage phase control to current vector control.
 さらに電圧位相制御の実行中においては、平均化電圧ノルムVa_fin_flt *が第3ノルム閾値Va_th3以下になり、又は、回転速度検出値Nの絶対値が回転速度閾値Nthを下回ったときに制御モード判定器140は、電動機9に適した制御が保護制御であると判定する。 Furthermore, during execution of the voltage phase control, the control mode is performed when the averaged voltage norm V a_fin_flt * becomes less than or equal to the third norm threshold V a — th3 or the absolute value of the rotational speed detection value N falls below the rotational speed threshold Nth. The determiner 140 determines that the control suitable for the motor 9 is protection control.
 上述の回転速度閾値Nthは、電動機9の回転速度が下り過ぎているか否かを判定するための所定の閾値である。制御モード判定器140は、保護制御を示す制御モード信号を制御切替器3に出力する。これにより、電動機9の制御が電圧位相制御から保護制御へ切り替えられる。 Rotational speed threshold N th above is a predetermined threshold for determining whether or not the rotational speed of the electric motor 9 is too down. The control mode determination unit 140 outputs a control mode signal indicating protection control to the control switch 3. As a result, control of the motor 9 is switched from voltage phase control to protection control.
 なお、保護制御の実行中に電動機9に対して電流及び電圧が過剰に供給されておらず、電動機9の故障が起っていないときには、制御モード判定器140は、電動機9に適した制御が電流ベクトル制御であると判定する。すなわち、電動機9の制御は保護制御から電流ベクトル制御に復帰する。 When the current and voltage are not excessively supplied to the motor 9 during the execution of the protection control and no failure of the motor 9 occurs, the control mode determination unit 140 performs control suitable for the motor 9. It is determined that current vector control is performed. That is, the control of the motor 9 returns from protection control to current vector control.
 図15は、図1に示した制御切替器3の詳細構成を例示するブロック図である。 FIG. 15 is a block diagram illustrating a detailed configuration of control switch 3 shown in FIG.
 制御切替器3は、電流ベクトル制御部1からの電圧指令値vdi_fin及びvqi_finと、電圧位相制御部2からの電圧指令値vdv_fin及びvqv_finと、保護制御に用いられる電圧指令値と、制御モード判定器140からの制御モード信号とを取得する。保護制御用のd軸電圧指令値及びq軸電圧指令値は、互いにゼロ(0)を示すゼロ電圧値に設定される。 Control switch 3, the voltage command value v Di_fin and v Qi_fin from the current vector control unit 1, the voltage command value v Dv_fin and v Qv_fin from voltage phase control unit 2, and the voltage command value for the protective control, The control mode signal from the control mode determination unit 140 is acquired. The d-axis voltage command value and the q-axis voltage command value for protection control are set to zero voltage values that indicate zero (0) to each other.
 制御切替器3は、制御モード判定器140からの制御モード信号に応じて、電流ベクトル制御部1の出力を用いて電動機9を駆動するか、電圧位相制御部2の出力を用いて電動機を駆動するかを選択する。 The control switch 3 drives the motor 9 using the output of the current vector control unit 1 according to the control mode signal from the control mode determination unit 140 or drives the motor using the output of the voltage phase control unit 2 Choose what to do.
 また、制御モードが保護制御を示す場合には、制御切替器3は、電動機電流検出器8及び回転子検出器10などに依存しないゼロ電圧を選択する。これにより、インバータ6から電動機9に供給される交流電力を抑制することができる。 When the control mode indicates protection control, the control switch 3 selects a zero voltage that does not depend on the motor current detector 8 and the rotor detector 10 or the like. Thereby, the alternating current power supplied from the inverter 6 to the motor 9 can be suppressed.
 そして、制御切替器3からゼロ電圧が出力されている間、制御装置100は、電動機9又は制御装置100自体が異常状態であるか否かのチェック及び故障診断などを実行する。 Then, while the zero voltage is output from the control switch 3, the control device 100 executes a check as to whether or not the motor 9 or the control device 100 itself is in an abnormal state, a failure diagnosis, and the like.
 図16は、本実施形態における電動機9の制御方法の一例を示すフローチャートである。 FIG. 16 is a flowchart showing an example of a control method of the motor 9 in the present embodiment.
 ステップS1において座標変換器12は、電動機電流検出器8により検出されるU相及びV相の電流iu及びivをd軸及びq軸の電流検出値id及びiqに変換する。 In step S1, the coordinate converter 12 converts the U- and V-phase currents i u and i v detected by the motor current detector 8 into d-axis and q-axis current detection values id and i q .
 ステップS2において回転速度演算器11は、回転子検出器10により検出される電気角検出値θに基づいて、電動機9の回転速度検出値Nを演算する。 In step S2, the rotational speed calculator 11 calculates the rotational speed detection value N of the motor 9 based on the electrical angle detection value θ detected by the rotor detector 10.
 ステップS3において制御装置100は、電動機9のトルク目標値T*とバッテリ電圧検出器7からのバッテリ電圧検出値Vdcとを取得する。 In step S3, control device 100 obtains torque target value T * of electric motor 9 and battery voltage detection value Vdc from battery voltage detector 7.
 ステップS4において切替判定部13は、電動機9の作動状態に応じて、電動機9に適用すべき制御を判定する。 In step S <b> 4, the switching determination unit 13 determines the control to be applied to the motor 9 in accordance with the operating state of the motor 9.
 ステップS5において切替判定部13は、電動機9に適用すべき制御が電流ベクトル制御であるか否かを判断する。 In step S5, the switching determination unit 13 determines whether the control to be applied to the motor 9 is current vector control.
 ステップS6において電流ベクトル制御部1は、電動機9に適用すべき制御が電流ベクトル制御であると判定された場合には、トルク目標値T*に基づいてd軸及びq軸電流目標値id *及びiq *を演算する。 Current vector control unit 1 in step S6, if the control to be applied to the electric motor 9 is judged to be the current vector control based on torque target value T * d-axis and q-axis current target value i d * And iq * .
 ステップS7において電流ベクトル制御部1は、d軸電流目標値id *とd軸電流検出値idとの偏差に応じてd軸の電流FB電圧指令値vdi *を算出するとともにq軸電流目標値iq *とq軸電流検出値iqとの偏差に応じてq軸の電流FB電圧指令値vqi *を算出する。 In step S7, the current vector control unit 1 calculates the d-axis current FB voltage command value v di * according to the deviation between the d-axis current target value id * and the d-axis current detection value id, and the q-axis current calculating the current FB voltage command value v qi of q-axis * in accordance with the deviation between the target value i q * and the q-axis current detection value i q.
 ステップS8において電流ベクトル制御部1は、トルク目標値T*に基づいてd軸及びq軸の非干渉電圧値vd_dcpl *及びvq_dcpl *を演算する。そして電流ベクトル制御部1は、その非干渉電圧値vd_dcpl *及びvq_dcpl *の各々に対してローパスフィルタ処理を施した非干渉電圧値vd_dcpl_flt *及びvq_dcpl_flt *を出力する。 Step current vector control unit 1 in S8, the non-interference voltage value of d-axis and q-axis v D_dcpl * and v computes a Q_dcpl * based on the torque target value T *. Then, the current vector control unit 1 outputs non-interference voltage values vd_dcpl_flt * and vq_dcpl_flt * obtained by performing low-pass filter processing on the respective non-interference voltage values vd_dcpl * and vq_dcpl * .
 ステップS9において電流ベクトル制御部1は、d軸及びq軸の電流FB電圧指令値vqi *及びvqi *に対して、それぞれ非干渉電圧値vd_dcpl_flt *及びvq_dcpl_flt *を加算することにより、電流ベクトル制御のd軸及びq軸電圧指令値vdi_fin *及びvqi_fin *を出力する。 In step S9, the current vector control unit 1 adds non-interference voltage values v d_dcpl_flt * and v q_dcpl_flt * to the d-axis and q-axis current FB voltage command values v qi * and v qi * , respectively. The d-axis and q-axis voltage command values vdi_fin * and vqi_fin * of the current vector control are output.
 ステップS10において座標変換器4は、d軸及びq軸電圧指令値vdi_fin *及びvqi_fin *を三相電圧指令値vu *、vv *及びvw *に変換する。 In step S10, the coordinate converter 4 converts the d-axis and q-axis voltage command values v di — fin * and v qi _ fin * into three-phase voltage command values v u * , v v * and v w * .
 次に、ステップS5で電動機9に適用すべき制御が電流ベクトル制御ではないと判定された場合には、制御装置100はステップS11の処理に進む。 Next, when it is determined in step S5 that the control to be applied to the motor 9 is not the current vector control, the control device 100 proceeds to the process of step S11.
 ステップS11において切替判定部13は、電動機9に適用すべき制御が電圧位相制御であるか否かを判断する。 In step S11, the switching determination unit 13 determines whether the control to be applied to the motor 9 is voltage phase control.
 ステップS12において電圧位相制御部2は、電動機9に適用すべき制御が電圧位相制御であると判定された場合には、本実施形態における電圧位相制御処理を実行する。この電圧位相制御処理については図17を参照して後述する。 When it is determined in step S12 that the control to be applied to the motor 9 is voltage phase control, the voltage phase control unit 2 executes the voltage phase control process in the present embodiment. The voltage phase control process will be described later with reference to FIG.
 ステップS13において電圧位相制御部2は、電圧位相制御のd軸及びq軸電圧指令値vdv_fin *及びvqv_fin *を出力する。その後、制御装置100はステップS10の処理に進む。 In step S13, the voltage phase control unit 2 outputs d-axis and q-axis voltage command values v dv _fin * and v qv _fin * for voltage phase control. Thereafter, the control device 100 proceeds to the process of step S10.
 次に、ステップS11で電動機9に適用すべき制御が電流ベクトル制御ではなく、かつ電圧位相制御でもないと判定された場合には、制御装置100はステップS14の処理に進む。 Next, when it is determined in step S11 that the control to be applied to the motor 9 is neither current vector control nor voltage phase control, the control device 100 proceeds to the process of step S14.
 ステップS14において制御切替器3は、電動機9に適用すべき制御が電流ベクトル制御ではなく、かつ電圧位相制御でもないと判定された場合には、保護制御のd軸及びq軸電圧指令値をそれぞれゼロに設定する。その後、制御装置100はステップS10の処理に進み、制御装置100の制御方法を終了する。 If it is determined in step S14 that the control to be applied to the motor 9 is neither current vector control nor voltage phase control, the d-axis and q-axis voltage command values for protection control are respectively determined. Set to zero. Thereafter, the control device 100 proceeds to the process of step S10 and ends the control method of the control device 100.
