WO2019100184A1 - 主动发光显示设备子像素驱动方法及装置 - Google Patents

主动发光显示设备子像素驱动方法及装置 Download PDF

Info

Publication number
WO2019100184A1
WO2019100184A1 PCT/CN2017/111993 CN2017111993W WO2019100184A1 WO 2019100184 A1 WO2019100184 A1 WO 2019100184A1 CN 2017111993 W CN2017111993 W CN 2017111993W WO 2019100184 A1 WO2019100184 A1 WO 2019100184A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
value
tval
gray
Prior art date
Application number
PCT/CN2017/111993
Other languages
English (en)
French (fr)
Inventor
黎守新
Original Assignee
成都晶砂科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都晶砂科技有限公司 filed Critical 成都晶砂科技有限公司
Priority to PCT/CN2017/111993 priority Critical patent/WO2019100184A1/zh
Publication of WO2019100184A1 publication Critical patent/WO2019100184A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present invention relates to a display driving technology, and in particular to an active light emitting display device sub-pixel driving method and apparatus.
  • the OLED source driving method uses the same number of DAC modules as the pixel matrix, and the OLED sub-pixel display gray scale value is directly converted into an analog quantity corresponding to the gray scale value by a digital-to-analog converter (DAC), and the input is performed.
  • DAC digital-to-analog converter
  • This method can effectively avoid the interference between the analog signals of each column of pixel units in the pixel array, but as the display resolution increases, the manufacturing process becomes more and more difficult, and this driving method becomes more and more unsuitable. .
  • the OLED source drive mode uses a separate DAC module to generate a ramp voltage that is linear with the load voltage count.
  • Figure 4 shows the specific timing diagram, where CLK is the DAC internal clock and HSYNC is the line sync. Signal, EN is the data enable signal, CNT is the DAC internal clock count value, that is, the load voltage count value.
  • CLK is the DAC internal clock
  • HSYNC is the line sync.
  • EN is the data enable signal
  • CNT the DAC internal clock count value, that is, the load voltage count value.
  • the OLED sub-pixel loading slope is controlled. The end of the voltage.
  • This method can effectively reduce the number of DACs, thereby greatly reducing the area of the analog circuit and the difficulty of manufacturing the process.
  • 3 is a typical charging characteristic curve of the capacitor.
  • the load RC1 of the device 1 is smaller than the load RC2 of the device 2, and the same rating is adopted.
  • the device 1 reaches the rated voltage for a shorter time than the device 2, and therefore, the conventional method shown in FIG. 2 causes the data voltage loaded in the low gray scale sub-pixel to be lower than the rated value.
  • the technical problem to be solved by the present invention is to provide a sub-pixel driving method and apparatus for an active light-emitting display device capable of improving brightness characteristics of low gray-scale sub-pixels.
  • the present invention adopts the following technical solutions.
  • An active light emitting display device sub-pixel driving method includes:
  • the input pixel array sub display grayscale values smaller than a preset threshold gray level value of a first pixel when Tval 1, the low gray level sub-pixel sub-pixels, or the high gray sub-pixel a sub-pixel;
  • the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the loading of the ramp voltage to the sub-pixel begins.
  • the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, the ramp voltage is no longer loaded to the sub-pixel.
  • the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the display gray-scale value Vdata of the sub-pixel is greater than the load voltage count value of the DAC module of the sub-pixel When the CNT and the preset first high gray scale sub-pixel on set value Sval 1 are less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, start loading the ramp voltage to the sub-pixel;
  • the sub-pixel is a high gray-scale sub-pixel
  • the first threshold grayscale value Tval 1 and the second threshold grayscale value Tval 2 are pre-set: when the display grayscale value Vdata of the sub-pixel is smaller than the first The second threshold grayscale value Tval 2 , the display grayscale value Vdata of the subpixel is greater than the loading voltage count value CNT of the DAC module of the subpixel, and the preset first high grayscale subpixel onset setting value Sval 1 is less than or equal to
  • the ramp voltage is started to be applied to the sub-pixel;
  • the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray-scale value Tval 2
  • the display of the sub-pixel The gray scale value Vdata is greater than the load voltage count value CNT of the DAC module of the subpixel and the preset second high gray scale subpixel turn-on set value Sval 2 is less than or equal to the load voltage count
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub the first sub-pixel displays gray high gray values of the pixels smaller than the second threshold value Vdata gray value Tval 2, the display sub-pixel gray level value of the applied voltage Vdata is greater than the count value CNT of the sub-pixel and a preset DAC module
  • the set value Sval 1 is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel
  • the ramp voltage is started to be applied to the sub-pixel;
  • the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray scale a value Tval 2 and less than a third threshold grayscale value Tval 3
  • a display grayscale value Vdata of the subpixel is greater than a load voltage count value CNT of the DAC module of the subpixel, and a preset second high grayscale subpixel on setting
  • the value Sval 1 is less than or equal to the load voltage count value CNT of
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i in the case where only the first threshold gray scale value Tval 1 is pre-set, the first threshold gray scale value Tval 1 and the second threshold gray scale value Tval 2 are pre-set. and so on at a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, a third threshold value of the grayscale values Tval 3, the ramp voltage starts to load in the respective sub-pixel;
  • the sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i ; i is a sequence number and is a positive integer.
  • the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the display gray-scale value Vdata of the sub-pixel is less than or equal to the loading voltage of the DAC module of the sub-pixel When the count value CNT and/or the preset first high gray scale sub-pixel on-set set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the ramp voltage is no longer loaded in the sub-pixel;
  • the display grayscale value Vdata of the sub-pixel is less than or equal to
  • the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset first high gray scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the slope is no longer loaded.
  • a voltage is applied to the sub-pixel; a display grayscale value Vdata of the sub-pixel is less than or equal to a load voltage count value CNT of the DAC module of the sub-pixel and/or a preset second high gray-scale sub-pixel enable set value Sval 2 is greater than When the load voltage count value CNT of the DAC module of the sub-pixel is no longer loaded with the ramp voltage in the sub-pixel;
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub display pixel gray level value is less than or equal to voltage Vdata count value CNT of the sub-pixel DAC module opening and / or a first predetermined high gray level sub-pixel is greater than the load set value sval 1 sub-pixel of the DAC module
  • the voltage count value CNT the ramp voltage is no longer loaded in the sub-pixel
  • the display gray scale value Vdata of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset second high when the gray level sub-pixel is turned on is greater than the set value of the applied voltage sval 2 count value CNT of the sub-pixel DAC module is no longer loaded ramp voltage to the sub-pixel; when the display sub-pixel gray level value less than or equal to the sub-Vdata When the load voltage count value C
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i based on the fact that only the first threshold grayscale value Tval 1 is pre-set, the first threshold grayscale value Tval 1 , the second threshold grayscale value Tval 2 and the pre-preparation are pre-set.
  • the sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i ; i is a sequence number and is a positive integer.
  • the sub-pixels are all sub-pixels of the same row.
  • the first, second, ..., i threshold grayscale value is a static grayscale threshold determined by a design or manufacturing process or a dynamic threshold grayscale value determined by a display grayscale value distribution of one or several frames of images.
  • the method for determining the dynamic threshold grayscale value is:
  • Tval i meets:
  • C is the lowest image grayscale value among all the sub-pixels in the current image
  • D is the highest image grayscale value among all the sub-pixels in the current image
  • N is the threshold grayscale value
  • N is a positive integer.
  • Determining the first, second, ..., i high grayscale sub-pixels to open the set value is:
  • the first, second, ..., i high grayscale sub-pixel onset setting value is equal to the display grayscale value Vdata of the sub-pixel divided by R and rounded, wherein the value of R satisfies: t max is the time when the load voltage count value CNT of the DAC module of the sub-pixel is from 0 to the maximum, Umax is the voltage at which the load voltage count value CNT of the DAC module of the sub-pixel takes the maximum, and ⁇ t is the load ramp voltage. The minimum time required for the subpixel to Umax; or
  • the first, second, ..., i high grayscale subpixel onset setting value is equal to the difference between the display grayscale value Vdata of the subpixel and the fixed difference value E.
