WO2019105064A1 - Method and apparatus for signal transmission, network equipment - Google Patents

Method and apparatus for signal transmission, network equipment Download PDF

Info

Publication number
WO2019105064A1
WO2019105064A1 PCT/CN2018/099982 CN2018099982W WO2019105064A1 WO 2019105064 A1 WO2019105064 A1 WO 2019105064A1 CN 2018099982 W CN2018099982 W CN 2018099982W WO 2019105064 A1 WO2019105064 A1 WO 2019105064A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability
neighboring cell
interface
serving enb
signal
Prior art date
Application number
PCT/CN2018/099982
Other languages
French (fr)
Inventor
Yixue Lei
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN201880003807.7A priority Critical patent/CN110100476B/en
Publication of WO2019105064A1 publication Critical patent/WO2019105064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information

Definitions

  • This application relates to the field of wireless communication technology, and particularly to a method for signal transmission, apparatus for signal transmission, and network equipment.
  • radio resource control (RRC) connection reestablishment is performed when there is radio link failure (RLF) , and user equipment (UE) can send RRC connection reestablishment to a serving cell or a neighboring cell.
  • RLF radio link failure
  • UE user equipment
  • RRC connection can be reestablished and the UE doesn’t need to enter an idle state and then spend quite a lot signaling step to setup a RRC connection from random access channel (RACH) procedure.
  • RACH random access channel
  • the fifth generation (5G) mobile communication technology is an extension to the fourth generation (4G) mobile communication technology. Therefore, the 5G communication system is known as the “super 4G network” , “post LTE system” , or the new radio (NR) .
  • the base station in 5G NR will be referred to as gNB, En-gNB, or NR gNB.
  • E-UTRAN NR dual connectivity E-UTRAN NR dual connectivity
  • LTE-NR dual connectivity E-UTRAN NR dual connectivity
  • the UE may have ambiguity on whether to use LTE packet data convergence protocol (PDCP) or NR PDCP.
  • PDCP packet data convergence protocol
  • NR PDCP NR packet data convergence protocol
  • a method for signal transmission in which a serving eNB transmits a first signal indicating EN-DC capability of at least one neighboring cell to user equipment (UE) .
  • UE user equipment
  • a network equipment is provided.
  • the network equipment is a serving eNB of a UE.
  • the network equipment includes a transmitting unit, configured to transmit a first signal for indicating EN-DC capability of at least one neighboring cell to the UE.
  • a UE includes a receiving unit and a controlling unit.
  • the receiving unit is configured to receive system information or RRC signaling indicating EN-DC capability of at least one neighboring cell from a serving eNB.
  • the controlling unit is configured to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection or a target of cell reselection according to the EN-DC capability indicated by the system information or the RRC signaling.
  • RRC radio resource control
  • an apparatus for signal transmission includes at least one processor and a memory coupled with the at least one processor.
  • the memory is configured to store at least one program which, when executed by the at least one processor, cause the at least one processor to carry out the foregoing method of the first aspect.
  • a non-transitory computer readable storage medium configured to store at least one programs which, when executed by a computer, cause the computer to carry out the foregoing method of the first aspect.
  • FIG. 1 is a diagram illustrating an overall radio access network (RAN) architecture of EN-DC.
  • RAN radio access network
  • FIG. 2 is a diagram illustrating interface (s) between base stations and interface (s) between base stations and the core network.
  • FIG. 3 is a diagram illustrating a 5G system service-based architecture.
  • FIG. 4 is a diagram illustrating PDCP and bearer in the EN-DC mode.
  • FIG. 5 is a diagram illustrating network equipment.
  • FIG. 6 is a diagram illustrating a method for signal transmission according to embodiment of the disclosure.
  • FIG. 7 is a block diagram illustrating apparatuses for signal transmission according to an embodiment of the disclosure.
  • serving cell For a UE in RRC_CONNECTED not configured with carrier aggregation (CA) there is only one serving cell comprising of the primary cell.
  • serving cells For a UE in RRC_CONNECTED configured with CA, the term “serving cells” is used to denote the set of one or more cells comprising of the primary cell and all secondary cells.
  • Neighbor cell or neighboring cell A cell in UTRAN, LTE or GSM/GERAN that is a neighbor cell to a base UTRAN cell.
  • FIG. 1 is a diagram illustrating an overall radio access network (RAN) architecture of EN-DC.
  • the exemplary environment of FIG. 1 is suitable for implementing the method for signal transmission of the disclosure.
  • the exemplary EN-DC environment of FIG. 1 is intended to illustrated examples of some of the ways in which UE such as a mobile device might connect to more than one networks.
  • EN-DC allows a device (UE) to exchange data between itself and NR base station (NR gNB) along with simultaneous connection with LTE base station (LTE eNB) .
  • NR gNB NR base station
  • LTE eNB LTE base station
  • LTE eNB provides a primary cell (PCell) and a serving cell as a master node (MN, in FIG.
  • PCell primary cell
  • MN master node
  • NR gNB provides primary cell &secondary cell (PSCells) and serving cells as a secondary node (SN, in FIG. 1, SgNG) .
  • the MeNB and the SgNB can communicate with each other via the X2-C interface and the X2-U interface for example, where the X2-C interface is a control plane interface for transmitting signaling and/or message, and the X2-U interface is user plane interface for data transmission.
  • the interfaces will be further detailed below with reference to FIG. 2.
  • UE communicates with both LTE eNB and NR gNB in radio side, but all those communications (signaling and data) are going through LTE core network.
  • the LTE eNB is referred to as the MeNB to indicate that it is the “Master” (M) base station controlling the “Secondary” (S) 5G NR base station (SgNB) . Both the MeNB and the SgNB are network equipment.
  • the UE mentioned in this disclosure can be stationary or it could be moving.
  • SIM subscriber identity module
  • the UE or the terminal device can take the form of any kind of information communication devices, multimedia devices and/or their applications, mobile devices, mobile stations, mobile units, machine-to-machine (M2M) devices, wireless units, remote units, user-agent, mobile client, and the like.
  • M2M machine-to-machine
  • Examples of the UE include but are not limited to a mobile communication terminal, a wired/wireless phone, a personal digital assistant (PDA) , a smart phone, a vehicle-mounted communication device.
  • PDA personal digital assistant
  • FIG. 2 further illustrates the interface between base stations and the interface between base stations and the core network. The following discussion is directed to the interfaces in combination with FIG. 1 and FIG. 2.
  • C-plane For the control-plane (C-plane) , as illustrated on the right half of FIG. 2, there is an interface between the master node (MN, MeNB in the architectures of FIG. 1 and FIG. 2) and the secondary node (SN, SgNB in the architectures of FIG. 1 and FIG. 2) .
  • the interface between MN and SN is called X2-C.
  • MN and core network There is an interface between MN and core network (CN) .
  • the core network includes mobility management entity (MME) , service gateway (S-GW) , and other network units.
  • MME mobility management entity
  • S-GW service gateway
  • the CN is referred to by various names depending upon the wireless architecture employed, and herein, in this case, CN refers to MME.
  • S1-MME or S1-C There is NO direct interface (connection) between SN and CN.
  • the user-plane For the user-plane (U-plane) , as illustrated on the left half of FIG. 2, there is an interface between the master node (MN, MeNB in this case) and the secondary node (SN, SgNB in this case) .
  • the interface between MN and SN is called X2-U.
  • the X2 interface refers to the interface between the eNB and the eNB/gNB.
  • MN and CN which is called S1-U.
  • S1-U Different from the C-plane, there is an interface (connection) between SN and CN, and the interface is called S1-U.
  • both the MeNB and the SgNB have an S1-U (User) interface.
  • the S1 interface and the X2 interface are just examples, with the development of technology or according to actual needs, other existing or future possible backhaul interface (Xn interface for example) can also be used.
  • user data i.e. IP packets
  • the S1 interface such as the S1-U interface, the S1-C interface, and the like, is configured for such purpose.