 図17は、ステップS12の電圧位相制御処理に関する処理手順例を示すフローチャートである。 FIG. 17 is a flowchart showing an example of a processing procedure relating to the voltage phase control process of step S12.
 ステップS121において電圧位相制御部2は、図3で述べたとおり、電流ベクトル制御部1からのd軸及びq軸電流目標値id *及びiq *と、電圧ノルム基準値Va_ffと、電圧位相FF値αffとを取得する。 Voltage phase control unit 2 in step S121, as described in FIG. 3, a * d-axis and q-axis current target value i d * and i q from the current vector control unit 1, and a voltage norm reference value V A_ff, voltage The phase FF value α ff is acquired.
 ステップS122において電圧位相制御部2は、トルク参照値Trefとトルク推定値Testとを演算する。 In step S122, the voltage phase control unit 2 calculates the torque reference value T ref and the torque estimated value T est .
 ステップS123において電圧位相制御部2は、トルク参照値Trefとトルク推定値Testとのトルク偏差Terrを用いて電圧位相FB値αfbを演算する。 In step S123, the voltage phase control unit 2 calculates a voltage phase FB value α fb using the torque deviation T err between the torque reference value T ref and the torque estimated value T est .
 ステップS124において電圧位相制御部2は、電圧位相FB値αfbを電圧位相FF値αffに加算した電圧位相指令値α*を所定の電圧位相範囲内に制限する。 In step S124, voltage phase control unit 2 limits voltage phase command value α * obtained by adding voltage phase FB value αfb to voltage phase FF value αff within a predetermined voltage phase range.
 ステップS125において電圧位相制御部2は、電圧位相指令値α*が電圧位相範囲の上限値に制限されたか否かを判断する。そして電圧位相制御部2は、電圧位相指令値α*が電圧位相範囲の上限値に制限されていない場合には、ステップS126の処理に進む。 In step S125, voltage phase control unit 2 determines whether or not voltage phase command value α * is limited to the upper limit value of the voltage phase range. When voltage phase command value α * is not limited to the upper limit value of the voltage phase range, voltage phase control unit 2 proceeds to the process of step S126.
 ステップS126において電圧位相制御部2は、電圧位相指令値α*が電圧位相範囲の上限値に制限された場合には、トルク偏差Terrを電圧位相指令値α*にフィードバックするためのPI制御器264を初期化する。 Voltage phase control unit in step S126 2, the voltage phase when the command value alpha * is limited to the upper limit value of the voltage phase range, the torque deviation T err voltage phase command value alpha PI controller for feedback to * Initialize H.264.
 ステップS127において電圧位相制御部2は、d軸電流参照値id_ref *とd軸電流検出値idとの間のd軸電流偏差id_errと、q軸電流参照値の絶対値|iq_ref *|とd軸電流検出値の絶対値|iq|と間のq軸電流絶対値偏差|iqerrとを演算する。 Step voltage phase control unit 2 in S127 includes a d-axis current deviation i D_err between d-axis current reference value i d_ref * and d-axis current detection value i d, the absolute value of q-axis current reference value | i q_ref * The q-axis current absolute value deviation | i q | err between | and the absolute value | i q | of the d-axis current detection value is calculated.
 ステップS128において電圧位相制御部2は、d軸又はq軸の電流偏差を電圧ノルム指令値Va *にフィードバックするため、電圧位相指令値α*に基づいてd軸電流偏差id_errとq軸電流絶対値偏差|iqerrとのうちいずれか一方の電流偏差を選択する。 Step voltage phase control unit 2 in S128 is, d-axis or for feeding back a current deviation voltage norm command value V a * of the q-axis, based on the voltage phase command value alpha * d-axis current deviation i D_err and q-axis current One of the current deviations is selected from the absolute value deviation | i q | err .
 ステップS129において電圧位相制御部2は、選択した電流偏差を用いて電圧ノルムFB値Va_fbを演算する。 In step S129, voltage phase control unit 2 calculates voltage norm FB value Va_fb using the selected current deviation.
 ステップS130において電圧位相制御部2は、電圧ノルムFB値Va_fbを電圧ノルム基準値Va_ffに加算した電圧ノルム指令値Va *を所定の電圧ノルム範囲内に制限する。 Step voltage phase control unit 2 in S130 limits the voltage norm FB value V A_FB voltage norm reference value V A_ff in addition the voltage norm command value V a * within a predetermined voltage norm range.
 ステップS131において電圧位相制御部2は、電圧ノルム指令値Va *が電圧ノルム範囲の上限値Va_maxに制限されたか否かを判断する。そして電圧位相制御部2は、電圧ノルム指令値Va *が上限値Va_maxに制限されていない場合には、ステップS133の処理に進む。 Step voltage phase control unit 2 in S131, it is determined whether the voltage norm command value V a * is limited to the upper limit value V a_max voltage norm range. The voltage phase control unit 2, when the voltage norm command value V a * are not limited to the upper limit value V a_max, the process proceeds to step S133.
 ステップS132において電圧位相制御部2は、電圧ノルム指令値Va *が上限値Va_maxに制限された場合には、電流偏差を電圧ノルム指令値Va *にフィードバックするためのPI制御器229を初期化する。 Voltage phase control unit 2 in step S132, when the * voltage norm command value V a is limited to the upper limit value V a_max is a PI controller 229 for feeding back the current deviation in voltage norm command value V a * initialize.
 ステップS133において電圧位相制御部2は、電圧ノルム指令値Va *と電圧位相指令値α*とにより特定される電圧指令ベクトルをd軸及びq軸電圧指令値vdv_fin *及びvqv_fin *に変換する。 Step voltage phase control unit 2 in S133, the conversion of the voltage command vector is specified by a voltage norm command value V a * and the voltage phase command value alpha * the d-axis and q-axis voltage command value v dv_fin * and v qv_fin * Do.
 ステップS133の処理が終了すると、制御装置100は、電圧位相制御処理を終了させ、図16に示した制御方法の処理手順に戻る。 When the process of step S133 ends, the control device 100 ends the voltage phase control process, and returns to the process procedure of the control method shown in FIG.
 次に、本実施形態における電動機9の制御によって得られる作用効果について次図を参照して説明する。 Next, the operation and effect obtained by the control of the motor 9 in the present embodiment will be described with reference to the following drawings.
 図18A及び図18Bは、電圧位相制御と電流ベクトル制御と間の切替え手法を説明する図である。図18A及び図18Bにおいては、横軸が電動機9の回転速度を示し、縦軸が電動機9の各相に供給される電力の相間電圧に関する電圧ノルムを示す。 FIG. 18A and FIG. 18B are diagrams for explaining a switching method between voltage phase control and current vector control. 18A and 18B, the horizontal axis indicates the rotational speed of the motor 9, and the vertical axis indicates the voltage norm related to the interphase voltage of the power supplied to each phase of the motor 9.
 図18Aは、本実施形態との比較例として一般的な制御切替えの手法を説明する図である。 FIG. 18A is a diagram for explaining a general control switching method as a comparative example with the present embodiment.
 一般的に、電流ベクトル制御では電動機9への供給電流が最小となるように又は電動機9の運転効率が最大となるように電動機9の制御が行われ、電圧位相制御では電動機9の電圧ノルムが一定となるように電動機9の制御が行われる。このため、電流ベクトル制御動作ラインと電圧位相制御の動作ラインとが互いに交わる交点で電動機9の制御を切り替えることが理想である。 Generally, in the current vector control, the control of the motor 9 is performed such that the supply current to the motor 9 is minimized or the operation efficiency of the motor 9 is maximized, and in the voltage phase control, the voltage norm of the motor 9 is Control of the motor 9 is performed so as to be constant. Therefore, it is ideal to switch the control of the motor 9 at the intersection where the current vector control operation line and the voltage phase control operation line cross each other.
 しかしながら、交点でチャタリングが発生することがあるため、この対策として、図18Aに示すように、いずれかの制御が交点を超えてもある程度その制御を継続して行うことを許容したり、ヒステリシスを持たせるために切替周期に対して所定の時間幅を持たせたりすることが一般的である。 However, since chattering may occur at the intersection, as shown in FIG. 18A, even if any control exceeds the intersection, it is permitted to continue the control to some extent or as hysteresis. It is general to give a predetermined time width to the switching cycle in order to have it.
 また、電圧位相制御については、主に過変調領域から矩形波領域で用いられるため、電動機9への供給電流に含まれる高調波電流が増加する。その結果、制御切替の判定に用いられる電流値から高調波成分を除去するローパスフィルタの時定数を大きくすることが必要になり、理想的な切替えタイミングに対して切替え判定の遅れが大きくなる傾向にある。 In addition, since the voltage phase control is mainly used from the overmodulation region to the rectangular wave region, the harmonic current included in the current supplied to the motor 9 is increased. As a result, it is necessary to increase the time constant of the low-pass filter that removes harmonic components from the current value used to determine control switching, and the delay in switching determination tends to increase with respect to the ideal switching timing. is there.
 さらに、上述のような構成では、電動機9の負荷が急変することなどに起因して電動機9の回転速度が急峻に減少したときには、電圧位相制御が許容範囲を超えて継続して行われる場合がある。このような場合には、電動機9への過電流を引き起こすことが懸念される。これに対し、本実施形態における電流ベクトル制御と電圧位相制御との間の制御切替え手法について図18Bを参照して説明する。 Furthermore, in the configuration as described above, when the rotational speed of the motor 9 sharply decreases due to a sudden change in the load of the motor 9 or the like, voltage phase control may be continuously performed beyond the allowable range. is there. In such a case, there is a concern that an overcurrent to the motor 9 may occur. On the other hand, a control switching method between current vector control and voltage phase control in the present embodiment will be described with reference to FIG. 18B.
 図18Bは、本実施形態における電動機9の制御を切り替える手法を説明する図である。 FIG. 18B is a diagram for describing a method of switching control of the motor 9 in the present embodiment.