  • An active light emitting display device sub-pixel driving device includes:
  • the control unit comparing, when the input for the sub-pixel array of display pixels grayscale value less than a preset first threshold gray level value Tval 1, it is judged that the low gray level sub-pixel a sub-pixel, the sub-pixel or high ash a sub-pixel; and if the sub-pixel is a low-gray sub-pixel, and when the display gray-scale value of the sub-pixel is greater than a load voltage count value CNT of the DAC module of the sub-pixel, the control starts to load the ramp voltage at the Subpixel.
  • the comparison control unit is further configured to: if the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, the control is no longer loaded.
  • the ramp voltage is at the sub-pixel.
  • the comparison control unit is further configured to: if the sub-pixel is a high gray-scale sub-pixel, and only pre-set the first threshold gray-scale value Tval 1 : when the display gray-scale value Vdata of the sub-pixel is greater than the sub-pixel
  • the control starts to load the ramp voltage at the Subpixel
  • the sub-pixel is a high gray-scale sub-pixel
  • the first threshold grayscale value Tval 1 and the second threshold grayscale value Tval 2 are pre-set: when the display grayscale value Vdata of the sub-pixel is smaller than the first The second threshold grayscale value Tval 2 , the display grayscale value Vdata of the subpixel is greater than the loading voltage count value CNT of the DAC module of the subpixel, and the preset first high grayscale subpixel onset setting value Sval 1 is less than or equal to
  • the control starts to load the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray-scale value Tval 2 , the sub-pixel
  • the load voltage count value CNT indicating that the gray scale value Vdata is greater than the DAC module of the subpixel and the preset second high gray scale subpixel turn-on set value Sval 2 are less than or equal to the load voltage
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub the first sub-pixel displays gray high gray values of the pixels smaller than the second threshold value Vdata gray value Tval 2, the display sub-pixel gray level value of the applied voltage Vdata is greater than the count value CNT of the sub-pixel and a preset DAC module
  • the control starts to load the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray
  • the order value Tval 2 is smaller than the third threshold gray scale value Tval 3 , the display gray scale value Vdata of the sub-pixel is larger than the load voltage count value CNT of the DAC module of the sub-pixel, and the preset second high gray-scale sub-pixel open setting
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i in the case where only the first threshold gray scale value Tval 1 is pre-set, the first threshold gray scale value Tval 1 and the second threshold gray scale value Tval 2 are pre-set. and so on at a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, the third threshold gray level value Tval 3, the control starts loading ramp voltage to the respective sub-pixel;
  • the sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i ; i is a sequence number and is a positive integer.
  • the comparison control unit is further configured to: if the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the display gray-scale value Vdata of the sub-pixel is less than or equal to the When the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset first high gray scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the control no longer loads the slope Voltage is applied to the sub-pixel;
  • the display grayscale value Vdata of the sub-pixel is less than or equal to
  • the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset first high gray scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the control is no longer loaded.
  • a ramp voltage is applied to the sub-pixel; a display grayscale value Vdata of the sub-pixel is less than or equal to a load voltage count value CNT of the DAC module of the sub-pixel and/or a preset second high gray-scale sub-pixel turn-on set value Sval 2 When the load voltage count value CNT of the DAC module of the sub-pixel is larger, the control no longer loads the ramp voltage to the sub-pixel;
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub display pixel gray level value is less than or equal to voltage Vdata count value CNT of the sub-pixel DAC module opening and / or a first predetermined high gray level sub-pixel is greater than the load set value sval 1 sub-pixel of the DAC module
  • the control no longer loads the ramp voltage to the sub-pixel; when the display gray scale value Vdata of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset second
  • the high gray scale sub-pixel on-set set value Sval 2 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the control no longer loads the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is less than or equal to When the load
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i in the case where only the first threshold gray scale value Tval 1 is pre-set, the first threshold gray scale value Tval 1 and the second threshold gray scale value Tval 2 are pre-set. and so on at a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, the third threshold gray level value Tval 3, the control voltage is no longer loading ramp to the respective sub-pixel;
  • the sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i ; i is a sequence number and is a positive integer.
  • the sub-pixels are all sub-pixels of the same row.
  • the first, second, ..., i threshold grayscale value is a static grayscale threshold determined by a design or manufacturing process or a dynamic threshold grayscale value determined by a display grayscale value distribution of one or several frames of images.
  • the method for determining the dynamic threshold grayscale value is:
  • Tval i meets:
  • C is the lowest image grayscale value among all the sub-pixels in the current image
  • D is the current image.
  • N is the number of threshold grayscale values
  • N is a positive integer.
  • Determining the first, second, ..., i high grayscale sub-pixels to open the set value is:
  • the first, second, ..., i high grayscale sub-pixel onset setting value is equal to the display grayscale value Vdata of the sub-pixel divided by R and rounded, wherein the value of R satisfies: t max is the time when the load voltage count value CNT of the DAC module of the sub-pixel is from 0 to the maximum, Umax is the voltage at which the load voltage count value CNT of the DAC module of the sub-pixel takes the maximum, and ⁇ t is the load ramp voltage. The minimum time required for the subpixel to Umax; or
  • the first, second, ..., i high grayscale subpixel onset setting value is equal to the difference between the display grayscale value Vdata of the subpixel and the fixed difference value E.
  • the present invention has the following beneficial technical effects.
  • the present invention when the input pixel array of sub-pixels displays a first gray level value less than a preset threshold gray level value of 1 Tval, the low gray level sub-pixel sub-pixels, or the high gray sub-pixel a sub-pixel; if The sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is greater than the load voltage count value of the DAC module of the sub-pixel, the loading of the ramp voltage to the sub-pixel begins. It can be seen that the present invention controls the loading ramp voltage at the starting moment of the low gray scale sub-pixel, adjusts and optimizes the load of the driving DAC in real time, can improve the charging accuracy of the low gray scale sub-pixel display low gray scale image, and can improve the lowness. Luminance characteristics of grayscale sub-pixel images.
  • FIG. 1 is a schematic structural diagram of an OLED source driving method of a plurality of DACs in the prior art.
  • FIG. 2 is a schematic structural diagram of an OLED source driving method of a conventional DAC.
  • Figure 3 is a graph showing the charging characteristics of capacitors with different RC values.
  • FIG. 4 is a schematic diagram showing the relationship between the output voltage value of the OLED source driving mode of the DAC and the loading voltage count value.
  • FIG. 5 is a schematic structural diagram of a sub-pixel driving device of an active light emitting display device according to the present invention.
  • FIG. 6 is a schematic diagram showing a normal distribution of gray scale value distribution and gray scale value X of a sub-pixel input image.
  • Figure 7 is a schematic diagram of the capacitance charging characteristic curve of the DAC at full load.
  • Figure 8 is a schematic diagram of the gray scale distribution of the total sub-pixel of a 533xRGBx300 resolution image.
  • an active light emitting display device or device such as an OLED is composed of a plurality of pixels, each of which contains several sub-pixels.
  • the active light emitting display device or device may be classified into an RGB device and an RGBW device according to the type of the sub-pixel, and each pixel of the RGB device includes one red sub-pixel, one green sub-pixel, and one blue sub-pixel.
  • the RGBW device that has appeared in recent years includes one red sub-pixel, one green sub-pixel, one blue sub-pixel, and one white sub-pixel.
  • an OLED is an organic light-emitting device that controls the light emission by applying a voltage or current to an OLED sub-pixel.
