WO2019100449A1 - 一种基于传像光纤的手术导航*** - Google Patents

一种基于传像光纤的手术导航*** Download PDF

Info

Publication number
WO2019100449A1
WO2019100449A1 PCT/CN2017/115199 CN2017115199W WO2019100449A1 WO 2019100449 A1 WO2019100449 A1 WO 2019100449A1 CN 2017115199 W CN2017115199 W CN 2017115199W WO 2019100449 A1 WO2019100449 A1 WO 2019100449A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
objective lens
image
navigation system
Prior art date
Application number
PCT/CN2017/115199
Other languages
English (en)
French (fr)
Inventor
程震
刘弘光
索永宽
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019100449A1 publication Critical patent/WO2019100449A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition

Definitions

  • the invention belongs to the field of medical instruments and relates to a surgical navigation system based on imaging fibers.
  • Imaging equipment in medical surgery can help doctors get timely information that is invisible to the naked eye, such as X-ray imaging in orthopedic surgery, to observe the progress of the surgery.
  • Near-infrared optical imaging has been used for clinically guided surgery to provide optical image information beyond morphological features.
  • Current optical imaging can use high-sensitivity imaging units to display images on a larger screen for medical reference.
  • the optical surgical navigation system was designed to project the near-infrared two-zone (850-1700 nm) optical image onto the screen of the smart glasses or head-mounted device to facilitate the surgeon to obtain near-infrared images in the surgical field under white light.
  • the current design there is a problem that is difficult to solve in the design of the imaging unit.
  • Functional signals such as fluorescence are very weak relative to excitation, scattered or reflected light, which places very high demands on the sensitivity of imaging devices.
  • the image is submerged in noise, and the only solution is to reduce the electronic noise by reducing the temperature of the imaging unit.
  • solutions to both of these strategies require an increase in the size of the imaging device.
  • the existing imaging device of smart glasses (goggles) or a head-mounted device (such as a head-mounted stand) is integrated with the smart glasses or the wearing device, and therefore, the enlargement of the imaging unit will make the use of the smart glasses or the wearing device extremely inconvenient. That is to say, the portability of smart glasses or head-wearing devices and the sensitivity of imaging are difficult to achieve, and this outstanding contradiction greatly hinders the clinical application of related designs.
  • the strategy for solving this contradiction in the development of smart glasses or headsets is to seek a small, highly sensitive imaging unit, and such an imaging unit This is currently difficult to achieve, so this solution won't work.
  • the present invention provides an imaging optical fiber-based surgical navigation system that separates the smart glasses or the wearing device from the imaging unit, and the imaging optical fiber-based surgical navigation system can break through the imaging unit itself.
  • the size and quantity limit, the fluorescence imaging device with large volume and weight of the imaging unit can be smoothly applied to the intelligent glasses or the head-mounted imaging system, and can provide functional imaging with high sensitivity and multi-wavelength selective fluorescence imaging. .
  • the main technical solutions adopted by the present invention include:
  • the invention provides a surgical navigation system based on an imaging fiber, comprising a light source unit, an objective lens unit, an imaging unit, an image processing unit and a display unit, wherein the light source unit is configured to provide different emitted light, and the objective lens unit is disposed in the protection a plurality of image signals formed by collecting, reflecting, or stimulating a fluorescent signal generated by the tissue to be measured illuminated by different emitted light, on the eyeglass or the wearing device; the imaging unit passing the imaging fiber and the objective lens unit Connecting, for receiving different image signals and forming various images, the imaging unit is provided with a transmission input interface, and the output end of the imaging fiber is detachably connected with the image input interface of the imaging unit;
  • the image processing unit is configured to process an image transmitted by the imaging unit, and the display unit is disposed on the goggles or the headwear for displaying the image processed by the image processing unit.
  • the imaging fiber has one or more optical imaging units, and the imaging unit may be one or more imaging devices, each imaging device having one or more imaging input interfaces, one imaging input interface and one transmission. Connected to the output of the fiber;
  • the imaging device When an imaging device is connected to only one objective lens unit, the imaging device receives only image signals from the objective lens unit and forms various images; when a plurality of imaging devices are connected to the same objective lens unit, the plurality of imaging devices Receiving images from the same objective unit at the same time The signals are formed into various images; when an imaging device is connected to a plurality of objective lens units, the imaging device simultaneously receives various image signals from different objective lens units and forms them into various images.
  • the light source unit is a separately arranged light source device, or the light source unit is integrated on the surgical lighting device;
  • the light source unit comprises an illumination source device, and/or an excitation source device, and/or a treatment source device.
  • the objective lens unit comprises an objective lens for functional imaging of the tissue to be tested, and/or
  • the objective lens unit includes an electronic imaging unit including an electronic objective lens and an image acquisition processing module coupled to the electronic objective lens, and the image acquisition processing module is electrically connected to the image processing unit through the data line.
  • the imaging optical fiber based surgical navigation system includes a spectroscopic device that separates images of different bands;
  • the imaging optical fiber-based surgical navigation system includes a lens group and a filter switching unit coupled to the lens group, the filter switching unit configured to provide the imaging unit with filters of different spectra; and/or
  • the imaging optical fiber based surgical navigation system includes an achromatic lens.
  • the spectroscopic device is mounted in the imaging unit, connected to the imaging unit to form an integral structure, or the spectroscopic device is separately disposed between the imaging unit and the objective lens unit and connected to the imaging unit; and/or
  • the lens group and the filter switching unit are both mounted in the imaging unit, connected to the imaging unit to form an integral structure, or the lens group and the filter switching unit are separately disposed between the imaging unit and the objective lens unit, And connected to the imaging unit; and/or
  • the achromatic lens is mounted in the imaging unit, connected to the imaging unit to form an integral structure, or the achromatic lens is separately disposed between the imaging unit and the objective unit, and is connected to the imaging unit, or the achromatic lens Separately disposed in the objective lens unit.
  • the imaging unit is an imaging device switching unit for providing different imaging devices, the imaging device switching unit being coupled to the filter switching unit and used in conjunction.
  • the imaging unit comprises a visible light imaging device, and/or a near infrared imaging device.
  • the display unit is a transmissive screen or virtual projection goggles provided on the goggles.
  • the image processing unit includes an image superimposition processing unit, a brightness adjustment unit, and a near-infrared image addition pseudo color processing unit.
  • the goggles or the wearing device and the imaging unit of the imaging optical fiber-based surgical navigation system of the present invention are compared with the structure of the existing smart glasses or the imaging device of the wearing device and the smart glasses or the wearing device.
  • the limitation of the size and quantity makes the size of the imaging unit no longer restrict the development of the multifunctional multifunctional glasses or the wearing device, and also lays a foundation for the design of the multi-imaging unit smart glasses or the wearing device system.
  • a device such as fluorescence imaging which makes the volume and weight of the imaging unit large can be smoothly applied to the imaging system of the smart glasses or the head-mounted device, and provides functional imaging such as high-sensitivity, multi-wavelength selective fluorescence imaging, and greatly accelerates the smart glasses or The pre-clinical development and clinical application process and promotion of the head-mounted surgical navigation imaging device.
  • FIG. 1 is a schematic structural diagram of a surgical navigation system based on an image-receiving optical fiber according to an embodiment of the present invention, wherein an objective lens unit is disposed on a goggles, and a display unit is disposed on the goggles;