 まず、本実施形態の電圧位相制御部2には、図3に示したように、d軸及びq軸の電流目標値id *及びiq *並びに電流検出値id及びiqを電圧ノルム指令値Va *に対してフィードバックする構成が備えられている。このような構成をとることにより、電圧位相制御を用いて電動機9を駆動している状態であっても、電動機9の回転速度が低下した場合には、回転速度の低下に合わせて適切に電圧ノルムを小さくすることができる。 First, as shown in FIG. 3, in the voltage phase control unit 2 of the present embodiment, the current target values id * and iq * of the d axis and the q axis, and the detected current values id and id are voltage norms. A configuration for feedback to the command value V a * is provided. By adopting such a configuration, even when the motor 9 is driven using voltage phase control, when the rotational speed of the motor 9 is decreased, the voltage is appropriately applied according to the decrease in rotational speed. The norm can be reduced.
 これにより、図18Bに示すように、電圧位相制御の実行中に電動機9の電圧ノルムが電流ベクトル制御の動作ライン近傍を追従するので、制御切替えのポイントとなる第1乃至第3電圧ノルム閾値Va_th1 *乃至Va_th3 *を任意の変調率又は電圧ノルム値に設定することができる。 As a result, as shown in FIG. 18B, the voltage norm of the motor 9 follows the vicinity of the current vector control operation line during the execution of voltage phase control, so the first to third voltage norm thresholds V serving as control switching points. A_th1 * to Va_th3 * can be set to any modulation rate or voltage norm value.
 これに伴い、高調波電流が増加してしまう過変調領域を避けるように、制御切替えのポイントを設定することが可能になる。したがって、図12に示したノイズ処理フィルタ137の時定数を小さくすることが可能になるので、切替判定部13での電圧位相制御から電流ベクトル制御への切替え判定の遅れを短くすることができる。 Along with this, it becomes possible to set the control switching point so as to avoid the overmodulation region where the harmonic current increases. Therefore, since it is possible to reduce the time constant of the noise processing filter 137 shown in FIG. 12, it is possible to shorten the delay in switching determination from voltage phase control to current vector control in the switching determination unit 13.
 仮に、判定の遅れに起因して電圧位相制御が制御切替えのポイントを超えて実行されたとしても、同一の回転速度における電圧位相制御と電流ベクトル制御との電圧ノルムの差が小さいため、どちらの制御でも動作可能なマージンを十分に確保することができる。これにより、電動機9での過電流の発生を抑制することができる。 Even if voltage phase control is executed beyond the point of control switching due to a delay in determination, the difference in voltage norm between voltage phase control and current vector control at the same rotational speed is small. Even in the control, a sufficient operable margin can be secured. Thereby, the generation of the overcurrent in the motor 9 can be suppressed.
 また、何らかの異常が原因となり電圧位相制御において電圧ノルムが第1電圧ノルム閾値Va_th1 *よりも低下した場合であっても、電圧ノルム指令値Va *を監視することにより、電圧ノルムの低下を検出して異常を検知することが可能になる。そして異常を検知した場合には、電動機9の制御を電圧位相制御から保護制御へと移行させることにより、電動機9を保護することができる。 Also, even if the voltage norm is lower than the first voltage norm threshold V a — th1 * in voltage phase control due to some abnormality, the voltage norm command value V a * is monitored to reduce the voltage norm. It becomes possible to detect and detect abnormalities. When an abnormality is detected, the motor 9 can be protected by shifting control of the motor 9 from voltage phase control to protection control.
 本発明の第1実施形態によれば、電動機9を制御する制御方法は、電動機9の作動状態に応じて電動機9の供給電力を制御する電流ベクトル制御及び電圧位相制御のうちいずれか一つの制御を実行する制御方法である。この制御方法において電圧位相制御部2は、電動機9に対する供給電圧の大きさを示す電圧ノルム指令値Va *と、その供給電圧の位相を示す電圧位相指令値α*とに基づいて電圧位相制御の電圧指令値を演算する。 According to the first embodiment of the present invention, the control method for controlling the motor 9 is any one of current vector control and voltage phase control for controlling the supplied power of the motor 9 according to the operating state of the motor 9. Is a control method for executing Voltage phase control unit 2 in this control method, a voltage norm command value V a * indicating the magnitude of the supply voltage to the electric motor 9, the voltage phase control based on the voltage phase command value alpha * indicating a phase of the supply voltage Calculate the voltage command value of.
 そして電圧位相制御部2は、電動機9に生じる電圧の向きに応じて、電動機9に供給される電流のd軸及びq軸成分のうち少なくとも一方の電流成分を示す電流検出値id又はiqを電圧ノルム指令値Va *にフィードバックする。 Then, voltage phase control unit 2 detects a current detection value id or i q indicating at least one of d-axis and q-axis components of the current supplied to motor 9 according to the direction of the voltage generated in motor 9. Are fed back to the voltage norm command value V a * .
 例えば、図7に示したように、直交座標系において電動機9に生じる電圧Vaの向きがd軸に比べてq軸に近い場合には、電圧ノルムVaに対するd軸電流検出値idの相関性が、電圧ノルムVaに対するq軸電流検出値iqの相関性に比べて高くなる。一方、図8に示したように、電動機9に生じる電圧Vaの向きがq軸に比べてd軸に近い場合には、電圧ノルムVaに対するq軸電流検出値iqの相関性が、電圧ノルムVaに対するd軸電流検出値idの相関性に比べて高くなる。 For example, as shown in FIG. 7, the orientation of the voltage V a generated electric motor 9 in the orthogonal coordinate system when they are near the q-axis as compared to the d-axis, the d-axis current detection value i d for the voltage norm V a correlated, it is higher than the correlation of the q-axis current detection value i q for the voltage norm V a. On the other hand, as shown in FIG. 8, when the direction of the voltage V a generated in the motor 9 is closer to the d axis than the q axis, the correlation of the q axis current detection value i q with the voltage norm V a is It becomes higher than the correlation of the d-axis current detection value i d for the voltage norm V a.
 すなわち、電動機9に生じる電圧の向きがd軸に近づくほど、電圧ノルムVaに対するd軸電流検出値idの相関性が高くなり、電動機9に生じる電圧の向きがq軸に近づくほど、電圧ノルムVaに対するq軸電流検出値iqの相関性が高くなる。 That is, the direction of the voltage generated in the electric motor 9 is closer to the d-axis, the higher the correlation of the d-axis current detection value i d for the voltage norm V a, the direction of the voltage generated in the electric motor 9 is closer to the q-axis voltage The correlation between the q-axis current detection value i q and the norm V a becomes high.
 このため、電圧位相制御部2は、電動機9に生じる電圧の向きがd軸に近づくほど、q軸電流検出値iqを電圧ノルム指令値Va *にフィードバックし、電動機9に生じる電圧の向きがq軸に近づくほど、q軸電流検出値iqを電圧ノルム指令値Va *にフィードバックすることが可能になる。 Therefore, voltage phase control unit 2 feeds back q-axis current detection value iq to voltage norm command value V a * as the direction of the voltage generated in motor 9 approaches the d axis, and the direction of the voltage generated in motor 9 Becomes closer to the q-axis, the q-axis current detection value iq can be fed back to the voltage norm command value V a * .
 これにより、図18Bに示したように、電動機9の回転速度が急峻に低下した場合であっても、電圧位相制御の実行中に電圧ノルム指令値Va *と電圧ノルムVaとの誤差が過大になるのを抑制することができる。このため、制御の誤差が過大になることに伴う電圧ノルム指令値Va *の発散を抑えられるので、電動機9の動作が不安定になるのを回避することができる。 As a result, as shown in FIG. 18B, even when the rotational speed of the motor 9 sharply decreases, the error between the voltage norm command value V a * and the voltage norm V a during execution of the voltage phase control is It can suppress becoming excessive. For this reason, since the divergence of voltage norm command value V a * accompanying the excessive control error can be suppressed, it is possible to avoid the operation of motor 9 becoming unstable.
 また、本実施形態によれば、電動機9の制御方法において電流ベクトル制御部1は、図1に示したように、電動機9のトルク目標値T*に基づいて、電動機9の電流に関するd軸目標値及びq軸目標値を示すd軸電流目標値id *及びq軸電流目標値iq *を演算する。 Further, according to the present embodiment, in the control method of the motor 9, as shown in FIG. 1, the d-axis target regarding the current of the motor 9 is calculated based on the torque target value T * of the motor 9. A d-axis current target value id * indicating a value and a q-axis target value and a q-axis current target value iq * are calculated.
 そして、電圧位相制御部2は、図3に示したように、d軸電流検出値idがd軸電流目標値id *に収束するように電圧ノルム指令値Va *を算出するd軸FB処理と、q軸電流検出値iqがq軸電流目標値iq *に収束するように電圧ノルム指令値Va *を算出するq軸FB処理とを実行する。さらに電圧位相制御部2の電流FB制御部220は、電圧位相指令値α*を用いてd軸FB処理及びq軸FB処理のうち一方のFB処理を選択し、選択したFB処理を実行して電圧ノルム指令値Va *を変更する。 Then, voltage phase control unit 2, as shown in FIG. 3, d-axis d-axis current detection value i d calculates the voltage norm command value V a * to converge to the d-axis current target value i d * and FB process, q-axis current detection value i q executes a q-axis FB process of calculating a voltage norm command value V a * to converge to the q-axis current target value i q *. Further, the current FB control unit 220 of the voltage phase control unit 2 selects one of the d-axis FB processing and the q-axis FB processing using the voltage phase command value α * , and executes the selected FB processing. The voltage norm command value V a * is changed.
 このように、電動機9に生じる電圧の向きを特定するパラメータとして電圧位相指令値α*を用いることにより、d軸電流検出値id及びq軸電流検出値iqのうち電動機9の電圧ノルムVaに対して相関性の高い電流検出値を的確に選択することができる。したがって、電動機9の低回転領域において電圧ノルム指令値Va *に対し電動機9の電圧ノルムVaが過大になるのを抑制することができる。 Thus, by using a voltage phase command value alpha * as a parameter for specifying the direction of the voltage generated in the motor 9, the voltage norm V of the motor 9 of the d-axis current detection value i d and the q-axis current detection value i q The current detection value having high correlation to a can be properly selected. Therefore, the voltage norm Va of the electric motor 9 to the voltage norm command value V a * in the low rotation region of the electric motor 9 can be prevented from becoming excessive.