  • the brightness of the light has a linear relationship with the current flowing through it.
  • it is necessary to input an accurate voltage or current. Therefore, in achieving high gray
  • high-precision digital-to-analog converter (DAC) conversion is required to obtain a finer voltage or current. This is a test for the manufacturing process of OLEDs.
  • the human eye is more sensitive to low grayscale image details than high grayscale image details, so the low grayscale portion should be emphasized in image display.
  • the invention can be applied to active light emitting display devices or devices such as LEDs, OLEDs, QLEDs, Micro-LEDs and Micro-OLEDs.
  • the present invention proposes the following technical solutions.
  • FIG. 5 is a schematic structural diagram of an active light emitting display device sub-pixel driving device preset with a threshold gray scale value, that is, a first threshold grayscale value Tval 1 , which adds a second control based on the prior art presented in FIG. 2 .
  • Switch Switch2 a threshold gray scale value
  • the opening and closing of the first control switch Switch1 is determined by the load voltage count value CNT of the DAC module and the display gray scale value Vdata of the sub-pixel, and the second control switch Switch 2 is turned on and off by the load voltage count value CNT of the DAC module,
  • the first threshold grayscale value Tval 1 , the display grayscale value Vdata of the sub-pixel, and the first high grayscale sub-pixel onset setting value Sval 1 are determined, as shown in Table 1.
  • Table 1 is provided only exhibits a threshold gray scale value and a high grayscale subpixels turned embodiments set value, i.e., a first predetermined threshold value and a gray level value Tval high gray sub-pixel is turned on the first set An embodiment of the value Sval 1 .
  • the ramp voltage is applied to the sub-pixels only when both Switch1 and Switch2 are closed. Therefore, the first control switch Switch1 and the second control switch Switch2 of the control sub-pixel At the turn-on and turn-off times, the load voltage at the beginning of the sub-pixel, the digital-to-analog conversion of the entire analog circuit device including the DAC, can be dynamically controlled to achieve precise control of the load ramp voltage in each sub-pixel. Pixel.
  • the sub-pixel driving method when the sub-pixels of the input grayscale value of the pixel array to display a first Vdata less than a preset threshold gray level value of 1 Tval, the low gray level sub-pixel a sub-pixel; otherwise the high gray sub-pixel sub-pixels, i.e., when the input pixel sub-pixel displays gray value Vdata is greater than or equal to a first predetermined threshold gray value Tval 1 when the high gray sub-pixel a sub-pixel. See Table 1 for details.
  • the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value Vdata of the sub-pixel is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the loading of the ramp voltage to the sub-pixel begins.
  • the sub-pixels of the input pixel array are a row of sub-pixels, and the number of sub-pixels of the row includes at least one, and the number of common sub-pixels is several.
  • the display grayscale values of these sub-pixels may be the same, which may not be complete. The same, maybe even completely different.
  • a preset threshold gray level value for example, a first predetermined threshold gray value Tval 1.
  • These sub-pixels displays a first gray value Vdata and the threshold gray level value comparison Tval 1, may classify the sub-pixels, for example, into high and low gray level sub-pixel a sub-pixel grayscale.
  • the sub-pixel is a high-gray sub-pixel, that is, when the display gray-scale value Vdata of the sub-pixel of the input pixel array is greater than or equal to a preset first threshold gray-scale value Tval 1 , the sub-pixel is determined to be a high-gray sub-pixel. Pixel.
  • the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, Switch1 is turned off, Switch2 is closed, and the ramp voltage is no longer loaded. In the sub-pixel.
  • the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the display gray-scale value Vdata of the sub-pixel is larger than the sub-pixel
  • the load voltage count value CNT of the DAC module and the preset first high gray scale sub-pixel turn-on set value Sval 1 are less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, both Switch 1 and Switch 2 are closed and start loading.
  • the ramp voltage is at the sub-pixel.
  • Table 2 presents the two thresholds set and two high gray level value turn gray scale subpixel embodiments set value, i.e., a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, opening a first high gray sub-pixel set value sval 1, open the second high-gray subpixel embodiment sval 2 of the set value.
  • the sub-pixel is a high gray-scale sub-pixel
  • the first threshold grayscale value Tval 1 and the second threshold grayscale value Tval 2 are pre-set: when the sub-pixel is displayed gray
  • the order value Vdata is smaller than the second threshold gray scale value Tval 2
  • the display gray scale value Vdata of the subpixel is greater than the load voltage count value CNT of the DAC module of the subpixel, and the preset first high gray scale subpixel on setting value
  • Sval 1 is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, both Switch 1 and Switch 2 are closed, and the ramp voltage is started to be applied to the sub-pixel;
  • the display gray scale value Vdata of the sub-pixel is greater than or equal to the second threshold a grayscale value Tval 2
  • a display grayscale value Vdata of the subpixel is greater than a load voltage count value CNT of the DAC module of the subpixel, and a preset second high grayscale subpixel onset set value S
  • the display grayscale value Vdata of the sub-pixel is less than or equal to the sub-pixel
  • the load voltage count value CNT of the DAC module of the pixel and/or the preset first high gray scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, Switch 1 and/or Switch 2 are off.
  • the ramp voltage is no longer loaded in the sub-pixel; the display gray scale value Vdata of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset second high gray-scale sub-pixel is turned on.
  • the set value Sval 2 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, Switch 1 and/or Switch 2 are turned off, and the ramp voltage is no longer applied to the sub-pixel.
  • the preset three threshold grayscale value and the high grayscale three subpixels turned embodiments set value, i.e., a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, third Implementation of threshold grayscale value Tval 3 , first high grayscale subpixel on setting value Sval 1 , second high grayscale subpixel on setting value Sval 2 , and third high grayscale subpixel on setting value Sval 3 example.
  • the sub-pixel is a low gray-scale sub-pixel, the case where the ramp voltage is applied to the sub-pixel is the same as that of the above embodiment, and will not be described here.
  • a first preset threshold gray level value Tval 1 when the high gray sub-pixel a sub-pixel, a first preset threshold gray level value Tval 1, the second threshold value a case where the grayscale values Tval 2, the third threshold gray level value Tval 3: when the display sub-pixel grayscale value Vdata is less than the second threshold gray level value Tval 2, the display sub-pixel gray level value is greater than the sub-Vdata
  • the load voltage count value CNT of the DAC module of the pixel and the preset first high gray scale sub-pixel turn-on set value Sval 1 are less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, the loading of the ramp voltage is started.
  • the display sub-pixel gray scale value Vdata is greater than or equal to a second threshold gray level value Tval 2 and less than the third threshold gray level value Tval 3, the display sub-pixel gray scale value Vdata is greater than the sub-pixel DAC
  • the load voltage count value CNT of the module and the preset second high gray scale sub-pixel enable set value Sval 2 are less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, start loading the ramp voltage to the sub-pixel;
  • the display sub-pixel gray scale value Vdata is greater than the sub-pixel DAC module load voltage and the preset count value CNT of the high gray sub-pixel is turned on third set value
  • Sval 3 is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, the ramp voltage is started to be applied to the sub-pixel.
  • the sub-pixel is a high gray-scale sub-pixel
  • the first threshold gray-scale value Tval 1 , the second threshold gray-scale value Tval 2 , and the third threshold gray-scale value Tval 3 are pre-set: when the sub-pixel The load voltage count value CNT of the DAC module whose gray scale value Vdata is less than or equal to the subpixel and/or the preset first high gray scale subpixel turn-on set value Sval 1 is greater than the load voltage count of the DAC module of the subpixel
  • the value is CNT
  • the ramp voltage is no longer loaded in the sub-pixel; when the display grayscale value Vdata of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset second high gray scale
  • the sub-pixel on-set set value Sval 2 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the ramp voltage is no longer loaded in the sub-pixel; when the display gray-scale value Vdata of the sub-
  • the other set threshold number of grayscale value and the high grayscale subpixels turned embodiments set value, e.g., a first preset threshold gray level value Tval 1, a second threshold gray level value Tval 2, a third threshold gray
  • i is a sequence number and is a positive integer. If the sub-pixel is a low gray-scale sub-pixel, the case where the ramp voltage is applied to the sub-pixel is the same as that of the above embodiment, and will not be described here.