  • FIG. 2 is another imaging optical fiber-based surgical navigation system provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a surgical navigation system based on an image-receiving optical fiber according to an embodiment of the present invention, wherein an objective lens unit is disposed on the goggles, and a display unit is disposed on the goggles.
  • 2 is a schematic structural diagram of another imaging optical fiber-based surgical navigation system according to an embodiment of the present invention, wherein the objective lens unit is disposed on the headset, and the display unit is disposed on the goggles.
  • the present invention provides a surgical navigation system based on an imaging fiber, comprising a light source unit 1, an objective lens unit 2, a spectroscopic device, a filter combined lens group, an achromatic lens, and an imaging unit 3.
  • the image processing unit 4 and the display unit 5 are components.
  • the light source unit 1 is configured to provide different emitted light, and different emitted light illuminates the tissue to be tested, and the fluorescent signals generated by the tissue to be measured are scattered, reflected or excited to form various image signals.
  • the objective unit can be used to capture a variety of image signals.
  • Various image signals are transmitted to the imaging unit 3 through the imaging fiber 7.
  • the imaging unit 3 can receive different image signals and form these image signals into various images, and the image processing unit 4 processes the various images transmitted by the imaging unit 3.
  • the display unit 5 is used to display the image processed by the image processing unit 4.
  • the light source unit 1 can provide different light sources.
  • the light source unit 1 can be an illumination light source device, can be an excitation light source device, can be a therapeutic light source device, or can be a combination of two or more of the above-mentioned light source devices. .
  • the number of light source devices at the light source unit 1 may be one or more.
  • the single light source device is selected, a plurality of different light source devices belonging to the same type of light source device can be selected; when the light source device of the above combination is selected A plurality of different light source devices of the above various types of light source devices may be selected.
  • the light source unit 1 may simultaneously generate different lights such as illumination light, excitation light, therapeutic light, and white light illumination light.
  • the light source device of the light source unit 1 can be separately provided as an independent light source device, and can also be integrated with the surgical shadowless lamp 9 (surgical illumination device), which is convenient to use and saves installation space.
  • the surgical shadowless lamp 9 surgical illumination device
  • the light emitted by the surgical shadowless lamp does not overlap with the emitted light of the fluorescence imaging.
  • the objective lens unit 2 may be disposed on the goggles 10 (see FIG. 1), or may be disposed on the headgear 11 (head mount) (see FIG. 2) for facilitating the wearing of the goggles 10 or the headgear 11 During the operation, the medical staff can continuously and in real time collect various image signals formed by the scattered, reflected or excited fluorescent signals of the tissue to be tested irradiated by different emitted light.
  • the objective lens unit 2 may only contain a functional imaging objective lens, and the image signal acquired by the objective lens is transmitted to the imaging unit 3 through the imaging optical fiber 7 for imaging, thereby realizing functional imaging of the tissue to be tested.
  • the objective lens unit 2 may also include only an electronic imaging unit including an electronic objective lens and an image acquisition processing module connected to the electronic objective lens.
  • the image acquisition processing module is directly connected to the image processing unit 4 through the data line, and the electronic imaging unit will The acquired images are directly transmitted to the image processing unit 4 for processing to achieve high-resolution morphological imaging.
  • the objective lens unit 2 may further comprise a functional imaging objective lens and an electronic imaging unit, wherein the light collected by the functional imaging objective lens is transmitted to the imaging unit 3 through the imaging optical fiber 7 for imaging, and the electronic imaging unit is directly connected to the image processing unit 4 through the data line. Simultaneous use of both can achieve both functional imaging and high-resolution structural imaging.
  • the imaging unit 3 may include one or more independent imaging devices, which may select a visible light imaging device that images the visible light band, such as an EMCCD camera that takes into consideration sensitivity and image acquisition speed;
  • a functional imaging device for imaging in the near-infrared band for example, a high-sensitivity, high-resolution InGaAs camera for near-infrared imaging; and the above-described visible light imaging device and near-infrared imaging device can be simultaneously selected.
  • a functional imaging apparatus such as fluorescence imaging
  • functional imaging such as fluorescence imaging with high sensitivity and multi-wavelength selection can be realized.
  • each independent imaging device is provided with one or more imaging input interfaces, and one imaging input interface is detachably connected to the output end of one imaging optical fiber 7. (ie separate connection).
  • an image forming apparatus When an image forming apparatus is connected only to one objective lens unit 2 (goggles or a headgear provided with the objective lens unit 2), the image forming apparatus receives only various image signals from the objective lens unit 2 and forms various images thereof.
  • the plurality of imaging devices When a plurality of imaging devices are all connected to the same objective lens unit 2, the plurality of imaging devices simultaneously receive various image signals from the same objective lens unit 2 and form images of various different functions.
  • the image forming apparatus When an image forming apparatus is connected to the plurality of objective lens units 2, the image forming apparatus simultaneously receives various image signals from different objective lens units 2 and forms them into various images. Therefore, the present invention enables flexible selection of imaging functions and functional imaging for a variety of different application scenarios.
  • the imaging unit 3 of the present invention can also be designed to integrate the above-mentioned plurality of different types of imaging devices into an integrated imaging device switching unit, and can also realize functional imaging such as visible light imaging, near-infrared imaging, and fluorescence imaging.
  • the image forming device switching unit has a plurality of image input interfaces, and the image input interfaces can be detachably connected to the output end of the image fiber 7 connected to the objective lens unit 2 (ie, a separate connection), or can be connected to multiple The output ends of the corresponding imaging fibers 7 of the objective lens unit 2 are connected, and the flexible selection of the imaging function and the functional imaging for a plurality of different application scenarios are also realized, and the occupied space is small, the carrying is convenient, and the use is flexible.
  • the present invention changes the integrated design of the imaging device of the smart glasses or the headset 11 and the smart glasses or the headset 11 to separate the imaging unit 3 (imaging device) from the smart glasses or the headset 11 .
  • the size of the imaging device no longer restricts the development of the multifunctional smart glasses or the head-mounted device 11, and also lays the design for the multi-imaging unit smart glasses or the head-mounted device 11 system. basis.
  • This design will enable the functional imaging device such as fluorescence imaging with large volume and weight of the imaging device to be smoothly applied to the smart glasses or the head-mounted device 11 system, and provide functional imaging such as high-sensitivity, multi-wavelength selective fluorescence imaging, and the like. Accelerate the clinical application process and subsequent promotion of the surgical navigation imaging device of the smart glasses or the headset device 11.
  • the spectroscopic device may be mounted in the imaging unit 3, connected to the imaging unit 3 to form an integral structure, or may be separately disposed between the imaging unit 3 and the objective lens unit, and connected to the imaging unit 3.
  • the light splitting device can split the light into two paths of the visible light path and the near infrared light path, and the two light paths are respectively detected by the visible light imaging device and the near infrared imaging device.
  • the spectroscopic device here can preferably be a lower cost spectroscope. When installed, the spectroscope is directly mounted in a mounting sleeve that is sleeved outside the imaging fiber 7.
