WO2019103539A1 - Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor - Google Patents

Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor Download PDF

Info

Publication number
WO2019103539A1
WO2019103539A1 PCT/KR2018/014552 KR2018014552W WO2019103539A1 WO 2019103539 A1 WO2019103539 A1 WO 2019103539A1 KR 2018014552 W KR2018014552 W KR 2018014552W WO 2019103539 A1 WO2019103539 A1 WO 2019103539A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
printing
aluminum
temperature characteristics
prepared
Prior art date
Application number
PCT/KR2018/014552
Other languages
French (fr)
Korean (ko)
Inventor
김성웅
김승언
홍재근
나영상
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to JP2020546262A priority Critical patent/JP7197597B2/en
Publication of WO2019103539A1 publication Critical patent/WO2019103539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a titanium-aluminum-based alloy for 3D printing having excellent high-temperature characteristics and a method for producing the same.
  • 3D printing technology is a technology to produce products with three dimensional structure by stacking various layers of materials such as powder, liquid, wire, and pellets in one layer. It is a technology to manufacture complex parts It can be easily manufactured and has recently become popular in the world with new processing technology. 3D printing technology can dramatically shorten the time required for product development compared with conventional processing techniques such as casting, forging, welding, extrusion, etc., and since chips generated during cutting are not formed, the loss of raw material And can meet the demand of the shape and function required by the consumer, it is recognized as an innovative technology that changes the paradigm of the existing manufacturing industry.
  • the 3D printer market which has been mainly used for enterprise prototyping, has recently been used in a variety of industries including aerospace, medical, automobile, machinery, construction, toys and fashion. As 3D printing technology and industry grow, the market for materials is also expected.
  • the metal powder used in metal 3D printing processes are applied in powder form, and spherical ultrafine powders produced by gas atomization method are used.
  • these metal powders are not exclusive materials prepared for 3D printing process, and powder used in general powder metallurgy process is classified by particle size, so that printer equipment makers exclusively supply powder at a high price.
  • the lock system is applied to the equipment so that it can not be used other than the powder supplied exclusively, various components are not applied.
  • the metal powder used for powder metallurgy contains two or three basic alloying elements unlike the conventional alloying materials widely used in industry, and thus it is strongly required to develop industrially meaningful powder of a multi-component alloy component.
  • Titanium powder (Ti Powder), which has recently been spotlighted among 3D printing materials, has various structural functions and is used in high value-added industries. Titanium, which has excellent non-strength, corrosion resistance, low heat distortion and human-friendly characteristics, has a very important industrial value to be combined with 3D printers. Titanium metal powder for 3D printing predicts a demand of 155 tons in 2014, which is more than tripled in 2017 from the demand of 47 tons per year in 2014. As a result, the market size has increased from 29.7 billion won to 87.4 billion won. In particular, the aviation sector related to excellent non-strength characteristics has a demand of about 40%. In addition, the size of powder production in 2023 is expected to be about 582 tons, and the market size will be about 241 billion won.
  • Patent Document 1 U.S. Patent No. 4,916,028
  • An object of the present invention is to provide a titanium-aluminum alloy for 3D printing having excellent high-temperature characteristics and a method for manufacturing the same.
  • the titanium-aluminum-based alloy for 3D printing according to the embodiment of the present invention having excellent high-temperature characteristics is composed of 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2-2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities.
  • the tensile strength at 800 ° C may be 450 to 550 MPa.
  • the tensile strength at 950 ° C may be 450 to 550 MPa.
  • the elongation at break at 800 DEG C may be 0.60 to 0.80.
  • the elongation at break at 950 DEG C may be from 1.60 to 15.0.
  • a method for producing a titanium-aluminum-based alloy for 3D printing according to an embodiment of the present invention comprises 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb) Mixing 0.5% silicon (Si), 0.2-2.0% tungsten (W), residual titanium (Ti), and inevitable impurities; Melting the mixed particles obtained in the mixing step; And pulverizing the molten particles.
  • the step of pulverizing the molten particles includes pulverizing and sieving.
  • the titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics according to the embodiment of the present invention is excellent in the elongation at break suitable for 3D printing, etc., and the 3D printing structure using the same can have excellent dimensions and performance, Can produce titanium-aluminum alloy for superior 3D printing, and has high productivity.
  • FIG. 1 is a photograph of a titanium-aluminum alloy specimen for 3D printing, which is prepared by Examples 1 to 3 and Comparative Example 1 and has excellent high-temperature characteristics, taken by a digital camera.
  • FIG. 2 is a flowchart of a method of manufacturing a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics according to an embodiment of the present invention.
  • Fig. 3 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1.
  • Example 4 is a stress-strain graph at 800 ° C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2.
  • Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3.
  • Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3.
  • Fig. 6 is a graph of stress-strain at 800 deg. C of the titanium-aluminum alloy prepared in Comparative Example 1.
  • FIG. 7 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1.
  • Fig. 9 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 3. Fig.
  • FIG. 10 is a graph of stress-strain at 950 DEG C of the titanium-aluminum-based alloy prepared in Comparative Example 1. Fig.
  • FIG. 11 is a cross-sectional view of the titanium-aluminum alloy prepared in Examples 1 to 3 and Comparative Example 1 after the stress-strain test was performed at 800.degree.
  • FIG. 12 is a cross-sectional view of the alloy prepared in Examples 1 to 3 and Comparative Example 1 after the stress-strain test was performed at 950 ° C.
  • Example 13 is a view of a fracture surface of a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 1 after tensile test at 800 degrees and 950 degrees.
  • Examples 13 to 15 is a photograph of a titanium-aluminum-based alloy specimen for 3D printing prepared by Examples 13 to 15, which is excellent in high-temperature characteristics, taken by a digital camera.
  • Titanium-aluminum alloy for 3D printing with high temperature characteristics Titanium-aluminum alloy for 3D printing with high temperature characteristics
  • the titanium-aluminum-based alloy for 3D printing according to the embodiment of the present invention having excellent high-temperature characteristics is composed of 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2-2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities.
  • the titanium-aluminum alloy for 3D printing having excellent high-temperature characteristics according to the embodiment of the present invention is excellent in high-temperature characteristics suitable as a material for 3D printing, and a 3D printing structure manufactured using the same has excellent dimensional accuracy, Do.
  • the proportion of the constituent components can be easily controlled, thereby making it possible to manufacture a 3D printing structure having a desired physical property.
  • titanium-aluminum-based alloy for 3D printing which is excellent in high-temperature characteristics according to the embodiment of the present invention
  • aluminum is an element constituting the main component together with titanium.
  • the element fraction of aluminum is a direct element that determines the fraction of alpha 2 phase (Ti 3 Al) and gamma phase (TiAl), which are the main intermediate phase phases of the titanium-aluminum alloy.
  • oxidation resistance and mechanical characteristics may vary depending on the ratio of aluminum to titanium.
  • the aluminum content of the titanium-aluminum based alloy for 3D printing excellent in high-temperature characteristics according to the embodiment of the present invention is less than 42 atomic%, the strength of the alloy may be increased but the ductility and oxidation resistance may be decreased. The volume fraction or area fraction of the gamma phase may not be sufficient. If the aluminum content of the alloy exceeds 46 atomic%, the resistance to oxidation and corrosion is advantageous, but the mechanical properties such as elongation, strength and fracture toughness may be deteriorated.
  • the niobium (Nb) may be added to a titanium-aluminum alloy for 3D printing having an excellent high-temperature characteristic according to an embodiment of the present invention to increase rigidity, creep resistance, oxidation resistance and ductility.
  • the niobium (Nb) are the titanium (Ti), because the more finely divided the layer spacing, such as TiAl and ⁇ - ⁇ -Ti 3 Al - it is possible to improve the rigidity of the aluminum (Al) alloy.
  • niobium (Nb) can be added for the purpose of improving the strength and oxidation resistance of the TiAl intermetallic compound.
  • the niobium content is less than 6.0 atomic%, the oxidation resistance of the titanium-aluminum-based alloy is not sufficient and the productivity of the 3D printing structure may be deteriorated due to oxidation during the 3D printing process. If the niobium content exceeds 9.0 atomic%, the ductility of the titanium-aluminum alloy may be deteriorated.
