WO2019105160A1 - 有机发光显示装置 - Google Patents

有机发光显示装置 Download PDF

Info

Publication number
WO2019105160A1
WO2019105160A1 PCT/CN2018/112198 CN2018112198W WO2019105160A1 WO 2019105160 A1 WO2019105160 A1 WO 2019105160A1 CN 2018112198 W CN2018112198 W CN 2018112198W WO 2019105160 A1 WO2019105160 A1 WO 2019105160A1
Authority
WO
WIPO (PCT)
Prior art keywords
capping layer
oled
organic light
cupc
npb
Prior art date
Application number
PCT/CN2018/112198
Other languages
English (en)
French (fr)
Inventor
王宏宇
郭晓霞
柯贤军
苏君海
李建华
Original Assignee
信利(惠州)智能显示有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利(惠州)智能显示有限公司 filed Critical 信利(惠州)智能显示有限公司
Publication of WO2019105160A1 publication Critical patent/WO2019105160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present application relates to the field of organic light emitting display technology, and in particular to an organic light emitting display device.
  • AMOLED Active-matrix organic light emitting diode
  • OLED Organic Light-Emitting Diode
  • the advantages are both in the large-size display and in the micro-display.
  • the improvement and optimization of OLED devices are of great significance for improving the performance of AMOLED.
  • the OLED can be divided into a top emission structure and a bottom emission mechanism according to different illumination directions.
  • the driving circuit of the row pixel and the column pixel is integrated under the light emitting unit, and the light is emitted from the top semi-transparent electrode, that is, the top emission structure; the light exiting direction is the bottom.
  • the glass substrate is the bottom emission mechanism.
  • the top emitting mechanism can well avoid the situation in which the display area between the light emitting area and the pixel driving circuit is occupied.
  • the OLED device of the top emission mechanism has a higher aperture ratio than the OLED device of the bottom emission structure.
  • the top emission structure having a higher aperture ratio can make the non-light-emitting area between the pixels of the display screen smaller to obtain a better display effect, and in addition, the top emission structure having a higher aperture ratio is compared with the bottom of the low aperture ratio.
  • the emission structure reduces the power consumption when the human eye feels the same subjective brightness value, which is beneficial to increase the actual service life of the device.
  • the cathode and the anode both use a metal electrode having a high reflectance, there is a strong microcavity effect.
  • the peak is enhanced and the half-wave width of the device is narrowed.
  • another problem caused by the microcavity effect is that The spectrum changes as the angle changes. This is because when the angle changes, the length of the cavity corresponding to the light exit direction changes, resulting in a color shift (Color Shift).
  • an organic light emitting display device is provided.
  • An organic light emitting display device comprising:
  • a capping layer formed on the cathode, the capping layer being doped with at least two materials.
  • the ratio of the two materials in the capping layer is 1: (0.5 to 2.2).
  • the ratio of the two materials in the capping layer is 1:1.
  • the material of the capping layer comprises at least two of CuPc, NPB, Alq3, CPB, TPBi, and ZnS.
  • the material of the capping layer comprises CuPc and NPB.
  • the ratio of CuPc to NPB in the capping layer is 1: (0.5 to 2.2).
  • the ratio of CuPc to NPB in the capping layer is 1:1.
  • the material of the capping layer comprises CuPc, NPB, and Alq3.
  • the ratio of CuPc, NPB, and Alq3 in the capping layer is 1:1:1.
  • the material of the capping layer comprises at least two organic compounds comprising triazine and benzimidazole rigid groups.
  • An organic light emitting display device comprising:
  • a capping layer formed on the cathode, the capping layer being doped with at least two materials;
  • the material of the capping layer comprises at least two of CuPc, NPB, Alq3, CPB, TPBi and ZnS;
  • the material of the capping layer includes CuPc, NPB and Alq3, and the ratio of CuPc, NPB and Alq3 in the capping layer is 1:1:1.
  • a capping layer formed by doping two or more different materials different materials have different refractive indexes, so that Rayleigh scattering of light passing through the capping layer is performed, thereby effectively improving light intensity As the angle becomes larger, the attenuation is exhibited, and the phenomenon of color shift is effectively improved, thereby making the light-emitting display effect better.
  • 1 is a partial cross-sectional structural view of an organic light emitting display device of an embodiment
  • 2 is a schematic diagram showing the coordinates of the angular distribution of Rayleigh scattering
  • 3 is a schematic view showing the comparison of the CIEx of the OLED with the OLED of the OLED and the capping layer using two materials according to the angle change;
  • FIG. 4 is a schematic view showing the comparison of the brightness of the OLED with the OLED and the capping layer using two materials as a function of the angle;
  • Figure 5 is a spectrum diagram of an OLED in which a capping layer is made of one material
  • Figure 6 is a spectrum diagram of an OLED using two materials for the capping layer
  • FIG. 7 is a comparison diagram of color shift data of an OLED in which the capping layer uses one material and the cap layer uses two materials.
  • an organic light emitting display device includes: a back sheet; an anode formed on the back sheet; an organic light emitting layer formed on the anode; a cathode formed on the organic light emitting layer; a capping layer on the cathode, the capping layer being doped with at least two materials.
  • the cover layer doped by two or more different materials has different refractive indexes, so that the light penetrating the cap layer is Rayleigh scattering, thereby effectively improving the light intensity.
  • the angle becomes large and the attenuation is exhibited the phenomenon of color shift is effectively improved, so that the illuminating display effect is better.
  • an organic light emitting display device 10 including: a backing plate 100; an anode 110 formed on the backing plate 100; and an organic light emitting layer formed on the anode 110 a cathode 130 formed on the organic light-emitting layer 120; a capping layer 140 formed on the cathode 130, the capping layer 140 being doped with at least two materials.
  • the backplane 100 includes a substrate and a backplane 100 circuit.
  • the substrate is a flexible substrate.
  • the substrate is a glass substrate, and the backplane 100 is formed on the substrate.
  • the circuit of the backplane 100 is a pixel driving circuit for connecting an organic electroluminescent device for driving the organic electroluminescent device to emit light.
  • the backplane 100 circuit is connected to the anode 110, that is, the anode 110 is formed on the circuit of the backplane 100. It is worth mentioning that the structure and formation of the circuit of the backplane 100 can be implemented by using the prior art, and the description is not exhaustive in this embodiment.
  • the anode 110, the organic light emitting layer 120 and the cathode 130 constitute an organic electroluminescent device (OLED).
  • the organic electroluminescent device further includes a hole layer 150 and an electron layer 160, and the hole layer 150 is located. Between the anode 110 and the organic light-emitting layer 120, the electron layer 160 is located between the organic light-emitting layer 120 and the cathode 130.
  • OLED organic electroluminescent device
  • the capping layer may also be referred to as a protective layer, that is, a protective layer of a cathode, also referred to as a light extraction layer.
  • the capping layer is co-doped with at least two materials, for example, the capping layer is formed by evaporating at least two materials, for example, the capping layer is formed by co-evaporation of at least two materials, for example,
  • the capping layer is mixed with at least two materials and evaporated; for example, the capping layer is co-doped with at least two materials having different refractive indices.