  • a spectroscopic device is disposed at the imaging unit 3, which can separate images of different wavelength bands, and realize separate imaging and real-time synchronous imaging of images of different wavelengths.
  • the image from the objective lens unit is introduced into different optical paths by means of a beam splitter, and is equipped with an imaging camera with high sensitivity to the corresponding wavelength.
  • the images of these cameras are integrated to enable simultaneous imaging in different bands. For example, using a 900 nm beam splitter, simultaneous imaging of visible and near-infrared fluorescence can be achieved simultaneously.
  • the filter combination lens group includes a lens group composed of a plurality of lenses 8 and a plurality of filters 6 connected to the lens group or a light-transmissive sheet switching unit connected to the lens group.
  • the filter switching unit provides the imaging unit 3 with filters 6 of different spectra. When the imaging unit 3 selects the imaging device switching unit, the imaging device switching unit is connected to the filter switching unit and used in conjunction.
  • the entire filter combination lens group may be mounted together in the imaging unit 3, connected to the imaging unit 3 to form an integral structure, or may be separately disposed between the imaging unit 3 and the objective lens unit 2, and connected to the imaging unit 3.
  • the fluorescence imaging device When the fluorescence imaging device is selected, the adjustment of the fluorescence imaging wavelength range, image size, and magnification is achieved by the filter combination lens group. Further, through the selection and switching of the fluorescence imaging device, visible (400-700 nm), near-infrared region (700-900 nm), short-wave near-infrared (near-infrared region 900-1700 nm), and thermal imaging (greater than 3000 nm) can be realized. The acquisition of multiple wavelength images, and thus the selected imaging fiber 7 should be matched to the fluorescence imaging device.
  • the imaging unit of the present invention may include a plurality of cameras, which are realized by combining imaging devices (such as different cameras such as EMCCD or InGaAs) and adjustable filters 6. Different combinations and multifunctional imaging of smart glasses or headgear 11. Different imaging and simultaneous imaging of different wavelengths of light can be realized according to the actual needs of the clinic, and the clinical application requirements for diagnosis of different diseases can be realized.
  • the imaging unit 3 in the present design can be adapted to smart glasses or head-mounted devices 11 of the same design, wherein each smart glasses or head-mounted device 11 can also be adapted to a plurality of different cameras, thereby enabling flexible selection of imaging functions. And functional imaging for a variety of different application scenarios.
  • the achromatic lens may be mounted in the imaging unit 3, connected to the imaging unit 3 to form an integral structure, or may be separately disposed between the imaging unit 3 and the objective lens unit 2, and connected to the imaging unit 3, or The achromatic lens is provided separately in the objective lens unit 2.
  • the image can be adjusted by an achromatic lens.
  • the image processing unit 4 includes an image superimposition processing unit, a brightness adjustment unit, a near-infrared image addition pseudo color processing unit, and other image processing units.
  • the image superimposition processing unit adopts feature point detection to implement a splicing algorithm of overlapping images, and combines two images with overlapping regions into one wide viewing angle image.
  • the brightness adjustment unit can increase the brightness value of some pixels in the two images to make the image clear and distinct.
  • the near-infrared image adding pseudo color processing unit can display the gray image as a custom pseudo color, further improving the image sharpness.
  • the display unit can select a display screen with a simple structure and low cost, and realize receiving and displaying the image processed by each of the image processing units.
  • the display unit 5 is connected to the image processing unit 4 through the transmission data line 12, and can also be wirelessly connected to the image processing unit 4 through the wireless data transmission module.
  • the wireless data transmission module can adopt a Bluetooth module, a WiFi module, an infrared remote control module, and 5G/4G/. Any of the 3G modules.
  • the display unit 5 of the present invention may be a transmissive screen, and the image processed by the image processing unit 4 is finally displayed on the transmissive screen.
  • the transmissive screen is mounted on the headgear 11 (see FIG. 2), the medical staff can see the image of the surgical field on the transmissive screen during the operation, providing assistance for the operation and bringing convenience to the doctor. Greatly improve the efficiency of surgery and the success rate of surgery.
  • the transmissive screen is mounted on the goggles 10 (see FIG. 1), it is more convenient for the medical staff to directly in the goggles than the transmissive screen is disposed on the headgear 11. The image is observed on the 10, and the convenience is higher.
  • the goggles 10 of the present invention When the goggles 10 of the present invention is selected as a virtual projection goggles (such as selecting a virtual reality glasses), the goggles 10 can be used to protect the glasses from radiation damage to the eyes, and As the display unit 5, the image processed by the image processing unit 4 is displayed in the field of view of the examinee by the goggles 10 in a virtual projection manner, which is more convenient to use.
  • the imaging optical fiber based surgical navigation system of the present invention can be designed as the following application examples:
  • This design can simultaneously use multiple imaging fibers with multiple imaging cameras and different filters to achieve simultaneous acquisition of optical signals of many different wavelengths.
  • Different biological tissues have different characteristic spectra, different absorption and scattering abilities for different wavelengths of light, and optical dyes with different optical and biological characteristics can be used to distinguish different tissues, such as distinguishing between pathological tissues and physiological tissues.
  • luminescent substances of various principles such as bioluminescent substances, chemiluminescent substances, electroluminescent substances, and the like, can be used in the medical field.
  • these luminescence is usually weak, and the required camera is difficult to integrate with smart glasses or headwear.
  • these applications often require simultaneous high-resolution color optical imaging, fluorescence imaging, and the like.
  • multiple imaging fibers can be used simultaneously, such as optical imaging, near-infrared fluorescence imaging (300-800 nm), and near-infrared two-zone fluorescence imaging (800-1700 nm).
  • the mutually independent imaging fibers can be respectively connected to the imaging unit of a specific function to realize multi-channel imaging of the smart glasses or the headwear. These images can be displayed separately, in the form of picture-in-picture as needed, or as an image. Provides a more comprehensive image information for users of smart glasses or headsets, providing ample evidence for diagnosis and further treatment.
  • an electronic lens on a smart glasses or a headset the image of which is an electrical signal Return to the image processing and display device.
  • the smart glasses or the headset are equipped with one or more imaging fibers of the design and corresponding end lenses, and the acquired image information is transmitted along the optical fiber to the corresponding imaging unit in the form of optical signals.
  • the image formed by the imaging unit is also transmitted to the image processing and display device. These images can be displayed separately or in the form of picture-in-picture as needed, or overlapped into an image display to provide more comprehensive image information for users of smart glasses or head-mounted devices for diagnosis and further Treatment provides a sufficient basis.
  • Monochrome imaging and mixed color narrow-band scanning imaging of multiple color illumination sources can be achieved by switching between different sources and using two or more imaging fibers simultaneously.
  • Different tissues are distinguished according to the different degrees of absorption, scattering or reflection of different wavelengths of light by different tissues.
  • the therapeutic laser can be emitted by the illumination source, and the imaging treatment can be used to monitor the irradiation position and evaluate the therapeutic effect while performing laser irradiation therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种基于传像光纤(7)的手术导航***,包括提供不同发射光的光源单元(1)、物镜单元(2)、成像单元(3)、图像处理单元(4)及显示单元(5),物镜单元(2)设置在护目眼镜(10)或头戴装置(11)上,用于采集经不同发射光照射的待测组织散射、反射或经激发产生的荧光信号形成的各种图像信号;成像单元(3)用于接收不同的图像信号并将其形成各种图像,成像单元(3)上设置有传像输入接口,传像光纤(7)的输出端与成像单元(3)的传像输入接口可拆卸连接;显示单元(5)设置在护目眼镜(10)或头戴装置(11)上,用于显示图像。手术导航***能够突破成像单元自身的外形尺寸与数量的限制,使体积和重量都较大的荧光成像等装置应用于智能眼镜或头戴装置成像***,提供灵敏度高、多波长选择的荧光成像等功能成像。

