WO2019103082A1 - Thermosetting resin composition, dielectric film, interlayer dielectric film, multilayer wiring board, and semiconductor device - Google Patents

Thermosetting resin composition, dielectric film, interlayer dielectric film, multilayer wiring board, and semiconductor device Download PDF

Info

Publication number
WO2019103082A1
WO2019103082A1 PCT/JP2018/043120 JP2018043120W WO2019103082A1 WO 2019103082 A1 WO2019103082 A1 WO 2019103082A1 JP 2018043120 W JP2018043120 W JP 2018043120W WO 2019103082 A1 WO2019103082 A1 WO 2019103082A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
insulating film
component
cured product
Prior art date
Application number
PCT/JP2018/043120
Other languages
French (fr)
Japanese (ja)
Inventor
津与志 黒川
佐藤 淳也
吉田 真樹
慎 寺木
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN201880074803.8A priority Critical patent/CN111372960B/en
Priority to JP2019555355A priority patent/JP7204214B2/en
Priority to KR1020207014837A priority patent/KR102657819B1/en
Publication of WO2019103082A1 publication Critical patent/WO2019103082A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a thermosetting resin composition, an insulating film, an interlayer insulating film, a multilayer wiring board, and a semiconductor device.
  • the present invention relates to a thermosetting resin composition that can cope with high frequency, an insulating film, an interlayer insulating film, a multilayer wiring board, and a semiconductor device.
  • thermosetting polyphenylene ether PPE
  • Low thermal expansion may be desired for the use for the printed wiring board of these high frequency applications, for example, it can be set as desired CTE by adding a silica filler to PPE. Then, it is reported that a predetermined
  • moisture resistance reliability (temperature: 85 ° C., humidity: long-term reliability in an environment of 85%), heat resistance (especially in the present specification), the above-mentioned adhesive layer, cover lay, or substrate itself etc. It shows heat resistance at the time of soldering, meaning instantaneous heat resistance), and moisture absorption resistance is required.
  • An object of the present invention is to provide a thermosetting resin composition excellent in moisture resistance, heat resistance, and moisture absorption reflow resistance from the above-mentioned viewpoint.
  • thermosetting resin composition a thermosetting resin having an unsaturated double bond at the end
  • silane coupling agent represented by the general formula (1)
  • thermosetting resin composition comprising: [2] The thermosetting resin composition according to the above [1], wherein R 4 in the general formula (1) is a vinyl group or a (meth) acrylic group. [3] The thermosetting resin composition according to the above [1] or [2], wherein the component (C) is a styrene-based thermoplastic elastomer.
  • thermosetting resin composition comprising the thermosetting resin composition according to any one of the above [1] to [3].
  • An interlayer insulating film comprising the thermosetting resin composition according to any one of the above [1] to [3].
  • thermosetting resin composition according to any one of the above [1] to [3]
  • insulating film according to the above [4] or a cured product of the interlayer insulating film according to the above [5] .
  • thermosetting resin composition according to any one of the above [1] to [3], an insulating film according to the above [4], or a cured product of the interlayer insulating film according to the above [5]
  • a semiconductor device having
  • thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
  • the insulating film formed of the thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
  • the interlayer insulation film formed of the thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
  • a multilayer wiring board having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film is obtained.
  • a multilayer wiring board having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. can be provided.
  • a semiconductor device having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. Can be provided.
  • thermosetting resin composition comprises (A) a thermosetting resin having an unsaturated double bond at the end, (B) Silica filler surface-treated with a silane coupling agent represented by the general formula (1)
  • R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms, R 4 is a functional group having an unsaturated double bond at least at the end, and n is 5 to 9) and
  • Flexibility-imparting resin (with the exception of component (A)) including.
  • the component (A) imparts adhesiveness, high frequency characteristics, and heat resistance to the thermosetting resin composition of the present invention (hereinafter referred to as a thermosetting resin composition).
  • the high frequency characteristics refer to the property of reducing the transmission loss in the high frequency region.
  • the component (A) has a relative dielectric constant ( ⁇ ) at 10 GHz of 3.5 or less and a dielectric loss tangent (tan ⁇ ) of 0.003 or less.
  • relative dielectric constant
  • tan ⁇ dielectric loss tangent
  • a resin having a styrene group at the end is preferable.
  • thermosetting resin which has a styrene group at the terminal and has phenylene ether frame
  • Thermosetting resin (PPE) having a styrene group at the end and a phenylene ether skeleton in the main chain is excellent in high frequency characteristics, and the measured value of dielectric characteristics (especially tan ⁇ ) at temperature (normal temperature (25 ° C))
  • the compound represented by the general formula (2) is preferable because the change in the measured value at a high temperature (120 ° C.) is small.
  • R 5 , R 6 , R 7 , R 11 and R 12 may be the same or different, and are an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 8 , R 9 , R 10, which may be the same or different, are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 may be the same or different and each represents a hydrogen atom, an alkyl group having 6 or less carbon atoms, or A phenyl group -A- is a linear, branched or cyclic divalent hydrocarbon group having a carbon number of 20 or less.
  • R 21 and R 22 may be the same or different, and are an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 23 and R 24 may be the same or different, and a hydrogen atom , Alkyl group having 6 or less carbon atoms or phenyl group)
  • a and b represent integers of 0 to 100, at least one of which is not 0.
  • examples of -A- include methylene, ethylidene, 1-methylethylidene, 1,1-propylidene, 1,4-phenylenebis (1-methylethylidene), and 1,3-phenylenebis (1 -Methylethylidene), cyclohexylidene, phenylmethylene, naphthylmethylene, 1-phenylethylidene, and the like, and examples thereof include, but are not limited to, divalent organic groups.
  • R 5 , R 6 , R 7 , R 11 , R 12 , R 21 and R 22 each represent an alkyl group having 3 or less carbon atoms
  • the — (OXO) — represented by the formula (3) or the general formula (4) is a general formula (6), a general formula (7) or a general formula (8), and a general formula (5)
  • — (Y—O) — represented by) is the formula (9) or the formula (10), or a structure in which the formula (9) and the formula (10) are randomly arranged.
  • the method for producing the compound represented by the formula (2) is not particularly limited.
  • the terminal phenolic hydroxyl group of the bifunctional phenylene ether oligomer obtained by oxidatively coupling a bifunctional phenolic compound and a monofunctional phenolic compound Can be produced by vinylbenzyl etherification.
  • the number average molecular weight of the thermosetting resin of the component (A) is preferably in the range of 500 to 4,500, more preferably in the range of 800 to 3,500, still more preferably in the range of 1,000 to 2,500 in terms of polystyrene by GPC method.
  • the number average molecular weight is 500 or more, the resin composition of the present invention does not easily stick when it is formed into a coating film, and if it is 4,500 or less, the decrease in solubility in a solvent can be prevented.
  • the component (A) may be used alone or in combination of two or more.
  • the component (B) imparts to the thermosetting resin composition low thermal expansion, heat resistance, moisture resistance reliability, moisture absorption reflow resistance.
  • the component (B) has the general formula (1):
  • R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms
  • R 4 is a functional group having an unsaturated double bond at least at the end
  • n is It is a silica filler surface-treated with a silane coupling agent represented by 5 to 9).
  • R 4 specifically, vinyl group or (meth) acrylic group. From the viewpoint of adhesion to the component (A) due to reactivity, R 4 in the general formula (1) is preferably a vinyl group or a (meth) acrylic group, and a vinyl group is more preferable from the viewpoint of peel strength preferable.
  • octenyl trialkoxysilane and (meth) acryloxy alkyl trialkoxysilane are mentioned.
  • octenyltrialkoxysilane octenyltrimethoxysilane, octenyltriethoxysilane and the like can be mentioned.
  • examples of the (meth) acryloxyalkyltrialkoxysilane include (meth) acryloxyoctyltrimethoxysilane and (meth) acryloxyoctyltriethoxysilane.
  • Octenyltrimethoxysilane is more preferable from the viewpoint of improving peel strength.
  • silane coupling agent as component (B) Commercial products of the silane coupling agent as component (B) include octenyltrimethoxysilane (product name: KBM-1083) manufactured by Shin-Etsu Chemical Co., Ltd., methacryloxyoctyltrimethoxysilane (product name manufactured by Shin-Etsu Chemical Co., Ltd.) : KBM-5803).
  • the silane coupling agent used for (B) component may be individual or may be 2 or more types.
  • silica filler used for the component (B) examples include fused silica, ordinary silica, spherical silica, crushed silica, crystalline silica, amorphous silica and the like, and are not particularly limited.
  • Spherical fused silica is desirable from the viewpoints of the dispersibility of the silica filler, the fluidity of the thermosetting resin composition, the surface smoothness of the cured product, the dielectric properties, the low coefficient of thermal expansion, the adhesion, and the like.
  • the average particle diameter (if not spherical, the average maximum diameter) of the silica filler is not particularly limited, but it is 0.05 to 20 ⁇ m from the viewpoint of improving the moisture resistance after curing due to the small specific surface area.
  • the thickness is preferably 0.1 to 10 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the average particle diameter of the silica filler refers to a volume-based median diameter measured by a laser scattering diffraction type particle size distribution measuring device.
  • the silica filler used for (B) component may be individual or may be 2 or more types.
  • the method of surface-treating a silica filler using the above-mentioned coupling agent is not specifically limited, For example, a dry method, a wet method, etc. are mentioned.
  • the silica filler and the silane coupling agent in an amount appropriate to the surface area of the silica filler are put in a stirrer and stirred under appropriate conditions, or the silica filler is put in advance in a stirrer and under appropriate conditions.
  • an appropriate amount of silane coupling agent is added to the surface area of the silica filler as a stock solution or solution by dropping or spraying, and the silane coupling agent is uniformly deposited on the silica filler surface by stirring, It is a method of surface treatment (by hydrolysis).
  • a stirring apparatus although the mixer which can be stirred and mixed by high-speed rotation, such as a Henschel mixer etc., is mentioned, for example, it is not limited in particular.
  • the silica filler is added to a surface treatment solution in which a sufficient amount of silane coupling agent is dissolved in water or an organic solvent with respect to the surface area of the silica filler to be surface-treated, and the slurry is stirred.
  • This is a method in which the silane coupling agent and the silica filler are sufficiently reacted, and then the silica filler is separated from the surface treatment solution using filtration, centrifugation or the like, and dried by heating to perform surface treatment.
  • the component (B) may be used alone or in combination of two or more.
  • the component (C) is a flexibility-imparting resin (excluding the component (A)) which imparts flexibility to the thermosetting resin composition.
  • the component (C) is not particularly limited as long as it is different from the component (A), and may be a resin or an elastomer.
  • styrenic thermoplastic elastomers are preferable, and at high temperature (120 ° C.) with respect to the temperature dependency of dielectric properties (especially tan ⁇ ) (measured at normal temperature (25 ° C.)
  • the hydrogenated styrene thermoplastic elastomer is more preferable from the viewpoint of the smallness of the change in the measured value of
  • temperature dependence may increase.
  • the hydrogenated styrenic thermoplastic elastomer preferred as the component (C) is a styrenic block copolymer in which the unsaturated double bond in the main chain in the molecule is hydrogenated, and as this hydrogenated styrenic block copolymer, styrene- Ethylene / butylene-styrene block copolymer (SEBS), styrene- (ethylene-ethylene / propylene) -styrene block copolymer (SEEPS), styrene-ethylene / propylene-styrene block copolymer (SEPS), etc. And SEBS and SEEPS are preferred.
  • SEBS and SEEPS are excellent in dielectric properties, compatible with polyphenylene ether (PPE) which is an option of the component (A), modified PPE and the like, and can form a thermosetting resin composition having heat resistance. Furthermore, since the styrenic block copolymer contributes to the reduction of the elasticity of the thermosetting resin composition, it imparts flexibility to the insulating film, and a low elasticity of 3 GPa or less to the cured product of the thermosetting resin composition. Are suitable for applications where