  • the EN-DC mode the user data is exchanged by the S-GW with the 5G SgNB and the UE exchanges user data with the SgNB and the MeNB simultaneously.
  • FIG. 3 is a diagram illustrating a 5G system service-based architecture.
  • N2 refers to a reference point between a mobility management function (AMF) and generic radio access network (RAN) .
  • AMF mobility management function
  • RAN generic radio access network
  • the N2 interface can be deemed as a logical interface or functional interface. Similar as the S1 interface, the N2 interface can be applied for packet transmission.
  • the reference point is an interactive interface or protocol mapping relationship between two network functional modules.
  • FIG. 4 is a diagram illustrating an overall layer 2 architecture in which, the LTE eNB is a MN and the NR gNB is a SN.
  • PDCP packet data convergence protocol
  • PDCP is a protocol specified by 3GPP in TS 25.323 for UMTS, TS 36.323 for LTE and TS 38.323 for 5G NR; as illustrated in FIG. 4, the PDCP is located in the radio protocol stack in the UMTS/LTE/5G air interface on top of the radio link control (RLC) layer.
  • RLC radio link control
  • Radio Bearer is a general term for a series of protocol entities and configurations allocated by the eNodeB to the UE.
  • RB is the channel through which a Uu interface connects the eNB and the UE. Any data transmitted via the Uu interface must pass through the RB.
  • RB includes signal radio bearer (SRB) and data radio bearer (DRB) , among them, SRB is the channel through which the system’s signaling message is transmitted, while DRB is the channel through which user data is transmitted.
  • SRB1 is configured for RRC message and SRB2 is configured to transmit network attached storage (NAS) signaling.
  • NAS network attached storage
  • UE can use LTE PDCP to send MSG1/3 to eNB, but after signal radio bearer 2 (SRB2) and data radio bearer (DRB) are configured, NR-PDCP can be used for SRB and DRB in MN.
  • SRB2 signal radio bearer 2
  • DRB data radio bearer
  • LTE packet data convergence protocol may not be always used.
  • a neighboring LTE cell may or may not support EN-DC, in other words, a neighboring cell’s eNB may or may not be able to comprehend one RRC connection reestablishment message using NR PDCP, UE may have no idea about whether to use LTE PDCP or NR PDCP. Therefore, there are still remain issues need to be solved. For example, how to make the UE know whether an eNB in a neighboring cell supports EN-DC or not? If the UE knows that eNB in the neighboring cell can or cannot support EN-DC, how UE and eNBs handle the reestablishment process?
  • embodiments of the disclosure provides a method for signal transmission, with which it is possible to solve the problem of UE’s ambiguity when the UE is configured in EN-DC and needs to perform RRC connection reestablishment.
  • certain exemplary architectures have given above with reference to FIG. 1 to FIG. 4. It should be noted that, the system architectures illustrated in FIG. 1 to FIG. 4 are for illustrative purpose only and are not intent to impose any restrictions on this disclosure. Although the architectures of LTE and 5G are taken as examples for explanation, this disclosure is not limited thereto and may be applied to other M2M system for example.
  • FIG. 5 is a diagram illustrating network equipment according to an embodiment.
  • Network equipment 50 can be functioned as a serving eNB of UE.
  • the serving eNB may be an eNB or gNB illustrated in FIG. 1.
  • the network equipment 50 includes one or more network device processors 51, a memory 52, a communication interface 53, a transmitter 55, a receiver 56. These components may be connected via a bus 54 or other means.
  • the network equipment 50 may further include a coupler 57 and an antenna 58 connected to the coupler.
  • Communication interface 203 can be a LTE (4G) communication interface, a 5G communication interface, or a future new air interface.
  • Communication interface 53 may be used for network equipment 50 to communicate with other communication devices, such as a terminal device or other network device.
  • the communication interface 53 can include the interface illustrated in FIG. 2, such as a S1 interface (or NG interface) , a Uu interface and so on.
  • the connection between the network equipment 50 and other network equipments can be a wired communication connection.
  • the network equipment 50 may also be equipped with a wired interface for wired communication.
  • Transmitter 55 may be used to transmit signals output from network device processor 51, such as perform signal modulation.
  • the transmitter 55 can be configured to transmit EN-DC capability information in various manners given later.
  • Receiver 56 can be used for receiving and/or processing of signals received via antenna 58, for example, signal demodulation.
  • the transmitter 55 and the receiver 56 can be considered as a wireless modem.
  • more than one transmitter 55 can be provided.
  • more than one receiver 56 can be provided.
  • Network device processor 51 can be responsible for wireless channel management, communication links establishment, and cell switching control for users within the control area.
  • Network device processor 51 can also read and executed computer readable instructions such as those stored memory 52 which is coupled thereto.
  • Memory 52 is configured to store various software programs and/or instructions, operating systems, and network communication programs or protocols.
  • Memory 202 may include high speed random access memory (RAM) , and can also include non-transitory memory, such as one or more disk storage devices, flash memory devices, or other nonvolatile solid-state storage devices.
  • the structure illustrated in FIG. 5 can be also equally applies to terminals which can communicate with the network equipment.
  • the receiver 56, the communication interface 53, and/or the antenna 58 can be applied to receive the EN-DC capability information from the network equipment, the receiver 56 may further demodulate the information and forward the demodulated information to the processor 51 for subsequent process or may store the demodulated information in the memory 52.
  • a method for signal transmission is provided. As illustrated in FIG. 6, in this method for signal transmission, a serving eNB transmits a first signal indicating EN-DC capacity of at least one neighboring cell to a UE.
  • the serving eNB can be the MeNB or the SgNB illustrated in FIG. 1 or FIG. 2.
  • the neighboring cell can be the cell corresponding to the MeNB or the SgNB illustrated in FIG. 1 or FIG. 2.
  • the expression of “at least one neighboring cell” means that, there may be more than one neighboring cell and the serving eNB may transmit the EN-DC capacity of multiple neighboring cells it already knows all at once, or, the serving eNB may transmit the EN-DC capacity of only one neighboring cell each time, the disclosure is not particularly limited.
  • the EN-DC capacity of the neighboring cell means that the cell allows a device such as UE to connect to LTE and 5G NR simultaneously, that is, allows dual connection.
  • signal can be broadly comprehended as wireless signal, data, package, information, signaling, or any other kinds of information carrier.
  • first goes before the term “signal” is only used to distinguish this signal from other signals that may be referred to herein, rather than to define a specific order or sequence. Based on different forms of the first signal, the following implementations depicts different solutions, each of which contributes to its advantages and each will be described in detail below.
  • the first signal may be configured such that system information for indicating the EN-DC capability of the neighboring cell can be carried thereon.
  • the first signal is a system information block (SIB) carrying an information element (IE) for EN-DC capability indication.
  • SIB system information block
  • IE information element
  • the first signal takes the form of system information.
  • the serving eNB via system information, informs the UE about the neighboring cells’capability for EN-DC.
  • the system information can be transmitted on a RB via a Uu interface between the serving eNB and the UE for example.
  • This solution requires the serving eNB to collect the neighboring cells’EN-DC capability, for example, via a X2 interface between the serving eNB and the neighboring cell (such as the X2 interface illustrated in FIG. 1 or FIG. 2) .
  • it desirable to introduce new IE in SIB. For instance, different fields or flag bits can be set in the IE to indicate different neighboring cells.
  • all UE within the serving cell can acquire this system information.
  • idle mode UE it can use such information during cell reselection, e.g., one UE which is likely to have high data rate service can prioritize a cell which is EN-DC capable.