Description

一种基于传像光纤的手术导航*** 技术领域
本发明属于医学器械领域,涉及一种基于传像光纤的手术导航***。
背景技术
医学手术中的影像学设备能够帮助医生及时地获得肉眼无法直接观察到的信息,例如骨科手术中进行X光成像,可以观察手术进程。近红外光学成像已经用于临床指导手术,能够提供形态学以外的光学图像信息,目前的光学成像可以使用高灵敏度的成像单元,将图像显示在较大的屏幕上供医生参考。之前也有光学手术导航***的设计,将近红外二区(850-1700nm)光学图像投影到智能眼镜或头戴装置的屏幕上,以方便手术医生在白光下获取手术视野中的近红外图像。但是在目前的设计中,成像单元的设计中存在一个难以解决的问题。
荧光等功能性信号相对于激发光、散射光或反射光来说非常微弱,这对成像装置的灵敏度提出了非常高的要求。提高成像装置的灵敏度主要有以下两种策略:a.增大成像单元尺寸;b.延长曝光时间。成像单元尺寸越大,成像单元对光的敏感度将提高;而曝光时间的延长,相当于对微弱光的接收时间增多,灵敏度也将提高,但曝光时间的延长会导致成像噪声显著增大,图像淹没在噪点中,唯一的解决方式是通过降低成像单元温度的方式减少电子噪声。然而,以上两个策略的解决方案都需要增大成像装置的体积。现有智能眼镜(护目眼镜)或头戴装置(如头戴支架)的成像装置与智能眼镜或头戴装置是一体的,因此,成像单元的增大将使得智能眼镜或头戴装置的使用极不方便。也就是说,智能眼镜或头戴装置的轻便性和成像的灵敏度难以兼得,这一突出的矛盾,大大阻碍了相关设计的临床应用。目前智能眼镜或头戴装置研发领域解决这个矛盾的策略是寻求体积小、灵敏度高的成像单元,而这种成像单元 目前是难以实现的,因此这种解决方案是行不通的。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种将智能眼镜或头戴装置与成像单元分离的基于传像光纤的手术导航***,该基于传像光纤的手术导航***能够突破成像单元自身的外形尺寸与数量的限制,使成像单元的体积和重量都较大的荧光成像等装置能够顺利地应用于智能眼镜或头戴装置成像***,能够提供灵敏度高、多波长选择的荧光成像等功能成像。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提出一种基于传像光纤的手术导航***,包括光源单元、物镜单元、成像单元、图像处理单元及显示单元,所述光源单元用于提供不同的发射光,所述物镜单元设置在护目眼镜或头戴装置上,用于采集经不同发射光照射的待测组织散射、反射或经激发产生的荧光信号形成的各种图像信号;所述成像单元通过传像光纤与所述物镜单元连接,用于接收不同的图像信号并将其形成各种图像,所述成像单元上设置有传像输入接口,所述传像光纤的输出端与成像单元的传像输入接口可拆卸连接;所述图像处理单元用于对成像单元传输的图像进行处理,所述显示单元设置在护目眼镜或头戴装置上,用于显示经所述图像处理单元处理后的图像。
根据本发明,所述传像光纤具有一条或多条,所述成像单元可以为一个或多个成像装置,每个成像装置具有一个或多个传像输入接口,一个传像输入接口与一条传像光纤的输出端连接;
当一个成像装置只与一个物镜单元连接时,该成像装置仅接收来自该物镜单元的图像信号并将其形成各种图像;当多个成像装置均与同一个物镜单元连接时,多个成像装置同时接收来自同一个物镜单元的图像 信号并将其形成各种图像;当一个成像装置与多个物镜单元连接时,此成像装置同时接收来自不同物镜单元的各种图像信号并将其形成各种图像。
根据本发明,所述光源单元为独立设置的光源装置,或所述光源单元集成在手术照明装置上;
所述光源单元包括照明光源装置,和/或激发光源装置,和/或治疗光源装置。
根据本发明,所述物镜单元包括用于对待测组织进行功能成像的物镜,和/或
所述物镜单元包括电子成像单元,所述电子成像单元包括电子物镜和与电子物镜连接的图像采集处理模组,所述图像采集处理模组通过数据线和图像处理单元电连接。
根据本发明,所述基于传像光纤的手术导航***包括对不同波段的图像进行分离的分光装置;和/或
所述基于传像光纤的手术导航***包括透镜组以及与透镜组连接的滤光片切换单元,所述滤光片切换单元用于为成像单元提供不同光谱的滤光片;和/或
所述基于传像光纤的手术导航***包括消色差透镜。
根据本发明,所述分光装置安装在成像单元中,与成像单元连接形成一体结构,或所述分光装置分离式地设置在成像单元与物镜单元之间,且与成像单元连接;和/或
所述透镜组和滤光片切换单元均安装在成像单元中,与成像单元连接形成一体结构,或所述透镜组和滤光片切换单元均分离式地设置在成像单元与物镜单元之间,且与成像单元连接;和/或
所述消色差透镜安装在成像单元中,与成像单元连接形成一体结构,或所述消色差透镜分离式地设置在成像单元与物镜单元之间,且与成像单元连接,或所述消色差透镜分离式地设置物镜单元之中。
根据本发明,所述成像单元为成像装置切换单元,所述成像装置切换单元用于提供不同的成像装置,所述成像装置切换单元与所述滤光片切换单元相连接且配合使用。
根据本发明,所述成像单元包括可见光成像装置,和/或近红外成像装置。
根据本发明,所述显示单元为设置在护目眼镜上的透过式屏幕或虚拟投影护目眼镜。
根据本发明,所述图像处理单元包括图像重叠处理单元、亮度调节单元和近红外图像添加伪彩处理单元。
(三)有益效果
本发明的有益效果是:
与现有智能眼镜或头戴装置的成像装置与智能眼镜或头戴装置为一体化设计的结构相比,本发明的基于传像光纤的手术导航***的护目眼镜或头戴装置与成像单元形成分离式结构,通过传像光纤的输出端连接到传像单元的传像输入接口,使护目眼镜或头戴装置与传像单元形成连接,突破了现有成像装置(成像单元)自身的外形尺寸与数量的限制,使得成像单元的大小不再制约多功能多功能智能眼镜或头戴装置的发展,也为多成像单元智能眼镜或头戴装置***的设计奠定了基础。同时将使得成像单元的体积和重量都较大的荧光成像等装置能够顺利地应用于智能眼镜或头戴装置成像***,提供灵敏度高、多波长选择的荧光成像等功能成像,大大加快智能眼镜或头戴装置手术导航成像装置的临床前研发和临床应用进程与推广。