  • the light of the organic light-emitting layer is sequentially propagated to the outside through the cathode and the capping layer, and since the refractive indices of at least two materials forming the capping layer are different, Rayleigh scattering occurs in the light penetrating the capping layer, thereby effectively improving The light intensity is attenuated as the angle becomes larger, effectively improving the phenomenon of color shift, thereby making the light-emitting display effect better.
  • the top emission of the organic light-emitting device is an optical micro-resonator structure, and the corresponding wavelengths of different viewing angles are correspondingly changed, thereby causing the light-emitting quantity of different wavelengths to be changed at different viewing angles, so that the organic light-emitting device has different viewing angles.
  • the color of the light emitted by the light changes, resulting in a large difference in the color of the organic light-emitting device at different viewing angles.
  • a capping layer is formed by co-evaporation.
  • the so-called scattering is that when the surface of the object irradiated by the projected wave has a large curvature or is not smooth, the secondary radiation wave diffuses according to a certain law in the angular domain.
  • the phenomenon of distribution When the molecules or atoms are close to each other, the two sides have strong mutual repulsive forces, forcing them to deviate from the original direction of motion before the contact, and the light caused by the unevenness of the propagation medium is emitted all around. phenomenon. Therefore, in the present embodiment, two or more materials of different refractive indices are doped in the capping layer in order to scatter the emitted light, thereby improving color shift.
  • the derivation process of the scattering mechanism is: assuming that n is the optical refractive index of the scattering particles, and is spherical, the radius is réelle, the distance between the scattering particles and the observation point is r, and the emitted light is natural light (the visible light source and the general artificial light source are directly emitted)
  • the light is natural light. It includes all possible vibration directions perpendicular to the direction of propagation of the light wave, so it does not show polarization.)
  • the wavelength is ⁇
  • the incident light intensity is I 0
  • is the scattering angle.
  • the scattered light intensity of a single molecule is:
  • the scattered light intensity perpendicular to the scattering surface and the scattered light intensity parallel to the scattering surface are:
  • a is the scattered light intensity component of the electric vector parallel to the scattering surface
  • b is the scattered light intensity component of the electrical vector perpendicular to the scattering surface
  • c is Total scattered light intensity. It can be seen that the intensity of the scattered light signal is inversely proportional to the fourth power of the wavelength of the emitted laser light, namely:
  • the intensity of the scattered light changes with the change of the scattering angle.
  • the scattered light intensity can be expressed as:
  • I 0 I ⁇ /2 ⁇ (1+cos 2 ⁇ )
  • the capping layer is Materials include CuPc (cyanoguanidine), NPB (N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine, CAS: 123847-85-8), Alq3 (tris(8-hydroxyquinoline) aluminum, CAS: 2085-33-8), CBP (4,4'-bis(9-carbazole) biphenyl, CAS: 58328-31 -7), at least two of TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, CAS: 192198-85-9) and ZnS.
  • CuPc cyanoguanidine
  • NPB N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine
  • Alq3 tris(8-hydroxyquinoline
  • the material is formed into a transparent material after being vapor-deposited into a film, and each has a different particle radius, and a capping layer formed by at least two co-doping of the above materials is formed with a capping layer with respect to one material. Layer with better scattering effect.
  • the material of the capping layer includes CuPc and NPB.
  • the ratio of CuPc to NPB in the capping layer is 1: (0.5 to 2.2).
  • the ratio of CuPc to NPB in the capping layer is 1:1.
  • the material of the capping layer includes CuPc, NPB, and Alq3.
  • the ratio of CuPc, NPB, and Alq3 in the capping layer is 1:1:1.
  • the device structure is prepared to include two OLED devices.
  • the substrate and the backplane circuit structure are omitted.
  • the substrate and the backplane circuit are the same, and the prior art is implemented:
  • the layer structure of OLED #1 is:
  • ITO/HIL Dopant/HTL/HTL/EBL/EML: Dopant/HBL/ETL: Liq/Mg: Ag/CPL;
  • the layer structure of OLED #2 is:
  • ITO/HIL Dopant/HTL/HTL/EBL/EML: Dopant/HBL/ETL: Liq/Mg: Ag/CPL: Liq (1:1);
  • the anode to cathode layers are the same in structure and material, and in each embodiment, the anode to cathode layers of OLED #1 and OLED #2 have the same structure and material:
  • ITO indium tin oxide
  • the ITO is an N-type oxide semiconductor.
  • HIL Dopant is a hole injection layer which is doped with a hole injection layer material and a P-type guest material.
  • the HTL is a hole transport layer.
  • both OLED #1 and OLED #2 form two hole transport layers.
  • HTL is a hole transport layer.
  • EBL is an electron blocking layer.
  • EML Dopant is an organic light-emitting layer.
  • the host light-emitting layer material is doped with a guest dye and co-evaporated.
  • HBL is a hole blocking layer.
  • ETL is an electron transport layer
  • Liq is an electron injection layer
  • Mg Ag is a cathode, that is, a co-evaporation of magnesium and silver.
  • CPL is a capping layer, and the capping layer in OLED #1 is formed by vapor deposition of CPL.
  • the capping layer in OLED #1 is formed by single CuPc evaporation, and in OLED#2.
  • the capping layer CPL: Liq (1:1) is formed by vapor deposition of two materials having different refractive indices.
  • the capping layer of OLED #2 is formed by co-doping with CuPc and NPB, and CuPc and The ratio of NPB is 1:1.
  • the atomic particle radius of the two materials is different, and the refractive index is also different.
  • the molecules of the large particles are co-doped into the small molecular film layer to act as a base particle, thereby conforming to the principle of dispersion of light. Improve the color shift.
  • the capping layer CPL of the OLED #2 Liq (1:1) is co-steamed with two materials having different refractive indexes, and the atomic particle radius in the film formation after evaporation of the two materials is different. Irregularly dispersed particles are formed in a single medium such that the capping layer conforms to the scattering conditions of the light, and the color shift map is compared with the OLED device #1 of the capping layer of the single material. It can be clearly seen from Fig. 3 and Fig. 4 that in the aspect of CIEx and brightness: the capping layer of OLED#2 performs very well, and it is obvious in terms of angle dependence that the capping layer of OLED#2 is superior to the OLED of single material. The capping layer of #1, the CIEx of the capping layer of OLED #2 fluctuated less in the range of ⁇ 80°, and the change was significantly better than the capping layer of OLED #1.
  • FIG. 5 is a spectrum diagram of the capping layer CPL in the OLED #1 as a function of angle, the abscissa is the wavelength of light, and the ordinate is the intensity of light penetrating the capping layer.
  • 6 is a capping layer CPL of OLED #2: Liq (1:1) is a spectrum diagram as a function of angle, the abscissa is the wavelength of light, and the ordinate is the intensity of light penetrating the capping layer.
  • the different curves in Figures 5 and 6 are test curves at different angles, including 0°, 30°, 45°, and 60°.
  • the capping layer of OLED #2 which is formed by 1:1 mixed vapor deposition of CuPc and NPB has better scattering effect than the capping layer in OLED #1, and the degree of color shift is small. The difference in angle dependence is small. It is proved that the effect of the capping layer obtained by co-steaming at least two materials in terms of angle dependence is better than that of the capping layer formed by a single material, and the experimental effect once again proves the feasibility of the theory.
  • the capping layer in OLED #1 is formed by a single NPB evaporation, while the capping layer in OLED #2 is co-doped with CuPc and NPB, and the ratio of CuPc to NPB is 1:1.
  • the OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), and the peak value changes from 523.5 nm to 517 nm, and the wavelength varies by 6.5 nm;