  • connected UE it can get such information before RLF happens so that when RLF happens it can try to send RRC connection reestablishment to an eNB which is EN-DC capable. The reason is that only if the neighbor cell is EN-DC capable, the UE can resume the RRC connection with the neighboring cell and keep the MCG and SCG bearers. If the neighboring cell is not EN-DC capable, even if UE resumes RRC connection with the cell, it has to release the RRC connection.
  • the first signal is RRC signaling.
  • the RRC signaling carries an IE for EN-DC capability indication.
  • the serving eNB via RRC signaling such as dedicated RRC signaling, informs the UE about the neighboring cells’capability for EN-DC.
  • the RRC signaling can be transmitted on a RB via a Uu interface between the serving eNB and the UE for example.
  • the RB can be SRB1 as described above.
  • This solution also requires the serving eNB to collect the neighboring cells’EN-DC capability, for example, via a X2 interface between the serving eNB and the neighboring cell. In order to inform the EN-DC capability collected, it’s desirable to introduce new IE in the dedicated RRC signaling or RRC message.
  • All the connected UE within the serving cell can acquire this RRC signaling so that when RLF happens, it can try to send RRC connection reestablishment to an eNB which is EN-DC capable.
  • the reason is that only if the neighbor cell is EN-DC capable, the UE can resume the RRC connection with the neighboring cell and keep the MCG and SCG bearers. If the neighboring cell is not EN-DC capable, even if UE resumes RRC connection with the cell, it has to release the RRC connection. Idle mode UE cannot enjoy the benefit of this solution.
  • the serving cell has to collect such information first.
  • the serving eNB can collect the EN-DC capability of the at least one neighboring cell via operation, administration, and maintenance (OAM) configuration.
  • the serving eNB can collect the EN-DC capability of the at least one neighboring cell via signaling over X2/Xn interface or via S1/N2 interface.
  • the X2/Xn interface and the S1interface can be the one illustrated in FIG. 1 and FIG. 2, the N2 interface can be the reference point illustrated in FIG. 3.
  • the serving cell collects the EN-DC capability from a neighboring cell directly through the X2 interface; in case where the S1 interface is used, the EN-DC capability from the neighboring cell is forwarded by the CN to the serving cell through the S1 interface.
  • the serving eNB can also obtain the neighboring cell’s EN-DC capability from another UE (we use the expression “another UE” to distinguish from the UE that receives the first signal from the serving eNB) .
  • another UE can report neighboring cell’s EN-DC capability, if any, to the serving eNB.
  • Such communication can be achieved via a Uu interface (not illustrated in the figures) between the UE and the serving eNB. This shows feasibility of the serving eNB to collect neighboring cell’s EN-DC capability.
  • UE when UE knows neighboring cells’EN-DC capability, it will prioritize the cell as target for reestablishment and resumes connection towards that cell, or treat the cell as a target for cell reselection.
  • UE and RAN handle RRC connection reestablishment within mixed NG-RAN.
  • a connected UE can know the neighboring cell (or target cell) ’s EN-DC capability and can make a decision as whether to reestablish to the neighboring cell in order to maintain EN-DC as possible to achieve service continuity.
  • an idle mode UE can use the EN-DC capability information during cell reselection.
  • Embodiments of the disclosure also provide an apparatus for signal transmission, which can be applied to implement the forgoing method for signal transmission.
  • FIG. 7 is a block diagram illustrating a system including the apparatus.
  • the apparatus for signal transmission which is applicable to a serving eNB of UE, is illustrated as network equipment 12, while the apparatus for signal transmission, which is applicable to UE, is illustrated as UE 10.
  • the network equipment 12 is not necessarily bound with the UE 10; it can be used or deployed separately with other UE.
  • the UE 10 illustrated in FIG. 7 can be used in connection with other network equipment either.
  • a UE 10 is in wireless communication with network equipment 12.
  • the UE 10 can be the terminal device illustrated in FIG. 1, the network equipment 12 is a serving eNB and can be the MeNB or SgNB illustrated in FIG. 1 or FIG. 2.
  • the network equipment 12 has a transmitting unit 72 and a first receiving unit 74.
  • the transmitting unit 72 can be a transmitter, a transceiver, antennas, and the like.
  • the transmitting unit 72 may be implemented as the transmitter 55 of FIG. 5.
  • the transmitting unit 72 is structured to be able to transmit a first signal for indicating EN-DC capability of at least one neighboring cell to the UE 10.
  • the first signal can be system information or RRC signaling, and can be transmitted via a Uu interface between the network equipment 12 and the UE 10.
  • the first receiving unit 74 is configured to collect neighboring cell’s EN-DC capability from outside, such as via OAM configuration or by signaling via X2/Xn interface or S1/N2 interface, or receive neighboring cell’s EN-DC capability reported by other UE rather than the UE 10 via a Uu interface for example. Once the neighboring cell’s EN-DC capability is collected, the first receiving unit 74 can forward it to the transmitting unit 72 to inform the UE 10. To this end, there may be a wired or wireless connection between the transmitting unit 72 and the first receiving unit 74.
  • the receiving unit 74 can be embodied as antennas, receivers, or other functional logic components.
  • the first receiving unit 74 can be the receiver 56 of FIG. 5.
  • the transmitting unit 72 and the first receiving unit 74 can be integrated into one whole or can be deployed as separate components.
  • the UE 10 has a second receiving unit 76 and a controlling unit 78 coupled with the second receiving unit 76.
  • the second receiving unit 76 is configured to receive system information or RRC signaling indicating EN-DC capability of at least one neighboring cell from a serving eNB, in FIG. 7, network equipment 12.
  • the second receiving unit 76 of UE 10 can be in wireless communication with the transmitting 72 of network equipment 12, for example, via a Uu interface.
  • the controlling unit 78 is configured to make use of the EN-DC capability of at least one neighboring cell received by the second receiving unit 76 of the UE 10. For example, when the UE 10 is in a connected state, the controlling unit 78 is configured to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection, according to the received EN-DC capability indicated by the system information or the RRC signaling. When the UE 10 is in an idle state, the controlling unit 78 is configured to prioritize the at least one neighboring cell as a target of cell reselection, according to the received EN-DC capability indicated by the system information or the RRC signaling. For example, if the UE 10 is likely to have high data rate service, it can prioritize a cell which is EN-DC capable.
  • RRC radio resource control
  • the structure illustrated in the figures show only a simplified design of the corresponding apparatus.
  • the apparatus may include any number of transmitters, receivers, processors, memories, etc., to implement the functions or operations performed by the equipment, and all equipments that can implement the technical solutions provided herein are within the protection scope of this application.
  • network equipment is further provided.
  • the network equipment includes at least one processor and a memory coupled with the processor.
  • the network equipment can be configured to be structured as the network equipment50 illustrated in FIG. 5 and correspondingly, the at least one processor can be embodied as the processor 51 and the memory can be embodied as the memory 52.
  • the memory is configured to store at least one program which, when executed by the at least one processor, cause the at least one processor to carry out all or part of the operations of the method for signal transmission of the disclosure.
  • each apparatus embodiment may refer to related methods in the related method embodiments.
  • a non-transitory computer readable storage medium is provided.
  • the non-transitory computer readable storage medium is configured to store at least one computer readable program which, when executed by a computer, cause the computer to carry out all or part of the operations of the method for signal transmission of the disclosure.
  • Examples of the non-transitory computer readable storage medium include but are not limited to read only memory (ROM) , random storage memory (RAM) , disk or optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for signal transmission and network equipment are provided. In the method for signal transmission, a serving eNB transmits a first signal indicating EN-DC capability of at least one neighboring cell to user equipment.