  • a first threshold grayscale value Tval 1 For if the sub-pixel is a high gray-scale sub-pixel, a first threshold grayscale value Tval 1 , a second threshold grayscale value Tval 2 , a third threshold grayscale value Tval 3 , ..., an ith threshold gray scale are pre-set.
  • Tval i based on the analogy of the above embodiment, the loading or no longer loading the ramp voltage to the corresponding sub-pixel.
  • the sub-pixels are all sub-pixels of the same row. It can be understood that the sub-pixels involved in the present invention may not be in the same row, such as in a certain area, or in a column, and the like.
  • the first, second, ..., i threshold grayscale value may be a static grayscale threshold determined by a design or manufacturing process, or may be a dynamic threshold grayscale value determined by a grayscale value distribution of one or several frames of images.
  • the method of determining the dynamic threshold grayscale value described above is:
  • is an expected value of a normal distribution
  • G is an image grayscale value corresponding to the number of sub-pixels.
  • the image grayscale value represents a particular display grayscale in a frame of image.
  • Tval i meets:
  • C is the lowest image grayscale value among all the sub-pixels in the current image
  • D is the highest image grayscale value among all the sub-pixels in the current image
  • N is the number of threshold grayscales, which is a positive integer.
  • the method for determining the first, second, ..., i high grayscale sub-pixel on setting values is:
  • the first, second, ..., i high grayscale sub-pixel onset setting value is equal to the display grayscale value Vdata of the sub-pixel divided by R and rounded, wherein the value of R satisfies: t max is the time when the load voltage count value CNT of the DAC module of the sub-pixel is from 0 to the maximum, Umax is the voltage at which the load voltage count value CNT of the DAC module of the sub-pixel takes the maximum, and ⁇ t is the load ramp voltage. The minimum time required for this subpixel to Umax.
  • the value of R is mainly determined by the charging characteristics of the capacitor and the length of the ramp voltage from 0 to full value.
  • the corresponding charging characteristics of the DAC under full load are tested, as shown in Figure 7.
  • the value of R satisfies:
  • R should be special so that the hardware implementation is simple, simplifying the DAC circuit, usually 2, 4, 8, and so on.
  • the larger the value the longer the sampling time of the high grayscale sub-pixels for the ramp voltage, so that there is enough time to reach the display grayscale value Vdata of the input required for display.
  • the first, second, ..., i high grayscale subpixel onset setting value is equal to the difference between the display grayscale value Vdata of the subpixel and the fixed difference value E, that is, the first, second, ..., i high
  • the grayscale subpixel on setting value is equal to the display grayscale value Vdata of the subpixel minus the fixed difference E.
  • the larger the fixed difference E is set, the smaller the corresponding Sval i (i 1, 2, 3, ..., N), and the longer the sampling time of the high grayscale sub-pixels for the ramp voltage, so that there is enough time to reach Displaying the gray scale value Vdata of the required input; on the other hand, the smaller the fixed difference E is set, if the load voltage count value CNT of the DAC module of the sub-pixel is smaller than the display gray scale value Vdata of the sub-pixel, the corresponding threshold gray scale There are more high grayscale sub-pixels near the value in the loading ramp voltage state, thereby increasing the overall load of the device, making the charging characteristics of the low grayscale sub-pixels worse. In actual engineering implementation, simulation or testing is required to select a suitable fixed difference E to determine the appropriate high grayscale sub-pixel turn-on setting.
  • R may take a plurality of different values
  • E may take a plurality of different values
  • Sval 1 is R times the display gray scale value Vdata of the corresponding sub-pixel, and the coefficient R is 2.
  • the display gray scale value Vdata of Sval 2 and the corresponding sub-pixel is a fixed difference E, and the fixed difference E is 50.
  • the second control switch is always closed, and the first control switch controls the sub-pixel loading ramp voltage according to the loading voltage count value CNT of the DAC module of the sub-pixel, and When the load voltage count value of the DAC module of the sub-pixel is greater than or equal to the display gray scale value Vdata of the sub-pixel, the first control switch is turned off.
  • the first control switch is initially closed, and the second control switch remains off when CNT ⁇ Sval 1 and is in the sub-pixel
  • the first control switch is turned off until the load voltage count value CNT of the DAC module of the sub-pixel is greater than the display gray scale value Vdata of the sub-pixel, completing the loading of the ramp voltage.
  • the first control switch is initially closed, the second control switch remains open when CNT ⁇ Sval 2 , and the load voltage of the DAC module of the sub-pixel is counted.
  • the first control switch is controlled to be turned off until the load voltage count value CNT of the DAC module of the sub-pixel is greater than or equal to the display gray scale value Vdata of the sub-pixel, and the loading of the ramp voltage is completed.
  • the first control switch is closed, and the second control switch is closed, when the load voltage count value CNT of the DAC module of the sub-pixel is 80.
  • a control switch is turned off.
  • the first control switch is closed, and the second control switch is turned off.
  • the load voltage count value CNT of the DAC module of the sub-pixel is 60
  • the second The control switch is closed, and the first control switch is turned off when the load voltage count value CNT of the DAC module of the sub-pixel is 120.
  • the first control switch is closed, and the second control switch is turned off, when the load voltage count value CNT of the DAC module of the sub-pixel is 165.
  • the second control switch is closed, and the first control switch is turned off when the load voltage count value CNT of the DAC module of the sub-pixel is 215.
  • FIG. 5 is a schematic diagram showing an embodiment of an active light emitting display device sub-pixel driving device in various embodiments of the present invention.
  • the active light emitting display device sub-pixel driving device includes a pixel array 1, a gate driver 2, a source driver 3, and a DAC module 4.
  • the pixel array 1 includes at least one sub-pixel 11.
  • the source driver 3 includes a comparison control unit 31 and a data register 32.
  • the data register 32 is for storing the display grayscale value Vdata of the sub-pixel 11 of the input pixel array 1.
  • the comparison control unit 31 includes a first control switch Switch1, a second control switch Switch2, and a comparator 311, wherein the first control switch Switch1 and the second control switch Switch2 are connected in series to the amplifier and sub-pixel 11 electrically connected to the output end of the DAC module 4. Between the DAC module 4 is used to output a ramp voltage to the amplifier and a load voltage count value to the comparator 311.
  • the comparator 311 controls the first control switch Switch1 and the second control switch Switch2 based on the threshold grayscale value, the load voltage count value CNT, the display grayscale value of the subpixel 11 of the input pixel array 1, and the high grayscale subpixel on setting value. Closed or disconnected.
  • the sub-pixel 11 is determined as the low gray level sub-pixels, or the subpixel a high gray scale sub-pixel; and if the sub-pixel is a low gray-scale sub-pixel, and when the display gray-scale value of the sub-pixel is greater than the load voltage count value of the DAC module 4 of the sub-pixel, the control starts to load the slope The voltage is at the sub-pixel.
  • Table 1 together. Specifically, the input pixel array of a display sub-pixel gray level value of an input comparator 11 311, Tval 1 compared with a preset first threshold gray level value, the input pixel when the sub-array 1 11 displaying a first grayscale value less than a preset threshold gray level value of 1 Tval, the sub-pixel 11 of the described low gray level sub-pixel, otherwise, the high gray sub-pixel a sub-pixel.
  • the first control switch Switch1 and the second control switch Switch2 When both are closed, the ramp voltage of the output of the DAC module 4 starts to be applied to the sub-pixel 11, that is, the comparison control unit 31 controls to start loading the ramp voltage to the sub-pixel 11.