附图说明
图1是本发明实施方式提供的一种基于传像光纤的手术导航***的结构示意图,其中,物镜单元设置在护目眼镜上,显示单元设置在护目眼镜上;
图2是本发明实施方式提供的另一种基于传像光纤的手术导航*** 的结构示意图,其中,物镜单元设置在头戴装置上,显示单元设置在护目眼镜上。
附图中:1、光源单元;2、物镜单元;3、成像单元;4、图像处理单元;5、显示单元;6、滤光片;7、传像光纤;8、透镜;9、手术无影灯;10、护目眼镜;11、头戴装置;12、传输数据线。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
图1是本发明具体实施方式提供的一种基于传像光纤的手术导航***的结构示意图,其中,物镜单元设置在护目眼镜上,显示单元设置在护目眼镜上。图2是本发明具体实施方式提供的另一种基于传像光纤的手术导航***的结构示意图,其中,物镜单元设置在头戴装置上,显示单元设置在护目眼镜上。如图1和图2所示,本发明提出一种基于传像光纤的手术导航***,包括光源单元1、物镜单元2、分光装置、滤光片组合透镜组、消色差透镜、成像单元3、图像处理单元4和显示单元5等组成部分。
光源单元1用于提供不同的发射光,不同的发射光照射待测组织,待测组织散射、反射或经激发产生的荧光信号形成各种图像信号。物镜单元可用来采集各种图像信号。各种图像信号通过传像光纤7传输到成像单元3。成像单元3可接收不同的图像信号并将这些图像信号形成各种图像,图像处理单元4将成像单元3传输的各种图像进行处理。显示单元5则用来显示经图像处理单元4处理后的图像。
具体的,光源单元1可提供不同的光源,光源单元1可以为照明光源装置,可以为激发光源装置,可以为治疗光源装置,还可以为上述的其中两种或两种以上的光源装置的组合。光源单元1处的光源装置数量可以为一个或多个。当选择上述单一的光源装置时,可以选择同属于一类光源装置中的多个不同的光源装置;当选择上述组合形式的光源装置 时,可以选择上述各类光源装置中的多个不同的光源装置,例如,光源单元1可以同时产生照明光、激发光、治疗光与白光照明光等不同光。光源单元1的光源装置可单独设置,作为一独立的光源装置,还可以与手术无影灯9(手术照明装置)集成在一起,不仅使用方便,而且有利于节省安装空间。在这种情况下,手术无影灯发出的光与荧光成像的发射光不重叠。
物镜单元2可设置在护目眼镜10上(参见图1),也可以设置在头戴装置11(头戴支架)上(参见图2),方便穿戴有护目眼镜10或头戴装置11的医护人员在手术中能够连续、实时地采集到经不同发射光照射的待测组织散射、反射或经激发产生的荧光信号形成的各种图像信号。物镜单元2可以仅包含功能成像物镜,该物镜采集的图像信号通过传像光纤7传输到成像单元3进行成像,实现对待测组织的功能成像。
物镜单元2也可以仅包含电子成像单元,电子成像单元包括电子物镜和与电子物镜连接的图像采集处理模组,图像采集处理模组通过数据线直接和图像处理单元4电连接,电子成像单元将采集到的图像直接传输给图像处理单元4进行处理,实现高分辨率的形态成像。
物镜单元2还可以包含功能成像物镜和电子成像单元,其中,功能成像物镜采集的光通过传像光纤7传输到成像单元3进行成像,电子成像单元通过数据线直接和图像处理单元4电连接,二者的同时使用,能够同时获得功能成像和高分辨率的结构成像。
在本实施方式中,成像单元3可以包含一个或多个独立的成像装置,这些成像装置可以选择对可见光波段进行成像的可见光成像装置,例如兼顾灵敏度和图像采集速度的EMCCD相机;也可以选择对近红外波段进行成像的功能成像装置,例如用于近红外成像的具有高灵敏度、高分辨率的InGaAs相机;还可以同时选择上述的可见光成像装置和近红外成像装置。当上述的成像装置选择荧光成像等功能成像装置时,能够实现高灵敏度、多波长选择的荧光成像等功能成像。
在这种情况下,无论选择哪种类型的成像装置,每个独立的成像装置上设置有一个或多个传像输入接口,一个传像输入接口与一条传像光纤7的输出端可拆卸连接(即分离式连接)。当一个成像装置只与一个物镜单元2(设置有物镜单元2的护目眼镜或头戴装置)连接时,该成像装置仅接收来自该物镜单元2的各种图像信号并将其形成各种图像;当多个成像装置均与同一个物镜单元2连接时,多个成像装置同时接收来自同一个物镜单元2的各种图像信号并将其形成各种不同功能的图像。当一个成像装置与多个物镜单元2连接时,此成像装置同时接收来自不同物镜单元2的各种图像信号并将其形成各种图像。因此,本发明能够实现成像功能的灵活选择和适用多种不同应用场景的功能成像。
当然,本发明的成像单元3还可以设计为将上述多个不同类型的成像装置集成为一体的成像装置切换单元,同样能够实现可见光成像、近红外成像、荧光成像等功能成像。该成像装置切换单元上具有多个传像输入接口,这些传像输入接口可以与连接一个物镜单元2的传像光纤7的输出端可拆卸连接(即分离式连接),也可以与连接多个物镜单元2的对应的传像光纤7的输出端连接,同样能够实现成像功能的灵活选择和适用多种不同应用场景的功能成像,而且占用空间小,携带方便,使用灵活。
综上所述,本发明改变了智能眼镜或头戴装置11的成像装置与智能眼镜或头戴装置11的一体化设计,使成像单元3(成像装置)与智能眼镜或头戴装置11分离,突破了成像装置自身的外形尺寸与数量的限制,使得成像装置的大小不再制约多功能智能眼镜或头戴装置11的发展,也为多成像单元智能眼镜或头戴装置11***的设计奠定了基础。这一设计将使得成像装置的体积和重量都较大的荧光成像等功能成像装置能够顺利地应用于智能眼镜或头戴装置11***,提供灵敏度高、多波长选择的荧光成像等功能成像,大大加快智能眼镜或头戴装置11手术导航成像装置的临床应用进程和后续推广。