Description

METHOD AND APPARATUS FOR SIGNAL TRANSMISSION, NETWORK EQUIPMENT TECHNICAL FIELD
This application relates to the field of wireless communication technology, and particularly to a method for signal transmission, apparatus for signal transmission, and network equipment.
BACKGROUND
In long term evolution (LTE) , radio resource control (RRC) connection reestablishment is performed when there is radio link failure (RLF) , and user equipment (UE) can send RRC connection reestablishment to a serving cell or a neighboring cell. If there is a context in an evolved Node-B (eNB) , RRC connection can be reestablished and the UE doesn’t need to enter an idle state and then spend quite a lot signaling step to setup a RRC connection from random access channel (RACH) procedure.
The fifth generation (5G) mobile communication technology is an extension to the fourth generation (4G) mobile communication technology. Therefore, the 5G communication system is known as the “super 4G network” , “post LTE system” , or the new radio (NR) . The base station in 5G NR will be referred to as gNB, En-gNB, or NR gNB.
In 3GPP release 15, a major focus is to get a first incarnation of 5G into the field that complements 4G LTE. Instead of today’s approach where a device is connected only to one technology at a time, in 5G, it is possible to enable a device to connect to LTE and 5G NR simultaneously. This is referred to as E-UTRAN NR dual connectivity (EN-DC, also known as LTE-NR dual connectivity) . EN-DC means that an LTE eNB is enhanced so that it can be configured with a NR gNB to work in dual connectivity mode.
However, in the EN-DC mode, if the LTE primary cell RRC connection needs to  be reestablished, for example, due to radio link failure (RLF) , the UE may have ambiguity on whether to use LTE packet data convergence protocol (PDCP) or NR PDCP. This is because a neighboring LTE cell may or may not support EN-DC, in other words, a neighboring eNB may or may not be able to comprehend one RRC connection reestablishment message using NR PDCP.
SUMMARY
According to a first aspect of the disclosure, a method for signal transmission is provided, in which a serving eNB transmits a first signal indicating EN-DC capability of at least one neighboring cell to user equipment (UE) .
According to a second aspect of the disclosure, a network equipment is provided. The network equipment is a serving eNB of a UE. The network equipment includes a transmitting unit, configured to transmit a first signal for indicating EN-DC capability of at least one neighboring cell to the UE.
According to a third aspect of the disclosure, a UE is provided. The UE includes a receiving unit and a controlling unit. The receiving unit is configured to receive system information or RRC signaling indicating EN-DC capability of at least one neighboring cell from a serving eNB. The controlling unit is configured to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection or a target of cell reselection according to the EN-DC capability indicated by the system information or the RRC signaling.
According to a fourth aspect of the disclosure, an apparatus for signal transmission is provided. The apparatus includes at least one processor and a memory coupled with the at least one processor. The memory is configured to store at least one program which, when executed by the at least one processor, cause the at least one processor to carry out the foregoing method of the first aspect.
According to a fifth aspect of the disclosure, a non-transitory computer readable storage medium is provided. The non-transitory computer readable storage medium is configured to store at least one programs which, when executed by a computer, cause  the computer to carry out the foregoing method of the first aspect.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. The same reference numerals are used throughout the drawings to reference like components or features.
FIG. 1 is a diagram illustrating an overall radio access network (RAN) architecture of EN-DC.
FIG. 2 is a diagram illustrating interface (s) between base stations and interface (s) between base stations and the core network.
FIG. 3 is a diagram illustrating a 5G system service-based architecture.
FIG. 4 is a diagram illustrating PDCP and bearer in the EN-DC mode.
FIG. 5 is a diagram illustrating network equipment.
FIG. 6 is a diagram illustrating a method for signal transmission according to embodiment of the disclosure.
FIG. 7 is a block diagram illustrating apparatuses for signal transmission according to an embodiment of the disclosure.
DETAILED DESCRIPTION
The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiment of the disclosure as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
Some of the terms and words used in the following description and claims are listed below for illustration purpose only and not for the purpose of limiting the  technical solutions provided herein.
Figure PCTCN2018099982-appb-000001
Figure PCTCN2018099982-appb-000002
Table 1: terms
The formal definition of “serving cell” from TR 36.331 is as follows.
Serving cell: For a UE in RRC_CONNECTED not configured with carrier aggregation (CA) there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA, the term “serving cells” is used to denote the set of one or more cells comprising of the primary cell and all secondary cells.
Neighbor cell or neighboring cell: A cell in UTRAN, LTE or GSM/GERAN that is a neighbor cell to a base UTRAN cell.
In the following, embodiments of the disclosure will be described in detail. It should be noted that, the term “embodiment” or “implementation” referred to herein means that a particular feature, structure, or feature described in conjunction with the embodiment may be contained in at least one embodiment of the present disclosure. The phrase appearing in various places in the specification does not necessarily refer to the same embodiment, nor does it refer to an independent or alternative embodiment that is mutually exclusive with other embodiments. It is expressly and  implicitly understood by those skilled in the art that an embodiment described herein may be combined with other embodiments.
FIG. 1 is a diagram illustrating an overall radio access network (RAN) architecture of EN-DC. The exemplary environment of FIG. 1 is suitable for implementing the method for signal transmission of the disclosure. The exemplary EN-DC environment of FIG. 1 is intended to illustrated examples of some of the ways in which UE such as a mobile device might connect to more than one networks. As mentioned before, EN-DC allows a device (UE) to exchange data between itself and NR base station (NR gNB) along with simultaneous connection with LTE base station (LTE eNB) . In the EN-DC mode, LTE eNB provides a primary cell (PCell) and a serving cell as a master node (MN, in FIG. 1, MeNB) , NR gNB provides primary cell &secondary cell (PSCells) and serving cells as a secondary node (SN, in FIG. 1, SgNG) . The MeNB and the SgNB can communicate with each other via the X2-C interface and the X2-U interface for example, where the X2-C interface is a control plane interface for transmitting signaling and/or message, and the X2-U interface is user plane interface for data transmission. The interfaces will be further detailed below with reference to FIG. 2.
As can be seen here, UE communicates with both LTE eNB and NR gNB in radio side, but all those communications (signaling and data) are going through LTE core network. The LTE eNB is referred to as the MeNB to indicate that it is the “Master” (M) base station controlling the “Secondary” (S) 5G NR base station (SgNB) . Both the MeNB and the SgNB are network equipment.
The UE mentioned in this disclosure can be stationary or it could be moving. In addition, in the description, although for the sake of convenience, exemplary embodiments are explained based on a mobile device that can be equipped with at least one subscriber identity module (SIM) card, it will be appreciated that the present disclosure is not so limited. For example, the UE or the terminal device can take the form of any kind of information communication devices, multimedia devices and/or  their applications, mobile devices, mobile stations, mobile units, machine-to-machine (M2M) devices, wireless units, remote units, user-agent, mobile client, and the like. Examples of the UE include but are not limited to a mobile communication terminal, a wired/wireless phone, a personal digital assistant (PDA) , a smart phone, a vehicle-mounted communication device.
FIG. 2 further illustrates the interface between base stations and the interface between base stations and the core network. The following discussion is directed to the interfaces in combination with FIG. 1 and FIG. 2.
For the control-plane (C-plane) , as illustrated on the right half of FIG. 2, there is an interface between the master node (MN, MeNB in the architectures of FIG. 1 and FIG. 2) and the secondary node (SN, SgNB in the architectures of FIG. 1 and FIG. 2) . The interface between MN and SN is called X2-C. There is an interface between MN and core network (CN) . The core network includes mobility management entity (MME) , service gateway (S-GW) , and other network units. The CN is referred to by various names depending upon the wireless architecture employed, and herein, in this case, CN refers to MME. The interface between MN and CN is called S1-MME or S1-C. There is NO direct interface (connection) between SN and CN.
For the user-plane (U-plane) , as illustrated on the left half of FIG. 2, there is an interface between the master node (MN, MeNB in this case) and the secondary node (SN, SgNB in this case) . The interface between MN and SN is called X2-U. By the way, in the existing standard, the X2 interface refers to the interface between the eNB and the eNB/gNB. There is an also interface between MN and CN, which is called S1-U. Different from the C-plane, there is an interface (connection) between SN and CN, and the interface is called S1-U. As can be seen from the diagrams, both the MeNB and the SgNB have an S1-U (User) interface.
It should be noted that, the S1 interface and the X2 interface are just examples, with the development of technology or according to actual needs, other existing or future possible backhaul interface (Xn interface for example) can also be used.