 また、本実施形態によれば、電流FB制御部220におけるd軸偏差演算器222がd軸電流検出値idとd軸電流目標値id *との間のd軸電流偏差を演算し、q軸偏差演算器226がq軸電流検出値iqとq軸電流目標値iq *との間のq軸電流偏差を演算する。そしてFB選択器228は、電圧位相指令値α*に応じてd軸電流偏差及びq軸電流偏差のうち一方の電流偏差を選択し、PI制御器229は、FB選択器228により選択された電流偏差に応じて電圧ノルム指令値Va *を増減させる。 Further, according to the present embodiment, the d-axis deviation calculator 222 in the current FB control unit 220 calculates the d-axis current deviation between the d-axis current detection value id and the d-axis current target value id * , The q-axis deviation calculator 226 calculates the q-axis current deviation between the q-axis current detection value iq and the q-axis current target value iq * . Then, the FB selector 228 selects one of the d-axis current deviation and the q-axis current deviation according to the voltage phase command value α * , and the PI controller 229 selects the current selected by the FB selector 228. The voltage norm command value V a * is increased or decreased according to the deviation.
 これにより、d軸FB処理及びq軸FB処理の各々においてフィードバックするためのPI制御器を設けることなく、ひとつのPI制御器229を用いて電圧ノルム指令値Va *にフィードバックさせることができる。したがって、簡易な構成により、電動機9の電圧ノルムVaに対する相関性の高い電流偏差の変化に応じて電圧ノルム指令値Va *を増減させることができる。 Thus, without providing a PI controller for feedback in each of the d-axis FB processing and a q-axis FB process, one of the PI controller 229 can be fed back to the voltage norm command value V a * using. Thus, with a simple structure, it can increase or decrease the voltage norm command value V a * in accordance with a change in the high current deviation correlated against voltage norm V a of the motor 9.
 また、本実施形態によれば、電動機9の制御方法において電動機電流検出器8は、電動機9に供給される三相交流電流を検出する。そして座標変換器12は、電動機電流検出器8により検出された三相交流電流をq軸電流検出値iqに変換し、q軸偏差演算器226は、q軸電流検出値の絶対値|iq|とq軸電流目標値の絶対値|iq *|との絶対値差分であるq軸電流偏差を演算する。 Further, according to the present embodiment, in the control method of the motor 9, the motor current detector 8 detects a three-phase alternating current supplied to the motor 9. The coordinate converter 12 converts the three-phase alternating current detected by the motor current detector 8 into a q-axis current detection value iq , and the q-axis deviation calculator 226 calculates the absolute value | i of the q-axis current detection value. A q- axis current deviation, which is an absolute value difference between q | and the absolute value | iq * | of the q-axis current target value, is calculated.
 q軸電流検出値iqと電圧ノルムVaとの相関は、電動機9が力行領域から回生領域へと切り替われば逆転する。そのため、q軸電流に関する検出値iq及び目標値iq *の絶対値を求める絶対値処理を行うことなく電動機9の力行領域で電流FB制御部220が動作するように構成すると、回生領域ではq軸電流検出値iqの増加に対して電圧ノルムVaが減少してしまう。その結果、電動機9の回転速度が急峻に低下するような状況では、かえって電圧ノルムVaに対し電圧ノルム指令値Va *が過大になり、電動機9の動作が不安定になる。 Correlation between the q-axis current detection value i q and voltage norm V a is the electric motor 9 is reversed if Kirikaware to regeneration region from power running region. Therefore, if the current FB control unit 220 operates in the power running area of the motor 9 without performing the absolute value processing for obtaining the absolute values of the detection value iq and the target value iq * regarding the q-axis current, in the regeneration area voltage norm V a relative increase in the q-axis current detection value i q is reduced. As a result, in a situation such as the rotational speed of the motor 9 decreases sharply, rather * voltage norm command value V a becomes excessive relative to the voltage norms Va, the operation of the electric motor 9 becomes unstable.
 これに対して、本実施形態ではq軸電流に関する検出値及び目標値の絶対値を求めることにより、q軸電流偏差を電圧ノルム指令値Va *にフィードバックさせる際に、回生領域及び力行領域のうちいずれの領域であっても電動機9を安定して制御することができる。 In contrast, by the present embodiment for obtaining the absolute value of the detected value and the target value relating to the q-axis current, when feeding back the q-axis current deviation to a voltage norm command value V a *, the regeneration region and powering region The motor 9 can be stably controlled in any of the regions.
 また、本実施形態によれば、PI制御器229において、d軸電流検出値id又はq軸電流検出値iqをフィードバックする際の制御ゲインを電動機9の電気角速度ωreに応じて変更する。これにより、電動機9の回転速度にかかわらず、電圧ノルム指令値Va *のd軸電流検出値id及びq軸電流検出値iqに対する応答速度を的確に調整することができる。 Further, according to this embodiment, the PI controller 229 is changed in accordance with the control gain at the time of feeding back the d-axis current detection value i d or q-axis current detection value i q to the electrical angular velocity omega re of the motor 9 . Thus, regardless of the rotational speed of the electric motor 9 can accurately adjust the response speed to the voltage norm command value V a * of the d-axis current detection value i d and the q-axis current detection value i q.
 また、本実施形態によれば、PI制御器229において、q軸電流検出値iqをフィードバックする際の制御ゲインの定数Lqは、d軸電流検出値idをフィードバックする際の制御ゲインの定数Ldに対して異なる値に設定される。 Further, according to this embodiment, the PI controller 229, a constant L q of the control gain when feedback q-axis current detection value i q is the control gain when feedback d-axis current detection value i d The constant L d is set to a different value.
 d軸電流検出値idにより生じる電流磁束は、図6に示したようにd軸インダクタンスLdに依存し、q軸電流検出値iqにより生じる電流磁束は、q軸インダクタンスLqに依存する。特にIPM型電動機においては、d軸インダクタンスLdとq軸インダクタンスLqとの差異が大きくなる。 current magnetic flux generated by the d-axis current detection value i d is dependent on the d-axis inductance L d as shown in FIG. 6, the current magnetic flux generated by the q-axis current detection value i q depends on the q-axis inductance L q . Particularly in the IPM type motor, the difference between the d-axis inductance L d and q-axis inductance L q is larger.
 このため、d軸インダクタンスLd及びq軸インダクタンスLqを考慮したうえでd軸FB処理の制御ゲインに対してq軸FB処理の制御ゲインを異なる値に設定する。これにより、d軸FB処理及びq軸FB制御の両者において同等の応答速度を確保することができる。 Therefore, the control gain of the q-axis FB process is set to a different value with respect to the control gain of the d-axis FB process after taking into consideration the d-axis inductance L d and the q-axis inductance L q . Thereby, the same response speed can be secured in both the d-axis FB processing and the q-axis FB control.
 また、本実施形態によれば、PI制御器229は、図5に示したように、d軸電流偏差又はq軸電流偏差を電圧ノルム指令値Va *にフィードバックする際に積分器97により積分処理を実行する。そしてノルム制限器240は、電圧ノルム指令値Va *が所定の上限値Va_maxを上回る場合には、電圧ノルム指令値Va *を上限値Va_maxに制限するとともに、PI制御器229は、積分器97による積分処理を停止する。 Further, according to the present embodiment, as shown in FIG. 5, PI controller 229 integrates with integrator 97 when feeding back d-axis current deviation or q-axis current deviation to voltage norm command value V a *. Execute the process The norm restrictor 240, along with the voltage norm command value V a * if above a predetermined upper limit value V a_max limits the voltage norm command value V a * to the upper limit value V a_max, PI controller 229, The integration process by the integrator 97 is stopped.
 または、ノルム制限器240は、電圧ノルム指令値Va *を上限値Va_maxに制限するとともに、PI制御器229は、図10に示したように、所定のアンチワインドアップ処理を実行する。アンチワインドアップ処理とは、ノルム制限器240によって制限される前の電圧ノルム指令値Va *が上限値Va_maxと一致するよう、積分器97の入出力バッファに保持された積分値(前回値)を更新する処理のことをいう。 Or norm limiter 240 serves to limit the voltage norm command value V a * to the upper limit value V a_max, PI controller 229, as shown in FIG. 10, executes a predetermined anti-windup processing. The anti-windup processing, so that the * previous voltage norm command value V a is limited by the norm limiter 240 matches the upper limit value V a_max, the integrator held integral value to output buffer 97 (previous value Process of updating).
 このように、電圧ノルム指令値Va *に対してノルム制限器240により上限値Va_maxに制限するリミット処理が実行されるときには、PI制御器229によりアンチワインドアップ処理が実行される。 As described above, when limit processing for limiting the voltage norm command value V a * to the upper limit value V a — max is performed by the norm limiter 240, the anti-windup processing is performed by the PI controller 229.
 これにより、電動機9の高速回転領域では、図3に示した電圧位相制御部2の構成から、電圧ノルム指令値Va *を固定してトルク推定値Testを電圧位相指令値α*にフィードバックする他の構成に切り替えるような制御構成であっても電圧位相制御中に2つの構成をシームレスに切り替えることができる。 Thus, in the high speed region of the motor 9, feedback from the configuration of the voltage phase control unit 2 shown in FIG. 3, the torque estimate T est fixed voltage norm command value V a * to the voltage phase command value alpha * Even in a control configuration in which switching is performed to another configuration, the two configurations can be seamlessly switched during voltage phase control.
 また、本実施形態によれば、制御モード判定器140は、電圧位相制御の実行中に、電圧ノルム指令値Va *に相関のある相関パラメータ又は電圧ノルム指令値Va *が第1ノルム閾値Va_th1を下回るときには、電動機9の制御を電流ベクトル制御に切り替える。 Further, according to the present embodiment, the control mode determination unit 140 determines that the correlation parameter or voltage norm command value V a * having a correlation with the voltage norm command value V a * during execution of the voltage phase control has a first norm threshold value. When V a_th1 is less than, control of the motor 9 is switched to current vector control.
 本実施形態の電圧位相制御では、図18Bに示したように、電圧ノルム指令値Va *が電動機9の電圧ノルムVaに追従するので、電動機9に供給される電圧の過変調による電圧歪みが小さく、かつ、高調波電流が小さい動作領域に第1ノルム閾値Va_th1を設定することが可能となる。これにより、切替え判定用の電圧ノルム指令値Va *又はこれと相関のあるパラメータに含まれるノイズ成分が小さくなる。 In the voltage phase control of the present embodiment, as shown in FIG. 18B, the voltage norm command value V a * follows the voltage norm V a of the motor 9, so voltage distortion due to overmodulation of the voltage supplied to the motor 9 It is possible to set the first norm threshold value Va_th1 in an operation area where the harmonic current is small and the harmonic current is small. As a result, the noise component included in the voltage norm command value V a * for switching determination or a parameter correlated therewith is reduced.