在本发明中,分光装置可以安装在成像单元3中,与成像单元3连接形成一体结构,还可以分离式地设置在成像单元3与物镜单元之间,且与成像单元3连接。分光装置可以将光线分束为可见光路与近红外光路两路光路,两路光路分别由可见光成像装置与近红外成像装置来检测成像。这里的分光装置可优选成本较低的分光镜,安装时,直接将分光镜安装在套设在传像光纤7外的安装套筒内。在成像单元3处设置分光装置,能够对不同波段的图像加以分离,实现不同波长图像的分别成像和实时同步显像。
根据波长不同,利用分光镜将来自于物镜单元的图像导入不同光路,并配以对相应波长敏感度高的成像相机。这些相机的图像整合在一起,能够实现不同波段的同时成像。例如使用900nm分光镜,可以同时实现可见光与近红外二区荧光的同时成像。
在本发明中,滤光片组合透镜组包括有多个透镜8组成的透镜组以及与透镜组连接的多个滤光片6或与透镜组连接的透光片切换单元。其中,滤光片切换单元为成像单元3提供不同光谱的滤光片6。当成像单元3选择成像装置切换单元时,成像装置切换单元与滤光片切换单元相连接且配合使用。
整个滤光片组合透镜组可以一起安装在成像单元3中,与成像单元3连接形成一体结构,还可以分离式地设置在成像单元3与物镜单元2之间,且与成像单元3连接。当选择荧光成像装置时,通过滤光片组合透镜组实现对荧光成像波长范围、图像尺寸和放大倍数的调整。进一步的,通过荧光成像装置的选择和切换可实现对可见(400-700nm)、近红外一区(700-900nm)、短波近红外(近红外二区900-1700nm)、热成像(大于3000nm)等多种波长图像的采集,而由此选择的传像光纤7应与荧光成像装置相匹配。
本发明的成像单元中可以包括多款相机,通过对成像装置的切换(如EMCCD或InGaAs等不同相机)以及可调整的滤光片6组合,实现 智能眼镜或头戴装置11的不同组合和多功能成像。可根据临床的实际需求实现对不同波长光的分别成像和同时成像,实现不同疾病诊断的临床应用需求。本设计中的成像单元3可以与同类设计的智能眼镜或头戴装置11适配,其中每款智能眼镜或头戴装置11也可以与多种不同的相机适配,从而实现成像功能的灵活选择和适用多种不同应用场景的功能成像。
在本发明中,消色差透镜可以安装在成像单元3中,与成像单元3连接形成一体结构,还可以分离式地设置在成像单元3与物镜单元2之间,且与成像单元3连接,或消色差透镜分离式地设置物镜单元2之中。当选择白光成像装置时,通过消色差透镜可对图像进行调整。
在本发明中,图像处理单元4包括图像重叠处理单元、亮度调节单元、近红外图像添加伪彩处理单元和其他图像处理单元。其中,图像重叠处理单元采用特征点检测实现重叠图像的拼接算法,将具有重叠区域的两个图像合成一个宽视角图像。亮度调节单元可提高两个图像中某些像素点的亮度值,以使图像清晰分明。近红外图像添加伪彩处理单元可将灰色图像以自定义伪彩显示出来,进一步提高图像清晰度。显示单元可以选择结构简单、成本低的显示屏,实现接收并显示经上述各图像处理单元处理后的图像。
显示单元5通过传输数据线12与图像处理单元4连接,也可以通过无线数据传输模块与图像处理单元4无线连接,无线数据传输模块可以采用蓝牙模块、WiFi模块、红外遥控模块、5G/4G/3G模块中的任一种。本发明的显示单元5可以为透过式屏幕,经图像处理单元4处理后的图像最终被传导显示至透过式屏幕上。当透过式屏幕安装在头戴装置11上时(参见图2),医护人员在手术过程中能看到透过式屏幕上手术视野的图像,为手术操作提供辅助,给医生带来方便,大大提高手术效率和手术成功率。当透过式屏幕安装在护目眼镜10上时(参见图1),相比透过式屏幕设置在头戴装置11上,更方便医护人员直接在护目眼镜 10上观察到图像,便捷性更高。
当本发明的护目眼镜10选择为一种虚拟投影护目眼镜(如选择一款虚拟现实眼镜)时,该护目眼镜10既可以用于保护眼镜,避免辐射光对眼睛造成伤害,还可以作为显示单元5,经图像处理单元4处理后的图像以虚拟投影的方式通过护目眼镜10显示在试用者的视野中,使用更加方便。
本发明的基于传像光纤的手术导航***可以设计成以下应用实例:
1、多传像光纤配合多相机同时成像
本设计可以同时使用多根传像光纤配合多个成像相机和不同滤光片,实现对多种不同波长光学信号的同时采集。不同的生物组织有着不同的特征光谱,对不同波长光线的吸收能力和散射能力不同,配合不同光学和生物学特性的光学染料,可以用于区分不同的组织,例如区分病理组织和生理组织。特别是各种原理的发光物质,例如生物发光物质、化学发光物质,电发光物质等,都可以用于医学领域。但是这些发光通常较弱,所需求的相机难以与智能眼镜或头戴装置整合在一起。并且,这些应用通常需要同时进行高分辨率彩色光学成像、荧光成像等成像方式的合并使用。这些在智能眼镜或头戴装置设计中是难以实现的。在本设计中,可以采用多条传像光纤同时使用的方法实现,例如光学成像,近红外一区荧光成像(300-800nm),和近红外二区荧光成像(800-1700nm)的同步实施。相互独立的传像光纤可以分别与特定功能的成像单元连接,实现智能眼镜或头戴装置的多通道成像。这些图像既可以分别显示,也可以根据需要以画中画的形式显示,或者重叠为一幅图像显示。为智能眼镜或头戴装置的使用者提供更为全面的图像信息,为诊断和进一步的治疗提供充分的依据。
2、纤维镜与电子镜的同时成像
在智能眼镜或头戴装置上装配电子镜头,其所成图像以电信号的方 式回传至图像处理及显示设备。在智能眼镜或头戴装置中同时配备本设计的一条或多条传像光纤和相应的末端镜头,其采集的图像信息以光学信号的形式沿着光纤传输至相应的成像单元。成像单元形成的图像也传输至图像处理及显示设备。这些图像既可以分别显示,也可以根据需要以画中画的形式显示,或者重叠为一幅图像显示,为智能眼镜或头戴装置的使用者提供更为全面的图像信息,为诊断和进一步的治疗提供充分的依据。