Based on such architecture, user data, i.e. IP packets, can flow between the base stations and the core network. Specifically, the S1 interface, such as the S1-U interface, the S1-C interface, and the like, is configured for such purpose. In the EN-DC mode, the user data is exchanged by the S-GW with the 5G SgNB and the UE exchanges user data with the SgNB and the MeNB simultaneously.
FIG. 3 is a diagram illustrating a 5G system service-based architecture. In FIG. 3, N2 refers to a reference point between a mobility management function (AMF) and generic radio access network (RAN) . Compared with the foregoing communication interface S1, the N2 interface can be deemed as a logical interface or functional interface. Similar as the S1 interface, the N2 interface can be applied for packet transmission. From another perspective, the reference point is an interactive interface or protocol mapping relationship between two network functional modules.
FIG. 4 is a diagram illustrating an overall layer 2 architecture in which, the LTE eNB is a MN and the NR gNB is a SN. First of all, we would like to give a brief introduction to packet data convergence protocol (PDCP) . PDCP is a protocol specified by 3GPP in TS 25.323 for UMTS, TS 36.323 for LTE and TS 38.323 for 5G NR; as illustrated in FIG. 4, the PDCP is located in the radio protocol stack in the UMTS/LTE/5G air interface on top of the radio link control (RLC) layer.
Radio Bearer (RB) is a general term for a series of protocol entities and configurations allocated by the eNodeB to the UE. RB is the channel through which a Uu interface connects the eNB and the UE. Any data transmitted via the Uu interface must pass through the RB. RB includes signal radio bearer (SRB) and data radio bearer (DRB) , among them, SRB is the channel through which the system’s signaling message is transmitted, while DRB is the channel through which user data is transmitted. SRB1 is configured for RRC message and SRB2 is configured to transmit network attached storage (NAS) signaling. During initial access, UE can use LTE PDCP to send MSG1/3 to eNB, but after signal radio bearer 2 (SRB2) and data radio bearer (DRB) are configured, NR-PDCP can be used for SRB and DRB in MN.
In the EN-DC mode, although LTE RRC is used for PCell in MN, LTE packet data convergence protocol (PDCP) may not be always used. Besides, in the related art, since a neighboring LTE cell may or may not support EN-DC, in other words, a neighboring cell’s eNB may or may not be able to comprehend one RRC connection reestablishment message using NR PDCP, UE may have no idea about whether to use LTE PDCP or NR PDCP. Therefore, there are still remain issues need to be solved. For example, how to make the UE know whether an eNB in a neighboring cell supports EN-DC or not? If the UE knows that eNB in the neighboring cell can or cannot support EN-DC, how UE and eNBs handle the reestablishment process?
In view of the above, embodiments of the disclosure provides a method for signal transmission, with which it is possible to solve the problem of UE’s ambiguity when the UE is configured in EN-DC and needs to perform RRC connection reestablishment. In order to expedite the understanding of the disclosure, certain exemplary architectures have given above with reference to FIG. 1 to FIG. 4. It should be noted that, the system architectures illustrated in FIG. 1 to FIG. 4 are for illustrative purpose only and are not intent to impose any restrictions on this disclosure. Although the architectures of LTE and 5G are taken as examples for explanation, this disclosure is not limited thereto and may be applied to other M2M system for example.
The following description of the disclosure contributes to its advantages and each will be described in detail below.
FIG. 5 is a diagram illustrating network equipment according to an embodiment. Network equipment 50 can be functioned as a serving eNB of UE. The serving eNB may be an eNB or gNB illustrated in FIG. 1. As illustrated in FIG. 5, the network equipment 50 includes one or more network device processors 51, a memory 52, a communication interface 53, a transmitter 55, a receiver 56. These components may be connected via a bus 54 or other means. As illustrated in FIG. 5, the network equipment 50 may further include a coupler 57 and an antenna 58 connected to the coupler.
Communication interface 203 can be a LTE (4G) communication interface, a 5G communication interface, or a future new air interface. Communication interface 53 may be used for network equipment 50 to communicate with other communication devices, such as a terminal device or other network device. For example, the communication interface 53 can include the interface illustrated in FIG. 2, such as a S1 interface (or NG interface) , a Uu interface and so on. In addition, the connection between the network equipment 50 and other network equipments can be a wired communication connection. The network equipment 50 may also be equipped with a wired interface for wired communication.
Transmitter 55 may be used to transmit signals output from network device processor 51, such as perform signal modulation. In implementation of the signal transmission of the disclosure, the transmitter 55 can be configured to transmit EN-DC capability information in various manners given later. Receiver 56 can be used for receiving and/or processing of signals received via antenna 58, for example, signal demodulation. In some implementation, the transmitter 55 and the receiver 56 can be considered as a wireless modem. In the network equipment 50, more than one transmitter 55 can be provided. Similarly, more than one receiver 56 can be provided.
Network device processor 51 can be responsible for wireless channel management, communication links establishment, and cell switching control for users within the control area. Network device processor 51 can also read and executed computer readable instructions such as those stored memory 52 which is coupled thereto. Memory 52 is configured to store various software programs and/or instructions, operating systems, and network communication programs or protocols. Memory 202 may include high speed random access memory (RAM) , and can also include non-transitory memory, such as one or more disk storage devices, flash memory devices, or other nonvolatile solid-state storage devices.
It should be noted that, the structure illustrated in FIG. 5 can be also equally applies to terminals which can communicate with the network equipment. For  example, in case of a UE with the structure illustrated in FIG. 5, the receiver 56, the communication interface 53, and/or the antenna 58 can be applied to receive the EN-DC capability information from the network equipment, the receiver 56 may further demodulate the information and forward the demodulated information to the processor 51 for subsequent process or may store the demodulated information in the memory 52.
Based on the above system architectures and with the understanding that principles of the discourse may apply more generally to any wireless EN-DC communication environment, technical solutions of the present disclosure are described below.
According to embodiments of the disclosure, a method for signal transmission is provided. As illustrated in FIG. 6, in this method for signal transmission, a serving eNB transmits a first signal indicating EN-DC capacity of at least one neighboring cell to a UE. The serving eNB can be the MeNB or the SgNB illustrated in FIG. 1 or FIG. 2. Similarly, the neighboring cell can be the cell corresponding to the MeNB or the SgNB illustrated in FIG. 1 or FIG. 2. The expression of “at least one neighboring cell” means that, there may be more than one neighboring cell and the serving eNB may transmit the EN-DC capacity of multiple neighboring cells it already knows all at once, or, the serving eNB may transmit the EN-DC capacity of only one neighboring cell each time, the disclosure is not particularly limited. The EN-DC capacity of the neighboring cell means that the cell allows a device such as UE to connect to LTE and 5G NR simultaneously, that is, allows dual connection.
The term “signal” referred to herein can be broadly comprehended as wireless signal, data, package, information, signaling, or any other kinds of information carrier. Further, the term “first” goes before the term “signal” is only used to distinguish this signal from other signals that may be referred to herein, rather than to define a specific order or sequence. Based on different forms of the first signal, the following implementations depicts different solutions, each of which contributes to its  advantages and each will be described in detail below.
Implementation 1
In this implementation, the first signal may be configured such that system information for indicating the EN-DC capability of the neighboring cell can be carried thereon. For example, the first signal is a system information block (SIB) carrying an information element (IE) for EN-DC capability indication. In short, in this implementation, the first signal takes the form of system information.
Specifically, the serving eNB, via system information, informs the UE about the neighboring cells’capability for EN-DC. The system information can be transmitted on a RB via a Uu interface between the serving eNB and the UE for example. This solution requires the serving eNB to collect the neighboring cells’EN-DC capability, for example, via a X2 interface between the serving eNB and the neighboring cell (such as the X2 interface illustrated in FIG. 1 or FIG. 2) . In order to inform the EN-DC capability collected, it’s desirable to introduce new IE in SIB. For instance, different fields or flag bits can be set in the IE to indicate different neighboring cells.
After the serving eNB sending the system information, all UE within the serving cell, including idle UE and connected UE, can acquire this system information. For idle mode UE, it can use such information during cell reselection, e.g., one UE which is likely to have high data rate service can prioritize a cell which is EN-DC capable. For connected UE, it can get such information before RLF happens so that when RLF happens it can try to send RRC connection reestablishment to an eNB which is EN-DC capable. The reason is that only if the neighbor cell is EN-DC capable, the UE can resume the RRC connection with the neighboring cell and keep the MCG and SCG bearers. If the neighboring cell is not EN-DC capable, even if UE resumes RRC connection with the cell, it has to release the RRC connection.