 このため、ノイズ成分を除去する平均化処理フィルタ134及び135を省略したり、平均化処理フィルタ134及び135の時定数を小さくしたりできるので、制御切替えの遅れを短くすることができる。したがって、電動機9の負荷が急変した場合であっても、電動機9の回転速度が電圧位相制御の許容範囲を超えて電圧位相制御が実行されるのを抑制することができ、電動機9に対する過電流の発生を抑制することができる。 Therefore, the averaging processing filters 134 and 135 for removing noise components can be omitted, and the time constants of the averaging processing filters 134 and 135 can be reduced, so that the delay in control switching can be shortened. Therefore, even when the load of the motor 9 changes suddenly, it is possible to suppress that the rotational speed of the motor 9 exceeds the allowable range of voltage phase control and voltage phase control is performed, and the overcurrent to the motor 9 Can be suppressed.
 例えば、上述の相関パラメータとしては、電圧ノルム指令値Va *に平均化処理を施した平均化処理値、d軸及びq軸電圧指令値vd_fin *及びvq_fin *で特定される電圧指令ベクトルのノルム成分、及び、このノルム成分の平均化処理値Va_fin_flt *などが挙げられる。あるいは、これらのうち少なくともひとつを相関パラメータとして用いてもよい。そして、第1ノルム閾値Va_th1は、電圧ノルム指令値Va *の上限値よりも小さな値に設定される。 For example, as a correlation parameter above, the voltage command vector that is specified by the averaging process value subjected to averaging processing in a voltage norm command value V a *, d-axis and q-axis voltage command value v d_fin * and v q_fin * And an averaged value Va_fin_flt * of the norm component. Alternatively, at least one of these may be used as a correlation parameter. The first norm threshold V A_th1 is set to a value smaller than the upper limit value of the voltage norm command value V a *.
 また、本実施形態によれば、制御モード判定器140は、電動機9の電流成分にひとつであるd軸電流検出値id又はこの平均化処理値が所定の電流閾値id_th *を上回る場合には、電圧位相制御から電流ベクトル制御へ切り替える。これにより、電動機9の負荷が急変したことを検出することが可能になるので、電圧位相制御から電流ベクトル制御への切替えの際に電動機9に与える影響を抑制することが可能になる。 Further, according to this embodiment, the control mode determiner 140, if it is one current component of the electric motor 9 d-axis current detection value i d or this averaging process value exceeds the * predetermined current threshold i D_TH Switches from voltage phase control to current vector control. This makes it possible to detect that the load of the motor 9 has suddenly changed, so that it is possible to suppress the influence on the motor 9 when switching from voltage phase control to current vector control.
 また、本実施形態によれば、所定の電流閾値id_th *は、電流ベクトル制御のd軸電流目標値id *又はこの平均化処理値に設定される。これにより、電流成分の検出値が目標値に対して追従しているか否かを判断することが可能になる。このため、目標値が急峻に変化した際に検出値の追従が遅くなるようなシーンを特定することが可能になるので、電圧位相制御から電流ベクトル制御への切替えに伴う電動機9の供給電流又はトルクの急変を抑制することができる。 Further, according to this embodiment, * the predetermined current threshold value i D_TH, is set to d-axis current target value i d *, or the averaging process value of the current vector control. This makes it possible to determine whether the detected value of the current component follows the target value. For this reason, it is possible to specify a scene in which the tracking of the detected value is delayed when the target value changes sharply, so that the supplied current of the motor 9 or the accompanying change from voltage phase control to current vector control Sudden changes in torque can be suppressed.
 また、本実施形態によれば、制御モード判定器140は、電流ベクトル制御の実行中に、d軸及びq軸の電圧指令値vd_fin *及びvq_fin *で特定される電圧指令ベクトルのノルム成分が第2ノルム閾値Va_th2を上回るときには、電圧位相制御に切り替える。そして第2ノルム閾値Va_th2は、電圧ノルム指令値Va *の上限値Va_maxよりも小さく、かつ、第1ノルム閾値Va_th1よりも大きい特定の電圧閾値に設定される。 Further, according to the present embodiment, the control mode determination unit 140 determines the norm component of the voltage command vector specified by the voltage command values vd_fin * and vq_fin * of the d axis and the q axis during the execution of the current vector control. Switches to voltage phase control when it exceeds the second norm threshold V a — th 2. The second norm threshold V A_th2 is smaller than the upper limit value V a_max voltage norm command value V a *, and is set to a particular voltage threshold greater than the first norm threshold V a_th1.
 本実施形態の電圧位相制御では、図18Bに示したように、電圧ノルム指令値Va *が電動機9の電圧ノルムVaに追従する。このため、電圧位相制御と電流ベクトル制御との間の切替えにおいて、第1ノルム閾値Va_th1に対してヒステリシスを持たせつつ、過変調による電圧歪みが小さく、かつ、高調波電流が小さい動作領域に第2ノルム閾値Va_th2を設定することが可能となる。これにより、切替え判定用の電圧ノルム指令値Va *又はこれと相関のあるパラメータに含まれるノイズ成分が小さくなるので切替え判定の遅れを抑制することができるとともに、チャタリングの発生を抑制することができる。 Voltage phase control of the present embodiment, as shown in FIG. 18B, * voltage norm command value V a follows the voltage norm V a of the motor 9. Therefore, in switching between the voltage phase control and the current vector control, while a hysteresis with respect to the first norm threshold V A_th1, small voltage distortion due to overmodulation, and the harmonic current is small operation region It is possible to set the second norm threshold value Va_th2 . As a result, since the noise component included in voltage norm command value V a * for switching determination or a parameter correlated therewith becomes small, delay in switching determination can be suppressed, and the occurrence of chattering can be suppressed. it can.
 また、本実施形態によれば、制御モード判定器140は、電圧位相制御の実行中に、電圧ノルム指令値Va *が第3ノルム閾値Va_th3を下回るとき、又は電動機9の回転速度検出値Nが回転速度閾値Nthを下回るときには、電動機9の供給電力を抑制する保護制御に切り替える。第3ノルム閾値Va_th3は、電圧位相制御から電流ベクトル制御へ切り替えるための第1ノルム閾値Va_th1よりも小さい第1閾値であり、回転速度閾値Nthは、第2閾値である。 Further, according to this embodiment, the control mode determiner 140, during execution of the voltage phase control, when the voltage norm command value V a * below the third norm threshold V A_th3, or rotational speed detection value of the motor 9 When N falls below the rotation speed threshold value N th , the control is switched to protection control for suppressing the power supplied to the motor 9. Third norm threshold V A_th3 is a first threshold value smaller than the first norm threshold V A_th1 for switching from the voltage phase control to the current vector control, the rotational speed threshold value N th is the second threshold value.
 このように、電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が電動機9の正常動作で想定される値よりも低下した場合には、判定用パラメータの平均化処理に起因する判定遅れに対して許容できない電動機9の負荷変動が起きた可能性がある。そのため、電圧ノルム指令値Va *又は電動機9の回転速度が想定よりも低下した場合に、速やかに電動機9を保護する制御に移行することができる。 As described above, when the averaging processing value for the voltage norm command value V a * or the rotational speed of the motor 9 is lower than the value assumed in the normal operation of the motor 9, the determination processing is caused by the averaging processing of the parameters. The load fluctuation of the motor 9 may have occurred due to the judgment delay. Therefore, when the voltage norm command value V a * or the rotational speed of the motor 9 is lower than expected, it is possible to shift to control for protecting the motor 9 promptly.
 また、本実施形態によれば、制御切替器3は、電動機9の保護制御として、d軸及びq軸の電圧指令値をゼロに設定する、又は、電動機に設けられた各相の電源線を短絡する。これにより、電圧ノルム指令値Va *又は電動機9の回転速度が想定よりも低下した場合には、電動機電流検出器8の故障など、何らかの異常が起きた可能性がある。このため、電動機9への通電を速やかに停止することにより、電動機9の耐久性を超えるようなトルクが発生するという事態を回避することができる。 Further, according to the present embodiment, the control switch 3 sets the d-axis and q-axis voltage command values to zero as protection control of the motor 9, or the power supply line of each phase provided in the motor. Short circuit. Thereby, when the voltage norm command value V a * or the rotational speed of the motor 9 is lower than expected, there may be some abnormality such as a failure of the motor current detector 8. Therefore, it is possible to avoid the occurrence of a torque that exceeds the durability of the motor 9 by stopping the energization of the motor 9 promptly.
 なお、第1実施形態では電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が正常動作時に想定される値よりも低下した場合には電圧位相制御から保護制御に遷移した。しかしながら、制御装置100として厳しいフェールセーフが要求される場合は、電動機9が想定外の動作をしたときに電動機9を完全に停止することを優先することも考えられる。 In the first embodiment, when the averaging processing value for the voltage norm command value V a * or the rotational speed of the motor 9 is lower than the value assumed during normal operation, transition from voltage phase control to protection control is made. However, when strict fail-safe is required for the control device 100, it may be considered to give priority to completely stopping the motor 9 when the motor 9 performs an unexpected operation.
 (第2実施形態)
 そこで次の実施形態では、電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が正常動作時に想定される値よりも低下した場合に、保護制御のひとつとして電動機9を停止する停止制御を実行する例について図19を参照して説明する。
Second Embodiment
Therefore, in the next embodiment, the motor 9 is stopped as one of the protection control when the averaging processing value regarding the voltage norm command value V a * or the rotational speed of the motor 9 is lower than the value assumed during normal operation. An example of executing stop control will be described with reference to FIG.
 図19は、本発明の第2実施形態における制御モード判定器140による判定手法の一例を示す図である。 FIG. 19 is a diagram showing an example of a determination method by the control mode determination unit 140 in the second embodiment of the present invention.
 図19に示すように、電圧位相制御の実行中に平均化電圧ノルムVa_fin_flt *が第3ノルム閾値Va_th3以下になり、又は、回転速度検出値Nの絶対値が回転速度閾値Nthを下回ったときに制御モード判定器140は、電動機9に適した制御が停止制御であると判定する。そして制御モード判定器140は、停止制御を示す制御モード信号を制御切替器3に出力する。これにより、電動機9の停止制御が実行されて停止シーケンスに移行する。 As shown in FIG. 19, the averaged voltage norm V A_fin_flt during the voltage phase control * becomes less third norm threshold V A_th3, or the absolute value of the detected rotational speed N falls below the rotational speed threshold value Nth At this time, the control mode determination unit 140 determines that the control suitable for the motor 9 is the stop control. Then, the control mode determination unit 140 outputs a control mode signal indicating the stop control to the control switch 3. As a result, the stop control of the motor 9 is executed, and the process shifts to the stop sequence.