  • the weight average molecular weight of the component (C) is preferably 30,000 to 200,000, and more preferably 80,000 to 120,000.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the component (C) may be used alone or in combination of two or more.
  • the total resin component in the thermosetting resin composition (excluding the solvent) is preferably 1 to 65% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 30% by mass. Being particularly preferred.
  • resin other than (A) component and (C) component an epoxy resin, maleimide resin, cyanate resin etc. can be used together, for example.
  • the amount of the component (A) is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass, based on 100 parts by mass of the components (A) and (C).
  • the amount of the component (A) is small, the cured product is not sufficiently cured, and defects such as a decrease in peel strength, an increase in thermal expansion coefficient (CTE), and a decrease in heat resistance tend to occur.
  • the amount of component (A) is large, the film becomes hard and brittle and tends to be broken, the film property is impaired, and the cured product becomes hard and brittle, causing defects such as reduction in peel strength and cracking easily due to heat shock. It will be easier.
  • Component (B) is preferably 45 to 75% by volume (64 to 88% by mass for a solid silica filler) in the thermosetting resin composition (excluding the solvent), preferably 50 to 70 More preferably, it is volume% (69 to 85 mass% in the case of a solid silica filler). If the amount of the component (B) is small, the desired CTE can not be achieved, and if the amount of the component (B) is large, the peel strength tends to be reduced.
  • the amount of the component (C) is preferably 90 to 50 parts by mass, and more preferably 80 to 60 parts by mass with respect to 100 parts by mass in total of the components (A) and (C).
  • thermosetting resin composition is an organic peroxide as a hardening accelerator of (A) component, and coupling agents, such as a silane coupling agent, (Integral blend) in the range which does not impair the effect of this invention.
  • coupling agents such as a silane coupling agent, (Integral blend) in the range which does not impair the effect of this invention.
  • additives such as flame retardants, tackifiers, antifoaming agents, flow control agents, thixotropic agents, dispersants, antioxidants, and flame retardants.
  • P-styryltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-1403), bis (triethoxysilylpropyl) tetrasulfide (Shin-Etsu Chemical Co., Ltd., KBE-846), Octenyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-1083), Methacryloxyoctyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-5803), 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical) Industrial Co., Ltd., KBM-503), 3-methacryloxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-503), 3-glycidoxypropyl trimethoxysilane (Shin-Etsu Chemical Co., Ltd.) ,
  • the thermosetting resin composition can be produced by dissolving or dispersing the raw materials such as the components (A), (B) and (C) constituting the resin composition in an organic solvent.
  • the apparatus for dissolving or dispersing these raw materials is not particularly limited, but it is preferable to use a stirrer equipped with a heating apparatus, a dissolver, a liquier, a 3-roll mill, a ball mill, a planetary mixer, a beads mill, etc. Can. Moreover, you may use combining these apparatuses suitably.
  • thermosetting resin composition preferably has a viscosity in the range of 200 to 3000 mPa ⁇ s.
  • the viscosity is a value measured at a rotational speed of 50 rpm and 25 ° C. using an E-type viscometer.
  • thermosetting resin composition obtained is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow resistance.
  • the insulating film of the present invention contains the above-mentioned thermosetting resin composition.
  • the insulating film is formed into a desired shape from the thermosetting resin composition.
  • the insulating film can be obtained by applying the above-mentioned thermosetting resin composition on a support and drying it.
  • the support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, and organic films such as polyester resin, polyethylene resin, and polyethylene terephthalate resin (PET).
  • PET polyethylene terephthalate resin
  • the support may be release-treated with a silicone compound or the like.
  • the thermosetting resin composition can be used in various shapes, and the shape is not particularly limited.
  • thermosetting resin composition coated to a support body
  • the gravure method, the slot die method, and the doctor blade method are preferable.
  • the slot die method an uncured film of a thermosetting resin composition having a thickness of 5 to 300 ⁇ m, that is, an insulating film can be obtained.
  • the drying conditions can be appropriately set according to the type and amount of the organic solvent used for the thermosetting resin composition, the thickness of the coating, etc. For example, at 50 to 120 ° C. for about 1 to 60 minutes. It can be done.
  • the insulating film obtained in this way has good storage stability. Note that the insulating film can be peeled off from the support at a desired timing.
  • Curing of the insulating film can be performed, for example, at 150 to 230 ° C. for 30 to 180 minutes.
  • the interlayer insulating film of the present invention can be produced and cured in the same manner as described above.
  • curing of the interlayer insulating film may be performed after sandwiching the interlayer insulating film between substrates on which wiring such as copper foil is formed, wiring by copper foil or the like It may be performed after laminating the interlayer insulation film which formed the above suitably.
  • the insulating film can also be used as a coverlay film for protecting the wiring on the substrate, and the curing conditions at that time are also the same.
  • a thermosetting resin composition can be similarly cured.
  • press curing may be performed, for example, at a pressure of 1 to 5 MPa.
  • the multilayer wiring board of the present invention comprises the cured product of the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the cured product of an interlayer insulating film.
  • the printed wiring board of the present invention is produced by curing the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the interlayer insulating film.
  • This printed wiring board is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow resistance by the hardened
  • multilayer wiring boards substrates for microwave or millimeter wave communication, particularly printed wiring boards for high frequency applications such as millimeter wave radar boards for vehicles, etc. may be mentioned.
  • the method for producing the multilayer wiring board is not particularly limited, and the same method as in the case of producing a printed wiring board using a general prepreg can be used.
  • the semiconductor device of the present invention is produced by curing the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the interlayer insulating film.
  • This semiconductor device is excellent in heat resistance, moisture resistance, and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics, and includes electronic components, semiconductor circuits, modules incorporating these, electronic devices, and the like.
  • thermosetting resin composition ⁇ Preparation of a thermosetting resin composition>
  • a rotation / revolution type stirrer Mazelstar (registered trademark), made by Kurabo)
  • the viscosity was adjusted to adjust the thermosetting resin composition.
  • the thermosetting resin composition is applied to a thickness of 50 to 100 ⁇ m on a polyethylene terephthalate (PET) substrate by a coating machine, and dried at 100 to 120 ° C. for 10 to 20 minutes, It became a film.
  • PET polyethylene terephthalate
  • OPE-2St 2200 described in Tables 1 to 2 is a styrene end-modified PPE (molecular weight (Mn): 2200) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • G1652 is made of Kraton Polymer SEBS (30% elastomer in styrene ratio), H1052 is manufactured by Asahi Kasei Co., Ltd.
  • SEBS styrene ratio 20% elastomer
  • FB-3SDX is a spherical silica (average particle size: 3.4 ⁇ m) manufactured by Denka Co., Ltd.
  • KBM-1403 is Shin-Etsu Chemical Co., Ltd.
  • P-styryl trimethoxysilane, KBE-846 is a bis (triethoxysilylpropyl) tetrasulfide available from Shin-Etsu Chemical Co., Ltd.
  • KBM-1083 is 7-octenyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-5803 is 8-methacryloxyoctyl trimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-503 is 3-methacryloxypropyl trimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBE-3083 is a octyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd. used.
  • ⁇ Evaluation method ⁇ ⁇ Peel strength> A film peeled off from the PET substrate is sandwiched between two Cu foils (Fukuda Metal Foil Powder Industry Co., Ltd., product name: CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa, and then 1 cm The piece cut out into 10 cm was used as a test piece, and the 180 ° peel strength of one Cu foil was measured using an autograph.
  • the S surface is the copper foil shine surface (glossy surface)
  • the M surface is the peel strength between the copper foil mat surface (roughened surface).
  • the S surface is preferably 2.5 N / cm or more, and the M surface is preferably 5 N / cm or more.
  • Thermal expansion coefficient (z-direction CTE)
  • the film peeled from the PET substrate is laminated to a thickness of about 2 mm, press-hardened at 1 MPa at 200 ° C. for 1 hour, and then cut into pieces of about 5 mm to be a test piece, thickness direction Coefficient of thermal expansion (z-direction CTE) was measured using TMA4000S manufactured by Netti Japan Co., Ltd.
  • the thermal expansion coefficient is preferably 70 ppm / ° C. or less.
  • ⁇ Dielectric characteristics> The film peeled from the PET substrate is press cured at 200 ° C. for 1 hour at 1 MPa, and then cut into 70 ⁇ 50 mm, and a split post dielectric resonator (SPDR) with a dielectric resonant frequency of 10 GHz and normal temperature normal conditions.
  • SPDR split post dielectric resonator
  • the relative dielectric constant of moisture ( ⁇ ) and the dielectric loss tangent (tan ⁇ ) were measured.
  • the relative dielectric constant is preferably 3.5 or less, and the dielectric loss tangent is preferably 0.0030 or less. Tables 1 and 2 show the results.
  • Humidity resistance (tan ⁇ change) The cured film whose dielectric properties were measured above was left in a constant temperature and humidity chamber at 85 ° C./85% RH for 1000 hours, and then tan ⁇ was measured by SPDR method (10 GHz) under normal temperature and normal humidity to obtain tan ⁇ The amount of change and the rate of change were determined. The change rate is preferably 80% or less. Tables 1 and 2 show the results.
  • ⁇ Solder heat resistance> A film peeled from a PET substrate is sandwiched between two Cu foils (CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa and adhered, and then cut out into 3 cm ⁇ 3 cm as a test piece, The solder bath was floated at each temperature shown in Table 3 for 60 seconds, and the occurrence of swelling was visually confirmed. The case where there was no change in the appearance such as swelling was regarded as “OK” (pass), and the case where swelling was observed was regarded as “NG” (failed).
  • the solder heat resistance is preferably 270 ° C. or higher. Table 3 shows the results.
  • Moisture absorption reflow resistance A film peeled from a PET substrate is sandwiched between two Cu foils (CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa and adhered, and then cut out into 1 cm ⁇ 10 cm as a test piece, After passing through a solder reflow furnace for 16 hours after the pressure cooker test (PCT: 121 ° C., 2 atm. Saturated water vapor), the Cu foil was peeled off, and the occurrence of swelling of the film was confirmed by an optical micrograph. When the area of the blister is less than 5%, " ⁇ " (very good), 5% or more and less than 30% is “ ⁇ " (good), and 30% or more is "X" (poor).
  • Table 4 shows the results.
  • the solder reflow furnace has a length of about 2.5 m with five heaters installed, and one of them is set to have a peak temperature of 260 ° C, so that the temperature inside the furnace is constant. After that, the test piece was passed at a conveyor speed of 0.35 m / min.
  • filler ratio volume percentage (Vol%) was determined as follows.
  • the density of the silica filler was 2.2 g / cm 3 , and the density of the raw material (organic matter) other than the silica filler was approximately 1.0 g / cm 3 .
  • Examples 1 to 8 are peel strength, thermal expansion coefficient, relative dielectric constant ( ⁇ ), dielectric loss tangent (tan ⁇ ), moisture resistance reliability (tan ⁇ change amount, change rate), solder Good results were obtained in all of the heat resistance and the endurance heat reflow property.
  • the rate of change in moisture proof reliability was large.
  • the solder heat resistance was poor.
  • Comparative Examples 3 to 6 in which the component (B) was not used the result of the resistance to moisture absorption reflow was also poor.
  • thermosetting resin composition of the present invention can form an insulating film or an interlayer insulating film which is excellent in heat resistance, humidity resistance, and moisture absorption reflow resistance, and is very useful.
  • the multilayer wiring board of the present invention is excellent in heat resistance, moisture resistance, and moisture absorption resistance due to the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film.
  • the semiconductor device of the present invention is suitable for high frequency applications because it is excellent in moisture resistance and moisture absorption resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film.