  • the peak of the capping layer of OLED #2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 522 nm to 519 nm, and the wavelength changes by 3 nm.
  • the color of the capping layer of OLED #2 is less.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.010, 0.009, and 0.007, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.007, 0.007, and 0.007, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the OLED of the capping layer formed by 1:1 mixed co-doping evaporation of CuPc and NPB has better scattering rate than the single CuPc or NPB deposited capping layer.
  • the degree of color shift is small and the angle dependence is smaller.
  • the capping layer in OLED #1 is formed by single Alq3 evaporation, while the capping layer in OLED#2 is co-doped with CuPc, NPB and Alq3 in a ratio of 1:1:1, and CuPc and NPB are formed. .
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 524 nm to 517 nm, and the wavelength varies by 7 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 521.5 nm to 520 nm, and the wavelength changes by 1.5 nm.
  • the color of the capping layer of OLED #2 is less.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.011, 0.008, and 0.008, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.008, 0.007, and 0.008, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the capping layer in OLED #1 is formed by a single TPBi evaporation, while the capping layer in OLED #2 is co-doped with CuPc, NPB and TPBi in a ratio of 1:1:1, and CuPc and NPB are formed. .
  • OLED#1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 526 nm to 520 nm, and the wavelength varies by 6 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 523 nm to 519 nm, and the wavelength changes by 4 nm, so that OLED# can be seen.
  • the cover layer of 2 has a smaller degree of color shift.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.012, 0.007, and 0.009, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.009, 0.008, and 0.008, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the capping layer in OLED #1 is formed by single CBP evaporation, while the capping layer in OLED #2 is co-doped with CuPc, NPB and CBP in a ratio of 1:1:1, and CuPc and NPB are formed. .
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 522 nm to 516 nm, and the wavelength varies by 6 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 521 nm to 518 nm, and the wavelength changes by 3 nm, so that OLED# can be seen.
  • the cover layer of 2 has a smaller degree of color shift.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.007, 0.007, and 0.010, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.008, 0.008, and 0.008, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the capping layer in OLED #1 is formed by single ZnS evaporation, while the capping layer in OLED#2 is co-doped with CuPc, NPB and ZnS in a ratio of 1:1:1, and CuPc and NPB are formed. .
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 524 nm to 518 nm, and the wavelength varies by 6 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 522 nm to 518 nm, and the wavelength changes by 4 nm, so that OLED# can be seen.
  • the cover layer of 2 has a smaller degree of color shift.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.011, 0.007, and 0.009, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.008, 0.009, and 0.008, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the capping layer which is vapor-deposited by the three materials has better scattering rate and the degree of color shift than the OLED of the capping layer which is evaporated by a single material. Small, and less dependent on angle.
  • the capping layer in OLED #1 is formed by single CuPc evaporation, and the capping layer in OLED #2 is co-doped with CuPc, NPB, TPBi and ZnS in a ratio of 1:1:1:1, and CuPc and NPB.
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 524 nm to 518 nm, and the wavelength varies by 6 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 522 nm to 519 nm, and the wavelength changes by 3 nm, so that OLED# can be seen.
  • the color shift of the capping layer of 2 is small, but the color shift of the test result of the capping layer of 1:1 compared with CuPc and NPB is basically the same, compared with the co-doping of two materials, four The co-doping of the materials did not substantially improve the performance.
  • the JNCD results of OLED #1 at 30°, 45°, and 60° were 0.011, 0.009, and 0.008, respectively.
  • the JNCD results of OLED #2 at 30°, 45°, and 60° are 0.007, 0.007, and 0.008, respectively. It is found that the difference in angle dependence of OLED #2 is significantly smaller than that of OLED #1.
  • the color shift test result of the cap layer of OLED #2 is substantially the same as the test result of the cap layer of 1:1 ratio of CuPc and NPB, compared with the co-doping of two materials, four The co-doping of the material does not substantially improve the performance.
  • the material of the capping layer includes two or three of CuPc, NPB, Alq3, CBP, TPBi, and ZnS.
  • the material of the capping layer includes CuPc, NPB, Alq3, Two of CBP, TPBi, and ZnS
  • the material of the capping layer includes three of CuPc, NPB, Alq3, CBP, TPBi, and ZnS.
  • the material of the capping layer comprises at least two organic compounds containing triazine and benzimidazole rigid groups.
  • the material of the capping layer comprises two organic compounds containing triazine and benzimidazole rigid groups.
  • the material of the capping layer includes three organic compounds containing triazine and benzimidazole rigid groups. An organic compound containing a triazine and a benzimidazole rigid group is used. Organic compounds containing triazine and benzimidazole rigid groups have a higher refractive index, resulting in better scattering and thus a smaller color shift.
  • the ratio of two organic compounds containing triazine and benzimidazole rigid groups in the capping layer is 1:1, for example, two of the capping layers contain triazine and benzimidazole rigidity.
  • the ratio of organic compounds of the group is 1:1:1.
  • the capping layer in OLED #1 is formed by single CuPc evaporation, while the capping layer in OLED #2 is co-doped with 1:1 ratio of two organic compounds containing triazine and benzimidazole rigid groups. Made.
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 524 nm to 518 nm, and the wavelength varies by 6 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 521 nm to 520 nm, and the wavelength changes by 1 nm, so that OLED# can be seen.
  • the cover layer of 2 has a smaller degree of color shift.
  • the capping layer in OLED #1 is formed by evaporation of three organic compounds containing triazine and benzimidazole rigid groups, and the ratio of three organic compounds containing triazine and benzimidazole rigid groups is 1:1. :1, and the capping layer in OLED #2 is formed by co-doping evaporation of two organic compounds containing triazine and benzimidazole rigid groups in a ratio of 1:1.
  • OLED #1 has a blue shift with increasing angles (0°, 30°, 45°, and 60°), the peak value changes from 521 nm to 520 nm, and the wavelength varies by 1 nm;
  • the peak of the capping layer of 2 is blue-shifted as the angle increases (0°, 30°, 45°, and 60°), the peak value changes from 521 nm to 520 nm, and the wavelength changes by 1 nm, so that OLED# can be seen.
  • the cover layer of 2 has a smaller degree of color shift and a smaller angle dependency.
  • a capping layer formed by evaporation of an organic compound containing a triazine and a benzimidazole rigid group three organic compounds containing a triazine and a benzimidazole rigid group are vapor-deposited to form an OLED #1.
  • the capping layer and two organic compounds containing triazine and benzimidazole rigid groups are evaporated to form a capping layer in OLED #2 with better scattering effect, and the degree of color shift is small, and the angle dependence Smaller.
  • a capping layer formed by co-doping two or three organic compounds containing a triazine and a benzimidazole rigid group is compared to a rigid group containing a triazine and a benzimidazole.
  • the organic compound is vapor-deposited to provide a better scattering effect, and the degree of color shift is smaller and the angle dependence is smaller.
  • the capping layer doped with at least two materials having different refractive indices can scatter the emitted light, thereby improving the problem of color shift (Color Shift).