Implementation 2
In this implementation, the first signal is RRC signaling. The RRC signaling carries an IE for EN-DC capability indication.
Specifically, the serving eNB, via RRC signaling such as dedicated RRC signaling, informs the UE about the neighboring cells’capability for EN-DC. The RRC signaling can be transmitted on a RB via a Uu interface between the serving eNB and the UE for example. Specifically, the RB can be SRB1 as described above. This solution also requires the serving eNB to collect the neighboring cells’EN-DC capability, for example, via a X2 interface between the serving eNB and the neighboring cell. In order to inform the EN-DC capability collected, it’s desirable to introduce new IE in the dedicated RRC signaling or RRC message. However, this doesn’t have to be a brand new RRC message, instead, as to the neighboring cell’s EN-DC capability, any form of indication for such property, can be inserted into existing downlink RRC message, e.g. RRC connection reconfiguration, to the UE.
All the connected UE within the serving cell can acquire this RRC signaling so that when RLF happens, it can try to send RRC connection reestablishment to an eNB which is EN-DC capable. The reason is that only if the neighbor cell is EN-DC capable, the UE can resume the RRC connection with the neighboring cell and keep the MCG and SCG bearers. If the neighboring cell is not EN-DC capable, even if UE resumes RRC connection with the cell, it has to release the RRC connection. Idle mode UE cannot enjoy the benefit of this solution.
Implementation 3
As mentioned above, in order to inform the UE the neighboring cells’EN-DC capability, the serving cell has to collect such information first.
For example, the serving eNB can collect the EN-DC capability of the at least one neighboring cell via operation, administration, and maintenance (OAM) configuration. Alternatively, the serving eNB can collect the EN-DC capability of the at least one neighboring cell via signaling over X2/Xn interface or via S1/N2 interface. The X2/Xn interface and the S1interface can be the one illustrated in FIG. 1 and FIG. 2, the N2 interface can be the reference point illustrated in FIG. 3. For example, in case where the X2 interface is used, the serving cell collects the EN-DC capability from a  neighboring cell directly through the X2 interface; in case where the S1 interface is used, the EN-DC capability from the neighboring cell is forwarded by the CN to the serving cell through the S1 interface.
In addition to the above schemes, the serving eNB can also obtain the neighboring cell’s EN-DC capability from another UE (we use the expression “another UE” to distinguish from the UE that receives the first signal from the serving eNB) . From example, another UE can report neighboring cell’s EN-DC capability, if any, to the serving eNB. Such communication can be achieved via a Uu interface (not illustrated in the figures) between the UE and the serving eNB. This shows feasibility of the serving eNB to collect neighboring cell’s EN-DC capability.
In this manner, when UE knows neighboring cells’EN-DC capability, it will prioritize the cell as target for reestablishment and resumes connection towards that cell, or treat the cell as a target for cell reselection. As such, UE and RAN handle RRC connection reestablishment within mixed NG-RAN.
By performing methods disclosed herein, a connected UE can know the neighboring cell (or target cell) ’s EN-DC capability and can make a decision as whether to reestablish to the neighboring cell in order to maintain EN-DC as possible to achieve service continuity. In addition, by performing methods disclosed herein, an idle mode UE can use the EN-DC capability information during cell reselection.
Embodiments of the disclosure also provide an apparatus for signal transmission, which can be applied to implement the forgoing method for signal transmission. FIG. 7 is a block diagram illustrating a system including the apparatus.
In FIG. 7, the apparatus for signal transmission, which is applicable to a serving eNB of UE, is illustrated as network equipment 12, while the apparatus for signal transmission, which is applicable to UE, is illustrated as UE 10. It should be noted that, the network equipment 12 is not necessarily bound with the UE 10; it can be used or deployed separately with other UE. Similarly, the UE 10 illustrated in FIG. 7 can be used in connection with other network equipment either.
As illustrated in FIG. 7, a UE 10 is in wireless communication with network equipment 12. The UE 10 can be the terminal device illustrated in FIG. 1, the network equipment 12 is a serving eNB and can be the MeNB or SgNB illustrated in FIG. 1 or FIG. 2.
The network equipment 12 has a transmitting unit 72 and a first receiving unit 74.
The transmitting unit 72 can be a transmitter, a transceiver, antennas, and the like. For example, the transmitting unit 72 may be implemented as the transmitter 55 of FIG. 5. The transmitting unit 72 is structured to be able to transmit a first signal for indicating EN-DC capability of at least one neighboring cell to the UE 10. The first signal can be system information or RRC signaling, and can be transmitted via a Uu interface between the network equipment 12 and the UE 10. For the convenience of description, please refer to the description of the foregoing method for details.
The first receiving unit 74 is configured to collect neighboring cell’s EN-DC capability from outside, such as via OAM configuration or by signaling via X2/Xn interface or S1/N2 interface, or receive neighboring cell’s EN-DC capability reported by other UE rather than the UE 10 via a Uu interface for example. Once the neighboring cell’s EN-DC capability is collected, the first receiving unit 74 can forward it to the transmitting unit 72 to inform the UE 10. To this end, there may be a wired or wireless connection between the transmitting unit 72 and the first receiving unit 74. The receiving unit 74 can be embodied as antennas, receivers, or other functional logic components. For example, the first receiving unit 74 can be the receiver 56 of FIG. 5. Obviously, the transmitting unit 72 and the first receiving unit 74 can be integrated into one whole or can be deployed as separate components.
The UE 10 has a second receiving unit 76 and a controlling unit 78 coupled with the second receiving unit 76.
The second receiving unit 76 is configured to receive system information or RRC signaling indicating EN-DC capability of at least one neighboring cell from a serving  eNB, in FIG. 7, network equipment 12. The second receiving unit 76 of UE 10 can be in wireless communication with the transmitting 72 of network equipment 12, for example, via a Uu interface.
The controlling unit 78 is configured to make use of the EN-DC capability of at least one neighboring cell received by the second receiving unit 76 of the UE 10. For example, when the UE 10 is in a connected state, the controlling unit 78 is configured to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection, according to the received EN-DC capability indicated by the system information or the RRC signaling. When the UE 10 is in an idle state, the controlling unit 78 is configured to prioritize the at least one neighboring cell as a target of cell reselection, according to the received EN-DC capability indicated by the system information or the RRC signaling. For example, if the UE 10 is likely to have high data rate service, it can prioritize a cell which is EN-DC capable.
The structure illustrated in the figures show only a simplified design of the corresponding apparatus. In practical applications, the apparatus may include any number of transmitters, receivers, processors, memories, etc., to implement the functions or operations performed by the equipment, and all equipments that can implement the technical solutions provided herein are within the protection scope of this application.
According to one implementation of the disclosure, network equipment is further provided. The network equipment includes at least one processor and a memory coupled with the processor. For example, the network equipment can be configured to be structured as the network equipment50 illustrated in FIG. 5 and correspondingly, the at least one processor can be embodied as the processor 51 and the memory can be embodied as the memory 52. Further, the memory is configured to store at least one program which, when executed by the at least one processor, cause the at least one processor to carry out all or part of the operations of the method for signal transmission of the disclosure.
The relevant parts of the method embodiments of the disclosure may be referred to each other; the equipment provided in each apparatus embodiment can be used to execute the method provided by the corresponding method embodiment, so each apparatus embodiment may refer to related methods in the related method embodiments.
One of ordinary skill in the art can understand that all or part of the process for implementing the above embodiments can be completed by a computer program to instruct related hardware, and the program can be stored in a non-transitory computer readable storage medium. In this regard, according to embodiments of the disclosure, a non-transitory computer readable storage medium is provided. The non-transitory computer readable storage medium is configured to store at least one computer readable program which, when executed by a computer, cause the computer to carry out all or part of the operations of the method for signal transmission of the disclosure. Examples of the non-transitory computer readable storage medium include but are not limited to read only memory (ROM) , random storage memory (RAM) , disk or optical disk, and the like.
While the disclosure has been described in connection with certain embodiments, it is to be understood that the disclosure is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims (21)