  • the silicon (Si) improves the flowability of the titanium (Ti) -Al alloy (Al) in a molten state in the 3D-printing titanium-aluminum alloy having excellent high-temperature characteristics according to the embodiment of the present invention, (Ti) -Aluminum (Al) alloy at a high temperature through stabilization of the layered structure.
  • the silicon (Si) is preferably 0.2 to 0.5% in atomic percent with respect to the total alloy, and when the silicon (Si) is less than 0.2%, sufficient creep of the titanium (Ti) Resistance is not expected to be expected. On the other hand, when the Si content exceeds 0.5%, the creep resistance may be lowered and other mechanical properties may be deteriorated.
  • the tungsten has a beta-phase stabilizing effect in a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics according to an embodiment of the present invention and can provide a layered titanium-aluminum alloy by stabilizing the beta phase in the matrix, This can improve the softening resistance.
  • the tungsten (W) is 0.2 to 2.0% in atomic percent with respect to the total alloy, and when the tungsten (W) is less than 0.2% It is difficult to expect the improvement of chemical conversion. On the other hand, if the tungsten (W) exceeds 2.0%, the material cost may increase.
  • the titanium-aluminum alloy for 3D printing having excellent high temperature characteristics is titanium (Ti) except for the above components.
  • Ti titanium
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded.
  • impurities are self-evident to those of ordinary skill in the art of manufacturing, and therefore, not all thereof are specifically referred to herein.
  • FIG. 2 is a flowchart of a method of manufacturing a titanium-aluminum-based alloy for 3D printing with improved high-temperature characteristics according to an embodiment of the present invention.
  • a method for producing a titanium-aluminum-based alloy for 3D printing having improved high temperature characteristics includes 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% silicon (Si), 0.2 to 2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities; Melting the mixed particles obtained in the mixing step; And pulverizing the molten particles.
  • the mixing may be performed using a general milling apparatus or a mixing apparatus.
  • the method of melting the mixed particles can be performed by vacuum arc remelting (VAR), electron beam melting (EBM), plasma arc melting (PAM), plasma arc remelting have.
  • VAR vacuum arc remelting
  • EBM electron beam melting
  • PAM plasma arc melting
  • the molten particles can be carried out by a gas atomization method, a plasma rotating electrode spraying method, or a water jetting method.
  • the step of pulverizing the molten particles may be prepared by air-cooling the molten mixed particles to produce an ingot, pulverizing the same, and sieving.
  • the alloys of Examples 1 to 11 and Comparative Example 1 were prepared by controlling the content of aluminum, niobium, tungsten, silicon and titanium as shown in Table 1 and vacuum melting to produce an ingot, which was then air-cooled to perform an additional heat treatment I did.
  • Example 1-1 the first test piece prepared in Example 1
  • Example 1-1 the test piece prepared in Example 1
  • test piece prepared in Example 1 Means the second specimen (Example 1-2), which is the same for other examples and comparative examples.
  • the binary conversion composition can be converted into a virtual binary system to easily predict a phase fraction of alpha 2 phase and gamma phase in a complex alloy system, and can be converted into the following expression.
  • Fig. 1 is a photograph of a titanium-aluminum alloy for 3D printing, which is prepared by Examples 1 to 3 and Comparative Example 1 and has excellent high-temperature characteristics, taken by a digital camera.
  • An alloy having a composition of Ti-46Al-6Nb-1W-0.5Si was prepared in the same manner as in the above example.
  • An alloy having a composition of Ti-46Al-8Nb-1W-0.5Si was prepared in the same manner as in the above Example.
  • An alloy having a composition of Ti-44Al-3Nb-0.5W-0.1Si was prepared in the same manner as in the above example.
  • An alloy having a composition of Ti-44Al-6Nb-0.5W-0.5Si was prepared in the same manner as in the above examples.
  • Fig. 3 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1.
  • Example 4 is a stress-strain graph at 800 ° C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2.
  • Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3.
  • Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3.
  • Fig. 6 is a graph of stress-strain at 800 deg. C of the titanium-aluminum alloy prepared in Comparative Example 1.
  • Table 2 shows the tensile test results of the titanium-aluminum-based alloy for 3D printing at 800 ° C, which is prepared by Examples 1 to 3 and Comparative Example 1, which has excellent high-temperature characteristics.
  • the tensile strength of the first specimen according to Example 1 was 508.8 MPa, the elongation at break was 0.67%, and the tensile strength of the specimen according to Example 1 2
  • the tensile strength of the specimen was 479.2 MPa, and the elongation at break was 0.56%.
  • the tensile strength of the first specimen according to Example 2 was 509.2 MPa, and the elongation at break was 0.82%
  • the tensile strength of the second specimen was 523.2 MPa, and the elongation at break was 0.89%.
  • the tensile strength of the first specimen according to Example 3 was 527.9 MPa, and the elongation at break at this time was 0.64%, and the tensile strength according to Example 3
  • the tensile strength of the second specimen was 545.8 MPa, and the elongation at break was 0.85%.
  • the tensile strength of the first specimen according to Comparative Example 1 was 537.5 MPa, and the elongation at break was 0.82%.
  • the tensile strength of the second specimen was 510.1 MPa, and the elongation at break was 0.73%.
  • the titanium-aluminum-based alloy for 3D printing having excellent high-temperature characteristics prepared in Example 3 had a tensile strength at 800 ° C higher than that of the titanium-aluminum-based alloy prepared in Comparative Example 1, It can be seen that the titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared by the present invention has a higher elongation at break at 800 ° C than the titanium-aluminum-based alloy prepared by Comparative Example 1. In Examples 1 and 3, the yield strength, tensile strength and elongation at break increased at 800 ° C compared to Comparative Example 1.
  • FIG. 7 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1.
  • Fig. 9 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 3. Fig.
  • FIG. 10 is a graph of stress-strain at 950 DEG C of the titanium-aluminum-based alloy prepared in Comparative Example 1. Fig.
  • Table 3 shows the tensile test results of the titanium-aluminum alloy for 3D printing at 950 DEG C, which is prepared by Examples 1 to 3 and Comparative Example 1, and which has excellent high-temperature characteristics.
  • Example 1 the tensile strength of the first specimen according to Example 1 was 521.2 MPa, and the elongation at break at this time was 2.44%.
  • Example 1 The tensile strength of the specimen was 530.5 MPa, and the elongation at break was 10.4%.
  • the tensile strength of the first specimen according to Example 2 was 491.0 MPa, and the elongation at break was 18.2%
  • the tensile strength of the second specimen was 489.1 MPa, and the elongation at break was 6.84%.
  • the tensile strength of the first specimen according to Example 3 was 478.7 MPa, and the elongation at break at this time was 1.68%, and the tensile strength according to Example 3
  • the tensile strength of the second specimen was 562.6 MPa, and the elongation at break was 1.72%.
  • the tensile strength of the first specimen according to Comparative Example 1 was 517.4 MPa, and the elongation at break was 1.52%
  • the tensile strength of the second specimen was 510.7 MPa, and the elongation at break was 1.68%.
  • the titanium-aluminum-based alloy for 3D printing having excellent high-temperature properties prepared by Example 1 and Example 3 had a tensile strength higher than that of the titanium-aluminum-based alloy prepared at Comparative Example 1, It can be seen that the titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared by Example 2 has a higher elongation at break at 950 ° C than the titanium-aluminum-based alloy prepared by Comparative Example 1. [ As a result, in Examples 1 and 3, the yield strength, tensile strength, and elongation at break increased at 950 ° C compared to Comparative Example 1.
  • the titanium-aluminum based alloy prepared in Examples 1 to 3 and Comparative Example 1 was subjected to a tensile test at 800 DEG C and 950 DEG C, and then a portion other than the fractured surface was cut to observe the cross section.
  • Figs. 11 and 12 Respectively.
  • FIGS. 11 and 12 it can be seen that a lamellar microstructure of a typical titanium-aluminum alloy is observed in the titanium-aluminum alloy for 3D printing having excellent prepared high-temperature characteristics according to the embodiment of the present invention.
  • FIG. 13 is a view of a fracture surface of a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 1 after tensile test at 800 degrees and 950 degrees.
  • a smooth cleavage fracture surface is observed
  • a fracture surface of a dimple is observed.
  • the alloy of Example 12 according to the present invention has excellent characteristics in terms of elongation at break at 950 ⁇ ⁇ in high temperature tensile properties as compared with the alloy of Comparative Example 1.
  • the alloys of Examples 13, 14, and 15 according to the present invention have excellent characteristics in terms of elongation at break at 950 ⁇ ⁇ in high temperature tensile properties as compared with the alloys of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to a titanium-aluminum-based alloy for 3D printing, having excellent high temperature characteristics. The titanium-aluminum-based alloy for 3D printing, having excellent high temperature characteristics, according to an embodiment of the present invention, comprises, by atom%, 42.0-46.0% of aluminum (Al), 6.0-9.0% of niobium (Nb), 0.2-0.5% of silicon (Si), 0.2-2.0% of tungsten (W), and the balance of titanium (Ti) and inevitable impurities.