Abstract

A purpose of the present invention is to provide a thermosetting resin composition which is excellent in terms of heat resistance, reliability concerning moisture resistance, and moisture-absorption reflow characteristics. The thermosetting resin composition is characterized by comprising (A) a thermosetting resin having an unsaturated double bond at an end, (B) a silica filler surface-treated with a specific long-chain spacer type silane coupling agent including an alkyl group having an unsaturated double bond at at least an end, and (C) a flexibility-imparting resin (excluding component (A)). It is preferable that the unsaturated double bond of component (B) be a vinyl group.

Description

熱硬化性樹脂組成物、絶縁性フィルム、層間絶縁性フィルム、多層配線板、および半導体装置Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
 本発明は、熱硬化性樹脂組成物、絶縁性フィルム、層間絶縁性フィルム、多層配線板、および半導体装置に関する。特に、高周波化に対応可能な熱硬化性樹脂組成物、絶縁性フィルム、層間絶縁性フィルム、多層配線板、および半導体装置に関する。 The present invention relates to a thermosetting resin composition, an insulating film, an interlayer insulating film, a multilayer wiring board, and a semiconductor device. In particular, the present invention relates to a thermosetting resin composition that can cope with high frequency, an insulating film, an interlayer insulating film, a multilayer wiring board, and a semiconductor device.
 現在、各種通信機器等の電子機器には、高周波化が求められることが多い。例えば、ミリ波通信等の高周波用途のプリント配線板には、低伝送損失が要求されることが多い。この高周波用途のプリント配線板の接着層やカバーレイ、または基板自体に使用される材料として、熱硬化性ポリフェニレンエーテル(PPE)を用いることが、知られている。 At present, high frequency is often required for electronic devices such as various communication devices. For example, low transmission loss is often required for printed wiring boards for high frequency applications such as millimeter wave communication. It is known to use a thermosetting polyphenylene ether (PPE) as a material used for the adhesive layer or cover lay of a printed wiring board for this high frequency application or the substrate itself.
 これらの高周波用途のプリント配線板向けの用途には低熱膨張率(低CTE)化が望まれる場合があり、例えば、PPEにシリカフィラーを添加することにより、所望のCTEとすることができる。そこで、PPEに、所定の中空フィラー(シリカバルーン)を加えて、低誘電率のプリント配線板を製造することが、報告されている(特許文献1)。 Low thermal expansion (low CTE) may be desired for the use for the printed wiring board of these high frequency applications, for example, it can be set as desired CTE by adding a silica filler to PPE. Then, it is reported that a predetermined | prescribed hollow filler (silica balloon) is added to PPE, and a printed wiring board with a low dielectric constant is manufactured (patent document 1).
 ここで、上述の接着層やカバーレイ、または基板自体などには、耐湿信頼性(温度:85℃、湿度:85%の環境での長期信頼性)、耐熱性(本明細書では、特に、はんだ付時の耐熱性を示し、瞬間的な耐熱性を意味する)、耐吸湿リフロー性が、要求されている。 Here, moisture resistance reliability (temperature: 85 ° C., humidity: long-term reliability in an environment of 85%), heat resistance (especially in the present specification), the above-mentioned adhesive layer, cover lay, or substrate itself etc. It shows heat resistance at the time of soldering, meaning instantaneous heat resistance), and moisture absorption resistance is required.
特開2007-56170号公報JP 2007-56170 A
 しかしながら、PPEにシリカフィラー(シリカバルーンを含む)を添加すると、耐湿信頼性試験により、誘電正接(tanδ)の変化率が増大してしまう。また、耐吸湿リフロー性試験により、上述の接着層やカバーレイ、または基板の界面に、剥離やフクレが発生してしまう、という欠点があることがわかった。 However, when a silica filler (including a silica balloon) is added to PPE, the rate of change in dielectric loss tangent (tan δ) is increased by the moisture resistance reliability test. Further, it was found from the moisture absorption reflow resistance test that there is a defect that peeling or swelling occurs at the interface of the above-mentioned adhesive layer, cover lay, or substrate.
 本発明は、上述の観点から、耐湿信頼性、耐熱性、および耐吸湿リフロー性に優れる熱硬化性樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a thermosetting resin composition excellent in moisture resistance, heat resistance, and moisture absorption reflow resistance from the above-mentioned viewpoint.
 本発明は、以下の構成を有することによって上記問題を解決した熱硬化性樹脂組成物、絶縁性フィルム、層間絶縁性フィルム、多層配線板、および半導体装置に関する。
〔1〕(A)末端に不飽和二重結合を有する熱硬化性樹脂、
(B)一般式(1)で表されるシランカップリング剤で表面処理されたシリカフィラー
The present invention relates to a thermosetting resin composition, an insulating film, an interlayer insulating film, a multilayer wiring board, and a semiconductor device, which solve the above problems by having the following configuration.
[1] (A) a thermosetting resin having an unsaturated double bond at the end,
(B) Silica filler surface-treated with a silane coupling agent represented by the general formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R~Rは、それぞれ独立して、炭素数が1~3のアルキル基であり、Rは、少なくとも末端に不飽和二重結合を有する官能基であり、nは、5~9である)、および
(C)柔軟性付与樹脂(ただし(A)成分を除く)
を含むことを特徴とする、熱硬化性樹脂組成物。
〔2〕一般式(1)のRが、ビニル基、または(メタ)アクリル基である、上記〔1〕記載の熱硬化性樹脂組成物。
〔3〕(C)成分が、スチレン系熱可塑性エラストマーである、上記〔1〕または〔2〕記載の熱硬化性樹脂組成物。
〔4〕上記〔1〕~〔3〕のいずれか記載の熱硬化性樹脂組成物を含む、絶縁性フィルム。
〔5〕上記〔1〕~〔3〕のいずれか記載の熱硬化性樹脂組成物を含む、層間絶縁性フィルム。
〔6〕上記〔1〕~〔3〕のいずれか記載の熱硬化性樹脂組成物の硬化物、上記〔4〕記載の絶縁性フィルム、または上記〔5〕記載の層間絶縁性フィルムの硬化物。
〔7〕上記〔1〕~〔3〕のいずれか記載の熱硬化性樹脂組成物の硬化物、上記〔4〕記載の絶縁性フィルム、または上記〔5〕記載の層間絶縁性フィルムの硬化物を有する、多層配線板。
〔8〕上記〔1〕~〔3〕のいずれか記載の熱硬化性樹脂組成物の硬化物、上記〔4〕記載の絶縁性フィルム、または上記〔5〕記載の層間絶縁性フィルムの硬化物を有する、半導体装置。
(Wherein, R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms, R 4 is a functional group having an unsaturated double bond at least at the end, and n is 5 to 9) and (C) Flexibility-imparting resin (with the exception of component (A))
A thermosetting resin composition comprising:
[2] The thermosetting resin composition according to the above [1], wherein R 4 in the general formula (1) is a vinyl group or a (meth) acrylic group.
[3] The thermosetting resin composition according to the above [1] or [2], wherein the component (C) is a styrene-based thermoplastic elastomer.
[4] An insulating film comprising the thermosetting resin composition according to any one of the above [1] to [3].
[5] An interlayer insulating film comprising the thermosetting resin composition according to any one of the above [1] to [3].
[6] A cured product of the thermosetting resin composition according to any one of the above [1] to [3], an insulating film according to the above [4], or a cured product of the interlayer insulating film according to the above [5] .
[7] A cured product of the thermosetting resin composition according to any one of the above [1] to [3], an insulating film according to the above [4], or a cured product of the interlayer insulating film according to the above [5] Having a multilayer wiring board.
[8] A cured product of the thermosetting resin composition according to any one of the above [1] to [3], an insulating film according to the above [4], or a cured product of the interlayer insulating film according to the above [5] A semiconductor device having
 本発明〔1〕によれば、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる熱硬化性樹脂組成物を提供することができる。 According to this invention [1], the thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
 本発明〔4〕によれば、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる熱硬化性樹脂組成物により形成された絶縁性フィルムを提供することができる。
 本発明〔5〕によれば、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる熱硬化性樹脂組成物により形成された層間絶縁性フィルムを提供することができる。
According to this invention [4], the insulating film formed of the thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
According to this invention [5], the interlayer insulation film formed of the thermosetting resin composition which is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow property can be provided.
 本発明〔6〕によれば、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または上記層間絶縁性フィルムの硬化物により耐湿信頼性、および耐吸湿リフロー性に優れる多層配線板を提供することができる。本発明〔7〕によれば、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または上記層間絶縁性フィルムの硬化物により、耐湿信頼性、および耐吸湿リフロー性に優れる多層配線板を提供することができる。本発明〔8〕によれば、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または上記層間絶縁性フィルムの硬化物により、耐湿信頼性、および耐吸湿リフロー性に優れる半導体装置を提供することができる。 According to the invention [6], a multilayer wiring board having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film is obtained. Can be provided. According to the invention [7], a multilayer wiring board having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. Can be provided. According to the eighth aspect of the present invention, there is provided a semiconductor device having excellent moisture resistance and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. Can be provided.
〔熱硬化性樹脂組成物〕
 本発明の熱硬化性樹脂組成物は、(A)末端に不飽和二重結合を有する熱硬化性樹脂、
(B)一般式(1)で表されるシランカップリング剤で表面処理されたシリカフィラー
[Thermosetting resin composition]
The thermosetting resin composition of the present invention comprises (A) a thermosetting resin having an unsaturated double bond at the end,
(B) Silica filler surface-treated with a silane coupling agent represented by the general formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立して、炭素数が1~3のアルキル基であり、Rは、少なくとも末端に不飽和二重結合を有する官能基であり、nは、5~9である)、および
(C)柔軟性付与樹脂(ただし(A)成分を除く)
を含む。
(Wherein, R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms, R 4 is a functional group having an unsaturated double bond at least at the end, and n is 5 to 9) and (C) Flexibility-imparting resin (with the exception of component (A))
including.
 (A)成分は、本発明の熱硬化性樹脂組成物(以下、熱硬化性樹脂組成物という)に、接着性、高周波特性、耐熱性を付与する。ここで、高周波特性とは、高周波領域での伝送損失を小さくする性質をいう。(A)成分は、10GHzにおける比誘電率(ε)が3.5以下、誘電正接(tanδ)が0.003以下であると、高周波特性の観点から、好ましい。(A)成分としては、末端にスチレン基を有する樹脂が、好ましい。また、末端にスチレン基を有する樹脂としては、末端にスチレン基を有し主鎖にフェニレンエーテル骨格を有する熱硬化性樹脂(PPE)が好ましい。 The component (A) imparts adhesiveness, high frequency characteristics, and heat resistance to the thermosetting resin composition of the present invention (hereinafter referred to as a thermosetting resin composition). Here, the high frequency characteristics refer to the property of reducing the transmission loss in the high frequency region. From the viewpoint of high frequency characteristics, it is preferable that the component (A) has a relative dielectric constant (ε) at 10 GHz of 3.5 or less and a dielectric loss tangent (tan δ) of 0.003 or less. As the component (A), a resin having a styrene group at the end is preferable. Moreover, as resin which has a styrene group at the terminal, the thermosetting resin (PPE) which has a styrene group at the terminal and has phenylene ether frame | skeleton in a principal chain is preferable.
 末端にスチレン基を有し主鎖にフェニレンエーテル骨格を有する熱硬化性樹脂(PPE)としては、高周波特性に優れ、誘電特性(特にtanδ)の温度依存性(常温(25℃)での測定値に対する、高温(120℃)での測定値の変化)が小さいため、一般式(2)で示される化合物が好ましい。 Thermosetting resin (PPE) having a styrene group at the end and a phenylene ether skeleton in the main chain is excellent in high frequency characteristics, and the measured value of dielectric characteristics (especially tan δ) at temperature (normal temperature (25 ° C)) The compound represented by the general formula (2) is preferable because the change in the measured value at a high temperature (120 ° C.) is small.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、-(O-X-O)-は、一般式(3)または(4)で表される。) (In formula (2),-(O-X-O)-is represented by general formula (3) or (4).)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(3)中、R,R,R,R11,R12は、同一または異なってもよく、炭素数6以下のアルキル基またはフェニル基である。R,R,R10は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。) (In the formula (3), R 5 , R 6 , R 7 , R 11 and R 12 may be the same or different, and are an alkyl group having 6 or less carbon atoms or a phenyl group. R 8 , R 9 , R 10, which may be the same or different, are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.)
(式(4)中、R13,R14,R15,R16,R17,R18,R19,R20は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。-A-は、炭素数20以下の直鎖状、分岐状または環状の2価の炭化水素基である。) (In the formula (4), R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 may be the same or different and each represents a hydrogen atom, an alkyl group having 6 or less carbon atoms, or A phenyl group -A- is a linear, branched or cyclic divalent hydrocarbon group having a carbon number of 20 or less.)