  • the comparison control unit 31 It is also used to control that the ramp voltage is no longer applied to the sub-pixel 11.
  • the comparison control unit 31 is further configured to: if the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the gray-scale value of the sub-pixel is displayed When the Vdata is greater than the load voltage count value CNT of the DAC module of the sub-pixel and the preset first high gray-scale sub-pixel enable set value Sval 1 is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel, the control starts. Loading a ramp voltage to the sub-pixel;
  • the sub-pixel is a high gray-scale sub-pixel
  • the first threshold grayscale value Tval 1 and the second threshold grayscale value Tval 2 are pre-set: when the display grayscale value Vdata of the sub-pixel is smaller than the first The second threshold grayscale value Tval 2 , the display grayscale value Vdata of the subpixel is greater than the loading voltage count value CNT of the DAC module of the subpixel, and the preset first high grayscale subpixel onset setting value Sval 1 is less than or equal to
  • the control starts to load the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray-scale value Tval 2 , the sub-pixel
  • the load voltage count value CNT indicating that the gray scale value Vdata is greater than the DAC module of the subpixel and the preset second high gray scale subpixel turn-on set value Sval 2 are less than or equal to the load voltage
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub the first sub-pixel displays gray high gray values of the pixels smaller than the second threshold value Vdata gray value Tval 2, the display sub-pixel gray level value of the applied voltage Vdata is greater than the count value CNT of the sub-pixel and a preset DAC module
  • the control starts to load the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is greater than or equal to the second threshold gray
  • the order value Tval 2 is smaller than the third threshold gray scale value Tval 3 , the display gray scale value Vdata of the sub-pixel is larger than the load voltage count value CNT of the DAC module of the sub-pixel, and the preset second high gray-scale sub-pixel open setting
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i in the case where only the first threshold grayscale value Tval 1 is pre-set, the first threshold grayscale value Tval 1 and the second threshold grayscale value Tval 2 are pre-set, and in a first preset threshold gray level value Tval 1, a second threshold gray level value Tval 2, the third threshold gray level value Tval 3 analogy case, the control start loading ramp voltage to the respective sub-pixel;
  • the preset time Tval 1, to a preset Sval 1; preset Tval 2, to preset Sval 2; and so, when the grayscale value of the i-th threshold value preset Tval i, to i-th predetermined high grayscale The sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i .
  • the comparison control unit 31 is further configured to: if the sub-pixel is a high gray-scale sub-pixel, and only the first threshold gray-scale value Tval 1 is pre-set: when the gray-scale value of the sub-pixel is displayed When the Vdata is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset first high gray-scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, Controlling that the ramp voltage is no longer loaded in the sub-pixel;
  • the display grayscale value Vdata of the sub-pixel is less than or equal to
  • the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset first high gray scale sub-pixel turn-on set value Sval 1 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the control is no longer loaded.
  • a ramp voltage is applied to the sub-pixel; a display grayscale value Vdata of the sub-pixel is less than or equal to a load voltage count value CNT of the DAC module of the sub-pixel and/or a preset second high gray-scale sub-pixel turn-on set value Sval 2 When the load voltage count value CNT of the DAC module of the sub-pixel is larger, the control no longer loads the ramp voltage to the sub-pixel;
  • the third threshold gray level value Tval 3 has a first preset threshold gray level value Tval 1
  • the second gray value threshold when the sub display pixel gray level value is less than or equal to voltage Vdata count value CNT of the sub-pixel DAC module opening and / or a first predetermined high gray level sub-pixel is greater than the load set value sval 1 sub-pixel of the DAC module
  • the control no longer loads the ramp voltage to the sub-pixel; when the display gray scale value Vdata of the sub-pixel is less than or equal to the load voltage count value CNT of the DAC module of the sub-pixel and/or the preset second
  • the high gray scale sub-pixel on-set set value Sval 2 is greater than the load voltage count value CNT of the DAC module of the sub-pixel, the control no longer loads the ramp voltage to the sub-pixel; when the display gray-scale value Vdata of the sub-pixel is less than or equal to When the load
  • Tval 3 ..., i-gray threshold value is high if the gray level sub-pixel a sub-pixel, Tval 2, the third threshold value is preset with a first gray level threshold gray level value Tval 1, a second threshold gray level value
  • Tval i in the case where only the first threshold gray scale value Tval 1 is pre-set, the first threshold gray scale value Tval 1 and the second threshold gray scale value Tval 2 are pre-set. and so on at a first predetermined threshold gray value Tval 1, a second threshold gray level value Tval 2, the third threshold gray level value Tval 3, the control voltage is no longer loading ramp to the respective sub-pixel;
  • the preset time Tval 1, to a preset Sval 1; preset Tval 2, to preset Sval 2; and so, when the grayscale value of the i-th threshold value preset Tval i, to i-th predetermined high grayscale The sub-pixel onset set value Sval i ; Tval 1 ⁇ Tval 2 ⁇ ... ⁇ Tval i , Sval 1 ⁇ Sval 2 ⁇ ... ⁇ Sval i .
  • the sub-pixels are all sub-pixels of the same row.
  • the first, second, ..., i threshold grayscale value may be a static grayscale threshold determined by a design or manufacturing process, or may be determined by a display grayscale value distribution of one or several frames of images. Dynamic threshold grayscale value.
  • the method of determining the dynamic threshold grayscale value described above is:
  • the order value corresponds to the number of sub-pixels.
  • the image grayscale value represents a particular display grayscale in a frame of image.
  • the dynamic threshold grayscale value is determined by the formula (1);
  • N is the number of threshold grayscale values, which is a positive integer;
  • the range of image grayscale values is [C, D]
  • the number of grayscale values of the image of the subpixel is accumulated, and the cumulative distribution F(X) is obtained as:
  • Tval i meets:
  • C is the lowest image grayscale value among all the sub-pixels in the current image
  • D is the highest image grayscale value among all the sub-pixels in the current image
  • N is the number of threshold grayscales, which is a positive integer.
  • the method for determining the first, second, ..., i high grayscale sub-pixel on setting value is:
  • the first, second, ..., i high grayscale sub-pixel onset setting value is equal to the display grayscale value Vdata of the sub-pixel divided by R and rounded, wherein the value of R satisfies: t max is the time when the load voltage count value CNT of the DAC module of the sub-pixel is from 0 to the maximum, Umax is the voltage at which the load voltage count value CNT of the DAC module of the sub-pixel takes the maximum, and ⁇ t is the load ramp voltage.
  • t max is the time when the load voltage count value CNT of the DAC module of the sub-pixel is from 0 to the maximum
  • Umax is the voltage at which the load voltage count value CNT of the DAC module of the sub-pixel takes the maximum
  • ⁇ t is the load ramp voltage.
  • the first, second, ..., i high grayscale subpixel onset setting value is equal to the difference between the display grayscale value Vdata of the subpixel and the fixed difference value E.