Description

고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금 및 이의 제조방법Title: Titanium-aluminum alloy for 3D printing having excellent high-temperature characteristics and manufacturing method thereof
본 발명은 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금 및 이의 제조방법에 관한 것이다.The present invention relates to a titanium-aluminum-based alloy for 3D printing having excellent high-temperature characteristics and a method for producing the same.
3D프린팅 기술은 분말, 액체, 와이어, 펠렛 등 다양한 형태의 물질을 한 층 한 층 쌓아올려 3차원 입체구조를 갖는 제품을 제조하는 기술로서, 기존의 제조가공 기술로서는 구현할 수 없는 복잡한 형상의 부품도 손쉽게 제조할 수 있어 최근 새로운 가공기술로 전 세계적 각광을 받고 있다. 3D 프린팅 기술은 기존의 주조, 단조, 용접, 압출 등과 같은 전통적인 가공기술에 비해 제품개발에 소요되는 시간을 획기적으로 단축시킬 수 있을 뿐만 아니라, 절삭가공 시 발생하는 칩이 형성되지 않으므로 원료소재의 손실을 저감할 수 있고, 소비자가 요구하는 형상 및 기능의 수요를 충족시킬 수 있어 기존 제조업의 패러다임을 바꿀 혁신적 기술로 인식되어 지고 있다.3D printing technology is a technology to produce products with three dimensional structure by stacking various layers of materials such as powder, liquid, wire, and pellets in one layer. It is a technology to manufacture complex parts It can be easily manufactured and has recently become popular in the world with new processing technology. 3D printing technology can dramatically shorten the time required for product development compared with conventional processing techniques such as casting, forging, welding, extrusion, etc., and since chips generated during cutting are not formed, the loss of raw material And can meet the demand of the shape and function required by the consumer, it is recognized as an innovative technology that changes the paradigm of the existing manufacturing industry.
주로 기업용 프로토 타입 제작 등에 제한적으로 사용되었던 3D프린터 시장이 최근에는 우주항공, 의료, 자동차, 기계, 건축, 완구, 패션 등 다양한 산업에서도 사용이 되고 있다. 3D프린팅 기술과 산업이 커짐에 따라 소재에 대한 시장 형성 또한 기대되고 있다. The 3D printer market, which has been mainly used for enterprise prototyping, has recently been used in a variety of industries including aerospace, medical, automobile, machinery, construction, toys and fashion. As 3D printing technology and industry grow, the market for materials is also expected.
그러나 사용할 수 있는 재료가 제한적이고 느린 조형속도 등으로 인해 산업 적용에 많은 한계를 가지고 있다. 금속 3D 프린팅 공정에 사용되고 있는 재료는 대부분 분말 형태로 적용되고 있으며, 가스아토마이징법으로 제조된 구형의 극미세 분말이 사용되고 있다. 그러나 이러한 금속분말은 3D 프린팅 공정에 적합하도록 제조된 전용소재가 아니고 일반적인 분말야금(Powder Metallurgy) 공정에 사용되고 있는 분말을 입도별로 분급하여 프린터 장비 업체에서 고가로 독점 공급하고 있는 실정이다. 특히 독점공급하는 분말 외에는 사용하지 못하도록 장비에 잠금 시스템을 적용하고 있어 다양한 부품의 적용이 이루어지지 못하고 있다. 또한, 분말야금에 사용되는 금속분말은 산업적으로 널리 쓰이고 있는 기존의 합금소재와 달리 2~3개의 기본적 합금성분만을 포함하고 있기 때문에 산업적으로 의미 있는 다원계 합금성분의 분말 개발이 강력히 요구되고 있다.However, due to limited materials available and slow molding speed, it has many limitations in industrial application. Most of the materials used in metal 3D printing processes are applied in powder form, and spherical ultrafine powders produced by gas atomization method are used. However, these metal powders are not exclusive materials prepared for 3D printing process, and powder used in general powder metallurgy process is classified by particle size, so that printer equipment makers exclusively supply powder at a high price. Especially, since the lock system is applied to the equipment so that it can not be used other than the powder supplied exclusively, various components are not applied. In addition, the metal powder used for powder metallurgy contains two or three basic alloying elements unlike the conventional alloying materials widely used in industry, and thus it is strongly required to develop industrially meaningful powder of a multi-component alloy component.
3D프린팅 소재 중 최근 각광을 받고 있는 타이타늄 분말(Ti Powder)은 다양한 구조기능성을 가지고 있으며, 고부가가치 산업에서 사용되는 소재이다. 비강도가 우수하고, 내부식성 및 저열변형, 인체 친화적인 특성을 가지고 있는 타이타늄은 3D프린터와 결합이 될 만한 매우 중요한 산업적 가치를 가지고 있다. 3D프린팅용 타이타늄 금속분말은 2014년 연간 47톤의수요량에서 최근 2017년에는 3배 이상 증가한 155톤 정도의 수요량을 예측하고 있다. 이에 따라 시장 규모도 297억원에서 874억원으로 증가하고 있다. 특히 우수한 비강도 특성과 관련된 항공분야가 40% 가량의 수요를 가지고 있다. 또한 2023년 분말 생산 규모는 582톤 정도, 시장 규모는 약 2,410억원의 규모로 예상하고 있다.Titanium powder (Ti Powder), which has recently been spotlighted among 3D printing materials, has various structural functions and is used in high value-added industries. Titanium, which has excellent non-strength, corrosion resistance, low heat distortion and human-friendly characteristics, has a very important industrial value to be combined with 3D printers. Titanium metal powder for 3D printing predicts a demand of 155 tons in 2014, which is more than tripled in 2017 from the demand of 47 tons per year in 2014. As a result, the market size has increased from 29.7 billion won to 87.4 billion won. In particular, the aviation sector related to excellent non-strength characteristics has a demand of about 40%. In addition, the size of powder production in 2023 is expected to be about 582 tons, and the market size will be about 241 billion won.
(특허문헌 1) 미국 등록 특허 공보 제 4,916,028호(Patent Document 1) U.S. Patent No. 4,916,028
본 발명은 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금 및 이의 제조방법을 제공함을 목적으로 한다.An object of the present invention is to provide a titanium-aluminum alloy for 3D printing having excellent high-temperature characteristics and a method for manufacturing the same.
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 원자%로, 42.0 내지 46.0 %의 알루미늄(Al), 6.0 내지 9.0 %의 니오븀(Nb), 0.2 내지 0.5 %의 실리콘(Si), 0.2 내지 2.0 %의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 포함한다.The titanium-aluminum-based alloy for 3D printing according to the embodiment of the present invention having excellent high-temperature characteristics is composed of 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2-2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities.
또한, 800℃에서 인장강도는 450 내지 550 MPa일 수 있다. Further, the tensile strength at 800 ° C may be 450 to 550 MPa.
또한, 950℃에서 인장강도는 450 내지 550 MPa일 수 있다. Also, the tensile strength at 950 ° C may be 450 to 550 MPa.
또한, 800℃에서 파단신율은 0.60 내지 0.80일 수 있다. Also, the elongation at break at 800 DEG C may be 0.60 to 0.80.
또한, 950℃에서 파단신율은 1.60 내지 15.0일 수 있다. Also, the elongation at break at 950 DEG C may be from 1.60 to 15.0.
본 발명의 실시예를 따르는 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법은 원자%로, 42.0 내지 46.0 %의 알루미늄(Al), 6.0 내지 9.0 %의 니오븀(Nb), 0.2 내지 0.5 %의 실리콘(Si), 0.2 내지 2.0 %의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 혼합하는 단계; 상기 혼합하는 단계에서 얻어진 혼합 입자를 용융하는 단계; 및 상기 용융된 입자를 분말화하는 단계;를 포함한다. A method for producing a titanium-aluminum-based alloy for 3D printing according to an embodiment of the present invention, which has improved high-temperature characteristics, comprises 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb) Mixing 0.5% silicon (Si), 0.2-2.0% tungsten (W), residual titanium (Ti), and inevitable impurities; Melting the mixed particles obtained in the mixing step; And pulverizing the molten particles.
또한, 상기 용융된 입자를 분말화하는 단계는 분쇄하는 단계 및 체거름하는 단계를 포함한다.In addition, the step of pulverizing the molten particles includes pulverizing and sieving.
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 3D 프린팅에 적합한 파단신율 등이 뛰어나고, 이를 적용한 3D 프린팅 구조체는 뛰어난 치수 및 성능을 가질 수 있고, 간단한 방법으로 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금을 제조할 수 있어 높은 생산성을 갖는다.The titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics according to the embodiment of the present invention is excellent in the elongation at break suitable for 3D printing, etc., and the 3D printing structure using the same can have excellent dimensions and performance, Can produce titanium-aluminum alloy for superior 3D printing, and has high productivity.
도 1은 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금 시편을 디지털 카메라로 촬영한 사진이다. FIG. 1 is a photograph of a titanium-aluminum alloy specimen for 3D printing, which is prepared by Examples 1 to 3 and Comparative Example 1 and has excellent high-temperature characteristics, taken by a digital camera.
도 2는 본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법의 순서도이다. 2 is a flowchart of a method of manufacturing a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics according to an embodiment of the present invention.
도 3은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 3 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1. Fig.
도 4는 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. 4 is a stress-strain graph at 800 ° C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2.
도 5는 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3. Fig.
도 6은 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 6 is a graph of stress-strain at 800 deg. C of the titanium-aluminum alloy prepared in Comparative Example 1. Fig.
도 7은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 7 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1. Fig.
도 8은 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 8 is a graph of stress-strain at 950 DEG C of the titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2. Fig.
도 9는 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. Fig. 9 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 3. Fig.
도 10은 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 10 is a graph of stress-strain at 950 DEG C of the titanium-aluminum-based alloy prepared in Comparative Example 1. Fig.
도 11은 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금을 800℃에서 응력-변형률 실험을 수행한 후 단면을 촬영한 것이다. FIG. 11 is a cross-sectional view of the titanium-aluminum alloy prepared in Examples 1 to 3 and Comparative Example 1 after the stress-strain test was performed at 800.degree.