(式(2)中、-(Y-O)-は、一般式(5)で表され、1種類の構造または2種類以上の構造がランダムに配列している。) (In the formula (2),-(Y-O)-is represented by the general formula (5), and one kind of structure or two or more kinds of structures are randomly arranged.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(5)中、R21,R22は、同一または異なってもよく、炭素数6以下のアルキル基またはフェニル基である。R23,R24は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。) (In formula (5), R 21 and R 22 may be the same or different, and are an alkyl group having 6 or less carbon atoms or a phenyl group. R 23 and R 24 may be the same or different, and a hydrogen atom , Alkyl group having 6 or less carbon atoms or phenyl group)
(式(2)中、a,bは、少なくともいずれか一方が0でない、0~100の整数を示す。) (In the formula (2), a and b represent integers of 0 to 100, at least one of which is not 0.)
(式(4)における-A-としては、例えば、メチレン、エチリデン、1-メチルエチリデン、1,1-プロピリデン、1,4-フェニレンビス(1-メチルエチリデン)、1,3-フェニレンビス(1-メチルエチリデン)、シクロヘキシリデン、フェニルメチレン、ナフチルメチレン、1-フェニルエチリデン、等の2価の有機基が挙げられるが、これらに限定されるものではない。) (In the formula (4), examples of -A- include methylene, ethylidene, 1-methylethylidene, 1,1-propylidene, 1,4-phenylenebis (1-methylethylidene), and 1,3-phenylenebis (1 -Methylethylidene), cyclohexylidene, phenylmethylene, naphthylmethylene, 1-phenylethylidene, and the like, and examples thereof include, but are not limited to, divalent organic groups.
(式(2)で示される化合物としては、R,R,R,R11,R12,R21,R22が炭素数3以下のアルキル基であり、R,R,R10,R13,R14,R15,R16,R17,R18,R19,R20,R23,R24が水素原子または炭素数3以下のアルキル基であるものが好ましく、特に一般式(3)または一般式(4)で表される-(O-X-O)-が、一般式(6)、一般式(7)、または一般式(8)であり、一般式(5)で表される-(Y-O)-が、式(9)または式(10)であるか、あるいは式(9)と式(10)がランダムに配列した構造であることがより好ましい。) (In the compound represented by the formula (2), R 5 , R 6 , R 7 , R 11 , R 12 , R 21 and R 22 each represent an alkyl group having 3 or less carbon atoms, R 8 , R 9 , R 10, R 13, R 14, R 15, R 16, R 17, R 18, R 19, R 20, R 23, preferably has R 24 is a hydrogen atom or an alkyl group having 3 or less carbon atoms, in particular the general The — (OXO) — represented by the formula (3) or the general formula (4) is a general formula (6), a general formula (7) or a general formula (8), and a general formula (5) It is more preferable that — (Y—O) — represented by) is the formula (9) or the formula (10), or a structure in which the formula (9) and the formula (10) are randomly arranged. )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)で示される化合物の製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。 The method for producing the compound represented by the formula (2) is not particularly limited. For example, the terminal phenolic hydroxyl group of the bifunctional phenylene ether oligomer obtained by oxidatively coupling a bifunctional phenolic compound and a monofunctional phenolic compound Can be produced by vinylbenzyl etherification.
 (A)成分の熱硬化性樹脂の数平均分子量は、GPC法によるポリスチレン換算で500~4,500の範囲が好ましく、800~3500の範囲がより好ましく、1000~2500の範囲がさらに好ましい。数平均分子量が500以上であれば、本発明の樹脂組成物を塗膜状にした際にべたつき難く、また、4,500以下であれば、溶剤への溶解性の低下を防止できる。 The number average molecular weight of the thermosetting resin of the component (A) is preferably in the range of 500 to 4,500, more preferably in the range of 800 to 3,500, still more preferably in the range of 1,000 to 2,500 in terms of polystyrene by GPC method. When the number average molecular weight is 500 or more, the resin composition of the present invention does not easily stick when it is formed into a coating film, and if it is 4,500 or less, the decrease in solubility in a solvent can be prevented.
 (A)成分は、単独でも2種以上を併用してもよい。 The component (A) may be used alone or in combination of two or more.
 (B)成分は、熱硬化性樹脂組成物に、低熱膨張性、耐熱性、耐湿信頼性、耐吸湿リフロー性を、付与する。(B)成分は、一般式(1): The component (B) imparts to the thermosetting resin composition low thermal expansion, heat resistance, moisture resistance reliability, moisture absorption reflow resistance. The component (B) has the general formula (1):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R~Rは、それぞれ独立して、炭素数が1~3のアルキル基であり、Rは、少なくとも末端に不飽和二重結合を有する官能基であり、nは、5~9である)で表されるシランカップリング剤で表面処理されたシリカフィラーである。Rとして、具体的には、ビニル基、または(メタ)アクリル基が挙げられる。反応性による(A)成分との接着性の観点から、一般式(1)のRは、ビニル基、または(メタ)アクリル基であると好ましく、ビニル基であるとピール強度の観点からさらに好ましい。 (Wherein, R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms, R 4 is a functional group having an unsaturated double bond at least at the end, and n is It is a silica filler surface-treated with a silane coupling agent represented by 5 to 9). As R 4, specifically, vinyl group or (meth) acrylic group. From the viewpoint of adhesion to the component (A) due to reactivity, R 4 in the general formula (1) is preferably a vinyl group or a (meth) acrylic group, and a vinyl group is more preferable from the viewpoint of peel strength preferable.
 (B)成分に使用されるシランカップリング剤としては、オクテニルトリアルコキシシランや(メタ)アクリロキシアルキルトリアルコキシシランが、挙げられる。オクテニルトリアルコキシシランとしては、オクテニルトリメトキシシラン、オクテニルトリエトキシシラン等が、挙げられる。(メタ)アクリロキシアルキルトリアルコキシシランとしては、(メタ)アクリロキシオクチルトリメトキシシラン、(メタ)アクリロキシオクチルトリエトキシシラン等が、挙げられる。ピール強度向上の観点から、オクテニルトリメトキシシランが、より好ましい。(B)成分のシランカップリング剤の市販品としては、信越化学工業(株)製オクテニルトリメトキシシラン(品名:KBM-1083)、信越化学工業(株)製メタクリロキシオクチルトリメトキシシラン(品名:KBM-5803)が、挙げられる。(B)成分に使用されるシランカップリング剤は、単独でも2種以上であってもよい。 As a silane coupling agent used for (B) component, octenyl trialkoxysilane and (meth) acryloxy alkyl trialkoxysilane are mentioned. As octenyltrialkoxysilane, octenyltrimethoxysilane, octenyltriethoxysilane and the like can be mentioned. Examples of the (meth) acryloxyalkyltrialkoxysilane include (meth) acryloxyoctyltrimethoxysilane and (meth) acryloxyoctyltriethoxysilane. Octenyltrimethoxysilane is more preferable from the viewpoint of improving peel strength. Commercial products of the silane coupling agent as component (B) include octenyltrimethoxysilane (product name: KBM-1083) manufactured by Shin-Etsu Chemical Co., Ltd., methacryloxyoctyltrimethoxysilane (product name manufactured by Shin-Etsu Chemical Co., Ltd.) : KBM-5803). The silane coupling agent used for (B) component may be individual or may be 2 or more types.
 (B)成分に使用されるシリカフィラーとしては、溶融シリカ、普通珪石、球状シリカ、破砕シリカ、結晶性シリカ、非晶質シリカ等が挙げられ、特に限定されない。シリカフィラーの分散性、熱硬化性樹脂組成物の流動性、硬化物の表面平滑性、誘電特性、低熱膨張率、接着性等の観点からは、球状の溶融シリカが望ましい。また、シリカフィラーの平均粒径(球状でない場合は、その平均最大径)は、特に限定されないが、比表面積の小ささによる硬化後の耐湿性向上の観点から、0.05~20μmであると、好ましく、0.1~10μmであると、より好ましく、1~10μmであると、さらに好ましい。ここで、シリカフィラーの平均粒径は、レーザー散乱回折式粒度分布測定装置により測定した体積基準のメジアン径をいう。(B)成分に使用されるシリカフィラーは、単独でも2種以上であってもよい。 Examples of the silica filler used for the component (B) include fused silica, ordinary silica, spherical silica, crushed silica, crystalline silica, amorphous silica and the like, and are not particularly limited. Spherical fused silica is desirable from the viewpoints of the dispersibility of the silica filler, the fluidity of the thermosetting resin composition, the surface smoothness of the cured product, the dielectric properties, the low coefficient of thermal expansion, the adhesion, and the like. Further, the average particle diameter (if not spherical, the average maximum diameter) of the silica filler is not particularly limited, but it is 0.05 to 20 μm from the viewpoint of improving the moisture resistance after curing due to the small specific surface area. The thickness is preferably 0.1 to 10 μm, more preferably 1 to 10 μm. Here, the average particle diameter of the silica filler refers to a volume-based median diameter measured by a laser scattering diffraction type particle size distribution measuring device. The silica filler used for (B) component may be individual or may be 2 or more types.
 上述のカップリング剤を用いて、シリカフィラーを表面処理する方法は、特に限定されず、例えば、乾式法、湿式法等が、挙げられる。 The method of surface-treating a silica filler using the above-mentioned coupling agent is not specifically limited, For example, a dry method, a wet method, etc. are mentioned.
 乾式法は、シリカフィラーと、シリカフィラーの表面積に対して適切な量のシランカップリング剤を撹拌装置に入れ、適切な条件で撹拌するか、予めシリカフィラーを攪拌装置に入れ、適切な条件で攪拌しながら、シリカフィラーの表面積に対して適切な量のシランカップリング剤を、原液または溶液にて滴下または噴霧等により添加し、攪拌によってシリカフィラー表面にシランカップリング剤を均一に付着させ、(加水分解させることによって)表面処理する方法である。撹拌装置としては、例えば、ヘンシェルミキサー等の高速回転で、撹拌・混合ができるミキサーが挙げられるが、特に、限定されるものではない。 In the dry method, the silica filler and the silane coupling agent in an amount appropriate to the surface area of the silica filler are put in a stirrer and stirred under appropriate conditions, or the silica filler is put in advance in a stirrer and under appropriate conditions. While stirring, an appropriate amount of silane coupling agent is added to the surface area of the silica filler as a stock solution or solution by dropping or spraying, and the silane coupling agent is uniformly deposited on the silica filler surface by stirring, It is a method of surface treatment (by hydrolysis). As a stirring apparatus, although the mixer which can be stirred and mixed by high-speed rotation, such as a Henschel mixer etc., is mentioned, for example, it is not limited in particular.
 湿式法は、表面処理をするシリカフィラーの表面積に対して、十分な量のシランカップリング剤を、水または有機溶剤に溶解した表面処理溶液に、シリカフィラーを添加し、スラリー状になるよう撹拌することにより、シランカップリング剤とシリカフィラーを十分反応させた後、濾過や遠心分離等を用い、シリカフィラーを表面処理溶液から分離し、加熱乾燥して、表面処理を行う方法である。 In the wet method, the silica filler is added to a surface treatment solution in which a sufficient amount of silane coupling agent is dissolved in water or an organic solvent with respect to the surface area of the silica filler to be surface-treated, and the slurry is stirred. This is a method in which the silane coupling agent and the silica filler are sufficiently reacted, and then the silica filler is separated from the surface treatment solution using filtration, centrifugation or the like, and dried by heating to perform surface treatment.
 (B)成分は、単独でも2種以上を併用してもよい。 The component (B) may be used alone or in combination of two or more.
 (C)成分は、熱硬化性樹脂組成物に柔軟性を付与する、柔軟性付与樹脂(ただし(A)成分を除く)である。(C)成分は、(A)成分と異なるものであれば、特に限定されず、樹脂であっても、エラストマーであってもよい。 The component (C) is a flexibility-imparting resin (excluding the component (A)) which imparts flexibility to the thermosetting resin composition. The component (C) is not particularly limited as long as it is different from the component (A), and may be a resin or an elastomer.
 (C)成分としては、誘電特性の観点から、スチレン系熱可塑性エラストマーが、好ましく、誘電特性(特にtanδ)の温度依存性(常温(25℃)での測定値に対する、高温(120℃)での測定値の変化)の小ささの観点から、水添スチレン系熱可塑性エラストマーが、より好ましい。なお、ポリブタジエンを水添したものは、耐熱性は良くなるが、温度依存性が増大する場合がある。 As the component (C), from the viewpoint of dielectric properties, styrenic thermoplastic elastomers are preferable, and at high temperature (120 ° C.) with respect to the temperature dependency of dielectric properties (especially tan δ) (measured at normal temperature (25 ° C.) The hydrogenated styrene thermoplastic elastomer is more preferable from the viewpoint of the smallness of the change in the measured value of In addition, although the thing which hydrogenated the polybutadiene improves heat resistance, temperature dependence may increase.
 (C)成分として好ましい水添スチレン系熱可塑性エラストマーは、分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーであり、この水添スチレン系ブロックコポリマーとしては、スチレン-エチレン/ブチレン-スチレンブロック共重合体(SEBS)や、スチレン-(エチレン-エチレン/プロピレン)-スチレンブロック共重合体(SEEPS)、スチレン-エチレン/プロピレン-スチレンブロック共重合体(SEPS)等が、挙げられ、SEBS、SEEPSが好ましい。SEBSやSEEPSは、誘電特性に優れ、(A)成分の選択肢であるポリフェニレンエーテル(PPE)、変性PPE等と相溶性がよく、耐熱性をもつ熱硬化性樹脂組成物を形成できるからである。さらに、スチレン系ブロックコポリマーは、熱硬化性樹脂組成物の低弾性化にも寄与するため、絶縁性フィルムに柔軟性を付与し、また熱硬化性樹脂組成物の硬化物に3GPa以下の低弾性が求められる用途に好適である。 The hydrogenated styrenic thermoplastic elastomer preferred as the component (C) is a styrenic block copolymer in which the unsaturated double bond in the main chain in the molecule is hydrogenated, and as this hydrogenated styrenic block copolymer, styrene- Ethylene / butylene-styrene block copolymer (SEBS), styrene- (ethylene-ethylene / propylene) -styrene block copolymer (SEEPS), styrene-ethylene / propylene-styrene block copolymer (SEPS), etc. And SEBS and SEEPS are preferred. SEBS and SEEPS are excellent in dielectric properties, compatible with polyphenylene ether (PPE) which is an option of the component (A), modified PPE and the like, and can form a thermosetting resin composition having heat resistance. Furthermore, since the styrenic block copolymer contributes to the reduction of the elasticity of the thermosetting resin composition, it imparts flexibility to the insulating film, and a low elasticity of 3 GPa or less to the cured product of the thermosetting resin composition. Are suitable for applications where