  • the device of the present invention can be used to perform the method of the present invention. Therefore, the functions that can be implemented by the functional units in the device of the present invention can be referred to the corresponding description in the embodiments of the method of the present invention, and no further details are provided.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another device, or some features are available To ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, ie may be located in one place, or may be distributed over multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium/unit includes: a Universal Serial Bus flash disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), A variety of media that can store program code, such as a disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种能提升低灰阶子像素(11)亮度特性的主动发光显示设备子像素(11)驱动方法及装置,包括:当输入像素阵列(1)的子像素(11)的显示灰阶值小于预设的第一阈值灰阶值Tval 1时,子像素(11)为低灰阶子像素(11),否则子像素(11)为高灰阶子像素(11);若子像素(11)为低灰阶子像素(11),并且当子像素(11)的显示灰阶值大于子像素(11)的DAC模块(4)的加载电压计数值CNT时,开始加载斜坡电压于子像素(11)。

Description

主动发光显示设备子像素驱动方法及装置 技术领域
本发明涉及显示驱动技术,具体涉及主动发光显示设备子像素驱动方法及装置。
背景技术
传统的OLED和Micro-OLED等主动发光显示设备,通常基于模拟驱动方式对像素进行显示控制。比如,图1中,OLED源驱动方式采用与像素矩阵相同列数的DAC模块,将OLED子像素显示灰阶值直接通过数模转换器(DAC)转换为显示灰阶值对应的模拟量,输入到子像素。此方法能够有效避免像素阵列中各列像素单元的模拟信号之间的干扰,但随着显示分辨率的提高,制造工艺的难度也越来越大,这种驱动方式变得越来越不适用。比如,图2中,OLED源驱动方式采用一个独立的DAC模块,产生一个与加载电压计数值具有线性关系的斜坡电压,图4为具体的时序图,其中CLK为DAC内部时钟,HSYNC为行同步信号,EN为数据使能信号,CNT为DAC内部时钟计数值即加载电压计数值,经过比较器比较OLED子像素的显示灰阶值Vdata与DAC的加载电压计数值CNT,控制OLED子像素加载斜坡电压的终止时刻。此方法能够有效减少DAC的个数,从而大幅减小模拟电路的面积和工艺制造难度。图3为典型的电容的充电特性曲线,在电阻值R相同的情况下,假定装置1的电容C1小于装置2的电容C2,则装置1的负载RC1小于装置2的负载RC2,在采用相同额定电压U0进行充电时,装置1达到额定电压的时间较装置2更短,因此,图2所示的传统方法会导致加载在低灰阶子像素的数据电压低于额定值。
可见,由于高灰阶子像素在DAC对一行的所有子像素进行加载电压的过程 中,大部分时间都处于加载斜坡电压的状态,这导致低灰阶子像素在加载斜坡电压时,整个模拟电路装置的负载较大,DAC输出的加载斜坡电压爬升缓慢,导致低灰阶子像素的加载电压不准,严重影响亮度特性。
发明内容
本发明要解决的技术问题是,提供一种能提升低灰阶子像素亮度特性的主动发光显示设备子像素驱动方法及装置。
为解决上述技术问题,本发明采用下述技术方案。
一种主动发光显示设备子像素驱动方法,包括:
当输入像素阵列的子像素的显示灰阶值小于预设的第一阈值灰阶值Tval1时,该子像素为低灰阶子像素,否则该子像素为高灰阶子像素;
若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值大于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素。
若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值小于或等于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素。
若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素 的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,开始加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶子像素开启设定值Sval3大 于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,不再加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
所述子像素均为同一行的子像素。
所述第一、二、…、i阈值灰阶值为由设计或制造过程决定的静态灰阶阈值或者由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
确定所述动态阈值灰阶值的方法为:
对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X);
当输入的子像素的所述显示灰阶值分布函数未知时,假定图像灰阶值的范围为[A,B],所述动态阈值灰阶值由式(1)确定;
Figure PCTCN2017111993-appb-000001
其中,N为阈值灰阶值个数,N为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值;或者
当输入的子像素的所述显示灰阶值分布函数已知时,假定图像灰阶值的范 围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
Figure PCTCN2017111993-appb-000002
其中,子像素的总个数M=F(D),所述动态阈值灰阶值由式(2)确定;
Tvali满足:
Figure PCTCN2017111993-appb-000003
其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所有子像素中最高的图像灰阶值,N为阈值灰阶值个数,N为正整数。
确定所述第一、二、…、i高灰阶子像素开启设定值的方法为:
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
Figure PCTCN2017111993-appb-000004
tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素至Umax所需的最短时间;或者
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差。
一种主动发光显示设备子像素驱动装置,包括:
比较控制单元,用于当输入像素阵列的子像素的显示灰阶值小于预设的第一阈值灰阶值Tval1时,判断该子像素为低灰阶子像素,否则该子像素为高灰阶子像素;以及用于若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值大于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素。
所述比较控制单元还用于若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素。
所述比较控制单元还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰 阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制开始加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
所述比较控制单元还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素 的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶子像素开启设定值Sval3大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制不再加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
所述子像素均为同一行的子像素。
所述第一、二、…、i阈值灰阶值为由设计或制造过程决定的静态灰阶阈值或者由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
确定所述动态阈值灰阶值的方法为:
对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X);
当输入的子像素的所述显示灰阶值分布函数未知时,假定图像灰阶值的范围为[A,B],所述动态阈值灰阶值由式(1)确定;
Figure PCTCN2017111993-appb-000005
其中,N为阈值灰阶值个数,N为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值;或者
当输入的子像素的所述显示灰阶值分布函数已知时,假定图像灰阶值的范围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
Figure PCTCN2017111993-appb-000006
其中,子像素的总个数M=F(D),所述动态阈值灰阶值由式(2)确定;
Tvali满足:
Figure PCTCN2017111993-appb-000007
其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所 有子像素中最高的图像灰阶值,N为阈值灰阶值个数,N为正整数。
确定所述第一、二、…、i高灰阶子像素开启设定值的方法为:
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
Figure PCTCN2017111993-appb-000008
tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素至Umax所需的最短时间;或者
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差。
本发明具有下述有益技术效果。
本发明当输入像素阵列的子像素的显示灰阶值小于预设的第一阈值灰阶值Tval1时,该子像素为低灰阶子像素,否则该子像素为高灰阶子像素;若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值大于该子像素的DAC模块的加载电压计数值时,开始加载斜坡电压于该子像素。可见,本发明控制加载斜坡电压于低灰阶子像素的起始时刻,实时地调节、优化驱动DAC的负载,能提高低灰阶子像素显示低灰阶图像时充电的准确度,能提升低灰阶子像素图像的亮度特性。
附图说明
图1为现有的多个DAC的OLED源驱动方式的结构示意图。
图2为现有的一个DAC的OLED源驱动方式的结构示意图。
图3为不同RC值的电容充电特性图。
图4为一个DAC的OLED源驱动方式的输出电压值与加载电压计数值的关系示意图。
图5为本发明涉及的一种主动发光显示设备子像素驱动装置结构示意图。
图6为显示灰阶值分布与子像素输入图像灰阶值X的正态分布示意图。
图7为DAC满负载时电容充电特性曲线示意图。
图8为一幅533xRGBx300分辨率图像总子像素灰阶分布示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互任意组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本发明中,OLED等主动发光显示器件或设备由若干像素构成,每个像素又包含几个子像素。根据子像素的类别,可以将主动发光显示器件或设备分为RGB装置和RGBW装置,RGB装置的每个像素包含1个红色子像素、1个绿色子像素和1个蓝色子像素。近年来出现的RGBW装置则包含1个红色子像素、1个绿色子像素、1个蓝色子像素和1个白色子像素。
比如,OLED是一种有机致电发光器件,通过向OLED子像素加载电压或者电流控制其发光,发光的亮度与流经的电流大小具有线性关系。为了严格控制OLED子像素呈现不同的灰阶特性,需要输入准确的电压或电流。因此,在实现高灰 阶、高对比度的图像时,必须经过高精度的数模转换器(DAC)转换来得到更精细的电压或电流。这对OLED的制造工艺是种考验。现实环境中,人眼对低灰阶的图像细节比高灰阶的图像细节更敏感,因此在图像显示时更应该注重低灰阶部分。
本发明可以适用于LED、OLED、QLED、Micro-LED和Micro-OLED等主动发光显示器件或设备。
为改进传统驱动方式的不足,本发明提出后文技术方案。
图5呈现的是预设一个阈值灰阶值即第一阈值灰阶值Tval1的主动发光显示设备子像素驱动装置结构示意图,其在图2所呈现的现有技术基础上增加一个第二控制开关Switch2。
第一控制开关Switch1的开启和断开由DAC模块的加载电压计数值CNT和子像素的显示灰阶值Vdata决定,第二控制开关Switch 2的开启和断开由DAC模块的加载电压计数值CNT、第一阈值灰阶值Tval1、子像素的显示灰阶值Vdata以及第一高灰阶子像素开启设定值Sval1决定,具体如表1。
表1呈现的是仅设置一个阈值灰阶值和一个高灰阶子像素开启设定值的实施例,即预设有第一阈值灰阶值Tval1和第一高灰阶子像素开启设定值Sval1的实施例。
表1
Figure PCTCN2017111993-appb-000009
只有在Switch1和Switch2同时处于闭合状态时,才会加载斜坡电压于子像素。因此,控制子像素的第一控制开关Switch1和第二控制开关Switch2的 开启和断开时刻,便可动态地控制开始加载斜坡电压于该子像素的起始时刻,包含DAC在内的整个模拟电路装置的数模转换的负载,实现精确控制加载斜坡电压于每一个子像素。
本发明的主动发光显示设备子像素驱动方法,当输入像素阵列的子像素的显示灰阶值Vdata小于预设的第一阈值灰阶值Tval1时,该子像素为低灰阶子像素;否则该子像素为高灰阶子像素,即当输入像素阵列的子像素的显示灰阶值Vdata大于或等于预设的第一阈值灰阶值Tval1时,该子像素为高灰阶子像素。具体见表1。
若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素。
后文以图像的一行为例对本发明进行说明。
参见表1,比如,输入像素阵列的子像素为一行子像素,该一行子像素的个数至少包括一个,常见的情况为若干个,这些子像素的显示灰阶值Vdata可能相同,可能不完全相同,甚至可能完全不同。本发明众多实施例的一种实施例中,仅预设一个阈值灰阶值,比如,预设第一阈值灰阶值Tval1。这些子像素的显示灰阶值Vdata与第一阈值灰阶值Tval1比较,可以对这些子像素进行分类,比如,分为低灰阶子像素和高灰阶子像素。具体的,当输入像素阵列的子像素的显示灰阶值Vdata小于预设的第一阈值灰阶值Tval1时,判断该子像素为低灰阶子像素。否则该子像素为高灰阶子像素,即当输入像素阵列的子像素的显示灰阶值Vdata大于或等于预设的第一阈值灰阶值Tval1时,判断该子像素为高灰阶子像素。
参见表1及图5,若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT时,Switch1和Switch2 均闭合,开始加载斜坡电压于该子像素。
若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值小于或等于该子像素的DAC模块的加载电压计数值CNT时,Switch1断开、Switch2闭合,不再加载斜坡电压于该子像素。
参见表1及图5,若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,Switch1和Switch2均闭合,开始加载斜坡电压于该子像素。当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,Switch1和/或Switch2断开,不再加载斜坡电压于该子像素。
表2呈现的是设置两个阈值灰阶值和两个高灰阶子像素开启设定值的实施例,即预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第一高灰阶子像素开启设定值Sval1、第二高灰阶子像素开启设定值Sval2的实施例。
表2
Figure PCTCN2017111993-appb-000010
参见表2,当输入像素阵列的子像素的显示灰阶值Vdata小于预设的第一阈值灰阶值Tval1时,该子像素为低灰阶子像素;否则该子像素为高灰阶子像素,即当输入像素阵列的子像素的显示灰阶值Vdata大于或等于预设的第一阈值灰阶值Tval1时,该子像素为高灰阶子像素。若该子像素为低灰阶子像素,并且当 该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT时,Switch1断开、Switch2闭合,不再加载斜坡电压于该子像素。
参见表2及图5,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,Switch1和Switch2均闭合,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,Switch1和Switch2均闭合,开始加载斜坡电压于该子像素。若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,Switch1和/或Switch2断开,不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,Switch1和/或Switch2断开,不再加载斜坡电压于该子像素。
比如,预设三个阈值灰阶值和三个高灰阶子像素开启设定值的实施例,即预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、第一高灰阶子像素开启设定值Sval1、第二高灰阶子像素开启设定值Sval2、第三高灰阶子像素开启设定值Sval3的实施例。若子像素为低灰阶子像素,斜坡电 压加载于该子像素的情况与上述实施例相同,在此不再累述。
对于预设三个阈值灰阶值和三个高灰阶子像素开启设定值的实施例,若子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素。若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶 子像素开启设定值Sval3大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素。
对于设置其他数量的阈值灰阶值和高灰阶子像素开启设定值的实施例,例如,预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali以及第一高灰阶子像素开启设定值Sval1、第二高灰阶子像素开启设定值Sval2、第三高灰阶子像素开启设定值Sval3、…、第i高灰阶子像素开启设定值Svali的实施例。其中,i为序号,为正整数。若子像素为低灰阶子像素,斜坡电压加载于该子像素的情况与上述实施例相同,在此不再累述。
对于若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述实施例类推,开始加载或不再加载斜坡电压于相应子像素。
可见,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali。设置Sval1、Sval2、…、Svali的目的是为了动态地优化负载,提高各个灰阶值的充电准确度,改善显示特性。
其中,Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali
上述实施例中,子像素均为同一行的子像素,可以理解的是,本发明涉及的子像素也可不在同一行中,例如某个区域中,或一列中,等等。
上述第一、二、…、i阈值灰阶值可以为由设计或制造过程决定的静态灰阶阈值,也可以由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
在一些实施例中,确定上述动态阈值灰阶值的方法为:
对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数: G=f(X)。如图6所示,其中,μ为正态分布的期望值,G为图像灰阶值对应子像素的个数。图像灰阶值表示一帧图像中的某一个特定显示灰阶。
当输入的子像素的所述显示灰阶值分布函数未知时,假定图像灰阶值的范围为[A,B],所述动态阈值灰阶值由式(1)确定;
Figure PCTCN2017111993-appb-000011
其中,N为阈值灰阶值个数,N为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值。
确定上述动态阈值灰阶值的另一种方法,对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X),当输入的子像素的显示灰阶值分布函数G=f(X)已知时,假定图像灰阶值的范围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