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种有机发光显示装置,包括:背板;形成于所述背板上的阳极;形成于所述阳极上的有机发光层;形成于所述有机发光层上的阴极;形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成。通过两种以上的不同材料掺杂而成的封盖层,不同的材料具有不同的折射率,使得穿透该封盖层的光线发生瑞利散射,从而有效改善光强随着角度变大而呈现衰减的情况,有效改善色彩偏移的现象,从而使得发光显示效果更佳。

Description

有机发光显示装置
本申请要求于2017年11月29日提交中国专利局、申请号为201711224234.4、申请名称为“有机发光显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及有机发光显示技术领域,特别是涉及一种有机发光显示装置。
背景技术
AMOLED(Active-matrix organic light emitting diode,有源矩阵有机电致发光器件)能够充分发挥OLED(Organic Light-Emitting Diode,有机发光二极管)工艺简单、发光效率高、轻薄、色彩丰富以及视角宽等诸多优点,既可以在大尺寸显示器方面有所应有,也可以在微显示器方面发挥潜力。而作为AMOLED的重要组成部分OLED器件的改进与优化对于提高AMOLED性能有着重要意义。
OLED根据发光方向的不同,可以分为顶发射结构和底发射机构,行像素与列像素的驱动电路集成于发光单元下方,光从顶部半透明电极出射,即为顶发射结构;出光方向为底部玻璃衬底,则为底发射机构。采用顶发射机构能够很好的避免显示发光区与像素驱动电路之间相互占用面积的情况。且顶发射机构的OLED器件相比于的底发射结构的OLED器件,具有更高的开口率。采用具有更高的开口率的顶发射结构可以使显示屏像素间不发光区域变小从而获得更优秀的显示效果,另外,具有更高的开口率的顶发射结构相比于低开口率的底发射结构,使人眼感受到同等主观亮度值时所消耗功率降低,有利于增加器件实际使用寿命。
对于顶发射器件,由于其阴极和阳极都采用高反射率的金属电极,因此存在很强的微腔效应。对于单色光器件来说,在特定的腔长下,由于其一般 只存在一个波峰,导致波峰增强,并且造成使器件的半波宽变窄,此外,微腔效应导致的另一个问题是其光谱随着角度的变化会产生变化,这是由于当角度改变时,会导致出光方向所对应的腔长发生变化,进而导致色彩偏移(Color Shift)。
发明内容
根据本申请的各种实施例,提供一种一种有机发光显示装置。
一种有机发光显示装置,包括:
背板;
形成于所述背板上的阳极;
形成于所述阳极上的有机发光层;
形成于所述有机发光层上的阴极;
形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成。
在其中一个实施例中,所述封盖层中两种材料的比例为1:(0.5~2.2)。
在其中一个实施例中,所述封盖层中两种材料的比例为1:1。
在其中一个实施例中,所述封盖层的材料包括CuPc、NPB、Alq3、CPB、TPBi以及ZnS中的至少两种。
在其中一个实施例中,所述封盖层的材料包括CuPc和NPB。
在其中一个实施例中,所述封盖层中的CuPc和NPB的比例为1:(0.5~2.2)。
在其中一个实施例中,所述封盖层中的CuPc和NPB的比例为1:1。
在其中一个实施例中,所述封盖层的材料包括CuPc、NPB和Alq3。
在其中一个实施例中,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
在其中一个实施例中,所述封盖层的材料包括至少两种含有三嗪和苯并咪唑刚性基团的有机化合物。
一种有机发光显示装置,包括:
背板;
形成于所述背板上的阳极;
形成于所述阳极上的有机发光层;
形成于所述有机发光层上的阴极;
形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成;
其中,所述封盖层的材料包括CuPc、NPB、Alq3、CPB、TPBi以及ZnS中的至少两种;
所述封盖层的材料包括CuPc、NPB和Alq3,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
上述有机发光显示装置,通过两种以上的不同材料掺杂而成的封盖层,不同的材料具有不同的折射率,使得穿透该封盖层的光线发生瑞利散射,从而有效改善光强随着角度变大而呈现衰减的情况,有效改善色彩偏移的现象,从而使得发光显示效果更佳。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一个实施例的有机发光显示装置的局部剖面结构示意图;
图2为瑞利散射的光强角分布坐标示意图;
图3为封盖层采用一种材料的OLED与封盖层采用两种材料的OLED的CIEx随着角度变化对比示意图;
图4为封盖层采用一种材料的OLED与封盖层采用两种材料的OLED的亮度随着角度变化对比示意图;
图5为封盖层采用一种材料的OLED的光谱图;
图6为封盖层采用两种材料的OLED的光谱图;
图7为封盖层采用一种材料的OLED与封盖层采用两种材料的OLED的色彩偏移数据对比图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
例如,一种有机发光显示装置,包括:背板;形成于所述背板上的阳极;形成于所述阳极上的有机发光层;形成于所述有机发光层上的阴极;形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成。
上述实施例中,通过两种以上的不同材料掺杂而成的封盖层,不同的材料具有不同的折射率,使得穿透该封盖层的光线发生瑞利散射,从而有效改善光强随着角度变大而呈现衰减的情况,有效改善色彩偏移的现象,从而使得发光显示效果更佳。
在一个实施例中,如图1所示,提供一种有机发光显示装置10,包括:背板100;形成于所述背板100上的阳极110;形成于所述阳极110上的有机发光层120;形成于所述有机发光层120上的阴极130;形成于所述阴极130上的封盖层140,所述封盖层140由至少两种材料掺杂而成。
具体地,该背板100包括基板和背板100电路,该基板为柔性基板,例如,该基板为玻璃基板,该背板100电路形成于基板上。该背板100电路为像素驱动电路,用于连接有机电致发光器件,用于驱动有机电致发光器件发光。该背板100电路与阳极110连接,即阳极110形成于背板100电路上。 值得一提的是,被背板100电路的结构和形成可采用现有技术实现,本实施例中不累赘描述。
本实施例中,该阳极110、有机发光层120和阴极130组成有机电致发光器件(OLED),例如,该有机电致发光器件还包括空穴层150和电子层160,空穴层150位于阳极110和有机发光层120之间,电子层160位于有机发光层120与阴极130之间,该有机电致发光器件中的各层的结构以及形成方式可采用现有技术实现,本实施例中也不累赘描述。
该封盖层(CPL,Capping Layer)也可称为保护层,即阴极的保护层,也称为光取出层。例如,该封盖层由至少两种材料共掺而成,例如,该封盖层由至少两种材料蒸镀而成,例如,该封盖层有至少两种材料共蒸形成,例如,该封盖层由至少两种材料混合,并蒸镀而成;例如,该封盖层由至少两种折射率不同的材料共掺而成。有机发光层的光依次通过阴极和封盖层传播至外部,由于形成封盖层的至少两种材料的折射率不同,因此,使得穿透该封盖层的光线发生瑞利散射,从而有效改善光强随着角度变大而呈现衰减的情况,有效改善色彩偏移的现象,从而使得发光显示效果更佳。
