WO2019102736A1 - Rotating electric machine and stator - Google Patents

Rotating electric machine and stator Download PDF

Info

Publication number
WO2019102736A1
WO2019102736A1 PCT/JP2018/037990 JP2018037990W WO2019102736A1 WO 2019102736 A1 WO2019102736 A1 WO 2019102736A1 JP 2018037990 W JP2018037990 W JP 2018037990W WO 2019102736 A1 WO2019102736 A1 WO 2019102736A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
bobbin
wound
stator
winding
Prior art date
Application number
PCT/JP2018/037990
Other languages
French (fr)
Japanese (ja)
Inventor
孝 石上
金澤 宏至
浩一 柏
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880075014.6A priority Critical patent/CN111357173A/en
Publication of WO2019102736A1 publication Critical patent/WO2019102736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots

Definitions

  • the present invention relates to a rotating electrical machine and a stator.
  • Patent Document 1 includes a housing that houses the whole, a rotor rotatably mounted on the housing via a rotation shaft, and a stator mounted on the housing so as to face the outer periphery of the rotor.
  • the stator is fixed to the housing and has an annular stator core formed with teeth forming a plurality of slots, and a plurality of coils wound around the teeth through a bobbin made of a resin insulating material.
  • a stator coil the first layer being wound sequentially from the outer diameter side to the inner diameter side of the stator around the first layer, and the winding direction is reversed for each layer and wound;
  • the outermost layer is n (where n is an odd number of 3 or more), the final turn of each layer is m (where m is 2 or more), the first turn of the first layer is (1, 1), the second layer is the second Turn number (1, 2) When the first turn of the second layer is (2, 1) and the second turn of the second layer is (2, 2)...
  • the m turn of the nth layer is (n, m), the nth layer
  • the mth turn (n, m) is wound on the outer diameter side of the stator, and the stator coil on the inner diameter side is lane-changed by the short side teeth portion, and the stator coil on the outer diameter side
  • a rotating electrical machine is disclosed, which is characterized in that a part of the vehicle is changed by lane change at the long side teeth portion.
  • a rotating electrical machine is a rotating electrical machine comprising a stator and a rotatable rotor inside the stator, the stator being cylindrical and having an iron core with teeth.
  • a bobbin formed around the iron core; and a plurality of concentrated winding coils in which a coil is intensively wound around teeth of the iron core via the bobbin, at least one of the concentrated winding coils being In the first layer in contact with the teeth, a forward winding portion wound starting from the back periphery side of the iron core while moving to the inner periphery side with the back yoke side as the start point and at least one place as an air gap; And a reverse winding section which is wound around the gap while moving to the side.
  • a stator according to a second aspect of the present invention is an iron core having a cylindrical shape and teeth, a bobbin formed around the iron core, and a coil concentratedly wound on the iron core teeth via the bobbin. And a plurality of concentrated winding coils, wherein at least one of the concentrated winding coils is a first layer in contact with the teeth, starting from the back yoke side of the iron core and having at least one void as an inner circumferential side And a reverse winding portion wound around the gap while moving from the inner circumferential side to the back yoke side.
  • the windings can be densified.
  • a diagram showing the internal structure of the rotary electric machine 1 External view of stator 3 External view of block 15 A diagram showing the appearance of the split core block 12 External view of bobbin 13 The figure which shows the state which attached the bobbin 13 to the split core block 12
  • Diagram showing the width of the block 15 allowed The figure explaining the procedure of the winding in a 1st embodiment Diagram showing a block 15 Z wound according to the prior art Diagram showing a block 15 Z wound according to the prior art
  • a diagram showing a bobbin 13A in a second embodiment The figure which shows the state which wound the coil 8 around the bobbin 13A
  • FIGS. 1 to 11 First embodiment- Hereinafter, a first embodiment of a rotary electric machine and a stator according to the present invention will be described with reference to FIGS. 1 to 11.
  • the coil is formed, for example, using an enameled wire, and the "coil” and the "wire” are strictly different.
  • the “electric wire” is also referred to as a “coil” except when the physical shape is described.
  • FIG. 1 is a view showing an internal structure of a rotary electric machine 1 according to the present invention.
  • the stator 3 is fixed to the inner periphery of the housing 2 by shrink fitting or press fitting.
  • a SPM (Surface Permanent Magnet) type rotor core having permanent magnets 4 affixed to the outer periphery is inserted into the inner periphery of the stator 3 and the shaft 5 integrated coaxially with the rotor core is supported by the bearing 6 doing.
  • voltages with different phases are applied to each of the input terminals 7, current flows through the coils 8 in the stator 3 electrically connected to the input terminals 7, electrical energy is converted to mechanical energy, and the shaft 5 rotates.
  • an IPM (Interior Permanent Magnet) type rotor core may be used in which the permanent magnet 4 is inserted into an insertion groove provided in the axial direction of the core.
  • the rotary electric machine 1 has a magnetically invalid coil length projected from both axial end faces of the stator core 9, ie, We adopt "Concentrated winding" which can shorten the coil end. Further, as means for improving the alignment of the coil 8 to be wound and winding more conductors on the stator core 9, the rotary electric machine 1 adopts a "divided core" for dividing the stator core 9.
  • the cross section of the coil 8 may be a circle or a substantially rectangular parallelepiped. In other words, the coil 8 may be a so-called round wire or a so-called square wire.
  • FIG. 2 is an external view of the stator 3. As shown in FIG. 2, the stator 3 is composed of a plurality of blocks 15. The structure and manufacturing method of the block 15 will be described below.
  • FIG. 3 is an external view of the block 15. However, FIG. 3 shows three blocks 15 connected via the connecting wire 8A which is the coil 8.
  • the block 15 is provided with a split core block 12 which is an iron core, a bobbin 13 and a coil 8.
  • the coil 8 is wound around the split core block 12 via the bobbin 13 as described later to form a concentrated winding coil 8B.
  • a groove 18 shown in FIG. 3 fixes a winding start 16 described later.
  • the split core block 12 is created as follows.
  • FIG. 4 is a view showing the appearance of the split core block 12.
  • a split core block 12 is formed by punching a magnetic steel sheet having a thickness of 0.15 mm to 0.5 mm and laminating and fixing the laminated steel sheet by caulking or adhesion (not shown).
  • the split core block 12 includes teeth 10 on which the coil 8 is wound via the bobbin 13 and a back yoke 11.
  • FIG. 5 is an external view of the bobbin 13.
  • the bobbin 13 is injection molded of a resin such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide).
  • a protrusion 14 is provided on the side surface of the bobbin 13 to prevent the positional displacement of the coil 8.
  • the protrusion 14 is not an essential component, and the bobbin 13 may not include the protrusion 14.
  • the bobbin 13 is separable at the center in the vertical direction of FIG. As indicated by a symbol w in FIG. 5, the width of the region of the bobbin 13 in which the coil 8 is wound is referred to as the bobbin width. In the present embodiment, the bobbin width is constant. Further, the vertical direction indicated by reference symbol H in FIG. 5 is referred to as the height direction of the bobbin 13.
  • FIG. 6 is a view showing a state in which the bobbin 13 is assembled to the split core block 12.
  • the bobbin 13 is separated into two, and assembled so as to sandwich the split core block 12 shown in FIG. 4 from above and below. After that, when the coil 8 is wound around the bobbin 13 with an electric wire with an enameled film, a block 15 is formed. The procedure of winding will be described later.
  • Kt ⁇ ⁇ f ⁇ n ⁇ ⁇ (Equation 2)
  • the first is the effect of improving the efficiency by reducing the coil resistance.
  • the second effect is an effect of disposing a coil with a reduced volume on the outer peripheral side of the stator, increasing the rotor diameter and increasing the torque.
  • the rotary electric machine 1 is designed to increase the number of poles of the rotor.
  • the number of magnetic poles of the stator 3 that is, the number of divided core blocks 12 is increased, and the restriction on the shape of each divided core block 12 is increased. This will be specifically described with reference to the drawings.
  • FIG. 7 schematically shows the relationship between the number of poles of the rotor and the shape of the block 15.
  • FIG. 7 (a) is a diagram showing a case where twelve blocks 15 are provided
  • FIG. 7 (b) is a diagram showing a case where fourteen blocks 15 are provided.
  • the number of poles of the rotor is relatively small 8 or 10
  • 12 blocks 15 are often used
  • the number of poles of the rotor is relatively large 14
  • 14 blocks 15 are often used.
  • the width of the allowed block 15 becomes narrower.
  • the block 15 includes the split core block 12, the bobbin 13 and the coil 8, and the split core block 12 is formed by laminating the steel plates, and the bobbin 13 is formed by injection molding. It is.
  • the coil 8 since the coil 8 is wound around the bobbin 13, it is necessary to devise the narrowing of the allowed width of the block 15. This will be specifically described with reference to the drawings.
  • FIG. 8 is a diagram showing the width of the block 15 permitted. Since the blocks 15 constitute the stator 3 by being arranged side by side on the circumference, each block 15 is required to have a width not in contact with the adjacent block 15. Specifically, the coil 8 wound around the bobbin 13 of the block 15 is required to be contained in a substantially trapezoidal area indicated by reference numeral 900 in FIG. If the coil 8 does not fit in the trapezoidal region 900 as shown on the left side of the figure, the stator 15 can not be formed by combining the blocks 15 because they interfere with the coils 8 of the adjacent blocks 15.
  • a device is adopted in which the winding start 16 to the winding end 17 of the coil 8 are contained in the trapezoidal region 900. If the number of turns of the coil 8 in the adjacent blocks 15 is different, it is possible to set the space formed by reducing the number of turns of the coils 8 in the adjacent block 15 as the arrangement space of the opposing coil 8. Then, the number of turns of all the coils 8 is the same.
  • the innermost coil 8 in contact with the bobbin 13 is referred to as the first layer L1, and the coil wound around the first layer L1 is used.
  • the coil wound on the outer side of the second layer L2 and the second layer L2 is referred to as a third layer L3.
  • the coil 8 is present up to the third layer on the left side of FIG. 8, and the coil 8 is present up to the second layer on the right side of FIG.
  • the upper side of FIG. 8 is called the back yoke side or the outer peripheral side
  • the lower side of FIG. 8 is called the inner peripheral side.
  • a region which is formed on the bobbin 13 and which can be wound is referred to as a winding possible region 131.
  • FIG. 9 is a view for explaining the procedure of winding in the first embodiment.
  • the states shown in FIGS. 9A to 9D are referred to as first to fourth stages for convenience, respectively.
  • the winding described below may be executed by a machine such as a winding machine based on a previously created program, or may be executed by a human. In the following, the procedure will be described on the assumption that the winding machine performs winding.
  • FIG. 9 is a view of the block 15 as viewed from above the coil end 19 on the winding start 16 side of the coil 8, that is, from the upper side in FIG. Further, in FIG. 9, the number of turns of the coil 8 is indicated by “T”.
  • the winding machine winds off the winding start 16 of the coil 8 in the groove 18 and winds the first turn on the bobbin 13 at a position closest to the back yoke 11 in the winding possible region 131 . That is, in the first stage shown in FIG. 9A, the coil end 19 is formed on the back side of the drawing, but the coil end 19 is not formed on the front side of the drawing.
  • the winding machine forms a plurality of transition portions 22 of the first turn and the second turn at two winding pitches. .
  • an air gap 23 in which only one electric wire forming the coil 8 is formed is formed on the side surface 20 of the coil next to the first turn which is the winding start 16.
  • the winding machine winds the coil 8 while forming the transition portion 19A normally without forming the air gap 23 until it reaches the innermost circumference side of the winding possible region 131 after winding the second turn around the bobbin 13 thereafter. It winds and it becomes the 2nd step shown in Drawing 9 (b).
  • the coil end 19 also includes a normal transition portion 19A and a plurality of transition portions 22.