兼顾本设计中纤维镜的功能成像和电子镜的高分辨率成像。在本设计的智能眼镜或头戴装置上增加电子物镜,这样在成像装置处对功能成像图像与高分辨率形态学图像加以配准重叠,这样的配准图像将兼顾形态成像高分辨率的特点和功能成像的优势。
3、窄带扫描成像
通过切换不同的光源,同时使用两根或多根成像纤维可以实现多种颜色照明光源的单色成像和混合色彩窄带扫描成像。根据不同组织对不同波长光的吸收、散射或反射程度不同,对不同的组织进行区分。
4、多功能成像与光照治疗的同时实现
在实现功能性成像的同时,可以通过照明光源发射治疗性激光,进行激光照射疗法的同时,使用成像纤维监测照射位置和评估治疗效果。
需要理解的是,以上对本发明的具体实施例进行的描述只是为了说明本发明的技术路线和特点,其目的在于让本领域内的技术人员能够了解本发明的内容并据以实施,但本发明并不限于上述特定实施方式。凡是在本发明权利要求的范围内做出的各种变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种基于传像光纤的手术导航***,其特征在于,包括光源单元(1)、物镜单元(2)、成像单元(3)、图像处理单元(4)及显示单元(5),所述光源单元(1)用于提供不同的发射光,所述物镜单元(2)设置在护目眼镜(10)或头戴装置(11)上,用于采集经不同发射光照射的待测组织散射、反射或经激发产生的荧光信号形成的各种图像信号;所述成像单元(3)通过传像光纤(7)与所述物镜单元(2)连接,用于接收不同的图像信号并将其形成各种图像,所述成像单元(3)上设置有传像输入接口,所述传像光纤(7)的输出端与成像单元(3)的传像输入接口可拆卸连接;所述图像处理单元(4)用于对成像单元(3)传输的图像进行处理,所述显示单元(5)设置在护目眼镜(10)或头戴装置(11)上,用于显示经所述图像处理单元(4)处理后的图像。
  2. 根据权利要求1所述的一种基于传像光纤的手术导航***,其特征在于:所述传像光纤(7)具有一条或多条,所述成像单元(3)用于提供不同的成像装置,每个成像装置具有一个或多个传像输入接口,一个传像输入接口与一条传像光纤(7)的输出端连接;
    当一个成像装置只与一个物镜单元(2)连接时,该成像装置仅接收来自该物镜单元(2)的图像信号并将其形成各种图像;当多个成像装置均与同一个物镜单元(2)连接时,多个成像装置同时接收来自同一个物镜单元(2)的图像信号并将其形成各种图像;当一个成像装置与多个物镜单元(2)连接时,此成像装置同时接收来自不同物镜单元(2)的各种图像信号并将其形成各种图像;当多个成像装置与多个物镜单元(2)连接时,多个成像装置分别接收来自不同物镜单元(2)的各种图像信号并将其整合形成各种图像。
  3. 根据权利要求2所述的一种基于传像光纤的手术导航***,其特征在于:所述光源单元(1)为独立设置的光源装置,或所述光源单元(1)集成在手术照明装置上;
    所述光源单元(1)包括照明光源装置,和/或激发光源装置,和/或 治疗光源装置。
  4. 根据权利要求3所述的一种基于传像光纤的手术导航***,其特征在于:所述物镜单元(2)包括用于对待测组织进行功能成像的物镜,和/或
    所述物镜单元(2)包括电子成像单元,所述电子成像单元包括电子物镜和与电子物镜连接的图像采集处理模组,所述图像采集处理模组通过数据线和图像处理单元(4)连接。
  5. 根据权利要求4所述的一种基于传像光纤的手术导航***,其特征在于:所述基于传像光纤的手术导航***包括对不同波段的图像进行分离的分光装置;和/或
    所述基于传像光纤的手术导航***包括透镜组以及与透镜组连接的滤光片切换单元,所述滤光片切换单元用于为成像单元(3)提供不同光谱的滤光片(6);和/或
    所述基于传像光纤的手术导航***包括消色差透镜。
  6. 根据权利要求5所述的一种基于传像光纤的手术导航***,其特征在于:所述分光装置安装在成像单元(3)中,与成像单元(3)连接形成一体结构,或所述分光装置分离式地设置在成像单元(3)与物镜单元之间,且与成像单元(3)连接;和/或
    所述透镜组和滤光片切换单元均安装在成像单元(3)中,与成像单元(3)连接形成一体结构,或所述透镜组和滤光片切换单元均分离式地设置在成像单元(3)与物镜单元(2)之间,且与成像单元(3)连接;和/或
    所述消色差透镜安装在成像单元(3)中,与成像单元(3)连接形成一体结构,或所述消色差透镜分离式地设置在成像单元(3)与物镜单元(2)之间,且与成像单元(3)连接,或所述消色差透镜分离式地设置物镜单元(2)之中。
  7. 根据权利要求5所述的一种基于传像光纤的手术导航***,其特 征在于:所述成像单元(3)为成像装置切换单元,所述成像装置切换单元用于提供不同的成像装置,所述成像装置切换单元与所述滤光片切换单元相连接且配合使用。
  8. 根据权利要求1-7任一项所述的一种基于传像光纤的手术导航***,其特征在于:所述成像单元(3)包括可见光成像装置,和/或近红外成像装置。
  9. 根据权利要求1-7任一项所述的一种基于传像光纤的手术导航***,其特征在于:所述显示单元(5)为设置在护目眼镜(10)上的透过式屏幕或虚拟投影护目眼镜。
  10. 根据权利要求1所述的一种基于传像光纤的手术导航***,其特征在于:所述图像处理单元(4)包括图像重叠处理单元、亮度调节单元和近红外等功能图像添加伪彩处理单元。
PCT/CN2017/115199 2017-11-27 2017-12-08 一种基于传像光纤的手术导航*** WO2019100449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711205982.8 2017-11-27
CN201711205982.8A CN107811706B (zh) 2017-11-27 2017-11-27 一种基于传像光纤的手术导航***