 (C)成分の重量平均分子量は、30,000~200,000であるものが好ましく、80,000~120,000であることがより好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。(C)成分は、単独でも2種以上を併用してもよい。 The weight average molecular weight of the component (C) is preferably 30,000 to 200,000, and more preferably 80,000 to 120,000. The weight average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. The component (C) may be used alone or in combination of two or more.
 熱硬化性樹脂組成物(但し、溶剤を除く)中の全樹脂成分は、1~65質量%であることが好ましく、10~40質量%であることが、より好ましく、20~30質量%であることが、特に好ましい。(A)成分及び(C)成分以外の樹脂としては、例えば、エポキシ樹脂、マレイミド樹脂、シアネート樹脂等を併用することができる。 The total resin component in the thermosetting resin composition (excluding the solvent) is preferably 1 to 65% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 30% by mass. Being particularly preferred. As resin other than (A) component and (C) component, an epoxy resin, maleimide resin, cyanate resin etc. can be used together, for example.
 また、(A)成分は、(A)成分と(C)成分の合計100質量部に対して、10~50質量部であると好ましく、20~40質量部であると、より好ましい。(A)成分が少ないと、硬化物の硬化が充分でなくピール強度の低下や熱膨張係数(CTE)の増大、耐熱性の低下等の不具合が生じやすくなる。(A)成分が多いと、フィルムが硬く脆く割れやすくなり、フィルム性が損なわれ、また硬化物も硬く脆くなり、ピール強度の低下や、ヒートショックによるクラックが発生しやすくなるなどの不具合が生じやすくなる。 The amount of the component (A) is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass, based on 100 parts by mass of the components (A) and (C). When the amount of the component (A) is small, the cured product is not sufficiently cured, and defects such as a decrease in peel strength, an increase in thermal expansion coefficient (CTE), and a decrease in heat resistance tend to occur. If the amount of component (A) is large, the film becomes hard and brittle and tends to be broken, the film property is impaired, and the cured product becomes hard and brittle, causing defects such as reduction in peel strength and cracking easily due to heat shock. It will be easier.
 (B)成分は、熱硬化性樹脂組成物(但し、溶剤を除く)中、45~75体積%(中実シリカフィラーであれば、64~88質量%)であることが好ましく、50~70体積%(中実シリカフィラーであれば69~85質量%)であることが、より好ましい。(B)成分が少ないと、所望するCTEを達成することができず、(B)成分が多いと、ピール強度が低下しやすくなる。 Component (B) is preferably 45 to 75% by volume (64 to 88% by mass for a solid silica filler) in the thermosetting resin composition (excluding the solvent), preferably 50 to 70 More preferably, it is volume% (69 to 85 mass% in the case of a solid silica filler). If the amount of the component (B) is small, the desired CTE can not be achieved, and if the amount of the component (B) is large, the peel strength tends to be reduced.
 (C)成分は、(A)成分と(C)成分の合計100質量部に対して、90~50質量部であると好ましく、80~60質量部であると、より好ましい。 The amount of the component (C) is preferably 90 to 50 parts by mass, and more preferably 80 to 60 parts by mass with respect to 100 parts by mass in total of the components (A) and (C).
 なお、熱硬化性樹脂組成物は、本発明の効果を損なわない範囲で、(A)成分の硬化促進剤としての有機過酸化物や、シランカップリング剤等のカップリング剤(インテグラルブレンド)、難燃剤、粘着性付与剤、消泡剤、流動調整剤、揺変剤、分散剤、酸化防止剤、難燃剤等の添加剤を含むことができる。シランカップリング剤としては、P-スチリルトリメトキシシラン(信越化学工業(株)製、KBM-1403)、ビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)、オクテニルトリメトキシシラン(信越化学工業(株)製、KBM-1083)、メタクリロキシオクチルトリメトキシシラン(信越化学工業(株)製、KBM-5803)、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、KBM-503)、3-メタクリロキシプロピルトリエトキシシラン(信越化学工業(株)製、KBE-503)、3-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製、KBM-403)、3-グリシドキシプロピルトリエトキシシラン(信越化学工業(株)製、KBE-403)等が、挙げられる。難燃剤としては、ホスフィン酸金属塩(クラリアントジャパン製、OP-935)等が、挙げられる。 In addition, the thermosetting resin composition is an organic peroxide as a hardening accelerator of (A) component, and coupling agents, such as a silane coupling agent, (Integral blend) in the range which does not impair the effect of this invention. And additives such as flame retardants, tackifiers, antifoaming agents, flow control agents, thixotropic agents, dispersants, antioxidants, and flame retardants. As a silane coupling agent, P-styryltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-1403), bis (triethoxysilylpropyl) tetrasulfide (Shin-Etsu Chemical Co., Ltd., KBE-846), Octenyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-1083), Methacryloxyoctyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-5803), 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical) Industrial Co., Ltd., KBM-503), 3-methacryloxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-503), 3-glycidoxypropyl trimethoxysilane (Shin-Etsu Chemical Co., Ltd.) , KBM-403), 3-glycidoxypropyltriethoxysilane (Shin-Etsu Chemical ( ) Ltd., KBE-403), etc. may be mentioned. Examples of the flame retardant include metal salts of phosphinic acid (manufactured by Clariant Japan, OP-935) and the like.
 熱硬化性樹脂組成物は、樹脂組成物を構成する(A)、(B)、(C)成分等の原料を、有機溶剤に溶解又は分散等させることにより、作製することができる。これらの原料の溶解又は分散等の装置としては、特に限定されるものではないが、加熱装置を備えた攪拌機、デゾルバー、ライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The thermosetting resin composition can be produced by dissolving or dispersing the raw materials such as the components (A), (B) and (C) constituting the resin composition in an organic solvent. The apparatus for dissolving or dispersing these raw materials is not particularly limited, but it is preferable to use a stirrer equipped with a heating apparatus, a dissolver, a liquier, a 3-roll mill, a ball mill, a planetary mixer, a beads mill, etc. Can. Moreover, you may use combining these apparatuses suitably.
 有機溶剤としては、芳香族系溶剤として、例えば、トルエン、キシレン等、ケトン系溶剤として、例えばメチルエチルケトン、メチルイソブチルケトン等が挙げられる。有機溶剤は、単独でも、2種以上を組み合わせて用いてもよい。作業性の点から、熱硬化性樹脂組成物は、200~3000mPa・sの粘度の範囲であることが好ましい。粘度は、E型粘度計を用いて、回転数50rpm、25℃で測定した値とする。 As the organic solvent, examples of the aromatic solvent include toluene, xylene and the like, and examples of the ketone solvent include methyl ethyl ketone and methyl isobutyl ketone. The organic solvents may be used alone or in combination of two or more. From the viewpoint of workability, the thermosetting resin composition preferably has a viscosity in the range of 200 to 3000 mPa · s. The viscosity is a value measured at a rotational speed of 50 rpm and 25 ° C. using an E-type viscometer.
 得られる熱硬化性樹脂組成物は、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる。 The thermosetting resin composition obtained is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow resistance.
〔絶縁性フィルム〕
 本発明の絶縁性フィルムは、上述の熱硬化性樹脂組成物を含む。絶縁性フィルムは、熱硬化性樹脂組成物から、所望の形状に形成される。具体的には、絶縁性フィルムは、上述の熱硬化性樹脂組成物を、支持体の上に、塗布した後、乾燥することにより、得ることができる。支持体は、特に限定されず、銅、アルミニウム等の金属箔、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂(PET)等の有機フィルム等が挙げられる。支持体はシリコーン系化合物等で離型処理されていてもよい。なお、熱硬化性樹脂組成物は、種々の形状で使用することができ、形状は特に限定されない。
[Insulating film]
The insulating film of the present invention contains the above-mentioned thermosetting resin composition. The insulating film is formed into a desired shape from the thermosetting resin composition. Specifically, the insulating film can be obtained by applying the above-mentioned thermosetting resin composition on a support and drying it. The support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, and organic films such as polyester resin, polyethylene resin, and polyethylene terephthalate resin (PET). The support may be release-treated with a silicone compound or the like. The thermosetting resin composition can be used in various shapes, and the shape is not particularly limited.
 熱硬化性樹脂組成物を支持体に塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からはグラビア法、スロットダイ法、ドクターブレード法が好ましい。スロットダイ法により、厚さが5~300μmの熱硬化性樹脂組成物の未硬化フィルム、すなわち絶縁性フィルムを得ることができる。 Although the method of apply | coating a thermosetting resin composition to a support body is not specifically limited, From the point of thin film formation and film thickness control, the gravure method, the slot die method, and the doctor blade method are preferable. By the slot die method, an uncured film of a thermosetting resin composition having a thickness of 5 to 300 μm, that is, an insulating film can be obtained.
 乾燥条件は、熱硬化性樹脂組成物に使用される有機溶剤の種類や量、塗布の厚み等に応じて、適宜、設定することができ、例えば、50~120℃で、1~60分程度とすることができる。このようにして得られた絶縁性フィルムは、良好な保存安定性を有する。なお、絶縁性フィルムは、所望のタイミングで、支持体から剥離することができる。 The drying conditions can be appropriately set according to the type and amount of the organic solvent used for the thermosetting resin composition, the thickness of the coating, etc. For example, at 50 to 120 ° C. for about 1 to 60 minutes. It can be done. The insulating film obtained in this way has good storage stability. Note that the insulating film can be peeled off from the support at a desired timing.
 絶縁性フィルムの硬化は、例えば、150~230℃で、30~180分間の条件で行うことができる。本発明の層間絶縁性フィルムは、上記と同様の方法で作製し、また、硬化を行うことができる。絶縁性フィルムを層間絶縁性フィルムとして用いる場合、層間絶縁性フィルムの硬化は、銅箔等による配線が形成された基板間に層間絶縁性フィルムを挟んでから行ってもよく、銅箔等による配線を形成した層間絶縁性フィルムを、適宜積層した後に行ってもよい。また、絶縁性フィルムは、基板上の配線を保護するカバーレイフィルムとして用いることもでき、その際の硬化条件も同様である。なお、熱硬化性樹脂組成物も、同様に硬化させることができる。また、硬化時に、例えば、1~5MPaの圧力で、プレス硬化させてもよい。 Curing of the insulating film can be performed, for example, at 150 to 230 ° C. for 30 to 180 minutes. The interlayer insulating film of the present invention can be produced and cured in the same manner as described above. When an insulating film is used as an interlayer insulating film, curing of the interlayer insulating film may be performed after sandwiching the interlayer insulating film between substrates on which wiring such as copper foil is formed, wiring by copper foil or the like It may be performed after laminating the interlayer insulation film which formed the above suitably. The insulating film can also be used as a coverlay film for protecting the wiring on the substrate, and the curing conditions at that time are also the same. A thermosetting resin composition can be similarly cured. In addition, during curing, press curing may be performed, for example, at a pressure of 1 to 5 MPa.
〔多層配線板〕
 本発明の多層配線板は、上述の熱硬化性樹脂組成物の硬化物、上述の絶縁性フィルム、または層間絶縁性フィルムの硬化物を有する。本発明のプリント配線板は、上述の熱硬化性樹脂組成物、上述の絶縁性フィルム、または層間絶縁性フィルムを用い、これを硬化して作製する。このプリント配線板は、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または層間絶縁性フィルムの硬化物により、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる。多層配線板の中では、マイクロ波やミリ波通信用の基板、特に車載用ミリ波レーダー基板等の高周波用途のプリント配線板等が挙げられる。多層配線板の製造方法は、特に、限定されず、一般的なプリプレグを使用してプリント配線板を作製する場合と同様の方法を、用いることができる。
[Multilayer wiring board]
The multilayer wiring board of the present invention comprises the cured product of the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the cured product of an interlayer insulating film. The printed wiring board of the present invention is produced by curing the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the interlayer insulating film. This printed wiring board is excellent in heat resistance, moisture resistance reliability, and moisture absorption reflow resistance by the hardened | cured material of the said thermosetting resin composition, the said insulating film, or the hardened | cured material of an interlayer insulation film. Among the multilayer wiring boards, substrates for microwave or millimeter wave communication, particularly printed wiring boards for high frequency applications such as millimeter wave radar boards for vehicles, etc. may be mentioned. The method for producing the multilayer wiring board is not particularly limited, and the same method as in the case of producing a printed wiring board using a general prepreg can be used.