  • the coil 8 wound around while forming at least one air gap 23 starting from the back yoke side and moving to the innermost circumferential side will be referred to as a forward winding portion 910. That is, the coil 8 of the first turn to the fourth turn is the forward winding portion 910.
  • the winding machine forms the reverse transition portion 24 and forms the fifth turn of the coil 8 in the air gap 23 sandwiched by the coil 8 of the first turn and the second turn. It is the third stage.
  • the reverse transition portion 24 travels from the inner circumferential side to the back yoke side so as to jump over the coil 8 of the second turn to the fourth turn.
  • the coil 8 of the fifth turn has the coils 8 of the first turn and the second turn on both sides, so the coil 25 of the fifth turn inserted in the air gap 23 is fixed inside the air gap 23 by friction. Therefore, the coil 25 of the fifth turn is not pulled out of the air gap 23 by the tension at the time of winding.
  • the coil 8 wound in the air gap 23 while shifting from the inner circumferential side of the winding possible region 131 to the back yoke side is referred to as a reverse winding portion 920.
  • the coil 8 of the fifth turn is the reverse winding portion 920.
  • the winding machine winds the coil 26 of the sixth turn in the second layer so as to be in contact with the coil 25 of the fifth turn wound in the air gap 23 as shown in FIG.
  • the fifth turn coil 25 can be pressed from the upper layer, and the fifth turn coil 25 can be firmly prevented from dropping out of the air gap 23 after the winding.
  • the winding start 16 and the winding end 17 are provided on the back yoke 11 side, and the trapezoidal space in the slot is effectively utilized without generating an electric wire which is disposed to be obliquely disposed on the side surface 20 of the coil. Can be wound at a high density.
  • the winding machine starts winding the coil 8 from the most back yoke side of the winding area 131, and winds on three surfaces of the bobbin 13 excluding the coil end 19 on the winding start side. Form the first turn. Up to this point, the procedure of the present invention is the same. After that, as shown in FIG. 10 (b), the winding machine forms the normal transition portion 19A without leaving a gap until it reaches the innermost side of the possible winding area 131, and moves to the inner side. While winding the coil 8 around the bobbin 13.
  • the problem does not occur up to this point, as shown in FIG. 10C, since the side surface of the coil 8 of the sixth turn is not positioned in the valley formed by the first turn and the second turn, the following problem occurs. That is, although the conventional reverse transition portion 24Z transitioning from the fifth turn to the sixth turn is along the outer periphery of the plurality of normal transition portions 19A, the conventional reverse transition portion 24Z is caused by the tension when winding the coil 8 of the sixth turn. As shown by reference numeral 21 in FIGS. 10 and 11, the coil 8 is obliquely disposed so as to connect the two surfaces of the coil end 19 and the coil side surface 20 at the shortest distance.
  • the rotating electrical machine 1 includes the stator 3 and a rotatable rotor inside the stator 3.
  • the stator 3 is a cylindrical core core 12 having teeth 10, a coil 13 concentrated on the teeth 10 through the bobbin 13 formed around the core block 12, the bobbin 13 formed around the core block 12. And a plurality of wound concentrated winding coils 8B.
  • At least one of the concentrated winding coils 8B is the first layer in contact with the teeth 10 via the bobbin 13, and the back yoke side of the split core block 12 is the starting point and at least one place is the air gap 23 and is the innermost side
  • a forward winding portion 910 is wound while being transitioned, and a reverse winding portion 920 is wound around the air gap 23 while shifting from the inner circumferential side to the back yoke side. Therefore, the trapezoidal space in the slot can be effectively used to wind the coil 8 at a high density.
  • the air gap 23 is adjacent to the winding start 16 of the coil 8. Therefore, the winding start 16 and the winding end 17 are provided on the back yoke side, and the continuous winding and its winding are easy.
  • the concentrated winding coil 8B is in contact with the coil 8 wound in the air gap 23, and the coil 8 is further wound on the upper layer. Therefore, the coil 8 wound in the air gap 23 can be pressed from the upper layer, and the coil 8 can be firmly prevented from dropping out of the air gap 23 after the winding.
  • the rotary electric machine 1 includes at least two concentrated winding coils 8B continuously wound via the connecting wires 8A as shown in FIG. Therefore, an ideal winding can be obtained in the plurality of blocks 15 included in the rotary electric machine 1, and the performance of the rotary electric machine 1 can be improved.
  • the coil 8 wound in the second layer may not be present. That is, the coil 8 of the sixth turn in FIG. 9 may not be present.
  • the air gap 23 formed in the first layer is not limited to the place described in the first embodiment.
  • the air gap 23 may be provided after two turns are sequentially wound from the outermost periphery of the winding possible region 131, or the air gap 23 may be provided after three turns or more.
  • FIG. 12 is a view showing a procedure of winding in the case where a plurality of air gaps 23 are formed in one block 15.
  • the states shown in FIGS. 12 (a) to 12 (f) will be referred to as stages A1 to A6 for convenience.
  • the differences from the procedure described with reference to FIG. 9 in the first embodiment will be mainly described below. Also in this modification, the winding machine will be described on the assumption that the winding machine performs winding for convenience.
  • Step A1 shown in FIG. 12A is the same as the first step in the first embodiment.
  • the winding machine has two turns 22 of the first turn and the second turn to form a second turn on the inner peripheral side of the first turn. Form with line pitch.
  • a first air gap 23A into which only one electric wire forming the coil 8 is formed is formed on the side surface 20 of the coil next to the first turn which is the winding start 16.
  • a winding machine winds the 2nd turn around bobbin 13, and it becomes A2 stage.
  • the winding machine forms a plurality of transition portions 22 of the second turn and the third turn at a two-winding pitch. .
  • a second air gap 23B in which only one electric wire forming the coil 8 is formed next to the second turn is formed.
  • a winding machine winds the 3rd turn around bobbin 13, and it becomes A3 stage.
  • the coil 8 of the first turn to the third turn is the forward winding portion 910.
  • the winding machine forms the reverse transition portion 24 as shown in FIG. 12 (d), and the fourth turn of the coil 8 in the second air gap 23B sandwiched between the coil 8 of the second turn and the third turn. It forms and becomes the A4 stage.
  • the winding machine forms the reverse transition portion 24 and the fifth turn of the coil 8 in the first air gap 23A sandwiched by the coil 8 of the first turn and the second turn. It forms, and becomes A5 stage.
  • the coil 8 at the fourth turn and the fifth turn is the reverse winding portion 920.
  • the winding machine winds the coil 26 of the sixth turn in the second layer so as to contact the coil 25 of the fifth turn wound in the first air gap 23A as shown in FIG. 12 (f). Stage A6.
  • the block 15 has a first air gap 23A and a second air gap 23B.
  • the reverse winding part 920 is wound in order from the space
  • the blocks 15 constituting the stator 3 are provided with the concentrated winding coil 8B described with reference to FIG.
  • at least one block 15 may be provided with the concentrated winding coil 8B.
  • the stator 3 is provided with a plurality of divided core blocks 12 which can be physically separated.
  • the stator 3 in the first embodiment adopts a so-called split core method.
  • the stator 3 may adopt a so-called integral core system using an integrally molded core. Also in this case, the same effects as those of the first embodiment can be obtained.
  • FIGS. 13 to 14 A second embodiment of a rotary electric machine and a stator according to the present invention will be described with reference to FIGS. 13 to 14.
  • the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described.
  • the points that are not particularly described are the same as in the first embodiment.
  • the present embodiment differs from the first embodiment mainly in that the width of the bobbin is not uniform.
  • FIG. 13 is a view showing a bobbin 13A in the second embodiment.
  • FIG. 13 shows the bobbin 13A from the same viewpoint as FIG. 9 in the first embodiment.
  • the bobbin 13A includes arc-shaped guides g1 to g5 in contact with the first layer of the coil 8 to be wound.
  • the air gap 23 is formed at the second position from the back yoke side in the winding possible region 131, that is, at the position of the guide g2.
  • the guide g1 and the guide g2 may be referred to as a first contact portion
  • the guides g3 to g5 may be referred to as a second contact portion.
  • reference numeral 135 denotes a central axis of the bobbin 13A
  • reference numeral 132 denotes a reference position of the guides g1 and g2
  • reference numeral 133 denotes a reference position of the guides g3 to g5.
  • Reference numeral 134 is an inner wall of the bobbin 13A.
  • the positional relationship between the respective reference positions and the guides is, for example, a relation where the position closest to the central axis 135 of the arc-shaped guide matches the reference position. However, if all the guides g1 to g5 have the same relationship with the reference position, another reference may be adopted.
  • a distance between the first reference positions 132 passing through the central axis 135, in other words, a bobbin width of the first reference position 132 is set to ha. Further, the distance between the second reference positions 133 passing through the central axis 135, in other words, the bobbin width of the second reference position 133 is hb. hb is larger than ha. That is, the guides g3 to g5 are farther from the central axis 135 than the guides g1 and g2, and a step of hb-ha occurs between the guides g2 and g3.
  • FIG. 14 is a view showing a state in which the coil 8 is wound around the bobbin 13A. However, FIG. 14 shows only the cross section of the coil 8. Since the step of hb-ha is generated between the guide g2 and the guide g3 as described above, the coil 8 is less likely to come off due to the step after it is transferred to the air gap 23 after winding the fourth turn.
  • the gap 23 and the gap 23 on the back yoke side from the air gap 23 and the air gap 23 in which the reverse winding portion 920 is wound at a position in contact with the coil 8 are the guide g1 and the guide g2, that is, the first contact portion.
  • the guide g 3 to the guide g 5, that is, the second contact portion are at the positions in contact with the coil 8 and the inner peripheral side from the air gap 23.
  • the bobbin width ha of the first contact portion is narrower than the bobbin width hb of the second contact portion. Therefore, the coil 8 wound around the air gap 23 is unlikely to come off.
  • the guides g1 to g5 are arc-shaped, but the guides g1 to g5 may be flat.
  • FIG. 1 A third embodiment of a rotating electrical machine and a stator according to the present invention will be described with reference to FIG.
  • the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described.
  • the points that are not particularly described are the same as in the first embodiment.
  • the present embodiment differs from the first embodiment mainly in that a groove is provided on the end face of the bobbin.
  • FIG. 15 is a view showing a bobbin 13B according to the third embodiment.
  • the bobbin 13B has a groove 28 corresponding to the pitch of the first layer forward winding portion 910 on the bobbin end surface 27 on the coil end side. Since the bobbin 13B has the groove 28, the transition of the coil 8 at the bobbin end surface 27 at two winding pitch can be easily performed at the time of manufacture, and the positional deviation of the electric wire at the bobbin side surface 29 can be prevented after the manufacture.
  • the groove 28 may not be provided with the grooves 28 corresponding to all the forward winding parts 910, and may be provided with the grooves 28 corresponding to at least two winding pitches.
  • the bobbin 13B is provided with the groove 28 in which the forward winding portion 910 is wound at the end surface in the height direction. Therefore, the transition of the coil 8 at the bobbin end surface 27 can be easily performed at the time of manufacture, and the positional deviation of the electric wire at the bobbin side surface 29 can be prevented after the manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This rotating electric machine is provided with a stator and a rotor which is rotatable in the stator, wherein the stator is provided with a cylindrical core having teeth, a bobbin formed around the core, and a plurality of concentrated-wound coils comprising coils wound in a concentrated manner around the teeth of the core with the bobbin therebetween. At least one of the concentrated-wound coils is provided with: a forward-wound portion which is wound, in a first layer in contact with the teeth, from a start point on the back-yoke side of the core so as to transition toward the inner peripheral side while leaving an air gap in at least one location; and an inverse-wound portion which is wound in the air gap from the inner peripheral side so as to transition toward the back-yoke side.