Publications (1)

Publication Number Publication Date
WO2019100449A1 true WO2019100449A1 (zh) 2019-05-31

Family

ID=61610405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115199 WO2019100449A1 (zh) 2017-11-27 2017-12-08 一种基于传像光纤的手术导航***

Country Status (2)

Country Link
CN (1) CN107811706B (zh)
WO (1) WO2019100449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108833883A (zh) * 2018-08-24 2018-11-16 上海准视生物科技有限公司 一种实时生成与显示2d/3d图像与影像的***及方法
CN110279392A (zh) * 2019-06-12 2019-09-27 上海健康医学院 一种眼底荧光成像***及方法
US11954785B2 (en) 2021-12-07 2024-04-09 Canon Medical Systems Corporation Data processing method and apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300812A (zh) * 2013-06-27 2013-09-18 中国科学院自动化研究所 基于内窥镜的多光谱视频导航***和方法
CN204120989U (zh) * 2014-07-22 2015-01-28 中国科学院自动化研究所 内窥式光学分子影像导航***
CN104887321A (zh) * 2015-05-08 2015-09-09 安徽信美医学工程科技有限公司 一种便携多模式医疗显微导航装置及其控制方法
WO2015179446A1 (en) * 2014-05-20 2015-11-26 BROWND, Samuel, R. Systems and methods for mediated-reality surgical visualization
CN106029000A (zh) * 2014-02-21 2016-10-12 阿克伦大学 用于引导医疗干预的成像和显示***
CN106901679A (zh) * 2017-04-27 2017-06-30 苏州双威医疗器械科技有限公司 荧光显微内窥成像***及荧光显微内窥成像方法
CN107374730A (zh) * 2017-09-06 2017-11-24 东北大学 光学手术导航***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300812A (zh) * 2013-06-27 2013-09-18 中国科学院自动化研究所 基于内窥镜的多光谱视频导航***和方法
CN106029000A (zh) * 2014-02-21 2016-10-12 阿克伦大学 用于引导医疗干预的成像和显示***
WO2015179446A1 (en) * 2014-05-20 2015-11-26 BROWND, Samuel, R. Systems and methods for mediated-reality surgical visualization
CN204120989U (zh) * 2014-07-22 2015-01-28 中国科学院自动化研究所 内窥式光学分子影像导航***
CN104887321A (zh) * 2015-05-08 2015-09-09 安徽信美医学工程科技有限公司 一种便携多模式医疗显微导航装置及其控制方法
CN106901679A (zh) * 2017-04-27 2017-06-30 苏州双威医疗器械科技有限公司 荧光显微内窥成像***及荧光显微内窥成像方法
CN107374730A (zh) * 2017-09-06 2017-11-24 东北大学 光学手术导航***

Also Published As

Publication number Publication date
CN107811706A (zh) 2018-03-20
CN107811706B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Roblyer et al. Multispectral optical imaging device for in vivo detection of oral neoplasia
US20120056996A1 (en) Special-illumination surgical video stereomicroscope
CN107510430A (zh) 一种同时获取可见光彩色图像与血流图像的内窥镜光学成像方法及***
CN107822585B (zh) 一种多功能内窥镜***
WO2022082930A1 (zh) 一种可见-近红外实时图像融合的荧光显微镜***
US20110273550A1 (en) Meibomian gland observing device
US20120257163A1 (en) Video Infrared Ophthalmoscope
JP6996518B2 (ja) 分岐光学系、撮像装置、及び撮像システム
JP2001504739A (ja) 皮膚診断用蛍光スコープシステム
JP2011507629A (ja) 角膜切除手術の進捗モニタ用仮想顕微鏡システム及び関連方法
US20230221539A1 (en) Surgical microscope having an illumination apparatus
WO2019100449A1 (zh) 一种基于传像光纤的手术导航***
CN107374730A (zh) 光学手术导航***
WO2017043539A1 (ja) 画像処理システム、画像処理装置、投影装置、及び投影方法
NO20053232D0 (no) Innretning for skjermvisning av vevsdiagnose.
WO2015041446A1 (ko) 현미경 시스템 및 현미경 시스템의 증강 현실 이미지 제공 방법
JP2006301523A (ja) 医療用顕微鏡
CN205795642U (zh) 一种手持式眼底照相机
JP6859554B2 (ja) 観察補助装置、情報処理方法、およびプログラム
CN208693443U (zh) 一种基于传像光纤的手术导航***
CN105852784A (zh) 一种多谱医用内窥镜镜头及***
CN209048092U (zh) 一种多功能内窥镜***
CN217792957U (zh) 内窥镜***
US20230190083A1 (en) Visualization system with real-time imaging function
CN212879559U (zh) 一种具有实时成像功能的可视化***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932773

Country of ref document: EP

Kind code of ref document: A1