 図20は、本実施形態における制御切替器3の詳細構成を例示するブロック図である。 FIG. 20 is a block diagram illustrating the detailed configuration of the control switch 3 in the present embodiment.
 本実施形態の制御切替器3は、電圧指令値切替器31と、出力停止切替器32とを含む。電圧指令値切替器31については、図15に示した構成と同一であるため、構成の説明については省略する。 The control switch 3 of the present embodiment includes a voltage command value switch 31 and an output stop switch 32. The voltage command value switching unit 31 is the same as the configuration shown in FIG. 15, so the description of the configuration will be omitted.
 出力停止切替器32は、制御モード判定器140から停止制御を示す制御モード信号を受信すると、PWM変換器5の出力を停止(OFF)するゲート信号をPWM変換器5に出力する。一方、出力停止切替器32は、電圧位相制御又は電流ベクトル制御を示す制御モード信号を受信すると、PWM変換器5の出力を許可(ON)するゲート信号をPWM変換器5に出力する。 When receiving the control mode signal indicating the stop control from the control mode determiner 140, the output stop switch 32 outputs a gate signal to the PWM converter 5 to stop (turn off) the output of the PWM converter 5. On the other hand, when receiving the control mode signal indicating voltage phase control or current vector control, the output stop switch 32 outputs, to the PWM converter 5, a gate signal for enabling (turning on) the output of the PWM converter 5.
 このように、電圧位相制御の実行中に電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が想定よりも低下した場合には電圧位相制御から停止制御に遷移させることができる。これにより、電動機9による想定外の動作を検出した場合には、インバータ6に備えられたスイッチング素子のゲート電流が停止するので、電動機9での異常な動作の再発を抑制することができる。 As described above, when the averaging processing value for the voltage norm command value V a * or the rotational speed of the motor 9 becomes lower than expected during execution of voltage phase control, transition can be made from voltage phase control to stop control. . As a result, when an unexpected operation of the motor 9 is detected, the gate current of the switching element provided in the inverter 6 is stopped, so that it is possible to suppress the recurrence of the abnormal operation of the motor 9.
 本発明の第2実施形態によれば、出力停止切替器32は、電動機9の保護制御として、インバータ6に備えられたスイッチング素子のゲート電流を停止する。これにより、電動機9をより確実に保護することができる。 According to the second embodiment of the present invention, the output stop switch 32 stops the gate current of the switching element provided in the inverter 6 as the protection control of the motor 9. Thereby, the motor 9 can be protected more reliably.
 なお、本実施形態では電動機9が想定外な動作をしたときに電動機9を完全に停止する例にいて説明したが、制御装置100以外の仕組みにより電動機9のフェールセーフが担保されているような場合は電動機9の制御を可能な限り継続させることも考えられる。 In the present embodiment, an example is described in which the motor 9 is completely stopped when the motor 9 performs an unexpected operation, but failsafe of the motor 9 is secured by a mechanism other than the control device 100. In this case, it is also conceivable to continue control of the motor 9 as much as possible.
 (第3実施形態)
 そこで次の実施形態では、電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が正常動作で想定される値よりも低下した場合に、保護制御として電流ベクトル制御に切り替える例について図21を参照して説明する。
Third Embodiment
Therefore, in the next embodiment, when the averaging processing value for voltage norm command value V a * or the rotational speed of motor 9 is lower than the value assumed in normal operation, an example of switching to current vector control as protection control This will be described with reference to FIG.
 図21は、本発明の第3実施形態における制御モード判定器140による判定手法の一例を示す図である。 FIG. 21 is a diagram showing an example of the determination method by the control mode determination unit 140 in the third embodiment of the present invention.
 図21に示すように、電圧位相制御の実行中に平均化電圧ノルムVa_fin_flt *が第3ノルム閾値Va_th3以下になり、又は、回転速度検出値Nの絶対値が回転速度閾値Nthを下回ったときでも制御モード判定器140は、電動機9に適した制御が電流ベクトル制御であると判定する。 As shown in FIG. 21, the averaged voltage norm V A_fin_flt during the voltage phase control * becomes less third norm threshold V A_th3, or the absolute value of the detected rotational speed N falls below the rotational speed threshold value Nth Even at this time, the control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control.
 そして制御モード判定器140は、電流ベクトル制御を示す制御モード信号を制御切替器3に出力する。これにより、電圧ノルム指令値Va *に関する平均化処理値又は電動機9の回転速度が正常動作時に想定される値よりも低下した場合に、強制的に電流ベクトル制御に切り替えられるので、電動機9の制御を継続することができる。 Then, the control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3. As a result, when the averaging processing value for the voltage norm command value V a * or the rotational speed of the motor 9 falls below the value assumed during normal operation, the current vector control is forcibly switched, so Control can be continued.
 図22は、本実施形態における制御切替器3の詳細構成を例示するブロック図である。 FIG. 22 is a block diagram illustrating the detailed configuration of the control switch 3 in the present embodiment.
 本実施形態の制御切替器3は、図15に示した保護制御のゼロ電圧値の入力が削除されている。このため、制御切替器3は、制御モード判定器140から制御モード信号を受信すると、電流ベクトル制御又は電圧位相制御のいずれか一方の電圧指令値を出力する。 In the control switch 3 of this embodiment, the input of the zero voltage value of the protection control shown in FIG. 15 is deleted. Therefore, when receiving the control mode signal from the control mode determination unit 140, the control switch 3 outputs one of voltage command values of current vector control or voltage phase control.
 本発明の第3実施形態によれば、制御モード判定器140は、電圧位相制御の実行中に平均化電圧ノルムVa_fin_flt *が第3ノルム閾値Va_th3以下になり、又は、回転速度検出値Nの絶対値が回転速度閾値Nthを下回ったときに、電流ベクトル制御に切り替えられる。これにより、電動機9が想定外の動作をしている場合であっても、電動機9の制御を可能な限り継続させることができる。 According to the third embodiment of the present invention, the control mode determiner 140, averaging voltage norm V A_fin_flt during the voltage phase control * becomes less third norm threshold V A_th3, or rotational speed detection value N When the absolute value of V falls below the rotation speed threshold Nth, the control is switched to current vector control. Thereby, even when the motor 9 is operating unexpectedly, control of the motor 9 can be continued as much as possible.
 (第4実施形態)
 図23は、本発明の第4実施形態における電動機9の制御装置110の構成例を示す図である。
Fourth Embodiment
FIG. 23 is a view showing a configuration example of a control device 110 of the motor 9 in the fourth embodiment of the present invention.
 本実施形態の制御装置110では、図1に示した制御装置100の電流ベクトル制御部1から、d軸目標電流idが切替判定部13に供給されているのに対してq軸目標電流iqが切替判定部13に供給されている点が異なる。他の構成については制御装置100と同じ構成である。 In the control device 110 of the present embodiment, the d-axis target current id is supplied to the switching determination unit 13 from the current vector control unit 1 of the control device 100 shown in FIG. The difference is that q is supplied to the switching determination unit 13. The other configuration is the same as that of the control device 100.
 図24は、本実施形態における切替判定部13の構成の一例を示すブロック図である。 FIG. 24 is a block diagram showing an example of the configuration of the switching determination unit 13 in the present embodiment.
 本実施形態の切替判定部13は、図12に示した構成に加えて、絶対値演算器141及び142を備える。他の構成については、図12に示した構成と同様であるため、ここでの説明を省略する。 The switching determination unit 13 of the present embodiment includes absolute value calculators 141 and 142 in addition to the configuration shown in FIG. The other configuration is the same as the configuration shown in FIG. 12, and thus the description thereof is omitted here.
 本実施形態においては、ノイズ処理フィルタ137がq軸電流検出値iqに対してノイズカット処理を施し、参照電流フィルタ138がq軸電流目標値iq *に対して電動機9の応答遅れを模擬するフィルタ処理を施す。 In this embodiment, subjected to a noise cut process noise processing filter 137 relative to the q-axis current detection value i q, simulates the response delay of the motor 9 reference current filter 138 with respect to * q-axis current target value i q Apply filtering processing.
 絶対値演算器141は、ノイズ処理フィルタ137により算出された平均化q軸電流値iq_fltに対する絶対値|iq_flt|を演算する。 The absolute value calculator 141 calculates an absolute value | iq_flt | for the averaged q-axis current value iq_flt calculated by the noise processing filter 137.
 絶対値演算器142は、電流閾値演算器139により算出されたq軸電流閾値iq_th *に対する絶対値|iq_th *|を演算する。 The absolute value calculator 142 calculates an absolute value | iq_th * | for the q-axis current threshold iq_th * calculated by the current threshold calculator 139.
 制御モード判定器140は、平均化電圧ノルムVa_fin_flt *と、平均化q軸電流値の絶対値|iq_flt|とに基づいて、電流ベクトル制御と電圧位相制御と保護制御との間で電動機9の制御を切り替える。 Control mode discriminator 140 performs motor 9 between current vector control and voltage phase control and protection control based on averaged voltage norm V a_fin_flt * and the absolute value of averaged q-axis current value | i q_flt |. Switch control of
 制御モード判定器140は、電動機9の電流検出値が電流目標値近傍に達していることを確認することにより、電圧位相制御から電流位相制御へ切り替えるべきか否かを判断する。切替え判定に用いられるq軸電流に関する検出値iq及び目標値iq *は、電動機9の回生領域と力行領域とで符号が反対になるため、切替判定部13に絶対値演算器141及び142が備えられている。 The control mode determination unit 140 determines whether or not to switch from voltage phase control to current phase control by confirming that the current detection value of the motor 9 has reached the vicinity of the current target value. The detection value iq and the target value i q * related to the q-axis current used for the switching determination have opposite signs in the regeneration region and the power running region of the motor 9. Is equipped.
 このように、q軸電流に関する検出値iq及び目標値iq *に対して絶対値を取ることにより、q軸電流を用いても制御切替えの判定を行うことができる。なお、q軸電流だけでなくd軸電流の両者を用いても制御切替えの判定を行うことができる。 As described above, by taking the absolute values of the detection value iq and the target value iq * regarding the q-axis current, the control switching can be determined even using the q-axis current. The determination of control switching can be performed by using both the d-axis current as well as the q-axis current.