Description

回転電機、固定子Rotating electric machine, stator
 本発明は、回転電機、および固定子に関する。 The present invention relates to a rotating electrical machine and a stator.
 地球温暖化を抑制するためにCO2の排出量を削減する技術の開発が求められている。このため、これを実現する自動車の電動化と、その駆動源であるモータや発電機を高出力化、高効率化に大きな期待が寄せられている。特許文献1には、全体を収容するハウジングと、このハウジングに回転軸を介して回転可能に取り付けられた回転子と、回転子の外周に対向してハウジングに取り付けられた固定子とを備え、前記固定子は、前記ハウジングに固定され、複数のスロットを形成するティース部が形成された環状の固定子鉄心と、前記ティース部に樹脂製の絶縁材料からなるボビンを介して巻き付けられた複数の固定子コイルとを有し、前記固定子コイルは、1層目を前記ティース部に前記固定子の外径側から内径側へ順次巻き付けられるとともに、層毎に巻き付け方向を反転させて巻き付けられ、最外層をn(但し、nは3以上の奇数)、各層の最終ターンをm(但し、mは2以上)とし、1層目の1ターン目を(1,1)、1層目の2ターン目を(1,2)、2層目の1ターン目を(2,1)、2層目の2ターン目を(2,2)・・・n層目のmターン目を(n,m)としたとき、n層目のmターン目(n,m)が前記固定子の外径側に巻き付けられ、内径側の前記固定子コイルが短辺側ティース部でレーンチェンジされるとともに、外径側の前記固定子コイルの一部を長辺側ティース部でレーンチェンジされていることを特徴とする回転電機が開示されている。 There is a need for the development of technology to reduce CO2 emissions in order to suppress global warming. For this reason, there is great expectation for the motorization of the motor vehicle to realize this and the higher output and higher efficiency of the motor and generator which are the drive sources. Patent Document 1 includes a housing that houses the whole, a rotor rotatably mounted on the housing via a rotation shaft, and a stator mounted on the housing so as to face the outer periphery of the rotor. The stator is fixed to the housing and has an annular stator core formed with teeth forming a plurality of slots, and a plurality of coils wound around the teeth through a bobbin made of a resin insulating material. A stator coil, the first layer being wound sequentially from the outer diameter side to the inner diameter side of the stator around the first layer, and the winding direction is reversed for each layer and wound; The outermost layer is n (where n is an odd number of 3 or more), the final turn of each layer is m (where m is 2 or more), the first turn of the first layer is (1, 1), the second layer is the second Turn number (1, 2) When the first turn of the second layer is (2, 1) and the second turn of the second layer is (2, 2)... The m turn of the nth layer is (n, m), the nth layer The mth turn (n, m) is wound on the outer diameter side of the stator, and the stator coil on the inner diameter side is lane-changed by the short side teeth portion, and the stator coil on the outer diameter side A rotating electrical machine is disclosed, which is characterized in that a part of the vehicle is changed by lane change at the long side teeth portion.
国際公開第2017/072912号International Publication No. 2017/072912
 特許文献1に記載されている発明では、巻線の高密度化が十分でない。 In the invention described in Patent Document 1, the densification of the winding is not sufficient.
 本発明の第1の態様による回転電機は、固定子と、前記固定子の内部に回転可能な回転子とを備える回転電機であって、前記固定子は、円筒型でありティースを有する鉄心と、前記鉄心の周りに形成されるボビンと、前記ボビンを介して前記鉄心のティースにコイルを集中的に巻回した複数の集中巻コイルとを備え、前記集中巻コイルの少なくとも一つは、前記ティースと接する第1層目に、前記鉄心のバックヨーク側を始点とし少なくとも1か所を空隙にして内周側に移行しつつ巻き回される順巻部と、前記内周側から前記バックヨーク側に移行しつつ前記空隙に巻き回される逆巻部とを備える。
 本発明の第2の態様による固定子は、円筒型でありティースを有する鉄心と、前記鉄心の周りに形成されるボビンと、前記ボビンを介して前記鉄心のティースにコイルを集中的に巻回した複数の集中巻コイルとを備え、前記集中巻コイルの少なくとも一つは、前記ティースと接する第1層目に、前記鉄心のバックヨーク側を始点とし少なくとも1か所を空隙にして内周側に移行しつつ巻き回される順巻部と、前記内周側から前記バックヨーク側に移行しつつ前記空隙に巻き回される逆巻部とを備える。
A rotating electrical machine according to a first aspect of the present invention is a rotating electrical machine comprising a stator and a rotatable rotor inside the stator, the stator being cylindrical and having an iron core with teeth. A bobbin formed around the iron core; and a plurality of concentrated winding coils in which a coil is intensively wound around teeth of the iron core via the bobbin, at least one of the concentrated winding coils being In the first layer in contact with the teeth, a forward winding portion wound starting from the back periphery side of the iron core while moving to the inner periphery side with the back yoke side as the start point and at least one place as an air gap; And a reverse winding section which is wound around the gap while moving to the side.
A stator according to a second aspect of the present invention is an iron core having a cylindrical shape and teeth, a bobbin formed around the iron core, and a coil concentratedly wound on the iron core teeth via the bobbin. And a plurality of concentrated winding coils, wherein at least one of the concentrated winding coils is a first layer in contact with the teeth, starting from the back yoke side of the iron core and having at least one void as an inner circumferential side And a reverse winding portion wound around the gap while moving from the inner circumferential side to the back yoke side.
 本発明によれば、巻線を高密度化できる。 According to the present invention, the windings can be densified.
回転電機1の内部構造を示す図A diagram showing the internal structure of the rotary electric machine 1 固定子3の外観図External view of stator 3 ブロック15の外観図External view of block 15 分割コアブロック12の外観を示す図A diagram showing the appearance of the split core block 12 ボビン13の外観図External view of bobbin 13 ボビン13を分割コアブロック12に組付けた状態を示す図The figure which shows the state which attached the bobbin 13 to the split core block 12 回転子の極数とブロック15の形状の関係の概略を示す図A diagram schematically showing the relationship between the number of rotor poles and the shape of block 15. 許容されるブロック15の幅を示す図Diagram showing the width of the block 15 allowed 第1の実施の形態における巻き線の手順を説明する図The figure explaining the procedure of the winding in a 1st embodiment 従来手法による巻線がされたブロック15Zを示す図Diagram showing a block 15 Z wound according to the prior art 従来手法による巻線がされたブロック15Zを示す図Diagram showing a block 15 Z wound according to the prior art 変形例3において1つのブロック15に複数の空隙が形成される場合の巻線の手順を示す図The figure which shows the procedure of the winding in case several air gaps are formed in one block 15 in the modification 3. 第2の実施の形態におけるボビン13Aを示す図A diagram showing a bobbin 13A in a second embodiment ボビン13Aにコイル8を巻回した状態を示す図The figure which shows the state which wound the coil 8 around the bobbin 13A 第3の実施の形態にかかるボビン13Bを示す図The figure which shows the bobbin 13B concerning 3rd Embodiment.
―第1の実施の形態―
 以下、図1~図11を参照して、本発明にかかる回転電機および固定子の第1の実施の形態を説明する。コイルは、たとえばエナメル皮膜された電線を用いて形成され、「コイル」と「電線」は厳密には異なるものである。しかし本実施の形態では物理的な形状を説明する場合を除いて「電線」も「コイル」と呼ぶ。
-First embodiment-
Hereinafter, a first embodiment of a rotary electric machine and a stator according to the present invention will be described with reference to FIGS. 1 to 11. The coil is formed, for example, using an enameled wire, and the "coil" and the "wire" are strictly different. However, in the present embodiment, the “electric wire” is also referred to as a “coil” except when the physical shape is described.
(回転電機1の内部構造)
 図1は本発明にかかる回転電機1の内部構造を示す図である。ハウジング2の内周に固定子3が焼き嵌めや圧入により固定されている。固定子3の内周部に、その外周に永久磁石4を貼り付けたSPM(Surface Permanent Magnet)型の回転子コアが挿入され、回転子コアと同軸で一体化したシャフト5をベアリング6で支持している。入力端子7の各々に、位相の異なる電圧を加えると、これと電気的に繋がった固定子3内のコイル8に電流が流れ、電気エネルギーが機械エネルギーに変換されて、シャフト5が回転する。なおSPM型の回転子コアに代えて、コアの軸方向に設けた挿入溝に永久磁石4を挿入したIPM(Interior Permanent Magnet)型の回転子コアを用いてもよい。
(Internal structure of rotating electrical machine 1)
FIG. 1 is a view showing an internal structure of a rotary electric machine 1 according to the present invention. The stator 3 is fixed to the inner periphery of the housing 2 by shrink fitting or press fitting. A SPM (Surface Permanent Magnet) type rotor core having permanent magnets 4 affixed to the outer periphery is inserted into the inner periphery of the stator 3 and the shaft 5 integrated coaxially with the rotor core is supported by the bearing 6 doing. When voltages with different phases are applied to each of the input terminals 7, current flows through the coils 8 in the stator 3 electrically connected to the input terminals 7, electrical energy is converted to mechanical energy, and the shaft 5 rotates. Instead of the SPM type rotor core, an IPM (Interior Permanent Magnet) type rotor core may be used in which the permanent magnet 4 is inserted into an insertion groove provided in the axial direction of the core.
 固定子3に組み込まれるコイル8の導体断面積が大きく、周長が短くできれば、電気抵抗の減少により回転電機の効率が向上する。このため回転電機1は、固定子コア9の各々のティース10に集中的にコイル8を巻回することで、固定子コア9の軸方向両端面から突出した磁気的に無効なコイル長、すなわちコイルエンドを短くできる「集中巻」を採用する。また、巻線するコイル8の整列性を向上させ、より多くの導体を固定子コア9に巻線する手段として、回転電機1は固定子コア9を分割する「分割コア」を採用する。なおコイル8の断面は円でもよいし略直方体でもよい。換言するとコイル8は、いわゆる丸線でもよいしいわゆる角線でもよい。 If the conductor cross-sectional area of the coil 8 incorporated in the stator 3 is large and the circumferential length can be shortened, the efficiency of the rotating electrical machine is improved by the reduction of the electrical resistance. For this reason, by rotating the coil 8 concentratedly around each tooth 10 of the stator core 9, the rotary electric machine 1 has a magnetically invalid coil length projected from both axial end faces of the stator core 9, ie, We adopt "Concentrated winding" which can shorten the coil end. Further, as means for improving the alignment of the coil 8 to be wound and winding more conductors on the stator core 9, the rotary electric machine 1 adopts a "divided core" for dividing the stator core 9. The cross section of the coil 8 may be a circle or a substantially rectangular parallelepiped. In other words, the coil 8 may be a so-called round wire or a so-called square wire.
 図2は、固定子3の外観図である。図2に示すように、固定子3は複数のブロック15から構成される。以下ではブロック15の構造および製造方法を説明する。 FIG. 2 is an external view of the stator 3. As shown in FIG. 2, the stator 3 is composed of a plurality of blocks 15. The structure and manufacturing method of the block 15 will be described below.
(ブロック15の構造)
 図3は、ブロック15の外観図である。ただし図3ではコイル8である渡り線8Aを介して接続される3つのブロック15を示している。ブロック15は、鉄心である分割コアブロック12とボビン13とコイル8とを備える。コイル8は、後述するようにボビン13を介して分割コアブロック12に巻回され集中巻コイル8Bを形成する。図3に示す溝18は、後述する巻き始め16を固定する。分割コアブロック12は次のように作成される。
(Structure of block 15)
FIG. 3 is an external view of the block 15. However, FIG. 3 shows three blocks 15 connected via the connecting wire 8A which is the coil 8. The block 15 is provided with a split core block 12 which is an iron core, a bobbin 13 and a coil 8. The coil 8 is wound around the split core block 12 via the bobbin 13 as described later to form a concentrated winding coil 8B. A groove 18 shown in FIG. 3 fixes a winding start 16 described later. The split core block 12 is created as follows.
 図4は分割コアブロック12の外観を示す図である。厚さ0.15mm~0.5mmの電磁鋼板を打抜き、不図示のかしめや接着などにより積層固定することで、分割コアブロック12を形成する。分割コアブロック12は、ボビン13を介してコイル8が巻回されるティース10と、バックヨーク11とを備える。 FIG. 4 is a view showing the appearance of the split core block 12. A split core block 12 is formed by punching a magnetic steel sheet having a thickness of 0.15 mm to 0.5 mm and laminating and fixing the laminated steel sheet by caulking or adhesion (not shown). The split core block 12 includes teeth 10 on which the coil 8 is wound via the bobbin 13 and a back yoke 11.