〔半導体装置〕
 本発明の半導体装置は、上述の熱硬化性樹脂組成物、上述の絶縁性フィルム、または層間絶縁性フィルムを用い、これを硬化して作製する。この半導体装置は、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または層間絶縁性フィルムの硬化物により、耐熱性、耐湿信頼性、および耐吸湿リフロー性に優れる。ここで、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電子部品、半導体回路、これらを組み込んだモジュール、電子機器等を含むものである。
[Semiconductor device]
The semiconductor device of the present invention is produced by curing the above-mentioned thermosetting resin composition, the above-mentioned insulating film, or the interlayer insulating film. This semiconductor device is excellent in heat resistance, moisture resistance, and moisture absorption reflow resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. Here, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics, and includes electronic components, semiconductor circuits, modules incorporating these, electronic devices, and the like.
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 The present invention will be described by way of examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and% by mass unless otherwise specified.
〔実施例1~8、比較例1~6〕
〈熱硬化性樹脂組成物の作製〉
 表1~2に示す配合で、各成分を容器に計り取り、自転・公転式の攪拌機(マゼルスター(登録商標)、クラボウ製)で3分間攪拌混合した後、ビーズミルを使用して分散し、トルエンで粘度調整して熱硬化性樹脂組成物を調整した。次に、熱硬化性樹脂組成物を、塗布機により、ポリエチレンテレフタレート(PET)基材上に、50~100μmの厚さになるよう塗布し、100~120℃で10~20分間、乾燥し、フィルム化した。
ここで、表1~2に記載したOPE-2St 2200は、三菱ガス化学(株)製スチレン末端変性PPE(分子量(Mn):2200)を、
G1652は、クレイトンポリマー製SEBS(スチレン比30%エラストマー)を、
H1052は、旭化成(株)製SEBS(スチレン比20%エラストマー)を、
FB-3SDXは、デンカ(株)製球状シリカ(平均粒径:3.4μm)を、
MP-8FSは、(株)龍森製球状シリカ(平均粒径:0.5μm)を、
SFP-130MCは、デンカ(株)製球状シリカ(平均粒径:0.7μm)を、
KBM-1403は、信越化学(株)製P-スチリルトリメトキシシランを、
KBE-846は、信越化学(株)製ビス(トリエトキシシリルプロピル)テトラスルフィドを、
KBM-1083は、信越化学(株)製7-オクテニルトリメトキシシランを、
KBM-5803は、信越化学(株)製8-メタクリロキシオクチルトリメトキシシランを、
KBM-503は、信越化学(株)製3-メタクリロキシプロピルトリメトキシシランを、
KBE-3083は、信越化学(株)製オクチルトリエトキシシランを、
使用した。
[Examples 1 to 8, Comparative Examples 1 to 6]
<Preparation of a thermosetting resin composition>
In the formulation shown in Tables 1 to 2, measure each component in a container, stir and mix for 3 minutes with a rotation / revolution type stirrer (Mazelstar (registered trademark), made by Kurabo), disperse using a bead mill The viscosity was adjusted to adjust the thermosetting resin composition. Next, the thermosetting resin composition is applied to a thickness of 50 to 100 μm on a polyethylene terephthalate (PET) substrate by a coating machine, and dried at 100 to 120 ° C. for 10 to 20 minutes, It became a film.
Here, OPE-2St 2200 described in Tables 1 to 2 is a styrene end-modified PPE (molecular weight (Mn): 2200) manufactured by Mitsubishi Gas Chemical Co., Ltd.
G1652 is made of Kraton Polymer SEBS (30% elastomer in styrene ratio),
H1052 is manufactured by Asahi Kasei Co., Ltd. SEBS (styrene ratio 20% elastomer),
FB-3SDX is a spherical silica (average particle size: 3.4 μm) manufactured by Denka Co., Ltd.
MP-8 FS manufactured by Ryumori spherical silica (average particle size: 0.5 μm),
SFP-130 MC is a spherical silica (average particle diameter: 0.7 μm) manufactured by Denka Co., Ltd.
KBM-1403 is Shin-Etsu Chemical Co., Ltd. P-styryl trimethoxysilane,
KBE-846 is a bis (triethoxysilylpropyl) tetrasulfide available from Shin-Etsu Chemical Co., Ltd.
KBM-1083 is 7-octenyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
KBM-5803 is 8-methacryloxyoctyl trimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
KBM-503 is 3-methacryloxypropyl trimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
KBE-3083 is a octyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
used.
〔評価方法〕
〈ピール強度〉
 2枚のCu箔(福田金属箔粉工業(株)製、品名:CF-T9FZSV)に、PET基材から剥離したフィルムを挟み、200℃で1時間、3MPaでプレス硬化を行った後、1cm×10cmに切出したものを試験片とし、オートグラフを用い、一方のCu箔の180°ピール強度を測定した。ここで、S面は、銅箔シャイン面(光沢面)同士、M面は、銅箔マット面(粗化面)同士の間のピール強度である。S面は、2.5N/cm以上、M面は、5N/cm以上が好ましい。
〔Evaluation method〕
<Peel strength>
A film peeled off from the PET substrate is sandwiched between two Cu foils (Fukuda Metal Foil Powder Industry Co., Ltd., product name: CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa, and then 1 cm The piece cut out into 10 cm was used as a test piece, and the 180 ° peel strength of one Cu foil was measured using an autograph. Here, the S surface is the copper foil shine surface (glossy surface), and the M surface is the peel strength between the copper foil mat surface (roughened surface). The S surface is preferably 2.5 N / cm or more, and the M surface is preferably 5 N / cm or more.
〈熱膨張係数(z方向CTE)〉
 PET基材から剥離したフィルムを、約2mmの厚さになるよう積層し、200℃で1時間、1MPaでプレス硬化を行った後、約5mm角に切出したものを試験片とし、厚さ方向の熱膨張係数(z方向CTE)を、ネッチ・ジャパン(株)製TMA4000S用いて測定した。熱膨張係数は、70ppm/℃以下が、好ましい。
Thermal expansion coefficient (z-direction CTE)
The film peeled from the PET substrate is laminated to a thickness of about 2 mm, press-hardened at 1 MPa at 200 ° C. for 1 hour, and then cut into pieces of about 5 mm to be a test piece, thickness direction Coefficient of thermal expansion (z-direction CTE) was measured using TMA4000S manufactured by Netti Japan Co., Ltd. The thermal expansion coefficient is preferably 70 ppm / ° C. or less.
〈誘電特性〉
 PET基材から剥離したフィルムを、200℃で1時間、1MPaでプレス硬化させた後、70×50mmに裁断し、スプリットポスト誘電体共振器(SPDR)により、誘電体共振周波数10GHzで、常温常湿の比誘電率(ε)、誘電正接(tanδ)を測定した。比誘電率は、3.5以下、誘電正接は、0.0030以下であると、好ましい。表1~2に、結果を示す。
<Dielectric characteristics>
The film peeled from the PET substrate is press cured at 200 ° C. for 1 hour at 1 MPa, and then cut into 70 × 50 mm, and a split post dielectric resonator (SPDR) with a dielectric resonant frequency of 10 GHz and normal temperature normal conditions The relative dielectric constant of moisture (ε) and the dielectric loss tangent (tan δ) were measured. The relative dielectric constant is preferably 3.5 or less, and the dielectric loss tangent is preferably 0.0030 or less. Tables 1 and 2 show the results.
〈耐湿信頼性(tanδ変化)〉
 上術の誘電特性を測定した硬化フィルムを、85℃/85%RHの恒温恒湿槽中に1000時間放置した後、常温常湿で、SPDR法(10GHz)により、tanδを測定し、tanδの変化量と変化率を求めた。変化率は、80%以下であると、好ましい。表1~2に、結果を示す。
Humidity resistance (tan δ change)
The cured film whose dielectric properties were measured above was left in a constant temperature and humidity chamber at 85 ° C./85% RH for 1000 hours, and then tan δ was measured by SPDR method (10 GHz) under normal temperature and normal humidity to obtain tan δ The amount of change and the rate of change were determined. The change rate is preferably 80% or less. Tables 1 and 2 show the results.
〈はんだ耐熱性〉
 2枚のCu箔(CF-T9FZSV)に、PET基材から剥離したフィルムを挟み、200℃で1時間、3MPaでプレス硬化させて接着した後、3cm×3cmに切出したものを試験片とし、半田浴に、表3に示す各温度で60秒間フロートし、膨れ発生の有無を、目視で確認した。膨れ等の外観に変化がなかった場合を「OK」(合格)、膨れが観察された場合を「NG」(不合格)とした。はんだ耐熱性は、270℃以上であると、好ましい。表3に、結果を示す。
<Solder heat resistance>
A film peeled from a PET substrate is sandwiched between two Cu foils (CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa and adhered, and then cut out into 3 cm × 3 cm as a test piece, The solder bath was floated at each temperature shown in Table 3 for 60 seconds, and the occurrence of swelling was visually confirmed. The case where there was no change in the appearance such as swelling was regarded as “OK” (pass), and the case where swelling was observed was regarded as “NG” (failed). The solder heat resistance is preferably 270 ° C. or higher. Table 3 shows the results.
〈耐吸湿リフロー性〉
 2枚のCu箔(CF-T9FZSV)に、PET基材から剥離したフィルムを挟み、200℃で1時間、3MPaでプレス硬化させて接着した後、1cm×10cmに切出したものを試験片とし、プレッシャークッカー試験(PCT:121℃、2気圧飽和水蒸気)16時間後、はんだリフロー炉を通した後、Cu箔を剥離し、フィルムの膨れ発生有無を、光学顕微鏡写真で、確認した。膨れの面積が5%未満の場合を「◎」(とても良い)、5%以上30%未満の場合を「○」(良い)、30%以上の場合を「×」(悪い)とした。表4に、結果を示す。なお、はんだリフロー炉は、5基のヒーターが設置された、約2.5mの炉長で、そのうち1基がピーク温度である260℃となるように設定されており、炉内を恒温状態とした後、試験片を、コンベア速度0.35m/minで通過させた。
Moisture absorption reflow resistance
A film peeled from a PET substrate is sandwiched between two Cu foils (CF-T9FZSV), press-cured at 200 ° C. for 1 hour at 3 MPa and adhered, and then cut out into 1 cm × 10 cm as a test piece, After passing through a solder reflow furnace for 16 hours after the pressure cooker test (PCT: 121 ° C., 2 atm. Saturated water vapor), the Cu foil was peeled off, and the occurrence of swelling of the film was confirmed by an optical micrograph. When the area of the blister is less than 5%, "◎" (very good), 5% or more and less than 30% is "○" (good), and 30% or more is "X" (poor). Table 4 shows the results. The solder reflow furnace has a length of about 2.5 m with five heaters installed, and one of them is set to have a peak temperature of 260 ° C, so that the temperature inside the furnace is constant. After that, the test piece was passed at a conveyor speed of 0.35 m / min.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 ここで、フィラー比率(体積百分率(Vol%))は、以下のように求めた。
(フィラー体積)=(シリカフィラー質量)/(シリカフィラー密度)、(シリカフィラー以外原材料の体積)=(シリカフィラー以外原材料の質量合計)/(シリカフィラー以外原材料の密度)、フィラー比率(体積百分率(Vol%))=[(シリカフィラー体積)/{(シリカフィラー体積)+(シリカフィラー以外原材料の体積)}]×100。なお、シリカフィラーの密度は2.2g/cm、シリカフィラー以外原材料(有機物)の密度は、近似的に1.0g/cmとして計算した。
Here, the filler ratio (volume percentage (Vol%)) was determined as follows.
(Filler volume) = (silica filler mass) / (silica filler density), (volume of raw materials other than silica filler) = (mass total of raw materials other than silica filler) / (density of raw materials other than silica filler), filler ratio (volume percentage (Vol%)) = [(silica filler volume) / {(silica filler volume) + (volume of raw material other than silica filler)} × 100. The density of the silica filler was 2.2 g / cm 3 , and the density of the raw material (organic matter) other than the silica filler was approximately 1.0 g / cm 3 .
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1~4からわかるように、実施例1~8は、ピール強度、熱膨張係数、比誘電率(ε)、誘電正接(tanδ)、耐湿信頼性(tanδの変化量、変化率)、はんだ耐熱性、耐久熱リフロー性のすべてにおいて良好な結果であった。これに対して、(B)成分を使用しなかった比較例1~3は、耐湿信頼性の変化率が大きかった。(B)成分を使用しなかった比較例4~6は、はんだ耐熱性が、悪かった。(B)成分を使用しなかった比較例3~6は、耐吸湿リフロー性の結果も悪かった。 As can be seen from Tables 1 to 4, Examples 1 to 8 are peel strength, thermal expansion coefficient, relative dielectric constant (ε), dielectric loss tangent (tan δ), moisture resistance reliability (tan δ change amount, change rate), solder Good results were obtained in all of the heat resistance and the endurance heat reflow property. On the other hand, in Comparative Examples 1 to 3 in which the component (B) was not used, the rate of change in moisture proof reliability was large. In Comparative Examples 4 to 6 in which the component (B) was not used, the solder heat resistance was poor. In Comparative Examples 3 to 6 in which the component (B) was not used, the result of the resistance to moisture absorption reflow was also poor.
 本発明の熱硬化性樹脂組成物は、耐熱性、耐湿信頼性、耐吸湿リフロー性に優れる絶縁性フィルムや層間絶縁性フィルムを形成可能であり、非常に有用である。本発明の多層配線板は、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または層間絶縁性フィルムの硬化物により、耐熱性、耐湿信頼性、耐吸湿リフロー性に優れる。本発明の半導体装置は、上記熱硬化性樹脂組成物の硬化物、上記絶縁性フィルム、または層間絶縁性フィルムの硬化物により、耐湿信頼性、耐吸湿リフロー性に優れるため、高周波用途に適する。 The thermosetting resin composition of the present invention can form an insulating film or an interlayer insulating film which is excellent in heat resistance, humidity resistance, and moisture absorption reflow resistance, and is very useful. The multilayer wiring board of the present invention is excellent in heat resistance, moisture resistance, and moisture absorption resistance due to the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film. The semiconductor device of the present invention is suitable for high frequency applications because it is excellent in moisture resistance and moisture absorption resistance by the cured product of the thermosetting resin composition, the insulating film, or the cured product of the interlayer insulating film.