  1. A method for signal transmission, comprising:
    transmitting, by a serving eNB, a first signal indicating EN-DC capability of at least one neighboring cell to user equipment (UE) .
  2. The method of claim 1, wherein the first signal is configured to carry system information indicating the EN-DC capability of the at least one neighboring cell.
  3. The method of claim 2, wherein the first signal is a SIB carrying an IE for EN-DC capability indication.
  4. The method of claim 1, wherein the first signal is RRC signaling.
  5. The method of claim 4, wherein the RRC signaling is configured to carry an IE for EN-DC capability indication.
  6. The method of any of claims 1 to 5, further comprising:
    collecting, by the serving eNB, the EN-DC capability of the at least one neighboring cell.
  7. The method of claim 6, wherein the collecting, by the serving eNB, the EN-DC capability of the at least one neighboring cell comprises:
    collecting, by the serving eNB, the EN-DC capability of the at least one neighboring cell via operation, administration, and maintenance (OAM) configuration.
  8. The method of claim 6, wherein the collecting, by the serving eNB, the EN-DC capability of the at least one neighboring cell comprises:
    collecting, by the serving eNB, the EN-DC capability of the at least one neighboring cell via X2/Xn interface or S1/N2 interface.
  9. The method of claim 6, wherein the collecting, by the serving eNB, the EN-DC  capability of the at least one neighboring cell comprises:
    receiving, by the serving eNB, the EN-DC capability of the at least one neighboring cell from another UE.
  10. The method of any of claims 1 to 9, wherein the EN-DC capability of the at least one neighboring cell is configured for the UE to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection or a target of cell reselection.
  11. An apparatus for signal transmission, being applicable to a serving eNB of user equipment (UE) and comprising:
    a transmitting unit, configured to transmit a first signal for indicating EN-DC capability of at least one neighboring cell to the UE.
  12. The apparatus of claim 11, wherein the first signal is configured to carry system information for indicating the EN-DC capability of the at least one neighboring cell.
  13. The apparatus of claim 12, wherein the first signal is a SIB carrying an IE for EN-DC capability indication.
  14. The apparatus of claim 11, wherein the first signal is RRC signaling.
  15. The apparatus of claim 14, wherein the RRC signaling carries an IE for EN-DC capability indication.
  16. The apparatus of any of claims 11 to 15, further comprising:
    a receiving unit, configured to collect the EN-DC capability of the at least one neighboring cell.
  17. The apparatus of claim 16, wherein the receiving unit is configured to collect the EN-DC capability of the at least one neighboring cell via at least one of: operation, administration, and maintenance (OAM) configuration, X2/Xn interface, and S1/N2  interface.
  18. The apparatus of claim 16, wherein the receiving unit is configured to collect the EN-DC capability of the at least one neighboring cell from another UE.
  19. An apparatus for signal transmission, being applicable to user equipment and comprising:
    a receiving unit, configured to receive system information or RRC signaling indicating EN-DC capability of at least one neighboring cell from a serving eNB; and
    a controlling unit, configured to prioritize the at least one neighboring cell as a target to reestablish a radio resource control (RRC) connection or a target of cell reselection according to the EN-DC capability indicated by the system information or the RRC signaling.
  20. A network equipment, comprising:
    at least one processor; and
    a memory, coupled with the at least one processor and storing at least one program which, when executed by the at least one processor, cause the at least one processor to carry out the method of any of claims 1 to 10.
  21. A non-transitory computer readable storage medium, storing at least one programs which, when executed by a computer, cause the computer to carry out the method of any of claims 1 to 10.
PCT/CN2018/099982 2017-11-29 2018-08-10 Method and apparatus for signal transmission, network equipment WO2019105064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880003807.7A CN110100476B (en) 2017-11-29 2018-08-10 Method and device for signal transmission and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762592093P 2017-11-29 2017-11-29
US62/592,093 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019105064A1 true WO2019105064A1 (en) 2019-06-06