 図5は、ボビン13の外観図である。ボビン13はPBT(ポリブチレンテレフタレート)やPPS(ポリフェニレンサルファイド)などの樹脂で射出成形される。ボビン13の側面には突起14が設けられ、コイル8の位置ずれを防止する。ただし突起14は必須の構成要素ではなく、ボビン13は突起14を備えなくてもよい。ボビン13は図5の上下方向の中央で分離可能である。なお図5に記号wで示すように、ボビン13においてコイル8が巻回される領域の幅をボビン幅と呼ぶ。本実施の形態ではボビン幅は一定である。また図5において符号Hで示す図示上下方向をボビン13の高さ方向と呼ぶ。 FIG. 5 is an external view of the bobbin 13. The bobbin 13 is injection molded of a resin such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide). A protrusion 14 is provided on the side surface of the bobbin 13 to prevent the positional displacement of the coil 8. However, the protrusion 14 is not an essential component, and the bobbin 13 may not include the protrusion 14. The bobbin 13 is separable at the center in the vertical direction of FIG. As indicated by a symbol w in FIG. 5, the width of the region of the bobbin 13 in which the coil 8 is wound is referred to as the bobbin width. In the present embodiment, the bobbin width is constant. Further, the vertical direction indicated by reference symbol H in FIG. 5 is referred to as the height direction of the bobbin 13.
 図6は、ボビン13を分割コアブロック12に組付けた状態を示す図である。ボビン13を2つに分離し、図4に示す分割コアブロック12の上下から挟み込むように組付ける。この後、ボビン13の周りにエナメル皮膜付きの電線でコイル8を巻線するとブロック15が形成される。巻線の手順は後述する。 FIG. 6 is a view showing a state in which the bobbin 13 is assembled to the split core block 12. The bobbin 13 is separated into two, and assembled so as to sandwich the split core block 12 shown in FIG. 4 from above and below. After that, when the coil 8 is wound around the bobbin 13 with an electric wire with an enameled film, a block 15 is formed. The procedure of winding will be described later.
(多極化に伴う課題)
 ところで近年では、回転電機の効率向上、および出力トルクの更なる向上を目的として、回転子の多極化が進められている。数式を併用して説明する。回転電機の出力トルクTは次の式1で表される。
   T=Kt・I        ・・・(式1)
(Issues with multi-polarization)
In recent years, in order to improve the efficiency of the rotating electrical machine and further improve the output torque, multipolarizing of the rotor has been promoted. The explanation will be given by using the formula together. The output torque T of the rotating electrical machine is expressed by the following equation 1.
T = Kt · I ... (Equation 1)
 ただしKtはトルク定数、Iは電流である。またトルク定数Ktは次の式2で示す関係を有する。
   Kt=α・f・n・φ    ・・・(式2)
Where Kt is a torque constant and I is a current. Further, the torque constant Kt has a relationship shown by the following equation 2.
Kt = α · f · n · φ (Equation 2)
 ただしαは定数、fは周波数、nはコイルターン数、φは磁束である。またトルクTは次の式3に示す関係を有する。
   T=α・f・n・φ・I   ・・・(式3)
Is a constant, f is a frequency, n is the number of coil turns, and φ is a magnetic flux. Further, the torque T has a relationship shown in the following equation 3.
T = α · f · n · φ · I (Equation 3)
 回転子の回転数が一定であっても回転子の極数を増やすと周波数fが増えるため、式(3)から明らかなように一定のトルクTを得るためのコイルのターン数nを減らすことができる。コイルのターン数の減少に伴って、次の2つの効果が得られる。第1に、コイル抵抗の低減による効率改善の効果である。第2に、体積を低減した分コイルを固定子の外周側に配置し、回転子径を大型化してトルクを増加させる効果である。 Even if the number of rotations of the rotor is constant, if the number of poles of the rotor is increased, the frequency f increases. Therefore, it is necessary to reduce the number of turns n of the coil to obtain a constant torque T Can. As the number of turns of the coil decreases, the following two effects can be obtained. The first is the effect of improving the efficiency by reducing the coil resistance. The second effect is an effect of disposing a coil with a reduced volume on the outer peripheral side of the stator, increasing the rotor diameter and increasing the torque.
 回転子の極数を増やすことによりこれらの効果が得られるので、本発明にかかる回転電機1は回転子の極数を増加させる設計としている。ただし回転子の極数の増加に対応して、固定子3の磁極数、すなわち分割コアブロック12の数が増加し、それぞれの分割コアブロック12の形状の制約が大きくなる。具体的に図を参照して説明する。 Since these effects can be obtained by increasing the number of poles of the rotor, the rotary electric machine 1 according to the present invention is designed to increase the number of poles of the rotor. However, in response to the increase in the number of poles of the rotor, the number of magnetic poles of the stator 3, that is, the number of divided core blocks 12 is increased, and the restriction on the shape of each divided core block 12 is increased. This will be specifically described with reference to the drawings.
 図7は回転子の極数とブロック15の形状の関係の概略を示す図である。図7(a)はブロック15を12個備える場合を示す図であり、図7(b)はブロック15を14個備える場合を示す図である。なお回転子の極数が比較的少ない8や10の場合に図7(a)に示すようにブロック15が12個用いられる場合が多く、回転子の極数が比較的多い14の場合に図7(b)に示すようにブロック15が14個用いられる場合が多い。 FIG. 7 schematically shows the relationship between the number of poles of the rotor and the shape of the block 15. As shown in FIG. FIG. 7 (a) is a diagram showing a case where twelve blocks 15 are provided, and FIG. 7 (b) is a diagram showing a case where fourteen blocks 15 are provided. When the number of poles of the rotor is relatively small 8 or 10, as shown in FIG. 7A, 12 blocks 15 are often used, and the number of poles of the rotor is relatively large 14 As shown in 7 (b), 14 blocks 15 are often used.
 図7(a)と図7(b)とを比較して明らかなように、回転子の極数が増加するにつれて許容されるブロック15の幅が狭くなる。前述のとおりブロック15は分割コアブロック12とボビン13とコイル8とを備え、分割コアブロック12は鋼板の積層で作成され、ボビン13は射出成型により作成されるため、形状の変更は比較的容易である。しかしコイル8はボビン13に巻回されるので、許容されるブロック15の幅が狭くなることにより工夫が必要になる。具体的に図を参照して説明する。 As apparent from the comparison between FIG. 7 (a) and FIG. 7 (b), as the number of poles of the rotor increases, the width of the allowed block 15 becomes narrower. As described above, the block 15 includes the split core block 12, the bobbin 13 and the coil 8, and the split core block 12 is formed by laminating the steel plates, and the bobbin 13 is formed by injection molding. It is. However, since the coil 8 is wound around the bobbin 13, it is necessary to devise the narrowing of the allowed width of the block 15. This will be specifically described with reference to the drawings.
 図8は、許容されるブロック15の幅を示す図である。ブロック15は円周上に並べて配置されることで固定子3を構成するので、それぞれのブロック15は隣接するブロック15と接触しない幅であることが求められる。具体的にはブロック15のボビン13に巻回されるコイル8は、図8に符号900で示す略台形状の領域内に収まることが求められる。仮に図示左側のようにコイル8が台形領域900に収まっていない場合は、隣接するブロック15のコイル8と干渉するためブロック15を組み合わせて固定子3を形成することができない。 FIG. 8 is a diagram showing the width of the block 15 permitted. Since the blocks 15 constitute the stator 3 by being arranged side by side on the circumference, each block 15 is required to have a width not in contact with the adjacent block 15. Specifically, the coil 8 wound around the bobbin 13 of the block 15 is required to be contained in a substantially trapezoidal area indicated by reference numeral 900 in FIG. If the coil 8 does not fit in the trapezoidal region 900 as shown on the left side of the figure, the stator 15 can not be formed by combining the blocks 15 because they interfere with the coils 8 of the adjacent blocks 15.
 そこで本実施の形態では、図8の右側に示すように、コイル8の巻き始め16から巻き終わり17までを台形領域900に収める工夫を行う。なお隣接するブロック15におけるコイル8の巻数が異なる場合は、隣接するブロック15のコイル8の巻数を減らすことで生じたスペースを、対向するコイル8の配置スペースとすることも可能であるが、ここでは全てのコイル8の巻数を同一としている。 Therefore, in the present embodiment, as shown on the right side of FIG. 8, a device is adopted in which the winding start 16 to the winding end 17 of the coil 8 are contained in the trapezoidal region 900. If the number of turns of the coil 8 in the adjacent blocks 15 is different, it is possible to set the space formed by reducing the number of turns of the coils 8 in the adjacent block 15 as the arrangement space of the opposing coil 8. Then, the number of turns of all the coils 8 is the same.
 なお本実施の形態では、ボビン13に巻回したコイル8のうち、ボビン13と接する最も内周側のコイル8を1層目L1と呼び、1層目L1の外側に巻回されたコイルを2層目L2、さらに2層目L2の外側に巻回されたコイルを3層目L3と呼ぶ。たとえば図8の左側はコイル8が3層目まで存在し、図8の右側はコイル8が2層目まで存在する。また本実施の形態では、図8の左側に示すように図8の上方をバックヨーク側、または外周側と呼び、図8の下方を内周側と呼ぶ。以下では、ボビン13に形成される領域であって巻線可能な領域を巻線可能領域131と呼ぶ。 In the present embodiment, among the coils 8 wound around the bobbin 13, the innermost coil 8 in contact with the bobbin 13 is referred to as the first layer L1, and the coil wound around the first layer L1 is used. The coil wound on the outer side of the second layer L2 and the second layer L2 is referred to as a third layer L3. For example, the coil 8 is present up to the third layer on the left side of FIG. 8, and the coil 8 is present up to the second layer on the right side of FIG. In the present embodiment, as shown on the left side of FIG. 8, the upper side of FIG. 8 is called the back yoke side or the outer peripheral side, and the lower side of FIG. 8 is called the inner peripheral side. Hereinafter, a region which is formed on the bobbin 13 and which can be wound is referred to as a winding possible region 131.
(巻線の手順)
 図9は、第1の実施の形態における巻き線の手順を説明する図である。図9(a)~図9(d)のそれぞれに示す状態を、ここでは便宜的に第1段階~第4段階と呼ぶ。なお以下に説明する巻線は、巻線機などの機械があらかじめ作成されたプログラムに基づいて実行してもよいし人間が実行してもよい。以下では巻線機が巻線を行うと仮定してその手順を説明する。
(Winding procedure)
FIG. 9 is a view for explaining the procedure of winding in the first embodiment. The states shown in FIGS. 9A to 9D are referred to as first to fourth stages for convenience, respectively. The winding described below may be executed by a machine such as a winding machine based on a previously created program, or may be executed by a human. In the following, the procedure will be described on the assumption that the winding machine performs winding.
 図9はコイル8の巻き始め16側のコイルエンド19の上方、換言すると図3における図示上方からブロック15を見た図である。また図9では、コイル8のターン数を「T」で示している。 FIG. 9 is a view of the block 15 as viewed from above the coil end 19 on the winding start 16 side of the coil 8, that is, from the upper side in FIG. Further, in FIG. 9, the number of turns of the coil 8 is indicated by “T”.
 まず図9(a)に示すように、巻線機はコイル8の巻き始め16を溝18に巻き落とし、巻線可能領域131において最もバックヨーク11に近い位置においてボビン13に1ターン目を巻き付ける。すなわち図9(a)に示す第1段階では、図示奥側にはコイルエンド19が形成されているが、図示手前側にはまだコイルエンド19が形成されていない。 First, as shown in FIG. 9A, the winding machine winds off the winding start 16 of the coil 8 in the groove 18 and winds the first turn on the bobbin 13 at a position closest to the back yoke 11 in the winding possible region 131 . That is, in the first stage shown in FIG. 9A, the coil end 19 is formed on the back side of the drawing, but the coil end 19 is not formed on the front side of the drawing.
 次に巻線機は、図9(b)に示すように、内周側に2ターン目を形成するために、1ターン目と2ターン目の複数移行部22を2巻線ピッチで形成する。これにより、コイルの側面20に巻き始め16である1ターン目の隣にコイル8を形成する電線が一本だけ入る空隙23が形成される。そして巻線機は、ボビン13に2ターン目を巻回し、以後は巻線可能領域131の最も内周側に到達するまで空隙23を形成することなく通常移行部19Aを形成しつつコイル8を巻回して図9(b)に示す第2段階となる。 Next, as shown in FIG. 9 (b), in order to form a second turn on the inner circumferential side, the winding machine forms a plurality of transition portions 22 of the first turn and the second turn at two winding pitches. . As a result, an air gap 23 in which only one electric wire forming the coil 8 is formed is formed on the side surface 20 of the coil next to the first turn which is the winding start 16. Then, the winding machine winds the coil 8 while forming the transition portion 19A normally without forming the air gap 23 until it reaches the innermost circumference side of the winding possible region 131 after winding the second turn around the bobbin 13 thereafter. It winds and it becomes the 2nd step shown in Drawing 9 (b).
 なおコイルエンド19には、通常移行部19Aおよび複数移行部22も含まれる。また以下では、バックヨーク側を始点とし少なくとも1か所の空隙23を形成して最も内周側に移行しつつ巻回されるコイル8を順巻部910と呼ぶ。すなわち1ターン目から4ターン目のコイル8が順巻部910である。 The coil end 19 also includes a normal transition portion 19A and a plurality of transition portions 22. In the following, the coil 8 wound around while forming at least one air gap 23 starting from the back yoke side and moving to the innermost circumferential side will be referred to as a forward winding portion 910. That is, the coil 8 of the first turn to the fourth turn is the forward winding portion 910.