 図25は、本実施形態における制御モード判定器140による判定手法の一例を示す図である。 FIG. 25 is a diagram showing an example of a determination method by the control mode determination unit 140 in the present embodiment.
 本実施形態では、電圧位相制御から電流ベクトル制御への切替え条件が図14に示した切替え条件と異なるため、この条件についてのみ説明する。なお、本実施形態の他の条件については、図14に示した切替え条件と同じである。 In this embodiment, since the switching condition from voltage phase control to current vector control is different from the switching condition shown in FIG. 14, only this condition will be described. The other conditions of the present embodiment are the same as the switching conditions shown in FIG.
 図25に示すように、電圧位相制御の実行中において平均化電圧ノルムVa_fin_flt *が第1ノルム閾値Va_th1以下になり、かつ、平均化q軸電流値の絶対値|iq_flt|がq軸電流閾値|iq_th *|以上になったときに制御モード判定器140は、電動機9に適した制御が電流ベクトル制御であると判定する。そして制御モード判定器140は、電流ベクトル制御を示す制御モード信号を制御切替器3に出力する。これにより、電動機9の制御は、電圧位相制御から電流ベクトル制御へ切り替えられる。 As shown in FIG. 25, during execution of voltage phase control, the averaging voltage norm Va_fin_flt * becomes equal to or less than the first norm threshold value Va_th1 , and the absolute value | iq_flt | of the averaging q-axis current value is the q axis When the current threshold value | i q — th * | is exceeded, the control mode determination unit 140 determines that the control suitable for the motor 9 is current vector control. Then, the control mode determination unit 140 outputs a control mode signal indicating current vector control to the control switch 3. Thereby, control of the motor 9 is switched from voltage phase control to current vector control.
 本発明の第4実施形態によれば、制御切替器3は、電動機9の電流成分のひとつであるq軸電流検出値iqの平均化処理値の絶対値|iq_flt|又はq軸電流検出値の絶対値|iq|が所定の電流閾値であるq軸電流閾値|iq_th *|を上回る場合には、電圧位相制御から電流ベクトル制御に切り替える。q軸電流閾値|iq_th *|は、電流ベクトル制御のq軸電流目標値iq *の絶対値又はq軸電流目標値の平均化処理値iq_ref *の絶対値である。 According to the fourth embodiment of the present invention, the control switch 3, the absolute value of the averaging process value of which is one of the current components of the electric motor 9 q-axis current detection value i q | i q_flt | or q-axis current detection absolute value | i q | is the q-axis current threshold is a predetermined current threshold | * i q_th | when exceeding switches the current vector control from voltage phase control. q-axis current threshold | i q_th * | is the averaging process value i q_ref * of the absolute value of the absolute value or the q-axis current target value of the current vector control q-axis current target value i q *.
 このように、q軸電流に関する検出値iq及び目標値iq *に対して絶対値を取ることにより、電動機9の動作点が目標値近傍に達しているか否かを判断することが可能になる。 Thus, it is possible to determine whether the operating point of the motor 9 has reached near the target value by taking absolute values with respect to the detected value iq and the target value iq * regarding the q-axis current Become.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent. Moreover, the said embodiment can be combined suitably.
 例えば、図6に示したように、d軸電流id及びq軸電流iqの両者を用いて電圧ノルム指令値Va *にフィードバックするようにしてもよい。この場合には、例えば、電圧位相指令値α*が90°近傍にあるときに、d軸電流フィードバックの制御ゲインを小さくし、q軸電流フィードバックの制御ゲインを大きくする。 For example, as shown in FIG. 6, it may be fed back to the voltage norm command value V a * using both d-axis current i d and the q-axis current i q. In this case, for example, when the voltage phase command value α * is near 90 °, the control gain of the d-axis current feedback is reduced and the control gain of the q-axis current feedback is increased.

Claims (17)

  1.  電動機の作動状態に応じて前記電動機の供給電力を制御する電流ベクトル制御及び電圧位相制御のうちいずれか一つの制御を実行する制御方法であって、
     前記電動機に対する供給電圧の大きさを示す電圧ノルム指令値と、当該供給電圧の位相を示す電圧位相指令値とに基づいて、前記電圧位相制御の電圧指令値を演算する電圧位相制御ステップを含み、
     前記電圧位相制御ステップは、前記電動機に生じる電圧の向きに応じて、前記電動機に供給される電流のd軸成分及びq軸成分のうち少なくとも一方の電流成分を前記電圧ノルム指令値にフィードバックする、
    電動機の制御方法。
    A control method for executing any one control of current vector control and voltage phase control for controlling the supplied power of the motor according to the operating state of the motor,
    The voltage phase control step of calculating the voltage command value of the voltage phase control based on the voltage norm command value indicating the magnitude of the supply voltage to the motor and the voltage phase command value indicating the phase of the supply voltage,
    The voltage phase control step feeds back at least one of the d-axis component and the q-axis component of the current supplied to the motor to the voltage norm command value according to the direction of the voltage generated in the motor.
    Motor control method.
  2.  請求項1に記載の電動機の制御方法であって、
     前記電動機のトルク目標値に基づいて、前記電動機の電流に関するd軸目標値及びq軸目標値を演算する目標電流演算ステップをさらに含み、
     前記電圧位相制御ステップは、
     前記電流のd軸成分が前記d軸目標値に収束するように前記電圧ノルム指令値を算出するd軸FBステップと、
     前記電流のq軸成分が前記q軸目標値に収束するように前記電圧ノルム指令値を算出するq軸FBステップと、
     前記電圧位相指令値を用いて前記d軸FBステップ及び前記q軸FBステップのうち一方のステップを選択し、前記選択したステップを実行することにより前記電圧ノルム指令値を変更するノルム変更ステップと、を含む、
    電動機の制御方法。
    The control method of the motor according to claim 1, wherein
    The method further includes a target current calculation step of calculating a d-axis target value and a q-axis target value related to the current of the motor based on the torque target value of the motor.
    The voltage phase control step is
    A d-axis FB step of calculating the voltage norm command value such that the d-axis component of the current converges on the d-axis target value;
    Q axis FB step of calculating the voltage norm command value such that the q axis component of the current converges on the q axis target value;
    A norm change step of changing the voltage norm command value by selecting one of the d-axis FB step and the q-axis FB step using the voltage phase command value and executing the selected step; including,
    Motor control method.
  3.  請求項2に記載の電動機の制御方法であって、
     前記d軸FBステップは、前記電流のd軸成分と前記d軸目標値との間のd軸偏差を演算し、
     前記q軸FBステップは、前記電流のq軸成分と前記q軸目標値との間のq軸偏差を演算し、
     前記ノルム変更ステップは、前記電圧位相指令値に応じて前記d軸偏差及び前記q軸偏差のうち一方の電流偏差を選択し、前記選択した電流偏差に応じて前記電圧ノルム指令値を増減する、
    電動機の制御方法。
    The control method of the motor according to claim 2,
    The d-axis FB step calculates a d-axis deviation between the d-axis component of the current and the d-axis target value,
    The q-axis FB step calculates a q-axis deviation between the q-axis component of the current and the q-axis target value,
    The norm changing step selects one of the d-axis deviation and the q-axis deviation according to the voltage phase command value, and increases or decreases the voltage norm command value according to the selected current deviation.
    Motor control method.
  4.  請求項3に記載の電動機の制御方法であって、
     前記電動機に供給される電流を検出する検出ステップをさらに含み、
     前記q軸FBステップは、前記検出した電流のq軸成分の絶対値と前記q軸目標値との差分を前記q軸偏差として演算する、
    電動機の制御方法。
    The control method of the motor according to claim 3,
    The method further comprising: detecting a current supplied to the motor;
    The q-axis FB step calculates the difference between the absolute value of the q-axis component of the detected current and the q-axis target value as the q-axis deviation.
    Motor control method.
  5.  請求項1から請求項4までのいずれか1項に記載の電動機の制御方法であって、
     前記電圧位相制御ステップは、前記電流のd軸成分又はq軸成分をフィードバックする際の制御ゲインを前記電動機の電気角速度に応じて変更する、
    電動機の制御方法。
    A control method of a motor according to any one of claims 1 to 4, wherein
    The voltage phase control step changes a control gain at the time of feeding back the d-axis component or the q-axis component of the current according to the electric angular velocity of the motor.
    Motor control method.
  6.  請求項1から請求項5までのいずれか1項に記載の電動機の制御方法であって、
     前記電圧位相制御ステップは、前記電流のd軸成分をフィードバックする際の制御ゲインに対して、前記電流のq軸成分をフィードバックする際の制御ゲインを異なる値に設定する、
    電動機の制御方法。
    A control method of a motor according to any one of claims 1 to 5, wherein
    The voltage phase control step sets the control gain at the time of feeding back the q-axis component of the current to a different value from the control gain at the time of feeding back the d-axis component of the current.
    Motor control method.
  7.  請求項1から請求項6までのいずれか1項に記載の電動機の制御方法であって、
     前記電圧位相制御ステップは、
     前記電圧ノルム指令値が所定の上限値を上回る場合には、当該電圧ノルム指令値を前記所定の上限値に設定するとともに、
     前記電流成分を前記電圧ノルム指令値にフィードバックする際に実行される積分処理を停止する、又は当該フィードバックする際に所定のアンチワインドアップ処理を実行する、
    電動機の制御方法。
    A control method of a motor according to any one of claims 1 to 6, wherein
    The voltage phase control step is
    When the voltage norm command value exceeds a predetermined upper limit, the voltage norm command value is set to the predetermined upper limit.
    Stopping an integration process performed when the current component is fed back to the voltage norm command value, or performing a predetermined anti-windup process when the feedback is performed;
    Motor control method.
  8.  請求項1から請求項7までのいずれか1項に記載の電動機の制御方法であって、
     前記電動機の制御が前記電流ベクトル制御から前記電圧位相制御に切り替えられた場合において、前記電圧ノルム指令値に相関のあるパラメータ又は前記電圧ノルム指令値が所定の電圧閾値を下回るときには、前記電動機の制御を前記電流ベクトル制御に切り替える切替ステップをさらに含む、
    電動機の制御方法。
    A control method of a motor according to any one of claims 1 to 7, wherein
    When the control of the motor is switched from the current vector control to the voltage phase control, the control of the motor is performed when the parameter correlated with the voltage norm command value or the voltage norm command value falls below a predetermined voltage threshold. And switching the current vector control to the current vector control,
    Motor control method.