具体地,有机发光器件顶发射是一种光学微谐振腔结构,不同的视角的对应的波长会发生相应改变,因而造成不同视角下的不同波长的出光量改变,使的有机发光器件在不同视角的出光光色改变,造成不同视角下的有机发光器件的发光颜色存在较大差异。
本实施例中,通过两种或两种以上的不同折射率的材料混合后,共同蒸镀形成封盖层。当有机发光层发出的光线经过封盖层时会发生散射,所谓散射即是被投射波照射的物体表面曲率较大甚至不光滑时,其二次辐射波在角域上按一定的规律作扩散分布的现象。它是分子或原子相互接近时,由于双方具有很强的相互斥力,迫使它们在接触前就偏离了原来的运动方向而分开,当传播介质的不均匀性引起的光线向四周射去的这种现象。因此,本实施例中,在封盖层掺杂两种或者两种以上的不同折射率的材料,目的在于让出射的光发生散射,从而改善色彩偏移(Color Shift)。
当在封盖层中采用共蒸的手段或者其他手段使得两种或两种以上的材料掺杂成膜,材料的不相同,这样,原子半径不同、折射率不同的粒子混合到一起成封盖层,当原子半径大的粒子分散到原子半径小的粒膜层的时,而且混合后的封盖层的粒子的大小尺度远小于入射光波长时,就会发生瑞利散射,瑞利散射是由英国物理学家瑞利勋爵(Lord Rayleigh)于1900年发现的,这种散射主要是由大气中的原子和分子,如氮、二氧化碳、臭氧和氧分子等引起的。特别是对可见光而言,瑞利散射现象非常明显。无云的晴空呈现蓝色,就因为蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,太阳辐射传播方向的蓝光被大大削减。
散射机制的推导过程为:假设n为散射粒子的光学折射率,且为球形,半径为а,散射粒子与观察点之间的距离为r,出射光为自然光(可见光源和一般人造光源直接发出的光都是自然光。它包括了垂直于光波传播方向的所有可能的振动方向,所以不显示出偏振性)且波长为λ,入射光强为I 0,θ为散射角。则单个分子的散射光强为:
Figure PCTCN2018112198-appb-000001
垂直于散射面的散射光强和平行于散射面的散射光强分别为:
Figure PCTCN2018112198-appb-000002
Figure PCTCN2018112198-appb-000003
瑞利散射的光强角分布如图2所示,其中,图2中,a为电矢量平行于散射面的散射光强分量,b为电矢量垂直于散射面的散射光强分量,c为总散射光强。由此可知,散射光信号的强度与出射激光的波长的四次方成反比,即:
Figure PCTCN2018112198-appb-000004
并且,瑞丽散射并不会改变光波的波长,因此,得到散射光强随散射角 的变化而变化,在散射角为θ的方向上,散射光强可表示为:
I 0=I π/2·(1+cos 2θ)
其中I π/2是垂直于入射光方向上的散射光强,由上式可得散射光强I 0与(1+cos 2θ)成正比。从而推导得出,散射后的光强(candela,简写cd)是从(0 0,90 0)中一个类椭圆对称结构,这种光强分布,能够有效的改善现有显示屏的光强随着角度变大而呈现衰减的这一现象。
为了提高封盖层的散射效果,进一步改善光强随着角度变大而呈现衰减的情况,改善色彩偏移的现象,使得发光显示效果更佳,在一个实施例中,所述封盖层的材料包括CuPc(酞氰铜)、NPB(N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺,CAS:123847-85-8)、Alq3(三(8-羟基喹啉)铝,CAS:2085-33-8)、CBP(4,4'-二(9-咔唑)联苯,CAS:58328-31-7)、TPBi(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯,CAS:192198-85-9)以及ZnS中的至少两种。上述材料蒸镀成薄膜后均具为透明材料,且分别具有不同的粒子半径,由上述材料中的至少两种共掺蒸镀而成的封盖层,相对于一种的材料形成的封盖层,具有更好的散射效果。
为了使得散射效果更佳,例如,所述封盖层的材料包括CuPc和NPB。例如,所述封盖层中的CuPc和NPB的比例为1:(0.5~2.2)。例如,所述封盖层中的CuPc和NPB的比例为1:1。
例如,所述封盖层的材料包括CuPc、NPB和Alq3。例如,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
下面是具体实施例:
实施例1:
实验室制备二种绿色的单色OLED器件,验证通过两种材料混合而成的封盖层对改善色彩偏移的情况。
制备器件结构包括两个OLED器件,本实施例中,省去基板和背板电路结构,对于两个OLED器件而言,基板和背板电路均相同,且采用现有技术 实现:
OLED#1的各层结构为:
ITO/HIL:Dopant/HTL/HTL/EBL/EML:Dopant/HBL/ETL:Liq/Mg:Ag/CPL;
OLED#2的各层结构为:
ITO/HIL:Dopant/HTL/HTL/EBL/EML:Dopant/HBL/ETL:Liq/Mg:Ag/CPL:Liq(1:1);
其中,对于OLED#1与OLED#2而言,阳极至阴极的各层结构和材质相同,且在各实施例中,OLED#1与OLED#2的阳极至阴极的各层结构和材质相同:
ITO(氧化铟锡)为阳极,该ITO为N型氧化物半导体。
HIL:Dopant为空穴注入层,由空穴注入层材料与P型客体材料掺杂而成。
HTL为空穴传输层,本实施例中,OLED#1与OLED#2均形成两个空穴传输层。
HTL为空穴传输层。
EBL为电子阻挡层。
EML:Dopant为有机发光层,为主体发光层材料掺杂客体染料,共蒸形成。
HBL为空穴阻挡层。
ETL为电子传输层,Liq为电子注入层。
Mg:Ag为阴极,即镁和银共蒸形成。
CPL为封盖层,OLED#1中的封盖层采用CPL为一种材料蒸镀形成,本实施例中,OLED#1中的封盖层采用单一的CuPc蒸镀形成,而OLED#2中封盖层CPL:Liq(1:1)采用两种折射率不同的材料蒸镀而成,本实施例中,OLED#2中封盖层采用CuPc和NPB共掺蒸镀而成,且CuPc和NPB的比例为1:1,两种材料的原子颗粒半径不同,折射率也不同,将其中大颗粒的分子共掺到小分子膜层中,充当基粒的作用,从而符合光的色散原理,进行对色彩偏移的改善。
下面继续对OLED#1的封盖层CPL与OLED#2的封盖层CPL:Liq(1:1) 进行视角的测试,选用角度为±80°下测试;结果如下图3和图4所示。其中,图3中,Angle为视角,CIEx(Commission Internationale de L'Eclairage,国际照明委员会,国际照明委员会根据其法语名称简写为CIE。CIE制订了一系列色度学标准,一直沿用到数字视频时代,其中包括白光标准D65和阴极射线管CRT内表面红、绿、蓝三种磷光理论上的理想颜色)为色彩标准,图4中,Angle为视角,luminance为亮度。
本实施例中OLED#2的封盖层CPL:Liq(1:1)采用两种折射率不同的材料进行共蒸,这两种材料的蒸镀后成膜中的原子颗粒半径不同,会在单一介质中形成不规则分散的颗粒,使得封盖层符合光的散射条件,通过与单材料的封盖层的OLED器件#1进行色彩偏移图谱对比。由图3和图4可明显看到,在CIEx以及亮度方面:OLED#2的封盖层表现都很好,在角度依存性方面很明显OLED#2的封盖层要优于单一材料的OLED#1的封盖层,OLED#2的封盖层的CIEx在角度为±80°范围内波动更小,变化明显优于OLED#1的封盖层。