도 12는 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 합금을 950℃에서 응력-변형률 실험을 수행한 후 단면을 촬영한 것이다. FIG. 12 is a cross-sectional view of the alloy prepared in Examples 1 to 3 and Comparative Example 1 after the stress-strain test was performed at 950 ° C.
도 13은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800도 및 950도 인장시험 후 파단 표면을 관찰한 것이다.13 is a view of a fracture surface of a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 1 after tensile test at 800 degrees and 950 degrees.
도 14는 실시예 12에서 제조된 합금의 950 ℃에서의 응력-변형률 그래프이다.14 is a graph of stress-strain at 950 DEG C of the alloy prepared in Example 12. Fig.
도 15는 실시예 13 내지 15에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금 시편을 디지털 카메라로 촬영한 사진이다.15 is a photograph of a titanium-aluminum-based alloy specimen for 3D printing prepared by Examples 13 to 15, which is excellent in high-temperature characteristics, taken by a digital camera.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 다음과 같이 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. 덧붙여, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art. Accordingly, the shapes and sizes of the elements in the drawings may be exaggerated for clarity of description, and the elements denoted by the same reference numerals in the drawings are the same elements. In the drawings, like reference numerals are used throughout the drawings. In addition, " including " an element throughout the specification does not exclude other elements unless specifically stated to the contrary.
고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금Titanium-aluminum alloy for 3D printing with high temperature characteristics
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 원자%로, 42.0 내지 46.0 %의 알루미늄(Al), 6.0 내지 9.0 %의 니오븀(Nb), 0.2 내지 0.5 %의 실리콘(Si), 0.2 내지 2.0 %의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 포함한다. The titanium-aluminum-based alloy for 3D printing according to the embodiment of the present invention having excellent high-temperature characteristics is composed of 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2-2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities.
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 3D 프린팅용 재료로 적합한 고온 특성이 우수하고, 이를 이용하여 제조된 3D 프린팅 구조체는 치수 정확성이 뛰어나고, 고온 물성이 우수하다. The titanium-aluminum alloy for 3D printing having excellent high-temperature characteristics according to the embodiment of the present invention is excellent in high-temperature characteristics suitable as a material for 3D printing, and a 3D printing structure manufactured using the same has excellent dimensional accuracy, Do.
또한, 3D 프린팅용 타이타늄-알루미늄계 합금을 이용하여 3D 프린팅 구조체를 제조할 때 이를 구성하는 성분 비율을 손쉽게 조절할 수 있어, 목적에 맞는 물성을 갖는 3D 프린팅 구조체를 제조할 수 있는 장점이 있다. In addition, when the 3D printing structure is manufactured using the titanium-aluminum based alloy for 3D printing, the proportion of the constituent components can be easily controlled, thereby making it possible to manufacture a 3D printing structure having a desired physical property.
이하 본 발명에 따른 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 성분계 및 성분범위에 대하여 설명한다.Hereinafter, the component system and the range of the composition of the titanium-aluminum-based alloy for 3D printing with excellent high-temperature characteristics according to the present invention will be described.
알루미늄(Al) : 42.0 내지 46.0 원자%Aluminum (Al): 42.0 to 46.0 atomic%
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금에서 알루미늄은 타이타늄과 함께 주성분을 이루는 원소이다. 상기 알루미늄의 원소 분율은 타이타늄-알루미늄계 합금의 주요 중간상 페이즈인 알파2상(Ti3Al) 및 감마상(TiAl)의 분율을 결정하는 직접적인 요소이다. 또한, 알루미늄과 타이타늄의 비율 조절에 따라 내산화성, 기계적 특성이 변동될 수 있다. In the titanium-aluminum-based alloy for 3D printing, which is excellent in high-temperature characteristics according to the embodiment of the present invention, aluminum is an element constituting the main component together with titanium. The element fraction of aluminum is a direct element that determines the fraction of alpha 2 phase (Ti 3 Al) and gamma phase (TiAl), which are the main intermediate phase phases of the titanium-aluminum alloy. In addition, oxidation resistance and mechanical characteristics may vary depending on the ratio of aluminum to titanium.
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금에서 알루미늄 함량이 42원자% 미만이면, 합금의 강도는 상승할 수 있으나 연성과 산화 저항성은 감소하는 문제가 있을 수 있고, 감마상의 부피 분율 또는 면적 분율이 충분치 못할 수 있다. 상기 합금에서 알루미늄 함량이 46원자%를 초과하는 경우 산화 및 부식에 대한 저항성은 상승하는 장점은 있지만, 연신율, 강도 및 파괴인성 등과 같은 기계적 특성은 저하될 수 있다. If the aluminum content of the titanium-aluminum based alloy for 3D printing excellent in high-temperature characteristics according to the embodiment of the present invention is less than 42 atomic%, the strength of the alloy may be increased but the ductility and oxidation resistance may be decreased. The volume fraction or area fraction of the gamma phase may not be sufficient. If the aluminum content of the alloy exceeds 46 atomic%, the resistance to oxidation and corrosion is advantageous, but the mechanical properties such as elongation, strength and fracture toughness may be deteriorated.
니오븀(Nb) : 6.0 내지 9.0 원자%Niobium (Nb): 6.0 to 9.0 atomic%
상기 니오븀(Nb)은 본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금에 첨가됨으로써 강성, 내크립성, 내산화성 및 연성을 증가시킬 수 있다. 또한, 상기 나이오븀(Nb)은 α-TiAl 및 γ-Ti3Al 등의 층상간격을 더욱 미세화시키므로, 상기 타이타늄(Ti)-알루미늄(Al) 합금의 강성을 향상시킬 수 있다. 또한, 니오븀(Nb)은 TiAl 금속간화합물의 강도와 내산화성을 향상시키기 위한 목적으로 첨가될 수 있다. The niobium (Nb) may be added to a titanium-aluminum alloy for 3D printing having an excellent high-temperature characteristic according to an embodiment of the present invention to increase rigidity, creep resistance, oxidation resistance and ductility. Also, the niobium (Nb) are the titanium (Ti), because the more finely divided the layer spacing, such as TiAl and α-γ-Ti 3 Al - it is possible to improve the rigidity of the aluminum (Al) alloy. Further, niobium (Nb) can be added for the purpose of improving the strength and oxidation resistance of the TiAl intermetallic compound.
상기 니오븀 함량이 6.0원자% 미만인 경우에는 상기 타이타늄-알루미늄계 합금의 내산화성이 충분하지 못해서, 3D 프린팅 공정 중 산화로 인해 3D 프린팅 구조체의 제품성이 나쁠 수 있다. 상기 니오븀 함량이 9.0원자%를 초과하는 경우에는 타이타늄-알루미늄계 합금의 연성을 저하시킬 수 있다.If the niobium content is less than 6.0 atomic%, the oxidation resistance of the titanium-aluminum-based alloy is not sufficient and the productivity of the 3D printing structure may be deteriorated due to oxidation during the 3D printing process. If the niobium content exceeds 9.0 atomic%, the ductility of the titanium-aluminum alloy may be deteriorated.
실리콘(Si): 0.2 내지 0.5 원자%Silicon (Si): 0.2 to 0.5 atomic%
상기 실리콘(Si)은 본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금에서 용융상태의 타이타늄(Ti)-알루미늄(Al) 합금의 유동성을 향상시켜, 합금에 포함되는 원소가 균일하게 분포할 수 있도록 하며, 층상조직의 안정화를 통해 고온에서 타이타늄(Ti)-알루미늄(Al) 합금의 크리프 저항성을 향상시키는 원소이다.The silicon (Si) improves the flowability of the titanium (Ti) -Al alloy (Al) in a molten state in the 3D-printing titanium-aluminum alloy having excellent high-temperature characteristics according to the embodiment of the present invention, (Ti) -Aluminum (Al) alloy at a high temperature through stabilization of the layered structure.
이 때, 상기 실리콘(Si)는 전체 합금에 대하여, 원자%로 0.2 ~ 0.5%인 것이 바람직하며, 상기 실리콘(Si)이 0.2% 미만일 경우, 타이타늄(Ti)-알루미늄(Al) 합금의 충분한 크리프 저항성을 기대하기 어려운 반면, 상기 실리콘(Si)이 0.5% 초과일 경우, 크리프 저항성이 오히려 저하될 수 있고, 또한 다른 기계적 물성의 저하를 초래할 수 있다. At this time, the silicon (Si) is preferably 0.2 to 0.5% in atomic percent with respect to the total alloy, and when the silicon (Si) is less than 0.2%, sufficient creep of the titanium (Ti) Resistance is not expected to be expected. On the other hand, when the Si content exceeds 0.5%, the creep resistance may be lowered and other mechanical properties may be deteriorated.
텅스텐(W): 0.2 내지 2.0 원자%Tungsten (W): 0.2 to 2.0 atomic%
상기 텅스텐은 본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금에서 베타상 안정화 효과가 있으며, 기지에서 베타상 안정화를 함으로써 층상 구조의 타이타늄-알루미늄 합금을 제공할 수 있고, 이를 통해 내연화성을 향상시킬 수 있다. The tungsten has a beta-phase stabilizing effect in a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics according to an embodiment of the present invention and can provide a layered titanium-aluminum alloy by stabilizing the beta phase in the matrix, This can improve the softening resistance.
이 때, 상기 텅스텐(W)은 전체 합금에 대하여, 원자%로 0.2 내지 2.0%인 것이 바람직하며, 상기 텅스텐(W)이 0.2% 미만일 경우, 타이타늄(Ti)-알루미늄(Al) 합금의 충분한 내연화성 향상을 기대하기 어려운 반면, 상기 텅스텐(W)이 2.0% 초과일 경우 소재비용이 높아질 수 있다. At this time, it is preferable that the tungsten (W) is 0.2 to 2.0% in atomic percent with respect to the total alloy, and when the tungsten (W) is less than 0.2% It is difficult to expect the improvement of chemical conversion. On the other hand, if the tungsten (W) exceeds 2.0%, the material cost may increase.
타이타늄(Ti): 잔부Titanium (Ti): the remainder
본 발명의 실시예를 따르는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 상기 성분들을 제외한 나머지 성분은 타이타늄(Ti)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자에게 자명한 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The titanium-aluminum alloy for 3D printing having excellent high temperature characteristics according to the embodiment of the present invention is titanium (Ti) except for the above components. However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are self-evident to those of ordinary skill in the art of manufacturing, and therefore, not all thereof are specifically referred to herein.