  9.  請求項8に記載の電動機の制御方法であって、
     前記相関のあるパラメータは、前記電圧ノルム指令値に対して平均化処理を施した値、前記電圧指令値のノルム成分、及び、前記電圧指令値のノルム成分に対して平均化処理を施した値のうち少なくとも1つを含み、
     前記所定の電圧閾値は、前記電圧ノルム指令値の上限値よりも小さな値である、
    電動機の制御方法。
    The control method of the motor according to claim 8,
    The correlated parameters are a value obtained by averaging the voltage norm command value, a norm component of the voltage command value, and a value obtained by averaging the norm component of the voltage command value. At least one of
    The predetermined voltage threshold is a value smaller than an upper limit value of the voltage norm command value.
    Motor control method.
  10.  請求項8又は請求項9に記載の電動機の制御方法であって、
     前記切替ステップは、前記電流成分に対して平均化処理を施した値又は前記電流成分が所定の電流閾値を上回る場合には、前記電圧位相制御から前記電流ベクトル制御に切り替える、
    電動機の制御方法。
    The control method of the electric motor according to claim 8 or 9.
    The switching step switches the voltage phase control to the current vector control when a value obtained by averaging the current component or the current component exceeds a predetermined current threshold.
    Motor control method.
  11.  請求項10に記載の電動機の制御方法であって、
     前記所定の電流閾値は、
     前記電流成分が前記d軸成分である場合には、前記電流ベクトル制御のd軸目標値又は当該d軸目標値に対して平均化処理を施した値であり、
     前記電流成分が前記q軸成分である場合には、前記電流ベクトル制御のq軸目標値又は当該q軸目標値に対して平均化処理を施した値である、
    電動機の制御方法。
    The control method of a motor according to claim 10, wherein
    The predetermined current threshold is
    When the current component is the d-axis component, it is a d-axis target value of the current vector control or a value obtained by performing averaging processing on the d-axis target value,
    When the current component is the q-axis component, the current vector control q-axis target value or the q-axis target value is an averaged value.
    Motor control method.
  12.  請求項8から請求項11までのいずれか1項に記載の電動機の制御方法であって、
     前記切替ステップは、前記電流ベクトル制御により前記電動機の制御が行われている場合において、前記電圧指令値のノルム成分が特定の電圧閾値を上回るときには、前記電動機の制御を前記電圧位相制御に切り替え、
     前記特定の電圧閾値は、前記電圧ノルム指令値の上限値よりも小さく、かつ、前記所定の電圧閾値よりも大きい値に設定される、
    電動機の制御方法。
    A control method of a motor according to any one of claims 8 to 11, wherein
    The switching step switches control of the motor to the voltage phase control when a norm component of the voltage command value exceeds a specific voltage threshold when control of the motor is performed by the current vector control.
    The specific voltage threshold is set to a value smaller than the upper limit value of the voltage norm command value and larger than the predetermined voltage threshold.
    Motor control method.
  13.  請求項8から請求項12までのいずれか1項に記載の電動機の制御方法であって、
     前記切替ステップは、前記電動機の制御が前記電流ベクトル制御から前記電圧位相制御に切り替えられた場合において、前記電圧ノルム指令値が所定の電圧閾値よりも小さい第1閾値を下回るとき又は前記電動機の回転速度が第2閾値を下回るときには、前記電動機の制御を前記電動機の供給電力を抑制する保護制御に切り替える、
    電動機の制御方法。
    A control method of a motor according to any one of claims 8 to 12, wherein
    In the switching step, when the control of the motor is switched from the current vector control to the voltage phase control, the voltage norm command value falls below a first threshold smaller than a predetermined voltage threshold or rotation of the motor When the speed falls below a second threshold, the control of the motor is switched to protection control that suppresses the power supplied to the motor.
    Motor control method.
  14.  請求項13に記載の電動機の制御方法であって、
     前記切替ステップは、前記電動機の保護制御として、前記電圧指令値をゼロに設定する、又は、前記電動機に設けられた各相の電源線を短絡する、
    電動機の制御方法。
    The control method of an electric motor according to claim 13.
    In the switching step, the voltage command value is set to zero or the power supply line of each phase provided in the motor is short-circuited as protection control of the motor.
    Motor control method.
  15.  請求項13に記載の電動機の制御方法であって、
     前記切替ステップは、前記電動機の保護制御として、前記電動機に交流電力を供給するインバータに備えられたスイッチング素子のゲート電流を停止する、
    電動機の制御方法。
    The control method of an electric motor according to claim 13.
    In the switching step, as protection control of the motor, a gate current of a switching element provided in an inverter for supplying AC power to the motor is stopped.
    Motor control method.
  16.  請求項13に記載の電動機の制御方法であって、
     前記切替ステップは、前記電動機の保護制御として、前記電圧位相制御から前記電流ベクトル制御に切り替える、
    電動機の制御方法。
    The control method of an electric motor according to claim 13.
    The switching step switches from the voltage phase control to the current vector control as protection control of the motor.
    Motor control method.
  17.  電動機の作動状態に応じて前記電動機の供給電力を制御する電流ベクトル制御及び電圧位相制御のうちいずれか一つの制御を実行する制御装置であって、
     前記電動機の電圧指令値に基づいて前記電動機に交流電力を供給するインバータと、
     前記インバータから前記電動機に供給される電流を検出するセンサと、
     前記電動機の供給電圧の大きさを示す電圧ノルム指令値と、当該供給電圧の位相を示す電圧位相指令値とに基づいて、前記電圧位相制御の電圧指令値を演算するコントローラと、を含み、
     前記コントローラは、前記電動機に生じる電圧の向きに応じて、前記センサにより検出された電流のd軸及びq軸成分のうち少なくとも一方の電流成分を前記電圧ノルム指令値にフィードバックする、
    電動機の制御装置。
    A control device that executes any one control of current vector control and voltage phase control that controls supplied power of the motor according to the operating state of the motor,
    An inverter for supplying AC power to the motor based on a voltage command value of the motor;
    A sensor for detecting a current supplied from the inverter to the motor;
    A controller that calculates a voltage command value of the voltage phase control based on a voltage norm command value indicating a magnitude of a supply voltage of the motor and a voltage phase command value indicating a phase of the supply voltage;
    The controller feeds back at least one of d-axis and q-axis components of the current detected by the sensor to the voltage norm command value according to the direction of voltage generated in the motor.
    Motor control device.
PCT/JP2017/042679 2017-11-28 2017-11-28 Electric machine controlling method and electric machine controlling device WO2019106729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/042679 WO2019106729A1 (en) 2017-11-28 2017-11-28 Electric machine controlling method and electric machine controlling device
JP2019556439A JP6984663B2 (en) 2017-11-28 2017-11-28 Motor control method and motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042679 WO2019106729A1 (en) 2017-11-28 2017-11-28 Electric machine controlling method and electric machine controlling device

Publications (1)

Publication Number Publication Date
WO2019106729A1 true WO2019106729A1 (en) 2019-06-06

Family

ID=66665473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042679 WO2019106729A1 (en) 2017-11-28 2017-11-28 Electric machine controlling method and electric machine controlling device

Country Status (2)

Country Link
JP (1) JP6984663B2 (en)
WO (1) WO2019106729A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507239A (en) * 2021-07-16 2021-10-15 中南大学 Driving system and method for non-physical brake wall-climbing robot
WO2022044230A1 (en) * 2020-08-27 2022-03-03 日産自動車株式会社 Method and device for controlling motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023943A (en) * 2010-06-14 2012-02-02 Denso Corp Controller for rotary machine
JP2012105402A (en) * 2010-11-08 2012-05-31 Denso Corp Control device for rotating machine
JP2015171301A (en) * 2014-03-11 2015-09-28 日産自動車株式会社 Motor controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710963B2 (en) * 2008-11-28 2011-06-29 株式会社デンソー Rotating machine control device and control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023943A (en) * 2010-06-14 2012-02-02 Denso Corp Controller for rotary machine
JP2012105402A (en) * 2010-11-08 2012-05-31 Denso Corp Control device for rotating machine
JP2015171301A (en) * 2014-03-11 2015-09-28 日産自動車株式会社 Motor controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044230A1 (en) * 2020-08-27 2022-03-03 日産自動車株式会社 Method and device for controlling motor
EP4207585A4 (en) * 2020-08-27 2023-10-11 Nissan Motor Co., Ltd. Method and device for controlling motor
JP7468669B2 (en) 2020-08-27 2024-04-16 日産自動車株式会社 Motor control method and control device
CN113507239A (en) * 2021-07-16 2021-10-15 中南大学 Driving system and method for non-physical brake wall-climbing robot
CN113507239B (en) * 2021-07-16 2022-05-27 中南大学 Driving system and method for non-physical brake wall-climbing robot

Also Published As

Publication number Publication date
JPWO2019106729A1 (en) 2020-07-16
JP6984663B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP6260502B2 (en) Motor control device
JP5930052B2 (en) Inverter control device and inverter control method
US10389289B2 (en) Generating motor control reference signal with control voltage budget
US9935567B2 (en) Rotating electric machine control device
JP4797074B2 (en) Vector control device for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
JP2009124871A (en) V/f control system of synchronous electric motor
WO2019106838A1 (en) Electric motor control method and electric motor control device
JP5412820B2 (en) AC motor control device and control method
US9520824B2 (en) Inverter apparatus
WO2019106729A1 (en) Electric machine controlling method and electric machine controlling device
JP5204463B2 (en) Motor control device
WO2019106727A1 (en) Electric machine controlling method and electric machine controlling device
JP7452671B2 (en) Electric motor control method and electric motor system
JP5564828B2 (en) AC motor control device
JP6421598B2 (en) Motor control device and control method
JP7073799B2 (en) Motor control method and motor control device
JP6680104B2 (en) Motor control device and control method
JP5325556B2 (en) Motor control device
WO2024069745A1 (en) Inverter control device
JP2010200584A (en) Motor controller
JP2023072565A (en) Motor control method and motor control device
JP2018088797A (en) Motor control device, motor control method, program, and phase adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933584

Country of ref document: EP

Kind code of ref document: A1