 次に巻線機は、図9(c)に示すように逆移行部24を形成し1ターン目と2ターン目のコイル8に挟まれた空隙23にコイル8の5ターン目を形成して第3段階となる。この逆移行部24は、2ターン目~4ターン目のコイル8を飛び越えるように内周側からバックヨーク側へと向かう。この5ターン目のコイル8は、1ターン目と2ターン目のコイル8が両側に存在するので、摩擦により空隙23に挿入した5ターン目のコイル25が空隙23の内部に固定される。そのため巻線時の張力によって空隙23の外部に5ターン目のコイル25が引っ張り出されない。以下では、巻線可能領域131の内周側からバックヨーク側に移行しつつ空隙23に巻回されるコイル8を逆巻部920と呼ぶ。本実施の形態では5ターン目のコイル8が逆巻部920である。 Next, as shown in FIG. 9C, the winding machine forms the reverse transition portion 24 and forms the fifth turn of the coil 8 in the air gap 23 sandwiched by the coil 8 of the first turn and the second turn. It is the third stage. The reverse transition portion 24 travels from the inner circumferential side to the back yoke side so as to jump over the coil 8 of the second turn to the fourth turn. The coil 8 of the fifth turn has the coils 8 of the first turn and the second turn on both sides, so the coil 25 of the fifth turn inserted in the air gap 23 is fixed inside the air gap 23 by friction. Therefore, the coil 25 of the fifth turn is not pulled out of the air gap 23 by the tension at the time of winding. Hereinafter, the coil 8 wound in the air gap 23 while shifting from the inner circumferential side of the winding possible region 131 to the back yoke side is referred to as a reverse winding portion 920. In the present embodiment, the coil 8 of the fifth turn is the reverse winding portion 920.
 最後に巻線機は、図9(d)に示すように空隙23に巻回した5ターン目のコイル25に接するように、2層目に6ターン目のコイル26を巻回す。これにより5ターン目のコイル25を上層から押さえ込み、巻線後に5ターン目のコイル25が空隙23から脱落すること強固に防止できる。以上の構成により、巻き始め16と巻き終わり17をバックヨーク11側に設け、かつコイルの側面20に突出して斜めに配置される電線を生じさせずに、スロット内の台形空間を有効に活用して高密度に巻線することができる。 Finally, the winding machine winds the coil 26 of the sixth turn in the second layer so as to be in contact with the coil 25 of the fifth turn wound in the air gap 23 as shown in FIG. As a result, the fifth turn coil 25 can be pressed from the upper layer, and the fifth turn coil 25 can be firmly prevented from dropping out of the air gap 23 after the winding. According to the above configuration, the winding start 16 and the winding end 17 are provided on the back yoke 11 side, and the trapezoidal space in the slot is effectively utilized without generating an electric wire which is disposed to be obliquely disposed on the side surface 20 of the coil. Can be wound at a high density.
(従来手法)
 図10および図11は、従来手法による巻線がされたブロック15Zを示す図である。本実施の形態におけるブロック15との比較のために説明する。なおブロック15とブロック15Zは巻線以外は同一である。
(Conventional method)
10 and 11 show a block 15Z wound according to the prior art. This will be described for comparison with the block 15 in the present embodiment. The blocks 15 and 15Z are identical except for the winding.
 巻線機はまず、図10(a)に示すように、巻線可能領域131の最もバックヨーク側からコイル8を巻き始めて、巻き始め側のコイルエンド19を除くボビン13の3面に巻回して1ターン目を形成する。ここまでは本発明の手順と同様である。その後巻線機は、図10(b)に示すように、巻線可能領域131の最も内周側に到達するまで、隙間を空けることなく通常移行部19Aを形成し、内周側に移動しながらコイル8をボビン13に巻回す。 First, as shown in FIG. 10 (a), the winding machine starts winding the coil 8 from the most back yoke side of the winding area 131, and winds on three surfaces of the bobbin 13 excluding the coil end 19 on the winding start side. Form the first turn. Up to this point, the procedure of the present invention is the same. After that, as shown in FIG. 10 (b), the winding machine forms the normal transition portion 19A without leaving a gap until it reaches the innermost side of the possible winding area 131, and moves to the inner side. While winding the coil 8 around the bobbin 13.
 ここまでは問題は生じないが、図10(c)に示すように、6ターン目のコイル8の側面が1ターン目と2ターン目が構成する谷間で位置決めされないため次の問題が生じる。すなわち、5ターン目から6ターン目へ移行する従来逆移行部24Zは、複数の通常移行部19Aの外周に沿うが、6ターン目のコイル8を巻回す際の張力により従来逆移行部24Zが滑り、図10および図11に符号21で示すように、コイルエンド19とコイル側面20の2面間を最短で結ぶように斜めにコイル8が配置される。 Although the problem does not occur up to this point, as shown in FIG. 10C, since the side surface of the coil 8 of the sixth turn is not positioned in the valley formed by the first turn and the second turn, the following problem occurs. That is, although the conventional reverse transition portion 24Z transitioning from the fifth turn to the sixth turn is along the outer periphery of the plurality of normal transition portions 19A, the conventional reverse transition portion 24Z is caused by the tension when winding the coil 8 of the sixth turn. As shown by reference numeral 21 in FIGS. 10 and 11, the coil 8 is obliquely disposed so as to connect the two surfaces of the coil end 19 and the coil side surface 20 at the shortest distance.
 そのため従来手法によれば6ターン目のコイル8が前述の台形領域900から大きくはみ出すため、隣接するコイルとの干渉が生じ、理想とするターン数の巻線が不可能となる。トルクや効率の向上のために集中巻固定子を有する回転電機の極数を増やした場合、ティース、および巻線に割り当てられる台形空間が細長くなるため、巻き始め16と巻き終わり17をバックヨーク11側にして高密度に巻線をしようとすると、この問題はさらに顕著になる。なお、分割コアの固定子を用いて従来技術の問題点を説明したが、円筒状の一体コアを用いた場合にも同様の問題がある。 Therefore, according to the conventional method, since the coil 8 of the sixth turn protrudes largely from the above-mentioned trapezoidal region 900, interference with the adjacent coil occurs, and the winding of the ideal number of turns becomes impossible. When the number of poles of the rotating electrical machine having a concentrated winding stator is increased to improve torque and efficiency, the teeth and the trapezoidal space allocated to the windings become elongated, so the winding start 16 and the winding end 17 are back yoked 11 This problem becomes even more pronounced if you try to make the windings denser on the side. Although the problems of the prior art have been described using the stators of the split cores, the same problems also occur when a cylindrical integral core is used.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)回転電機1は、固定子3と、固定子3の内部に回転可能な回転子とを備える。固定子3は、円筒型でありティース10を有する鉄心である分割コアブロック12と、分割コアブロック12の周りに形成されるボビン13と、ボビン13を介してティース10にコイル8を集中的に巻回した複数の集中巻コイル8Bとを備える。集中巻コイル8Bの少なくとも一つは、ボビン13を介してティース10と接する第1層目に、分割コアブロック12のバックヨーク側を始点とし少なくとも1か所を空隙23にして最も内周側に移行しつつ巻回される順巻部910と、内周側からバックヨーク側に移行しつつ空隙23に巻回される逆巻部920とを備える。そのためスロット内の台形空間を有効に活用してコイル8を高密度に巻線することができる。
According to the first embodiment described above, the following effects can be obtained.
(1) The rotating electrical machine 1 includes the stator 3 and a rotatable rotor inside the stator 3. The stator 3 is a cylindrical core core 12 having teeth 10, a coil 13 concentrated on the teeth 10 through the bobbin 13 formed around the core block 12, the bobbin 13 formed around the core block 12. And a plurality of wound concentrated winding coils 8B. At least one of the concentrated winding coils 8B is the first layer in contact with the teeth 10 via the bobbin 13, and the back yoke side of the split core block 12 is the starting point and at least one place is the air gap 23 and is the innermost side A forward winding portion 910 is wound while being transitioned, and a reverse winding portion 920 is wound around the air gap 23 while shifting from the inner circumferential side to the back yoke side. Therefore, the trapezoidal space in the slot can be effectively used to wind the coil 8 at a high density.
(2)空隙23は、コイル8の巻き始め16に隣接する。そのため巻き始め16と巻き終わり17をバックヨーク側に設けられ、連続巻線とその引き回しが容易である。 (2) The air gap 23 is adjacent to the winding start 16 of the coil 8. Therefore, the winding start 16 and the winding end 17 are provided on the back yoke side, and the continuous winding and its winding are easy.
(3)集中巻コイル8Bは、空隙23に巻回したコイル8に接して上層にさらにコイル8が巻回される。そのため空隙23に巻回したコイル8を上層から押さえ込み、巻線後にそのコイル8が空隙23から脱落すること強固に防止できる。 (3) The concentrated winding coil 8B is in contact with the coil 8 wound in the air gap 23, and the coil 8 is further wound on the upper layer. Therefore, the coil 8 wound in the air gap 23 can be pressed from the upper layer, and the coil 8 can be firmly prevented from dropping out of the air gap 23 after the winding.
(4)回転電機1は、図3に示すように渡り線8Aを介して連続巻される少なくとも2つの集中巻コイル8Bを含む。そのため回転電機1に含まれる複数のブロック15において理想的な巻線が得られ、回転電機1の性能を向上させることができる。 (4) The rotary electric machine 1 includes at least two concentrated winding coils 8B continuously wound via the connecting wires 8A as shown in FIG. Therefore, an ideal winding can be obtained in the plurality of blocks 15 included in the rotary electric machine 1, and the performance of the rotary electric machine 1 can be improved.
(変形例1)
 2層目に巻回されるコイル8が存在しなくてもよい。すなわち図9における6ターン目のコイル8が存在しなくてもよい。
(Modification 1)
The coil 8 wound in the second layer may not be present. That is, the coil 8 of the sixth turn in FIG. 9 may not be present.
(変形例2)
 1層目に形成される空隙23は、第1の実施の形態において説明した箇所に限定されない。たとえば巻線可能領域131の最も外周側から順番に2ターン巻回してから空隙23を設けてもよいし、3ターン以上巻回してから空隙23を設けてもよい。
(Modification 2)
The air gap 23 formed in the first layer is not limited to the place described in the first embodiment. For example, the air gap 23 may be provided after two turns are sequentially wound from the outermost periphery of the winding possible region 131, or the air gap 23 may be provided after three turns or more.
(変形例3)
 上述した第1の実施の形態では、空隙23は1つのブロック15に1つのみ形成された。しかし1つのブロック15に複数の空隙23が形成されてもよい。
(Modification 3)
In the first embodiment described above, only one air gap 23 is formed in one block 15. However, a plurality of air gaps 23 may be formed in one block 15.
 図12は、1つのブロック15に複数の空隙23が形成される場合の巻線の手順を示す図である。図12(a)~図12(f)のそれぞれに示す状態を、ここでは便宜的に第A1段階~第A6段階と呼ぶ。以下では第1の実施の形態において図9を参照して説明した手順との違いを主に説明する。また本変形例でも便宜的に巻線機が巻線を行うと仮定して説明する。 FIG. 12 is a view showing a procedure of winding in the case where a plurality of air gaps 23 are formed in one block 15. The states shown in FIGS. 12 (a) to 12 (f) will be referred to as stages A1 to A6 for convenience. The differences from the procedure described with reference to FIG. 9 in the first embodiment will be mainly described below. Also in this modification, the winding machine will be described on the assumption that the winding machine performs winding for convenience.
 図12(a)に示す第A1段階は、第1の実施の形態における第1段階と同様である。次に巻線機は、図12(b)に示すように、1ターン目よりも内周側に2ターン目を形成するために、1ターン目と2ターン目の複数移行部22を2巻線ピッチで形成する。これにより、コイルの側面20に巻き始め16である1ターン目の隣にコイル8を形成する電線が一本だけ入る第1の空隙23Aが形成される。そして巻線機は、ボビン13に2ターン目を巻回し、第A2段階となる。 Step A1 shown in FIG. 12A is the same as the first step in the first embodiment. Next, as shown in FIG. 12 (b), the winding machine has two turns 22 of the first turn and the second turn to form a second turn on the inner peripheral side of the first turn. Form with line pitch. As a result, a first air gap 23A into which only one electric wire forming the coil 8 is formed is formed on the side surface 20 of the coil next to the first turn which is the winding start 16. And a winding machine winds the 2nd turn around bobbin 13, and it becomes A2 stage.
 次に巻線機は、図12(c)に示すように、内周側に3ターン目を形成するために、2ターン目と3ターン目の複数移行部22を2巻線ピッチで形成する。これにより、2ターン目の隣にコイル8を形成する電線が一本だけ入る第2の空隙23Bが形成される。そして巻線機は、ボビン13に3ターン目を巻回し、第A3段階となる。本変形例では、1ターン目から3ターン目のコイル8が順巻部910である。 Next, as shown in FIG. 12C, in order to form a third turn on the inner circumferential side, the winding machine forms a plurality of transition portions 22 of the second turn and the third turn at a two-winding pitch. . As a result, a second air gap 23B in which only one electric wire forming the coil 8 is formed next to the second turn is formed. And a winding machine winds the 3rd turn around bobbin 13, and it becomes A3 stage. In the present modification, the coil 8 of the first turn to the third turn is the forward winding portion 910.