고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법Manufacturing method of titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics
도 2는 본 발명의 실시예를 따르는 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법의 순서도이다. FIG. 2 is a flowchart of a method of manufacturing a titanium-aluminum-based alloy for 3D printing with improved high-temperature characteristics according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예를 따르는 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법은 원자%로, 42.0 내지 46.0%의 알루미늄(Al), 6.0 내지 9.0%의 니오븀(Nb), 0.2 내지 0.5%의 실리콘(Si), 0.2 내지 2.0%의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 혼합하는 단계; 상기 혼합하는 단계에서 얻어진 혼합 입자를 용융하는 단계; 및 상기 용융된 입자를 분말화하는 단계;를 포함한다. Referring to FIG. 2, a method for producing a titanium-aluminum-based alloy for 3D printing having improved high temperature characteristics according to an embodiment of the present invention includes 42.0 to 46.0% of aluminum (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% silicon (Si), 0.2 to 2.0% tungsten (W), the remainder titanium (Ti), and inevitable impurities; Melting the mixed particles obtained in the mixing step; And pulverizing the molten particles.
원자%로, 42.0 내지 46.0%의 알루미늄(Al), 6.0 내지 9.0%의 니오븀(Nb), 0.2 내지 0.5%의 실리콘(Si), 0.2 내지 2.0%의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 혼합하는 단계를 설명한다. (Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2 to 2.0% of tungsten (W), the remainder of titanium (Ti) And unavoidable impurities are mixed with each other.
상기 혼합하는 단계는 일반적인 밀링 장치 또는 혼합 장치를 사용할 수 있다. The mixing may be performed using a general milling apparatus or a mixing apparatus.
다음으로, 상기 혼합하는 단계에서 얻어진 혼합 입자를 용융하는 단계를 설명한다. Next, the step of melting the mixed particles obtained in the mixing step will be described.
상기 혼합 입자를 용융하는 방법은 진공 아크 재용해(VAR, Vacuum Arc Remelting)법, 전자빔 용해(EBM, Electro Beam Melting)법, 플라즈마 아크 용해(PAM, Plasma Arc Remelting)법 등의 방법으로 수행될 수 있다. The method of melting the mixed particles can be performed by vacuum arc remelting (VAR), electron beam melting (EBM), plasma arc melting (PAM), plasma arc remelting have.
다음으로, 상기 용융된 입자를 분말화하는 단계를 설명한다. Next, the step of pulverizing the molten particles will be described.
상기 용융된 입자는 가스 아토마이징 방법, 플라즈마 회전 전극 분무 기법 또는 수분사 기법 등의 방법으로 수행될 수 있다. The molten particles can be carried out by a gas atomization method, a plasma rotating electrode spraying method, or a water jetting method.
또한, 상기 용융된 입자를 분말화하는 단계는 상기 용융된 혼합 입자를 공냉하여 주괴를 생산한 후 이를 분쇄하는 단계 및 체거름하는 단계를 통해 준비될 수 있다.Also, the step of pulverizing the molten particles may be prepared by air-cooling the molten mixed particles to produce an ingot, pulverizing the same, and sieving.
실시예 및 비교예Examples and Comparative Examples
하기 표 1에 나타낸 것과 같이 알루미늄, 니오븀, 텅스텐, 실리콘 및 타이타늄 함량을 조절하여 진공 용해하고, 주괴를 제조하여 공냉하여 실시예 1 내지 11 및 비교예 1의 합금을 제조하였고, 추가 열처리는 수행하지 않았다. The alloys of Examples 1 to 11 and Comparative Example 1 were prepared by controlling the content of aluminum, niobium, tungsten, silicon and titanium as shown in Table 1 and vacuum melting to produce an ingot, which was then air-cooled to perform an additional heat treatment I did.
이하에서 예를 들어 '실시예 1-1', '실시예 1-2' 등으로 표시된 것은 '실시예 1'에서 제조된 첫번째 시편(실시예 1-1), '실시예 1'에서 제조된 두번째 시편(실시예 1-2)을 의미하는 것이고, 이는 다른 실시예 및 비교예에 대해서도 동일하다.Hereinafter, for example, the first test piece prepared in Example 1 (Example 1-1), the test piece prepared in Example 1, the test piece prepared in Example 1, Means the second specimen (Example 1-2), which is the same for other examples and comparative examples.
Figure PCTKR2018014552-appb-T000001
Figure PCTKR2018014552-appb-T000001
상기 2원계 변환조성은 가상의 2원계로 변환시켜 복잡한 합금계에서 알파2상과 감마상의 상분율을 간단하게 예측하는 방법이고, 하기의 식으로 변환될 수 있다. The binary conversion composition can be converted into a virtual binary system to easily predict a phase fraction of alpha 2 phase and gamma phase in a complex alloy system, and can be converted into the following expression.
CTi + CAl + CSi + CW + Cc=100, C″Ti + C″Al=100C Ti + C Al + C Si + C W + C c = 100, C " Ti + C" Al = 100
C′= 100 x Ci/(100 - Cx). (I = Ti, Al, x = Nb, Si)C '= 100 x C i / (100 - C x ). (I = Ti, Al, x = Nb, Si)
C″Al = C′Al - ΔCNb x CNb - ΔCW x CW + ΔCSi x CSi + ΔCC + CC C " Al = C ' Al - ΔC Nb x C Nb - ΔC W x C W + ΔC Si x C Si + ΔC C + C
ΔCNb = + 0.3, ΔCW = 1.12, ΔCSi = -1.33 , ΔCC =4 ΔC Nb = + 0.3, ΔC W = 1.12, ΔC Si = -1.33, ΔC C = 4
도 1은 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금을 디지털 카메라로 촬영한 사진이다. Fig. 1 is a photograph of a titanium-aluminum alloy for 3D printing, which is prepared by Examples 1 to 3 and Comparative Example 1 and has excellent high-temperature characteristics, taken by a digital camera.
도 1에서 도시된 바와 같이, 실시예 1 내지 3 및 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금을 인장 시험을 위해 ASTM 규격을 준용하여 Ф6.25의 게이지 직경을 갖는 시편을 각각 2개 제작하였다. As shown in Fig. 1, two specimens having gauge diameters of? 6.25 were prepared by using the titanium-aluminum alloy prepared according to Examples 1 to 3 and Comparative Example 1, using the ASTM standard for the tensile test .
실시예 12Example 12
상기 실시예와 동일한 방법으로 Ti-46Al-6Nb-1W-0.5Si 조성의 합금을 제조하였다.An alloy having a composition of Ti-46Al-6Nb-1W-0.5Si was prepared in the same manner as in the above example.
실시예 13Example 13
상기 실시예와 동일한 방법으로 Ti-46Al-8Nb-1W-0.5Si 조성의 합금을 제조하였다.An alloy having a composition of Ti-46Al-8Nb-1W-0.5Si was prepared in the same manner as in the above Example.
실시예 14Example 14
상기 실시예와 동일한 방법으로 Ti-44Al-3Nb-0.5W-0.1Si 조성의 합금을 제조하였다.An alloy having a composition of Ti-44Al-3Nb-0.5W-0.1Si was prepared in the same manner as in the above example.
실시예 15Example 15
상기 실시예와 동일한 방법으로 Ti-44Al-6Nb-0.5W-0.5Si 조성의 합금을 제조하였다.An alloy having a composition of Ti-44Al-6Nb-0.5W-0.5Si was prepared in the same manner as in the above examples.
실험예Experimental Example
실험예 1Experimental Example 1
인장시험Tensile test
실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금의 인장시험 시편을 만능인장 시험기로 인장시험을 실시하였고, 그 결과를 도 3 내지 도 10, 표 2 및 표 3에 나타내었다. Tensile test specimens of the titanium-aluminum alloy prepared by Examples 1 to 3 and Comparative Example 1 were subjected to a tensile test with a universal tensile tester. The results are shown in Figs. 3 to 10, Table 2 and Table 3 .
도 3은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 3 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1. Fig.
도 4는 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. 4 is a stress-strain graph at 800 ° C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2.
도 5는 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 5 is a graph of stress-strain at 800 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 3. Fig.
도 6은 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금의 800℃에서 응력-변형률 그래프이다. Fig. 6 is a graph of stress-strain at 800 deg. C of the titanium-aluminum alloy prepared in Comparative Example 1. Fig.
표 2은 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800℃에서 인장시험 결과를 나타낸 것이다. Table 2 shows the tensile test results of the titanium-aluminum-based alloy for 3D printing at 800 ° C, which is prepared by Examples 1 to 3 and Comparative Example 1, which has excellent high-temperature characteristics.
Figure PCTKR2018014552-appb-T000002
Figure PCTKR2018014552-appb-T000002
먼저, 도 3 및 표 2를 참조하면, 실시예 1에 따른 제1시편의 인장 강도(tensile strength)는 508.8MPa을 나타내었으며, 이때의 파단신율은 0.67%에 해당하였고, 실시예 1에 따른 제2시편의 인장 강도 (tensile strength)는 479.2MPa을 나타내었으며, 이때의 파단신율은 0.56%에 해당하였다.3 and Table 2, the tensile strength of the first specimen according to Example 1 was 508.8 MPa, the elongation at break was 0.67%, and the tensile strength of the specimen according to Example 1 2 The tensile strength of the specimen was 479.2 MPa, and the elongation at break was 0.56%.
다음으로, 도 4 및 표 2를 참조하면, 실시예 2에 따른 제1시편의 인장 강도(tensile strength)는 509.2MPa을 나타내었으며, 이때의 파단신율은 0.82%에 해당하였고, 실시예 2에 따른 제2시편의 인장 강도 (tensile strength)는 523.2MPa을 나타내었으며, 이때의 파단신율은 0.89%에 해당하였다.Next, referring to FIG. 4 and Table 2, the tensile strength of the first specimen according to Example 2 was 509.2 MPa, and the elongation at break was 0.82% The tensile strength of the second specimen was 523.2 MPa, and the elongation at break was 0.89%.
다음으로, 도 5 및 표 2를 참조하면, 실시예 3에 따른 제1시편의 인장 강도(tensile strength)는 527.9MPa을 나타내었으며, 이때의 파단신율은 0.64%에 해당하였고, 실시예 3에 따른 제2시편의 인장 강도 (tensile strength)는 545.8MPa을 나타내었으며, 이때의 파단신율은 0.85%에 해당하였다.Next, referring to FIG. 5 and Table 2, the tensile strength of the first specimen according to Example 3 was 527.9 MPa, and the elongation at break at this time was 0.64%, and the tensile strength according to Example 3 The tensile strength of the second specimen was 545.8 MPa, and the elongation at break was 0.85%.
다음으로, 도 6 및 표 2를 참조하면, 비교예 1에 따른 제1시편의 인장 강도(tensile strength)는 537.5MPa을 나타내었으며, 이때의 파단신율은 0.82%에 해당하였고, 비교예 1에 따른 제2시편의 인장 강도 (tensile strength)는 510.1MPa을 나타내었으며, 이때의 파단신율은 0.73%에 해당하였다.Next, referring to FIG. 6 and Table 2, the tensile strength of the first specimen according to Comparative Example 1 was 537.5 MPa, and the elongation at break was 0.82%. The tensile strength of the second specimen was 510.1 MPa, and the elongation at break was 0.73%.