Family

ID=66665184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099982 WO2019105064A1 (en) 2017-11-29 2018-08-10 Method and apparatus for signal transmission, network equipment

Country Status (2)

Country Link
CN (1) CN110100476B (en)
WO (1) WO2019105064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996054A (en) * 2019-12-16 2021-06-18 华为技术有限公司 Signal interference coordination method, communication device and computer readable storage medium
EP4120721A4 (en) * 2020-04-03 2023-09-06 Huawei Technologies Co., Ltd. Communication method, apparatus and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883298B1 (en) 2019-09-23 2023-11-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for system interoperation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272801A (en) * 2013-02-27 2015-01-07 华为技术有限公司 Cell handover method, user equipment and base station
CN104284377A (en) * 2013-07-09 2015-01-14 上海贝尔股份有限公司 Method for improving switching command transmission and/or measurement report transmission in communication network
CN105101321A (en) * 2014-05-20 2015-11-25 中兴通讯股份有限公司 Cell reselection method, device and system
WO2016078969A1 (en) * 2014-11-17 2016-05-26 Nokia Solutions And Networks Oy Capability signaling for dual connectivity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007606A (en) * 2014-04-24 2015-10-28 中兴通讯股份有限公司 Method for determining cell selection/reselection parameter, base station, terminal and communication system
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN107359972B (en) * 2017-06-15 2019-11-08 电信科学技术研究院 A kind of data receiver method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272801A (en) * 2013-02-27 2015-01-07 华为技术有限公司 Cell handover method, user equipment and base station
CN104284377A (en) * 2013-07-09 2015-01-14 上海贝尔股份有限公司 Method for improving switching command transmission and/or measurement report transmission in communication network
CN105101321A (en) * 2014-05-20 2015-11-25 中兴通讯股份有限公司 Cell reselection method, device and system
WO2016078969A1 (en) * 2014-11-17 2016-05-26 Nokia Solutions And Networks Oy Capability signaling for dual connectivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "OFFLINF#22 LTE re-establishment and resume while using NR PDCP", 3GPP TSG-RAN WG2 MEETING #100 R2-1714208, 1 December 2017 (2017-12-01), XP051372664 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996054A (en) * 2019-12-16 2021-06-18 华为技术有限公司 Signal interference coordination method, communication device and computer readable storage medium
CN112996054B (en) * 2019-12-16 2023-02-14 华为技术有限公司 Signal interference coordination method, communication device and computer readable storage medium
EP4120721A4 (en) * 2020-04-03 2023-09-06 Huawei Technologies Co., Ltd. Communication method, apparatus and system

Also Published As

Publication number Publication date
CN110100476A (en) 2019-08-06
CN110100476B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN110431873B (en) Method and apparatus for indicating bearer type for next message in wireless communication system
US11197216B2 (en) Handling of collision between SR procedure and PDU session establishment procedure for PDU session handover
US11792892B2 (en) Method and device for managing interface for supporting LTE/NR interworking in wireless communication system
CN114513822B (en) Path conversion method, related device and system
RU2602981C2 (en) Method of handling radio link failure
JP6240189B2 (en) Method and apparatus for transmitting D2D related information in a wireless communication system
EP3689096B1 (en) Methods and apparatuses for nr pdcp preservation upon rrc resume/suspend
US10869342B2 (en) Radio bearer establishment method and base station
EP3585129A1 (en) Method and device for transmitting scg failure information message in wireless communication system
EP3544367B1 (en) Device and method of handling a secondary node configuration
US20200120561A1 (en) 5GSM Handling on Invalid PDU Session
RU2722504C1 (en) Network node and method of configuring pdcp for wireless communication device
JP7413553B2 (en) Re-establishment methods and communication equipment
KR20220062557A (en) Scheme for Moving IMS Voice Session on Non-3GPP to 3GPP Access
KR101751654B1 (en) Systems for switching modes in wireless sessions
WO2019105064A1 (en) Method and apparatus for signal transmission, network equipment
EP3755056A1 (en) Communication method, device and system, and storage medium
CN108781403B (en) Terminal device, access network device, air interface configuration method and wireless communication system
US20180132294A1 (en) Radio bearer setup method and device
US9699698B2 (en) Network controller within core network and method for connection with terminal by network controller
EP3821643A1 (en) Inter-rat handover including transferring a radio bearer configuration
US11706670B2 (en) Transferring a radio bearer configuration
US20220353941A1 (en) Ma pdu reactivation requested handling
WO2022082690A1 (en) Group switching method, apparatus and system
WO2022082691A1 (en) Rlf recovery method and apparatus for iab network, and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884191

Country of ref document: EP

Kind code of ref document: A1