随后进行在不同视角下,封盖层的测试。如图5和图6所示,图5为OLED#1中的封盖层CPL随着角度变化的光谱图,横坐标为光的波长,纵坐标为穿透该封盖层的光的强度。图6为OLED#2的封盖层CPL:Liq(1:1)为随着角度变化的光谱图,横坐标为光的波长,纵坐标为穿透该封盖层的光的强度。图5和图6中不同的曲线为不同角度下的测试曲线,包括0°、30°、45°和60°。
通过图5和图6的光谱图对比发现,OLED#1的封盖层的峰值随着角度(0°、30°、45°和60°)增大发生蓝移,峰值变化从524nm变化到518nm,波长的变化幅度为6nm;而OLED#2的封盖层的峰值随着角度(0°、30°、45°和60°)增大同样也会蓝移,但峰值变化从522nm变化到519nm,波长的变化幅度为3nm,从而可以看出改善后的OLED#2的封盖层的色彩偏移程度较小,基本符合瑞丽散射并不会改变光波的波长其性质。
如图7所示,色彩偏移(Color Shift)对比数据,本实验选取30°、45°、 60°时的JNCD(Just Noticeable Color Difference)进行评测这OLED#1和OLED#2对角度依存性的差异,OLED#1在30°、45°、60°时的JNCD结果分别为0.011、0.009和0.008,而OLED#2在30°、45°、60°时的JNCD结果分别为0.007、0.007和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
由此可见,采用CuPc和NPB比例为1:1混合蒸镀而成的OLED#2的封盖层具有比OLED#1中的封盖层具有更佳的散射效果,且色彩偏移程度较小,对角度依存性的差异较小。证明在角度依存性方面采用至少两种材料共蒸而得的封盖层的效果要比单一材料形成的封盖层的要好,实验效果再一次证明了理论的可行性。
实施例2:
OLED#1中的封盖层采用单一的NPB蒸镀形成,而OLED#2中封盖层采用CuPc和NPB共掺蒸镀而成,且CuPc和NPB的比例为1:1。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从523.5nm变化到517nm,波长的变化幅度为6.5nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从522nm变化到519nm,波长的变化幅度为3nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.010、0.009和0.007,而OLED#2在30°、45°、60°时的JNCD结果分别为0.007、0.007和0.007,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
本实施例中验证,相对于单一的CuPc或NPB蒸镀而成的封盖层,由CuPc和NPB进行1:1混合共掺蒸镀而成的封盖层的OLED具有更佳的散射率,色彩偏移程度较小,且对角度依存性的更小。
实施例3:
OLED#1中的封盖层采用单一的Alq3蒸镀形成,而OLED#2中封盖层采 用比例为1:1:1的CuPc、NPB和Alq3共掺蒸镀而成,且CuPc和NPB的。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从524nm变化到517nm,波长的变化幅度为7nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从521.5nm变化到520nm,波长的变化幅度为1.5nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.011、0.008和0.008,而OLED#2在30°、45°、60°时的JNCD结果分别为0.008、0.007和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
实施例4:
OLED#1中的封盖层采用单一的TPBi蒸镀形成,而OLED#2中封盖层采用比例为1:1:1的CuPc、NPB和TPBi共掺蒸镀而成,且CuPc和NPB的。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从526nm变化到520nm,波长的变化幅度为6nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从523nm变化到519nm,波长的变化幅度为4nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.012、0.007和0.009,而OLED#2在30°、45°、60°时的JNCD结果分别为0.009、0.008和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
实施例5:
OLED#1中的封盖层采用单一的CBP蒸镀形成,而OLED#2中封盖层采用比例为1:1:1的CuPc、NPB和CBP共掺蒸镀而成,且CuPc和NPB的。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从522nm变化到516nm,波长的变化幅度为6nm;而OLED#2的 封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从521nm变化到518nm,波长的变化幅度为3nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.007、0.007和0.010,而OLED#2在30°、45°、60°时的JNCD结果分别为0.008、0.008和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
实施例6:
OLED#1中的封盖层采用单一的ZnS蒸镀形成,而OLED#2中封盖层采用比例为1:1:1的CuPc、NPB和ZnS共掺蒸镀而成,且CuPc和NPB的。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从524nm变化到518nm,波长的变化幅度为6nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从522nm变化到518nm,波长的变化幅度为4nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.011、0.007和0.009,而OLED#2在30°、45°、60°时的JNCD结果分别为0.008、0.009和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。
由上述实施例3~6中可知,相较于单一的材料蒸镀的封盖层的OLED,由三种的材料蒸镀的封盖层的均具有更佳的散射率,色彩偏移程度较小,且对角度依存性的更小。
实施例6:
OLED#1中的封盖层采用单一的CuPc蒸镀形成,而OLED#2中封盖层采用比例为1:1:1:1的CuPc、NPB、TPBi和ZnS共掺蒸镀而成,且CuPc和NPB的。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从524nm变化到518nm,波长的变化幅度为6nm;而 OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从522nm变化到519nm,波长的变化幅度为3nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小,但相较于CuPc和NPB的比例为1:1的封盖层的试验结果的色彩偏移基本相同,相较于两种材料共掺,四种材料的共掺对性能基本没有提升。