Claims (8)

  1.  (A)末端に不飽和二重結合を有する熱硬化性樹脂、
    (B)一般式(1)で表されるシランカップリング剤で表面処理されたシリカフィラー
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立して、炭素数が1~3のアルキル基であり、Rは、少なくとも末端に不飽和二重結合を有する官能基であり、nは、5~9である)、および
    (C)柔軟性付与樹脂(ただし(A)成分を除く)
    を含むことを特徴とする、熱硬化性樹脂組成物。
    (A) a thermosetting resin having an unsaturated double bond at the end,
    (B) Silica filler surface-treated with a silane coupling agent represented by the general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 to R 3 are each independently an alkyl group having 1 to 3 carbon atoms, R 4 is a functional group having an unsaturated double bond at least at the end, and n is 5 to 9) and (C) Flexibility-imparting resin (with the exception of component (A))
    A thermosetting resin composition comprising:
  2.  一般式(1)のRが、ビニル基、または(メタ)アクリル基である、請求項1記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein R 4 in the general formula (1) is a vinyl group or a (meth) acrylic group.
  3.  (C)成分が、スチレン系熱可塑性エラストマーである、請求項1または2記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the component (C) is a styrenic thermoplastic elastomer.
  4.  請求項1~3のいずれか1項記載の熱硬化性樹脂組成物を含む、絶縁性フィルム。 An insulating film comprising the thermosetting resin composition according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか1項記載の熱硬化性樹脂組成物を含む、層間絶縁性フィルム。 An interlayer insulating film comprising the thermosetting resin composition according to any one of claims 1 to 3.
  6.  請求項1~3のいずれか1項記載の熱硬化性樹脂組成物の硬化物、請求項4記載の絶縁性フィルム、または請求項5記載の層間絶縁性フィルムの硬化物。 The cured product of the thermosetting resin composition according to any one of claims 1 to 3, the insulating film according to claim 4, or the cured product of an interlayer insulating film according to claim 5.
  7.  請求項1~3のいずれか1項記載の熱硬化性樹脂組成物の硬化物、請求項4記載の絶縁性フィルム、または請求項5記載の層間絶縁性フィルムの硬化物を有する、多層配線板。 A multilayer wiring board comprising a cured product of the thermosetting resin composition according to any one of claims 1 to 3, the insulating film according to claim 4, or the cured product of the interlayer insulating film according to claim 5. .
  8.  請求項1~3のいずれか1項記載の熱硬化性樹脂組成物の硬化物、請求項4記載の絶縁性フィルム、または請求項5記載の層間絶縁性フィルムの硬化物を有する、半導体装置。 A semiconductor device comprising a cured product of the thermosetting resin composition according to any one of claims 1 to 3, the insulating film according to claim 4, or the cured product of the interlayer insulating film according to claim 5.
PCT/JP2018/043120 2017-11-24 2018-11-22 Thermosetting resin composition, dielectric film, interlayer dielectric film, multilayer wiring board, and semiconductor device WO2019103082A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880074803.8A CN111372960B (en) 2017-11-24 2018-11-22 Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
JP2019555355A JP7204214B2 (en) 2017-11-24 2018-11-22 Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
KR1020207014837A KR102657819B1 (en) 2017-11-24 2018-11-22 Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-225470 2017-11-24
JP2017225470 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019103082A1 true WO2019103082A1 (en) 2019-05-31