 次に巻線機は、図12(d)に示すように逆移行部24を形成し2ターン目と3ターン目のコイル8に挟まれた第2の空隙23Bにコイル8の4ターン目を形成して第A4段階となる。次に巻線機は、図12(e)に示すように逆移行部24を形成し1ターン目と2ターン目のコイル8に挟まれた第1の空隙23Aにコイル8の5ターン目を形成して第A5段階となる。本変形例では、4ターン目と5ターン目のコイル8が逆巻部920である。最後に巻線機は、図12(f)に示すように第1の空隙23Aに巻回した5ターン目のコイル25に接するように、2層目に6ターン目のコイル26を巻回し、第A6段階となる。 Next, the winding machine forms the reverse transition portion 24 as shown in FIG. 12 (d), and the fourth turn of the coil 8 in the second air gap 23B sandwiched between the coil 8 of the second turn and the third turn. It forms and becomes the A4 stage. Next, as shown in FIG. 12 (e), the winding machine forms the reverse transition portion 24 and the fifth turn of the coil 8 in the first air gap 23A sandwiched by the coil 8 of the first turn and the second turn. It forms, and becomes A5 stage. In the present modification, the coil 8 at the fourth turn and the fifth turn is the reverse winding portion 920. Finally, the winding machine winds the coil 26 of the sixth turn in the second layer so as to contact the coil 25 of the fifth turn wound in the first air gap 23A as shown in FIG. 12 (f). Stage A6.
 この変形例3によれば次の作用効果が得られる。
(5)ブロック15は、第1の空隙23Aおよび第2の空隙23Bを有する。逆巻部920は、複数存在する空隙について内周側に存在する空隙から順番に巻回される。そのため逆移行部24の角度を緩やかにでき、コイル8を巻回す際の張力による逆移行部24の滑りが発生しにくくなる。したがって第1の空隙23Aおよび第2の空隙23Bからコイル8がさらに脱落しにくくなる。
According to the third modification, the following effects can be obtained.
(5) The block 15 has a first air gap 23A and a second air gap 23B. The reverse winding part 920 is wound in order from the space | gap which exists in an inner peripheral side about the space | gap which exists in multiple numbers. Therefore, the angle of the reverse transition portion 24 can be made gentle, and slippage of the reverse transition portion 24 due to the tension when winding the coil 8 is less likely to occur. Therefore, the coil 8 is further less likely to drop out of the first air gap 23A and the second air gap 23B.
(変形例4)
 第1の実施の形態では、図2や図3に示すように固定子3を構成する複数のブロック15が図9を参照して説明した集中巻コイル8Bを備えた。しかし少なくとも1つのブロック15が集中巻コイル8Bを備えればよい。
(Modification 4)
In the first embodiment, as shown in FIG. 2 and FIG. 3, the blocks 15 constituting the stator 3 are provided with the concentrated winding coil 8B described with reference to FIG. However, at least one block 15 may be provided with the concentrated winding coil 8B.
(変形例5)
 第1の実施の形態では、図2や図3に示すように固定子3は物理的に分離可能な複数の分割コアブロック12を備えた。換言すると第1の実施の形態における固定子3は、いわゆる分割コア方式を採用していた。しかし固定子3は、一体に成形されたコアを用いる、いわゆる一体コア方式を採用してもよい。この場合も、第1の実施の形態と同様の作用効果が得られる。
(Modification 5)
In the first embodiment, as shown in FIG. 2 and FIG. 3, the stator 3 is provided with a plurality of divided core blocks 12 which can be physically separated. In other words, the stator 3 in the first embodiment adopts a so-called split core method. However, the stator 3 may adopt a so-called integral core system using an integrally molded core. Also in this case, the same effects as those of the first embodiment can be obtained.
―第2の実施の形態―
 図13~図14を参照して、本発明にかかる回転電機および固定子の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、ボビンの幅が一様でない点で、第1の実施の形態と異なる。
-Second embodiment-
A second embodiment of a rotary electric machine and a stator according to the present invention will be described with reference to FIGS. 13 to 14. In the following description, the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described. The points that are not particularly described are the same as in the first embodiment. The present embodiment differs from the first embodiment mainly in that the width of the bobbin is not uniform.
 図13は第2の実施の形態におけるボビン13Aを示す図である。図13は第1の実施の形態における図9と同一の視点でボビン13Aを示している。ボビン13Aは、巻回されるコイル8の1層目と接する円弧状のガイドg1~g5を備える。第2の実施の形態では、第1の実施の形態と同様に巻線可能領域131のうち最もバックヨーク側から2番目、すなわちガイドg2の位置に空隙23を形成する。なお以下では、ガイドg1およびガイドg2を第1接触部と呼び、ガイドg3~ガイドg5を第2接触部と呼ぶこともある。 FIG. 13 is a view showing a bobbin 13A in the second embodiment. FIG. 13 shows the bobbin 13A from the same viewpoint as FIG. 9 in the first embodiment. The bobbin 13A includes arc-shaped guides g1 to g5 in contact with the first layer of the coil 8 to be wound. In the second embodiment, as in the first embodiment, the air gap 23 is formed at the second position from the back yoke side in the winding possible region 131, that is, at the position of the guide g2. Hereinafter, the guide g1 and the guide g2 may be referred to as a first contact portion, and the guides g3 to g5 may be referred to as a second contact portion.
 図13において符号135はボビン13Aの中心軸、符号132はガイドg1およびガイドg2の基準位置、符号133はガイドg3~ガイドg5の基準位置である。符号134はボビン13Aの内壁である。それぞれの基準位置とガイドの位置関係は、たとえば円弧状のガイドの最も中心軸135に近い位置と基準位置が一致する関係にある。ただし全てのガイドg1~g5で基準位置との関係が同一ならば他の基準を採用してもよい。 In FIG. 13, reference numeral 135 denotes a central axis of the bobbin 13A, reference numeral 132 denotes a reference position of the guides g1 and g2, and reference numeral 133 denotes a reference position of the guides g3 to g5. Reference numeral 134 is an inner wall of the bobbin 13A. The positional relationship between the respective reference positions and the guides is, for example, a relation where the position closest to the central axis 135 of the arc-shaped guide matches the reference position. However, if all the guides g1 to g5 have the same relationship with the reference position, another reference may be adopted.
 中心軸135を通過する第1基準位置132同士の距離、換言すると第1基準位置132のボビン幅をhaとおく。また中心軸135を通過する第2基準位置133同士の距離、換言すると第2基準位置133のボビン幅をhbとおく。haよりもhbが大きい。すなわちガイドg1およびガイドg2よりもガイドg3~ガイドg5の方が中心軸135から遠く、ガイドg2とガイドg3の間にhb-haの段差が生じる。 A distance between the first reference positions 132 passing through the central axis 135, in other words, a bobbin width of the first reference position 132 is set to ha. Further, the distance between the second reference positions 133 passing through the central axis 135, in other words, the bobbin width of the second reference position 133 is hb. hb is larger than ha. That is, the guides g3 to g5 are farther from the central axis 135 than the guides g1 and g2, and a step of hb-ha occurs between the guides g2 and g3.
 図14はボビン13Aにコイル8を巻回した状態を示す図である。ただし図14ではコイル8の断面のみを示している。前述のようにガイドg2とガイドg3の間にhb-haの段差が生じるので、4ターン目を巻回してから空隙23に移行した後にコイル8がその段差により脱落しにくくなる効果が得られる。 FIG. 14 is a view showing a state in which the coil 8 is wound around the bobbin 13A. However, FIG. 14 shows only the cross section of the coil 8. Since the step of hb-ha is generated between the guide g2 and the guide g3 as described above, the coil 8 is less likely to come off due to the step after it is transferred to the air gap 23 after winding the fourth turn.
 上述した第2の実施の形態によれば、次の作用効果が得られる。
(6)ボビン13において、コイル8と接する位置であり逆巻部920が巻回される空隙23および空隙23からバックヨーク側がガイドg1およびガイドg2、すなわち第1接触部である。ボビン13において、コイル8と接する位置であり空隙23から内周側がガイドg3~ガイドg5、すなわち第2接触部である。第1接触部のボビン幅haは第2接触部のボビン幅hbよりも狭い。そのため、空隙23に巻回したコイル8が脱落しにくくなる。
According to the second embodiment described above, the following effects can be obtained.
(6) In the bobbin 13, the gap 23 and the gap 23 on the back yoke side from the air gap 23 and the air gap 23 in which the reverse winding portion 920 is wound at a position in contact with the coil 8 are the guide g1 and the guide g2, that is, the first contact portion. In the bobbin 13, the guide g 3 to the guide g 5, that is, the second contact portion are at the positions in contact with the coil 8 and the inner peripheral side from the air gap 23. The bobbin width ha of the first contact portion is narrower than the bobbin width hb of the second contact portion. Therefore, the coil 8 wound around the air gap 23 is unlikely to come off.
(第2の実施の形態の変形例)
 上述した第2の実施の形態ではガイドg1~ガイドg5は円弧状であったが、ガイドg1~g5は平板状でもよい。
(Modification of the second embodiment)
In the second embodiment described above, the guides g1 to g5 are arc-shaped, but the guides g1 to g5 may be flat.
―第3の実施の形態―
 図15を参照して、本発明にかかる回転電機および固定子の第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、ボビンの端面に溝を有する点で、第1の実施の形態と異なる。
-Third embodiment-
A third embodiment of a rotating electrical machine and a stator according to the present invention will be described with reference to FIG. In the following description, the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described. The points that are not particularly described are the same as in the first embodiment. The present embodiment differs from the first embodiment mainly in that a groove is provided on the end face of the bobbin.
 図15は第3の実施の形態にかかるボビン13Bを示す図である。ボビン13Bはコイルエンド側のボビン端面27に、1層目の順巻部910のピッチに対応させた溝28を有する。ボビン13Bは溝28を有するので、製造時には2巻線ピッチでのボビン端面27でのコイル8の移行を容易に実行でき、製造後にはボビン側面29での電線の位置ずれを防止できる。ただし溝28は、順巻部910の全てに対応する溝28を備えなくてもよく、少なくとも2巻線ピッチに対応する溝28を備えればよい。 FIG. 15 is a view showing a bobbin 13B according to the third embodiment. The bobbin 13B has a groove 28 corresponding to the pitch of the first layer forward winding portion 910 on the bobbin end surface 27 on the coil end side. Since the bobbin 13B has the groove 28, the transition of the coil 8 at the bobbin end surface 27 at two winding pitch can be easily performed at the time of manufacture, and the positional deviation of the electric wire at the bobbin side surface 29 can be prevented after the manufacture. However, the groove 28 may not be provided with the grooves 28 corresponding to all the forward winding parts 910, and may be provided with the grooves 28 corresponding to at least two winding pitches.
 上述した第3の実施の形態によれば、次の作用効果が得られる。
(7)ボビン13Bは、高さ方向端面に、順巻部910が巻回される溝28を備える。そのため、製造時はボビン端面27でのコイル8の移行を容易に実行でき、製造後にはボビン側面29での電線の位置ずれを防止できる。
According to the third embodiment described above, the following effects can be obtained.
(7) The bobbin 13B is provided with the groove 28 in which the forward winding portion 910 is wound at the end surface in the height direction. Therefore, the transition of the coil 8 at the bobbin end surface 27 can be easily performed at the time of manufacture, and the positional deviation of the electric wire at the bobbin side surface 29 can be prevented after the manufacture.
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Each embodiment and modification mentioned above may be combined respectively. Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2017-225115(2017年11月22日出願)
The disclosure content of the following priority basic application is incorporated herein by reference.
Japanese patent application 2017-225115 (filed on November 22, 2017)
1…回転電機
3…固定子
5…シャフト
6…ベアリング
7…入力端子
8…コイル
8B…集中巻コイル
13、13A、13B…ボビン
15…ブロック
23…空隙
24…逆移行部
28…溝
131…巻線可能領域
900…台形領域
910…順巻部
920…逆巻部
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine 3 ... Stator 5 ... Shaft 6 ... Bearing 7 ... Input terminal 8 ... Coil 8B ... Concentrated coil 13, 13, 13B ... Bobbin 15 ... Block 23 ... Air gap 24 ... Reverse transition part 28 ... Groove 131 ... Winding Wireable region 900 ... trapezoidal region 910 ... forward winding portion 920 ... reverse winding portion