而在色彩偏移对比数据测试中,在30°、45°、60°时的JNCD结果中,OLED#1在30°、45°、60°时的JNCD结果分别为0.011、0.009和0.008,而OLED#2在30°、45°、60°时的JNCD结果分别为0.007、0.007和0.008,实验得出OLED#2对角度依存性的差异明显要小于OLED#1。但本实施例中,OLED#2的封盖层的色彩偏移测试结果与CuPc和NPB的比例为1:1的封盖层的测试结果基本相同,相较于两种材料共掺,四种材料的共掺对性能基本没有提升。
也就是说,当共掺的材料在四种以上时,对散色的效果的提升则不再明显。因此,本实施例中,所述封盖层的材料包括CuPc、NPB、Alq3、CBP、TPBi以及ZnS中的两种或三种,例如,所述封盖层的材料包括CuPc、NPB、Alq3、CBP、TPBi以及ZnS中的两种,例如,所述封盖层的材料包括CuPc、NPB、Alq3、CBP、TPBi以及ZnS中的三种。这样,能够有效使得散射效果更佳,且通过较少的材料即可实现较佳的发光效果,有效降低了封盖层的材料的成本。
为了具有更佳的散射效果,以及更小的色彩偏移,例如,所述封盖层的材料包括至少两种含有三嗪和苯并咪唑刚性基团的有机化合物。例如,所述封盖层的材料包括两种含有三嗪和苯并咪唑刚性基团的有机化合物。例如,所述封盖层的材料包括三种含有三嗪和苯并咪唑刚性基团的有机化合物。采用含有三嗪和苯并咪唑刚性基团的有机化合物。含有三嗪和苯并咪唑刚性基团的有机化合物具有较高的折射率,使得散射效果更佳,进而使得色彩偏移更小。
例如,所述封盖层中的两种含有三嗪和苯并咪唑刚性基团的有机化合物 的比例为1:1,例如,所述封盖层中的两种含有三嗪和苯并咪唑刚性基团的有机化合物的比例为1:1:1。
下面是具体的实施例:
实施例7:
OLED#1中的封盖层采用单一的CuPc蒸镀形成,而OLED#2中封盖层采用两种含有三嗪和苯并咪唑刚性基团的有机化合物按1:1的比例共掺蒸镀而成。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从524nm变化到518nm,波长的变化幅度为6nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从521nm变化到520nm,波长的变化幅度为1nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小。
实施例8:
OLED#1中的封盖层采用三种含有三嗪和苯并咪唑刚性基团的有机化合物蒸镀形成,且三种含有三嗪和苯并咪唑刚性基团的有机化合物的比例为1:1:1,而OLED#2中封盖层采用两种含有三嗪和苯并咪唑刚性基团的有机化合物按1:1的比例共掺蒸镀形成。在光谱图对比中,OLED#1的随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从521nm变化到520nm,波长的变化幅度为1nm;而OLED#2的封盖层的峰值随着角度增大(0°、30°、45°和60°)发生蓝移,峰值变化从521nm变化到520nm,波长的变化幅度为1nm,从而可以看出OLED#2的封盖层的色彩偏移程度较小,且对角度依存性的更小。相较于一种含有三嗪和苯并咪唑刚性基团的有机化合物蒸镀而成的封盖层,三种含有三嗪和苯并咪唑刚性基团的有机化合物蒸镀形成OLED#1中的封盖层以及两种含有三嗪和苯并咪唑刚性基团的有机化合物蒸镀形成OLED#2中的封盖层具有更佳的散射效果,并且色彩偏移程度较小,且对角度依存性的更小。
由此可见,通过将两种或三种的含有三嗪和苯并咪唑刚性基团的有机化合物共掺蒸镀形成的封盖层,相较于一种含有三嗪和苯并咪唑刚性基团的有 机化合物蒸镀而成的封盖层,具有更佳的散射效果,并且色彩偏移程度较小,且对角度依存性的更小。
综上所述,通过至少两种折射率不同的材料掺杂而成的封盖层能够让出射的光发生散射作用,从而改善了色彩偏移(Color Shift)的问题。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种有机发光显示装置,包括:
    背板;
    形成于所述背板上的阳极;
    形成于所述阳极上的有机发光层;
    形成于所述有机发光层上的阴极;
    形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成。
  2. 根据权利要求1所述的有机发光显示装置,所述封盖层中两种材料的比例为1:(0.5~2.2)。
  3. 根据权利要求1所述的有机发光显示装置,所述封盖层中两种材料的比例为1:1。
  4. 根据权利要求2所述的有机发光显示装置,所述封盖层的材料包括CuPc、NPB、Alq3、CPB、TPBi以及ZnS中的至少两种。
  5. 根据权利要求3所述的有机发光显示装置,所述封盖层的材料包括CuPc、NPB、Alq3、CPB、TPBi以及ZnS中的至少两种。
  6. 根据权利要求4所述的有机发光显示装置,所述封盖层的材料包括CuPc和NPB。
  7. 根据权利要求5所述的有机发光显示装置,所述封盖层的材料包括CuPc和NPB。
  8. 根据权利要求6所述的有机发光显示装置,所述封盖层中的CuPc和NPB的比例为1:(0.5~2.2)。
  9. 根据权利要求7所述的有机发光显示装置,所述封盖层中的CuPc和NPB的比例为1:(0.5~2.2)。
  10. 根据权利要求8所述的有机发光显示装置,所述封盖层中的CuPc和NPB的比例为1:1。
  11. 根据权利要求9所述的有机发光显示装置,所述封盖层中的CuPc和NPB的比例为1:1。
  12. 根据权利要求4所述的有机发光显示装置,所述封盖层的材料包括CuPc、NPB和Alq3。
  13. 根据权利要求5所述的有机发光显示装置,所述封盖层的材料包括CuPc、NPB和Alq3。
  14. 根据权利要求12所述的有机发光显示装置,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
  15. 根据权利要求13所述的有机发光显示装置,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
  16. 根据权利要求1所述的有机发光显示装置,所述封盖层的材料包括至少两种含有三嗪和苯并咪唑刚性基团的有机化合物。
  17. 根据权利要求2所述的有机发光显示装置,所述封盖层的材料包括至少两种含有三嗪和苯并咪唑刚性基团的有机化合物。
  18. 根据权利要求3所述的有机发光显示装置,所述封盖层的材料包括至少两种含有三嗪和苯并咪唑刚性基团的有机化合物。
  19. 一种有机发光显示装置,包括:
    背板;
    形成于所述背板上的阳极;
    形成于所述阳极上的有机发光层;
    形成于所述有机发光层上的阴极;
    形成于所述阴极上的封盖层,所述封盖层由至少两种材料掺杂而成;
    其中,所述封盖层的材料包括CuPc、NPB、Alq3、CPB、TPBi以及ZnS中的至少两种;
    所述封盖层的材料包括CuPc、NPB和Alq3,所述封盖层中的CuPc、NPB和Alq3的比例为1:1:1。
PCT/CN2018/112198 2017-11-29 2018-10-26 有机发光显示装置 WO2019105160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711224234.4 2017-11-29
CN201711224234.4A CN107946476A (zh) 2017-11-29 2017-11-29 有机发光显示装置