Family

ID=66631558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043120 WO2019103082A1 (en) 2017-11-24 2018-11-22 Thermosetting resin composition, dielectric film, interlayer dielectric film, multilayer wiring board, and semiconductor device

Country Status (4)

Country Link
JP (1) JP7204214B2 (en)
CN (1) CN111372960B (en)
TW (1) TWI772562B (en)
WO (1) WO2019103082A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2013241515A (en) * 2012-05-21 2013-12-05 Showa Denko Kk Curable composition and cured material thereof
JP2017009715A (en) * 2015-06-18 2017-01-12 太陽インキ製造株式会社 Photocurable resin composition, dry film, cured product and printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352782B2 (en) * 1999-12-01 2002-03-05 General Electric Company Poly(phenylene ether)-polyvinyl thermosetting resin
JP6672630B2 (en) * 2015-08-07 2020-03-25 味の素株式会社 Resin composition
JP6638380B2 (en) * 2015-12-22 2020-01-29 日立化成株式会社 Pre-supply type underfill material and cured product thereof, electronic component device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2013241515A (en) * 2012-05-21 2013-12-05 Showa Denko Kk Curable composition and cured material thereof
JP2017009715A (en) * 2015-06-18 2017-01-12 太陽インキ製造株式会社 Photocurable resin composition, dry film, cured product and printed wiring board

Also Published As

Publication number Publication date
JP7204214B2 (en) 2023-01-16
TWI772562B (en) 2022-08-01
JPWO2019103082A1 (en) 2020-12-03
KR20200079508A (en) 2020-07-03
TW201930463A (en) 2019-08-01
CN111372960A (en) 2020-07-03
CN111372960B (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP7202691B2 (en) Resin compositions, films, laminates and semiconductor devices
US20160021739A1 (en) Low dialectric composite material and laminate and printed circuit board thereof
JP6443735B2 (en) Resin composition, insulating film using the same, and semiconductor device
JP6917636B2 (en) Resin composition, thermosetting film using it, resin cured product, laminated board, printed wiring board, and semiconductor device
TW202108679A (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and wiring board
JP2019172803A (en) Resin composition, copper foil with resin, printed circuit board, and treatment method of copper foil with resin
JP6675183B2 (en) Thermosetting resin composition, thermosetting resin film, printed wiring board, and semiconductor device
JP7264485B2 (en) Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
TWI818994B (en) Thermosetting resin compositions, films containing the same, and multilayer wiring boards using the same
WO2019021862A1 (en) Resin composition, insulating layer for wiring board, and laminate
WO2019103082A1 (en) Thermosetting resin composition, dielectric film, interlayer dielectric film, multilayer wiring board, and semiconductor device
KR102657819B1 (en) Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
JP2021054889A (en) Modified hydrogenated polyolefin, resin composition, insulating film, semiconductor device, and method for producing modified hydrogenated polyolefin
WO2023176314A1 (en) Epoxy resin composition for interlayer insulation, resin sheet for interlayer insulation, laminate for circuit board, metal base circuit board, and power module
WO2023188507A1 (en) Adhesive composition
WO2023188506A1 (en) Adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555355

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881225

Country of ref document: EP

Kind code of ref document: A1