Claims (14)

  1.  固定子と、前記固定子の内部に回転可能な回転子とを備える回転電機であって、
     前記固定子は、
     円筒型でありティースを有する鉄心と、
     前記鉄心の周りに形成されるボビンと、
     前記ボビンを介して前記鉄心のティースにコイルを集中的に巻回した複数の集中巻コイルとを備え、
     前記集中巻コイルの少なくとも一つは、前記ティースと接する第1層目に、前記鉄心のバックヨーク側を始点とし少なくとも1か所を空隙にして内周側に移行しつつ巻き回される順巻部と、前記内周側から前記バックヨーク側に移行しつつ前記空隙に巻き回される逆巻部とを備える回転電機。
    A rotating electrical machine comprising a stator and a rotatable rotor inside the stator,
    The stator is
    An iron core that is cylindrical and has teeth,
    A bobbin formed around the core;
    And a plurality of concentrated winding coils in which a coil is wound in a concentrated manner on teeth of the core through the bobbin.
    In the first layer in contact with the teeth, at least one of the concentrated winding coils is wound sequentially while moving to the inner circumferential side with the back yoke side of the iron core as the starting point and at least one place as an air gap. A rotary electric machine comprising: a section; and a reverse winding section wound around the gap while shifting from the inner circumferential side to the back yoke side.
  2.  請求項1に記載の回転電機において、
     前記空隙は、前記コイルの巻き始め個所に隣接する回転電機。
    In the rotating electrical machine according to claim 1,
    The air gap is a rotating electrical machine adjacent to a winding start point of the coil.
  3.  請求項1に記載の回転電機において、
     前記空隙は複数存在し、
     前記逆巻部は、複数存在する前記空隙について前記内周側に存在する前記空隙から順番に巻き回される回転電機。
    In the rotating electrical machine according to claim 1,
    There are a plurality of the air gaps,
    The said reverse winding part is a rotary electric machine wound in order from the said space | gap which exists in the said inner peripheral side about the said space | gap which exists in multiple numbers.
  4.  請求項1に記載の回転電機において、
     前記空隙に巻回した前記コイルに接して上層にさらに前記コイルを巻回した回転電機。
    In the rotating electrical machine according to claim 1,
    A rotating electrical machine in which the coil is further wound in the upper layer in contact with the coil wound in the air gap.
  5.  請求項1に記載の回転電機において、
     渡り線を介して連続巻された少なくとも2つの前記集中巻コイルを含む回転電機。
    In the rotating electrical machine according to claim 1,
    A rotating electrical machine including at least two of the concentrated winding coils continuously wound via a crossover wire.
  6.  請求項1に記載の回転電機において、
     前記ボビンにおいて、前記コイルと接する位置であり前記逆巻部が巻回される前記空隙および前記空隙から前記バックヨーク側を第1接触部とし、
     前記ボビンにおいて、前記コイルと接する位置であり前記空隙から前記内周側を第2接触部とすると、
     前記第1接触部のボビン幅は、前記第2接触部のボビン幅よりも狭い回転電機。
    In the rotating electrical machine according to claim 1,
    In the bobbin, the back yoke side is a first contact portion from the air gap and the air gap at which the coil is in contact with the coil and in which the reverse winding portion is wound.
    Assuming that the inner circumferential side of the bobbin is in contact with the coil and the inner circumferential side is a second contact portion in the bobbin,
    A rotating electrical machine wherein the bobbin width of the first contact portion is narrower than the bobbin width of the second contact portion.
  7.  請求項1に記載の回転電機において、
     前記ボビンは、前記ボビンの高さ方向端面に、前記順巻部が巻き回される溝を備える回転電機。
    In the rotating electrical machine according to claim 1,
    The rotary electric machine, wherein the bobbin has a groove in which the forward winding portion is wound around an end surface in a height direction of the bobbin.
  8.  円筒型でありティースを有する鉄心と、
     前記鉄心の周りに形成されるボビンと、
     前記ボビンを介して前記鉄心のティースにコイルを集中的に巻回した複数の集中巻コイルとを備え、
     前記集中巻コイルの少なくとも一つは、前記ティースと接する第1層目に、前記鉄心のバックヨーク側を始点とし少なくとも1か所を空隙にして内周側に移行しつつ巻き回される順巻部と、前記内周側から前記バックヨーク側に移行しつつ前記空隙に巻き回される逆巻部とを備える固定子。
    An iron core that is cylindrical and has teeth,
    A bobbin formed around the core;
    And a plurality of concentrated winding coils in which a coil is wound in a concentrated manner on teeth of the core through the bobbin.
    In the first layer in contact with the teeth, at least one of the concentrated winding coils is wound sequentially while moving to the inner circumferential side with the back yoke side of the iron core as the starting point and at least one place as an air gap. A stator, and a reverse winding portion wound around the gap while shifting from the inner circumferential side to the back yoke side.
  9.  請求項8に記載の固定子において、
     前記空隙は、前記コイルの巻き始め個所に隣接する固定子。
    In the stator according to claim 8,
    The air gap is a stator adjacent to a winding start point of the coil.
  10.  請求項8に記載の固定子において、
     前記空隙は複数存在し、
     前記逆巻部は、複数存在する前記空隙について前記内周側に存在する前記空隙から順番に巻き回される固定子。
    In the stator according to claim 8,
    There are a plurality of the air gaps,
    The said reverse-winding part is a stator wound in order from the said space | gap which exists in the said inner peripheral side about the said space | gap which exists in multiple numbers.
  11.  請求項8に記載の固定子において、
     前記空隙に巻回した前記コイルに接して上層にさらに前記コイルを巻回した固定子。
    In the stator according to claim 8,
    A stator in which the coil is further wound in the upper layer in contact with the coil wound in the air gap.
  12.  請求項8に記載の固定子において、
     渡り線を介して連続巻された少なくとも2つの前記集中巻コイルを含む固定子。
    In the stator according to claim 8,
    A stator including at least two of the concentrated winding coils wound continuously via a crossover wire.
  13.  請求項8に記載の固定子において、
     前記ボビンにおいて、前記コイルと接する位置であり前記逆巻部が巻回される前記空隙および前記空隙から前記バックヨーク側を第1接触部とし、
     前記ボビンにおいて、前記コイルと接する位置であり前記空隙から前記内周側を第2接触部とすると、
     前記第1接触部のボビン幅は、前記第2接触部のボビン幅よりも狭い固定子。
    In the stator according to claim 8,
    In the bobbin, the back yoke side is a first contact portion from the air gap and the air gap at which the coil is in contact with the coil and in which the reverse winding portion is wound.
    Assuming that the inner circumferential side of the bobbin is in contact with the coil and the inner circumferential side is a second contact portion in the bobbin,
    The bobbin width of the first contact portion is narrower than the bobbin width of the second contact portion.
  14.  請求項8に記載の固定子において、
     前記ボビンは、前記ボビンの高さ方向端面に、前記順巻部が巻き回される溝を備える固定子。
    In the stator according to claim 8,
    The said bobbin is a stator provided with the groove | channel by which the said forward-winding part is wound by the end surface in the height direction of the said bobbin.
PCT/JP2018/037990 2017-11-22 2018-10-11 Rotating electric machine and stator WO2019102736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880075014.6A CN111357173A (en) 2017-11-22 2018-10-11 Rotating electric machine and stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-225115 2017-11-22
JP2017225115A JP2019097309A (en) 2017-11-22 2017-11-22 Rotary electric machine and stator