Publications (1)

Publication Number Publication Date
WO2019105160A1 true WO2019105160A1 (zh) 2019-06-06

Family

ID=61946656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112198 WO2019105160A1 (zh) 2017-11-29 2018-10-26 有机发光显示装置

Country Status (2)

Country Link
CN (1) CN107946476A (zh)
WO (1) WO2019105160A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946476A (zh) * 2017-11-29 2018-04-20 信利(惠州)智能显示有限公司 有机发光显示装置
CN109285866B (zh) * 2018-09-21 2021-05-14 上海天马微电子有限公司 显示面板、显示面板的制造方法和显示装置
CN109585689A (zh) * 2018-12-29 2019-04-05 武汉天马微电子有限公司 显示面板、显示装置及其制作方法
CN111047211B (zh) * 2019-12-23 2023-12-19 河北山宝环境工程有限责任公司 粉尘数据综合分析***及分析方法
CN111952480B (zh) * 2020-08-21 2021-09-07 长春海谱润斯科技股份有限公司 一种光色转换膜及其发光器件
KR20220083333A (ko) * 2020-12-11 2022-06-20 엘지디스플레이 주식회사 유기발광 표시장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725521A (zh) * 2004-07-16 2006-01-25 国际商业机器公司 光电子器件及其制造方法
CN101133504A (zh) * 2005-03-24 2008-02-27 京瓷株式会社 发光元件、具备该发光元件的发光装置及其制造方法
US7825592B2 (en) * 2003-10-15 2010-11-02 Chimei Innolux Corporation Image display device
CN103594643A (zh) * 2012-08-15 2014-02-19 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104904031A (zh) * 2012-08-22 2015-09-09 3M创新有限公司 微腔oled光提取
CN106946852A (zh) * 2017-04-26 2017-07-14 江苏三月光电科技有限公司 一种以三嗪和苯并咪唑为核心的有机化合物及其在oled上的应用
CN107946476A (zh) * 2017-11-29 2018-04-20 信利(惠州)智能显示有限公司 有机发光显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754434B1 (en) * 2013-01-28 2014-06-17 Corning Incorporated Flexible hermetic thin film with light extraction layer
CN103928489A (zh) * 2013-08-02 2014-07-16 厦门天马微电子有限公司 有机发光二极管显示面板及其形成方法
KR102453922B1 (ko) * 2015-03-31 2022-10-13 삼성디스플레이 주식회사 유기발광 디스플레이 장치
CN106784385A (zh) * 2017-01-11 2017-05-31 瑞声科技(南京)有限公司 有机发光二极管装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825592B2 (en) * 2003-10-15 2010-11-02 Chimei Innolux Corporation Image display device
CN1725521A (zh) * 2004-07-16 2006-01-25 国际商业机器公司 光电子器件及其制造方法
CN101133504A (zh) * 2005-03-24 2008-02-27 京瓷株式会社 发光元件、具备该发光元件的发光装置及其制造方法
CN103594643A (zh) * 2012-08-15 2014-02-19 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104904031A (zh) * 2012-08-22 2015-09-09 3M创新有限公司 微腔oled光提取
CN106946852A (zh) * 2017-04-26 2017-07-14 江苏三月光电科技有限公司 一种以三嗪和苯并咪唑为核心的有机化合物及其在oled上的应用
CN107946476A (zh) * 2017-11-29 2018-04-20 信利(惠州)智能显示有限公司 有机发光显示装置

Also Published As

Publication number Publication date
CN107946476A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2019105160A1 (zh) 有机发光显示装置
US10418577B2 (en) White organic light emitting device
US20200287153A1 (en) Single-doped white oleds with extraction layer doped with down-conversion red emitters
US9257675B2 (en) Substrate for an organic electronic device and an organic electronic device comprising the same
US10446798B2 (en) Top-emitting WOLED display device
WO2017043242A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
TWI466353B (zh) 白色發光有機電致發光元件及白色發光有機電致發光面板
WO2017043243A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
TWI625879B (zh) 有機發光二極體裝置
US20210225956A1 (en) Array substrate, manufacturing method thereof, display panel, and display apparatus
US20160111475A1 (en) Organic electroluminescent element
WO2016031757A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
US10879497B2 (en) Organic electroluminescent device, display device, and illumination device
CN108023022B (zh) 一种有机电致发光器件及电子设备
Xie et al. Blue top-emitting organic light-emitting devices based on wide-angle interference enhancement and suppression of multiple-beam interference
US10879483B2 (en) Organic electroluminescent device and illumination device
US10707436B2 (en) Illumination device
WO2017075880A1 (zh) Oled显示器及其显示模组
US20200099005A1 (en) Organic electroluminescent element and lighting device
Tsuji et al. High-efficiency technology of white OLEDs
WO2023021542A1 (ja) 発光素子および表示装置
US20060163991A1 (en) Organic light emitting device
Uchida et al. ‘Color-tunable single pixels using stacked transparent organic light emitting diodes and colortunable lighting domes
WO2019163727A1 (ja) 有機エレクトロルミネッセント素子、ディスプレイ装置、照明装置
Komoda et al. High Efficiency White OLEDs for Lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884075

Country of ref document: EP

Kind code of ref document: A1