상기 결과를 참조하면, 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 800℃에서의 인장강도가 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금보다 높고, 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 800℃에서의 파단신율이 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금보다 높은 것을 알 수 있다. 실시예 1, 3의 경우 비교예 1 대비 800도에서 항복강도, 인장강도, 파단신율이 증가하였다.With reference to the above results, the titanium-aluminum-based alloy for 3D printing having excellent high-temperature characteristics prepared in Example 3 had a tensile strength at 800 ° C higher than that of the titanium-aluminum-based alloy prepared in Comparative Example 1, It can be seen that the titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared by the present invention has a higher elongation at break at 800 ° C than the titanium-aluminum-based alloy prepared by Comparative Example 1. In Examples 1 and 3, the yield strength, tensile strength and elongation at break increased at 800 ° C compared to Comparative Example 1.
도 7은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 7 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1. Fig.
도 8은 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 8 is a graph of stress-strain at 950 DEG C of the titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 2. Fig.
도 9는 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. Fig. 9 is a graph of stress-strain at 950 deg. C of a titanium-aluminum alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 3. Fig.
도 10은 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금의 950℃에서 응력-변형률 그래프이다. 10 is a graph of stress-strain at 950 DEG C of the titanium-aluminum-based alloy prepared in Comparative Example 1. Fig.
표 3은 실시예 1 내지 실시예 3 및 비교예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 950℃에서 인장시험 결과를 나타낸 것이다. Table 3 shows the tensile test results of the titanium-aluminum alloy for 3D printing at 950 DEG C, which is prepared by Examples 1 to 3 and Comparative Example 1, and which has excellent high-temperature characteristics.
Figure PCTKR2018014552-appb-T000003
Figure PCTKR2018014552-appb-T000003
먼저, 도 7 및 표 3를 참조하면, 실시예 1에 따른 제1시편의 인장 강도(tensile strength)는 521.2MPa을 나타내었으며, 이때의 파단신율은 2.44%에 해당하였고, 실시예 1에 따른 제2시편의 인장 강도 (tensile strength)는 530.5MPa을 나타내었으며, 이때의 파단신율은 10.4%에 해당하였다.7 and Table 3, the tensile strength of the first specimen according to Example 1 was 521.2 MPa, and the elongation at break at this time was 2.44%. In Example 1, 2 The tensile strength of the specimen was 530.5 MPa, and the elongation at break was 10.4%.
다음으로, 도 8 및 표 3를 참조하면, 실시예 2에 따른 제1시편의 인장 강도(tensile strength)는 491.0MPa을 나타내었으며, 이때의 파단신율은 18.2%에 해당하였고, 실시예 2에 따른 제2시편의 인장 강도 (tensile strength)는 489.1MPa을 나타내었으며, 이때의 파단신율은 6.84%에 해당하였다.Next, referring to FIG. 8 and Table 3, the tensile strength of the first specimen according to Example 2 was 491.0 MPa, and the elongation at break was 18.2% The tensile strength of the second specimen was 489.1 MPa, and the elongation at break was 6.84%.
다음으로, 도 9 및 표 3를 참조하면, 실시예 3에 따른 제1시편의 인장 강도(tensile strength)는 478.7MPa을 나타내었으며, 이때의 파단신율은 1.68%에 해당하였고, 실시예 3에 따른 제2시편의 인장 강도 (tensile strength)는 562.6MPa을 나타내었으며, 이때의 파단신율은 1.72%에 해당하였다.Next, referring to FIG. 9 and Table 3, the tensile strength of the first specimen according to Example 3 was 478.7 MPa, and the elongation at break at this time was 1.68%, and the tensile strength according to Example 3 The tensile strength of the second specimen was 562.6 MPa, and the elongation at break was 1.72%.
다음으로, 도 10 및 표 3를 참조하면, 비교예 1에 따른 제1시편의 인장 강도(tensile strength)는 517.4MPa을 나타내었으며, 이때의 파단신율은 1.52%에 해당하였고, 비교예 1에 따른 제2시편의 인장 강도 (tensile strength)는 510.7MPa을 나타내었으며, 이때의 파단신율은 1.68%에 해당하였다.Next, referring to FIG. 10 and Table 3, the tensile strength of the first specimen according to Comparative Example 1 was 517.4 MPa, and the elongation at break was 1.52% The tensile strength of the second specimen was 510.7 MPa, and the elongation at break was 1.68%.
상기 결과를 참조하면, 실시예 1 및 실시예 3에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 950℃에서의 인장강도가 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금보다 높고, 실시예 2에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 950℃에서의 파단신율이 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금보다 높은 것을 알 수 있다. 이를 통해, 실시예 1, 3의 경우 비교예 1 대비 950도에서 항복강도, 인장강도, 파단신율이 증가한 것을 알 수 있다. With reference to the above results, the titanium-aluminum-based alloy for 3D printing having excellent high-temperature properties prepared by Example 1 and Example 3 had a tensile strength higher than that of the titanium-aluminum-based alloy prepared at Comparative Example 1, It can be seen that the titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared by Example 2 has a higher elongation at break at 950 ° C than the titanium-aluminum-based alloy prepared by Comparative Example 1. [ As a result, in Examples 1 and 3, the yield strength, tensile strength, and elongation at break increased at 950 ° C compared to Comparative Example 1.
실험예 2Experimental Example 2
고온 인장시험 후 단면 조직 관찰Observation of cross-sectional structure after high-temperature tensile test
실시예 1 내지 3 및 비교예 1에 의해 준비된 타이타늄-알루미늄계 합금을 800℃ 및 950℃에서 인장시험을 수행한 후 파단면이 아닌 다른 부분을 절단하여 단면을 관찰하였고, 이를 도 11 및 도 12에 나타내었다. The titanium-aluminum based alloy prepared in Examples 1 to 3 and Comparative Example 1 was subjected to a tensile test at 800 DEG C and 950 DEG C, and then a portion other than the fractured surface was cut to observe the cross section. Figs. 11 and 12 Respectively.
도 11 및 도 12을 참조하면, 본 발명의 실시예를 따르는 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 전형적인 타이타늄-알루미늄계 합금의 라멜라 미세구조가 관찰되는 것을 알 수 있다. Referring to FIGS. 11 and 12, it can be seen that a lamellar microstructure of a typical titanium-aluminum alloy is observed in the titanium-aluminum alloy for 3D printing having excellent prepared high-temperature characteristics according to the embodiment of the present invention.
도 13은 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금의 800도 및 950도 인장시험 후 파단 표면을 관찰한 것이다. 취성파괴의 경우 매끈한 벽개파괴면이 관찰되고, 연성파괴의 경우는 잔물결 형태 (dimple)의 파괴면이 관찰된다.13 is a view of a fracture surface of a titanium-aluminum-based alloy for 3D printing excellent in high-temperature characteristics prepared according to Example 1 after tensile test at 800 degrees and 950 degrees. In the case of brittle fracture, a smooth cleavage fracture surface is observed, and in the case of soft fracture, a fracture surface of a dimple is observed.
도 13을 참조하면, 실시예 1에 의해 준비된 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금은 주로 소성변형에 의한 잔물결의 파괴면이 관찰되는 것을 알 수 있다. Referring to FIG. 13, it can be seen that a fracture surface of a ripple due to plastic deformation is observed mainly in the titanium-aluminum alloy for 3D printing, which is excellent in high-temperature characteristics prepared by Example 1.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.The present invention is not limited to the above-described embodiment and the accompanying drawings, but is intended to be limited by the appended claims. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. something to do.
실험예 3Experimental Example 3
고온 인장 특성 확인Identification of high temperature tensile properties
실시예 12에서 제조된 합금의 고온 인장 특성을 확인하기 위하여 다음과 같은 실험을 수행하였다.The following experiment was conducted to confirm the high temperature tensile properties of the alloy prepared in Example 12.
실시예 12에서 제조된 합금에 대하여 상기 실험예 1과 동일한 방법으로 950 ℃ 고온에서 인장특성을 확인하였고, 그 결과를 하기 표 4및 도 14에 나타내었다.Tensile properties of the alloy prepared in Example 12 were confirmed at 950 占 폚 at a high temperature in the same manner as in Experiment 1, and the results are shown in Table 4 and FIG.
시편Psalter 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 파단신율(%)Elongation at break (%)
실시예 12-1Example 12-1 503503 389389 1.41.4
실시예 12-2Example 12-2 526526 402402 1.51.5
실시예12 평균Example 12 [ 514.5514.5 395.5395.5 1.451.45
상기 표에 따르면, 본 발명에 따른 실시예 12의 합금은 비교예 1의 합금과 비교하여 950 ℃ 고온 인장특성 중 파단신율에 있어 우수한 특성을 가짐을 알 수 있다.According to the above table, the alloy of Example 12 according to the present invention has excellent characteristics in terms of elongation at break at 950 占 폚 in high temperature tensile properties as compared with the alloy of Comparative Example 1.
실험예 4Experimental Example 4
고온 인장특성 확인Identification of high temperature tensile properties
실시예 13, 14, 15에서 제조된 합금의 고온 인장 특성을 확인하기 위하여 다음과 같은 실험을 수행하였다.The following experiments were conducted to confirm the high temperature tensile properties of the alloys prepared in Examples 13, 14 and 15.
실시예 13, 14, 15에서 제조된 합금에 대하여 상기 실험예 1과 동일한 방법으로 950 ℃ 고온에서 speed rate은 0.0002/s로 인장특성을 확인하였고, 그 결과를 하기 표 5 및 도 15에 나타내었다.Tensile properties of alloys prepared in Examples 13, 14 and 15 were confirmed at a high temperature of 950 ° C. at a speed rate of 0.0002 / s in the same manner as in Experimental Example 1, and the results are shown in Table 5 and FIG. 15 .
시편Psalter 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 파단신율(%)Elongation at break (%)
실시예 13Example 13 471471 408408 19.519.5
실시예 14Example 14 490490 414414 1.31.3
실시예 15Example 15 495495 408408 7.87.8
상기 표에 따르면, 본 발명에 따른 실시예 13, 14, 15의 합금은 비교예 1의 합금과 비교하여 950 ℃고온 인장특성 중 파단신율에 있어 우수한 특성을 가짐을 알 수 있다.According to the above table, the alloys of Examples 13, 14, and 15 according to the present invention have excellent characteristics in terms of elongation at break at 950 占 폚 in high temperature tensile properties as compared with the alloys of Comparative Example 1.