Publications (1)

Publication Number Publication Date
WO2019102736A1 true WO2019102736A1 (en) 2019-05-31

Family

ID=66631410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037990 WO2019102736A1 (en) 2017-11-22 2018-10-11 Rotating electric machine and stator

Country Status (3)

Country Link
JP (1) JP2019097309A (en)
CN (1) CN111357173A (en)
WO (1) WO2019102736A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020007886T5 (en) * 2020-12-28 2023-10-12 Schaeffler Technologies AG & Co. KG Motor stator and motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020807A (en) * 2003-06-23 2005-01-20 Yaskawa Electric Corp AC SERVO MOTOR USING alpha WINDING CONSISTING OF TWO LAYERS
JP2010158100A (en) * 2008-12-26 2010-07-15 Komatsu Ltd Armature for electric motor, and method of manufacturing armature for electric motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106375B2 (en) * 2005-09-26 2008-06-25 三菱電機株式会社 Rotating electric machine stator
JP5418484B2 (en) * 2010-12-08 2014-02-19 三菱電機株式会社 Coil bobbin of stator of rotating electric machine and winding method of stator of rotating electric machine using this coil bobbin
DE102011081030A1 (en) * 2011-08-16 2013-02-21 Robert Bosch Gmbh Winding support for use in an electrical machine and winding arrangement
JP2014073030A (en) * 2012-09-29 2014-04-21 Nippon Densan Corp Armature and motor
JP6181002B2 (en) * 2014-03-20 2017-08-16 愛三工業株式会社 Stator and brushless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020807A (en) * 2003-06-23 2005-01-20 Yaskawa Electric Corp AC SERVO MOTOR USING alpha WINDING CONSISTING OF TWO LAYERS
JP2010158100A (en) * 2008-12-26 2010-07-15 Komatsu Ltd Armature for electric motor, and method of manufacturing armature for electric motor

Also Published As

Publication number Publication date
JP2019097309A (en) 2019-06-20
CN111357173A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5314908B2 (en) Rotating electric machine stator and rotating electric machine
JP5738385B2 (en) Stator and rotating electric machine equipped with the stator
JP2009153367A (en) Stator for rotary electric machine, and rotary electric machine
US9197103B2 (en) Stator core for electric rotary apparatus
JP2009011064A (en) Stator of rotating electric machine, and manufacturing method thereof
WO2012169059A1 (en) Stator of rotating electric machine, manufacturing method of stator of rotating electric machine, and rotating electric machine
US20220006344A1 (en) Stator
JP2009207255A (en) Coil fixing member and dynamo-electric machine
JP6492160B2 (en) Axial gap type rotating electrical machines and stators
WO2020174817A1 (en) Dynamo-electric machine stator, dynamo-electric machine, method for manufacturing dynamo-electric machine stator, and method for manufacturing dynamo-electric machine
JP2016208745A (en) Rotary electric machine, method for manufacturing rotary electric machine, stator coil, and coil resin structure
JP4535147B2 (en) Rotating electric machine stator and rotating electric machine
JP2017221077A (en) Rotor for rotary electric machine
WO2019102736A1 (en) Rotating electric machine and stator
JP2009118636A (en) Dynamo-electric machine and manufacturing method of dynamo-electric machine
JP2008206318A (en) Armature insulator and armature
JP6622995B2 (en) Rotating electric machine, manufacturing method of rotating electric machine, stator coil, coil resin structure
JP7271796B2 (en) Stator, rotating electrical machine, and manufacturing method for rotating electrical machine
JP2009100490A (en) Rotary machine and manufacturing method thereof
JP2018129975A (en) Rotary electric machine, and manufacturing method and manufacturing device for tortoiseshell-shaped coil
JP6929469B2 (en) stator
JP6742263B2 (en) Rotating electric machine
JP2007259514A (en) Rotating electric machine for employing divided stator iron core
JP6968215B2 (en) Rotating machine
JP2013094030A (en) Armature coil and synchronous rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881342

Country of ref document: EP

Kind code of ref document: A1