Claims (6)

  1. 원자%로, nuclear pile,
    42.0 내지 46.0 %의 알루미늄(Al); 42.0 to 46.0% aluminum (Al);
    6.0 내지 9.0 %의 니오븀(Nb); 6.0 to 9.0% of niobium (Nb);
    0.2 내지 0.5 %의 실리콘(Si); 0.2 to 0.5% silicon (Si);
    0.2 내지 2.0 %의 텅스텐(W); 0.2 to 2.0% tungsten (W);
    잔부 타이타늄(Ti); 및 The remainder titanium (Ti); And
    불가피한 불순물을 포함하는 고온 특성이 우수한 3D 프린팅용 타이타늄-알루미늄계 합금.Titanium-aluminum alloy for 3D printing with excellent high-temperature characteristics including unavoidable impurities.
  2. 제1항에 있어서, The method according to claim 1,
    800℃에서 인장강도는 450 내지 550 MPa인 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금.A titanium-aluminum alloy for 3D printing having improved high-temperature properties at a tensile strength of 450 to 550 MPa at 800 ° C.
  3. 제1항에 있어서, The method according to claim 1,
    950℃에서 인장강도는 450 내지 550 MPa인 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금.A titanium-aluminum alloy for 3D printing having improved high-temperature properties at a tensile strength of 450 to 550 MPa at 950 ° C.
  4. 제1항에 있어서, The method according to claim 1,
    800℃에서 파단신율은 0.60 내지 0.80인 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금.A titanium-aluminum alloy for 3D printing having improved high-temperature properties with an elongation at break of from 0.60 to 0.80 at 800 < 0 > C.
  5. 제1항에 있어서,The method according to claim 1,
    950℃에서 파단신율은 1.60 내지 15.0인 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금.A titanium-aluminum-based alloy for 3D printing having improved high-temperature properties with a elongation at break of from 1.60 to 15.0 at 950 ° C.
  6. 원자%로, 42.0 내지 46.0 %의 알루미늄(Al), 6.0 내지 9.0 %의 니오븀(Nb), 0.2 내지 0.5 %의 실리콘(Si), 0.2 내지 2.0 %의 텅스텐(W), 잔부 타이타늄(Ti), 및 불가피한 불순물을 혼합하는 단계;(Al), 6.0 to 9.0% of niobium (Nb), 0.2 to 0.5% of silicon (Si), 0.2 to 2.0% of tungsten (W), the remainder of titanium (Ti) And unavoidable impurities;
    상기 혼합하는 단계에서 얻어진 혼합 입자를 용융하는 단계; 및Melting the mixed particles obtained in the mixing step; And
    상기 용융된 입자를 분말화하는 단계;를 포함하는 고온 특성이 개선된 3D 프린팅용 타이타늄-알루미늄계 합금의 제조방법.And a step of pulverizing the molten particles. The method of producing a titanium-aluminum-based alloy for 3D printing having improved high-temperature characteristics.
PCT/KR2018/014552 2017-11-24 2018-11-23 Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor WO2019103539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546262A JP7197597B2 (en) 2017-11-24 2018-11-23 Titanium-aluminum alloy for 3D printing with excellent high-temperature properties and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170158326 2017-11-24
KR10-2017-0158326 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019103539A1 true WO2019103539A1 (en) 2019-05-31

Family

ID=66632068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014552 WO2019103539A1 (en) 2017-11-24 2018-11-23 Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP7197597B2 (en)
KR (1) KR102197604B1 (en)
WO (1) WO2019103539A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112756624A (en) * 2020-12-11 2021-05-07 丹阳层现三维科技有限公司 Method for reducing cracks in selective laser melting printing titanium-aluminum alloy
CN114406273A (en) * 2022-01-25 2022-04-29 沈阳工业大学 Multi-stage gas atomization preparation method of titanium alloy spherical powder for 3D printing technology
CN115679231A (en) * 2022-09-16 2023-02-03 中南大学 Process for improving high-temperature strong plasticity of titanium-aluminum-based alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614799B1 (en) * 2019-12-27 2023-12-18 한국재료연구원 Titanium aluminium alloy with improved high temperature characteristrics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090063173A (en) * 2007-12-13 2009-06-17 게카에스에스-포르슝스첸트룸 게스트하흐트 게엠베하 Titanium aluminide alloys
KR101261885B1 (en) * 2012-07-25 2013-05-06 한국기계연구원 Lamellar structure tial base alloy having beta-gamma phase
US20160059312A1 (en) * 2014-09-01 2016-03-03 MTU Aero Engines AG PRODUCTION PROCESS FOR TiAl COMPONENTS
CN106636706A (en) * 2016-12-26 2017-05-10 宁夏大学 TiAl alloy wire for 3D (Three Dimensional) printing and preparation method thereof
US20170335436A1 (en) * 2016-05-23 2017-11-23 MTU Aero Engines AG ADDITIVE MANUFACTURING OF HIGH-TEMPERATURE COMPONENTS FROM TiAl

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947690B2 (en) * 2006-05-18 2012-06-06 株式会社大阪チタニウムテクノロジーズ Method for producing titanium-based alloy spherical powder
ES2381854T3 (en) 2006-07-14 2012-06-01 Avioprop S.r.l. Serial production of three-dimensional articles made of intermetallic compounds
JP4916028B2 (en) 2008-02-19 2012-04-11 倉敷化工株式会社 Anti-vibration device and mold for molding
CN102941343B (en) 2012-11-16 2014-12-24 西北有色金属研究院 Quick manufacturing method of titanium-aluminum alloy composite part
KR101342169B1 (en) 2013-05-20 2013-12-18 한국기계연구원 A tial base alloy ingot having ductility at room temperature
JP2016053198A (en) * 2014-09-04 2016-04-14 株式会社コイワイ Metal molded product and metal powder for metal molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090063173A (en) * 2007-12-13 2009-06-17 게카에스에스-포르슝스첸트룸 게스트하흐트 게엠베하 Titanium aluminide alloys
KR101261885B1 (en) * 2012-07-25 2013-05-06 한국기계연구원 Lamellar structure tial base alloy having beta-gamma phase
US20160059312A1 (en) * 2014-09-01 2016-03-03 MTU Aero Engines AG PRODUCTION PROCESS FOR TiAl COMPONENTS
US20170335436A1 (en) * 2016-05-23 2017-11-23 MTU Aero Engines AG ADDITIVE MANUFACTURING OF HIGH-TEMPERATURE COMPONENTS FROM TiAl
CN106636706A (en) * 2016-12-26 2017-05-10 宁夏大学 TiAl alloy wire for 3D (Three Dimensional) printing and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112756624A (en) * 2020-12-11 2021-05-07 丹阳层现三维科技有限公司 Method for reducing cracks in selective laser melting printing titanium-aluminum alloy
CN114406273A (en) * 2022-01-25 2022-04-29 沈阳工业大学 Multi-stage gas atomization preparation method of titanium alloy spherical powder for 3D printing technology
CN114406273B (en) * 2022-01-25 2024-03-22 沈阳工业大学 Multistage gas atomization preparation method of titanium alloy spherical powder for 3D printing technology
CN115679231A (en) * 2022-09-16 2023-02-03 中南大学 Process for improving high-temperature strong plasticity of titanium-aluminum-based alloy
CN115679231B (en) * 2022-09-16 2024-03-19 中南大学 Process for improving high-temperature plasticity of titanium-aluminum-based alloy

Also Published As

Publication number Publication date
KR102197604B1 (en) 2021-01-05
JP2021504588A (en) 2021-02-15
JP7197597B2 (en) 2022-12-27
KR20190060711A (en) 2019-06-03

Similar Documents

Publication Publication Date Title
WO2019103539A1 (en) Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2016104880A1 (en) Hpf molding member having excellent delamination resistance and manufacturing method therefor
WO2020013632A1 (en) Iron-based alloy powder and molded article using same
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016105064A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2014081246A1 (en) Welded joint of extremely low-temperature steel, and welding materials for preparing same
WO2015083878A1 (en) High-strength welding joint having excellent cryogenic impact toughness, and wire for flux-cored arc welding therefor
WO2013147407A1 (en) (100)[ovw] non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
WO2017099478A1 (en) Method for stereoscopically molding metal material using 3d printing that is capable of microstructure control and precipitation hardening control
WO2018030790A1 (en) High-strength hot rolled steel sheet having low inhomogeneity and excellent surface quality, and manufacturing method therefor
WO2016105062A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
US20070034048A1 (en) Hardmetal materials for high-temperature applications
WO2017095190A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
WO2019132426A1 (en) Non-oriented and thin electrical steel sheet having excellent magnetic and shape properties and method for manufacturing same
WO2020111640A1 (en) Non-oriented electrical steel sheet having low iron loss and excellent surface quality, and manufacturing method therefor
WO2012053813A2 (en) Aluminum alloy having improved oxidation resistance, corrosion resistance, or fatigue resistance, and die-cast material and extruded material produced from the aluminum alloy
WO2017111322A1 (en) Super strength hot-rolled steel sheet excellent ductility and manufacturing therefor
WO2016104837A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2019124927A1 (en) Aluminum alloy-plated steel sheet having excellent resistance to welding liquation brittleness and excellent plating adhesion
WO2018117675A1 (en) Cold rolled steel sheet having excellent processability, and manufacturing method therefor
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
WO2022235053A1 (en) High-strength aluminum alloy for 3d printing, and manufacturing method therefor
WO2021002683A1 (en) Low-cost ti-al-fe-sn-based titanium alloy having excellent mechanical properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881662

Country of ref document: EP

Kind code of ref document: A1