Figure PCTCN2017111993-appb-000012
其中,子像素的总个数M=F(D),所述动态阈值灰阶值由式(2)确定;
Tvali满足:
Figure PCTCN2017111993-appb-000013
其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所有子像素中最高的图像灰阶值,N为阈值灰阶的个数,为正整数。
在一些实施例中,确定第一、二、…、i高灰阶子像素开启设定值的方法为:
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
Figure PCTCN2017111993-appb-000014
tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的 加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素至Umax所需的最短时间。
对于不同的显示灰阶值,可能具有相同的高灰阶子像素开启设定值,也即加载斜坡电压的起始时刻相同。
R的取值主要由电容充电特性与斜坡电压由0变为满值的时间长度决定,测试DAC在满负载情况下对应的电容充电特性,如图7所示。为保证所有的子像素均能在相应时间内加载至相应子像素的显示灰阶值对应的模拟电压,R的取值满足:
Figure PCTCN2017111993-appb-000015
R的取值应较为特别以便硬件实现简单,简化DAC电路,通常为2、4、8等。R越大,对应Svali(i=1,2,3,…,N)就越小,子像素的显示灰阶值Vdata与Svali(i=1,2,3,…,N)的差值越大,高灰阶子像素对斜坡电压的采样时间越长,从而有足够的时间达到显示需要的输入的显示灰阶值Vdata。另一方面,在R取值较大时,若子像素的DAC模块的加载电压计数值CNT小于该子像素的显示灰阶值Vdata,相应阈值灰阶值附近有更多的高灰阶子像素处于加载斜坡电压状态,从而增加装置的整体负载,使得低灰阶子像素的充电特性变差。在实际工程实现中,需要进行仿真或测试,以选择合适的系数R,以确定合适的高灰阶子像素开启设定值。
另一种方法,第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差,即第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata减去固定差值E。
固定差值E设定越大,对应的Svali(i=1,2,3,…,N)就越小,高灰阶子像素对斜坡电压的采样时间越长,从而有足够的时间达到显示需要的输入的显示灰阶值Vdata;另一方面,固定差值E设定越小时,若子像素的DAC模块的 加载电压计数值CNT小于该子像素的显示灰阶值Vdata,相应阈值灰阶值附近有更多的高灰阶子像素处于加载斜坡电压状态,从而增加装置的整体负载,使得低灰阶子像素的充电特性变差。在实际工程实现中,需要进行仿真或测试,选择合适的固定差值E,以确定合适的高灰阶子像素开启设定值。
对于有多个阈值灰阶值的情况,R可以取多个不同的值,固定差值E可以取多个不同的值。
下面以Micro-OLED为例,对本发明作进一步具体说明。
例如:(1)设计图5所示的Micro-OLED源驱动模块和DAC模块,可以理解的是,Micro-OLED子像素的驱动电路不限于采用图5所示的电路结构,这不构成对本发明保护范围的限制。
(2)选取一帧典型的视频图像,图像的分辨率533xRGBx300,各子像素总体的显示灰阶值分布,如图8所示,最低灰阶为0,最高灰阶为255,横坐标为灰阶值X,纵坐标为对应灰阶的子像素个数G。
(3)视频图像总的子像素的个数为M=479700,统计各子像素的显示灰阶值,获得总体子像素的图像灰阶值的累积分布F(X)。
Figure PCTCN2017111993-appb-000016
设置两个阈值灰阶值,即设置N=2,则根据对此帧图像统计所得的累积分布F(X),利用式(2)确定两个阈值灰阶值,即Tval1和Tval2,得到Tval1=95,Tval2=195。
(4)对于两个阈值灰阶值Tval1和Tval2,对应的设定值Sval1和Sval2。Sval1与相应子像素的显示灰阶值Vdata成R倍的关系,且系数R为2。Sval2与相应子像素的显示灰阶值Vdata是成固定差值E的关系,且固定差值E为50。则对 于显示灰阶值小于Tval1=95的子像素而言,第二控制开关一直闭合,第一控制开关根据子像素的DAC模块的加载电压计数值CNT控制该子像素加载斜坡电压,并在该子像素的DAC模块的加载电压计数值大于或等于该子像素的显示灰阶值Vdata时,断开第一控制开关。对于显示灰阶值大于或等于TVal1=95且小于Tval2=195的子像素,初始时刻第一控制开关闭合,在CNT<Sval1时第二控制开关保持断开,并在该子像素的DAC模块的加载电压计数值CNT等于该子像素的显示灰阶值Vdata/2即CNT=Sval1时刻闭合,并保持。直到该子像素的DAC模块的加载电压计数值CNT大于该子像素的显示灰阶值Vdata时第一控制开关断开,完成斜坡电压的加载。对于显示灰阶值大于或等于TVal2=195的子像素,初始时刻第一控制开关闭合,在CNT<Sval2时第二控制开关保持断开,并在该子像素的DAC模块的加载电压计数值CNT等于该子像素的显示灰阶值Vdata-50即CNT=Sval2时闭合,并保持。直到该子像素的DAC模块的加载电压计数值CNT大于或等于该子像素的显示灰阶值Vdata时控制第一控制开关断开,完成斜坡电压的加载。
例如,对于显示灰阶值为80的低灰阶子像素,在起始时刻,第一控制开关闭合,第二控制开关闭合,在该子像素的DAC模块的加载电压计数值CNT为80时第一控制开关断开。
对于显示灰阶值为120的高灰阶子像素,在起始时刻,第一控制开关闭合,第二控制开关断开,在该子像素的DAC模块的加载电压计数值CNT为60时第二控制开关闭合,在该子像素的DAC模块的加载电压计数值CNT为120时第一控制开关断开。
对于显示灰阶值为215的高灰阶子像素,在起始时刻,第一控制开关闭合,第二控制开关断开,在该子像素的DAC模块的加载电压计数值CNT为165时第 二控制开关闭合,在该子像素的DAC模块的加载电压计数值CNT为215时第一控制开关断开。
参见图5,图5示意性示出本发明众多实施例中一种主动发光显示设备子像素驱动装置实施例。该主动发光显示设备子像素驱动装置包括像素阵列1、栅极驱动器2、源极驱动器3、DAC模块4。像素阵列1包括至少一个子像素11。源极驱动器3包括比较控制单元31、数据寄存器32。
数据寄存器32用于存储输入像素阵列1的子像素11的显示灰阶值Vdata。
比较控制单元31包括第一控制开关Switch1、第二控制开关Switch2和比较器311,其中,第一控制开关Switch1、第二控制开关Switch2串联于与DAC模块4输出端电气连接的放大器与子像素11之间,DAC模块4用于向放大器输出斜坡电压及向比较器311输出加载电压计数值。比较器311基于阈值灰阶值、加载电压计数值CNT、输入像素阵列1的子像素11的显示灰阶值及高灰阶子像素开启设定值控制第一控制开关Switch1、第二控制开关Switch2的闭合或断开。
比较控制单元31用于当输入像素阵列1的子像素11的显示灰阶值小于预设的第一阈值灰阶值Tval1时,判断该子像素11为低灰阶子像素,否则该子像素为高灰阶子像素;以及用于若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值大于该子像素的DAC模块4的加载电压计数值时,控制开始加载斜坡电压于该子像素。
一并参见表1,具体的,输入像素阵列1的子像素11的显示灰阶值输入比较器311,与预设的第一阈值灰阶值Tval1比较,当输入像素阵列1的子像素11的显示灰阶值小于预设的第一阈值灰阶值Tval1时,说明该该子像素11为低灰阶子像素,否则,该子像素为高灰阶子像素。若该子像素11为低灰阶子像素,并且当该子像素11的显示灰阶值大于该子像素的DAC模块4的加载电压计数值 CNT时,第一控制开关Switch1、第二控制开关Switch2均闭合,DAC模块4的输出的斜坡电压开始加载于该子像素11,即比较控制单元31控制开始加载斜坡电压于该子像素11。
在一些实施例中,若该子像素11为低灰阶子像素,并且当该子像素11的显示灰阶值小于或等于该子像素的DAC模块4的加载电压计数值时,比较控制单元31还用于控制不再加载斜坡电压于该子像素11。
在一些实施例中,比较控制单元31还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素 的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制开始加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali
在一些实施例中,比较控制单元31还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制 不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶子像素开启设定值Sval3大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值 Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制不再加载斜坡电压于相应子像素;
其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali
在一些实施例中,子像素均为同一行的子像素。
在一些实施例中,上述第一、二、…、i阈值灰阶值可以为由设计或制造过程决定的静态灰阶阈值,也可以由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
在一些实施例中,确定上述动态阈值灰阶值的方法为:
对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X),如图6所示,其中,μ为正态分布的期望值,G为图像灰阶值对应子像素的个数。图像灰阶值表示一帧图像中的某一个特定显示灰阶。
当输入的子像素的上述显示灰阶值分布函数G=f(X)未知时,上述动态阈值灰阶值由式(1)确定;
Figure PCTCN2017111993-appb-000017
其中,N为阈值灰阶值个数,为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值。
或者,对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X),当输入的子像素的显示灰阶值分布函数G=f(X)已知时,假定图像灰阶值的范围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
Figure PCTCN2017111993-appb-000018
其中,子像素的总个数M=F(D),上述动态阈值灰阶值由式(2)确定;
Tvali满足:
Figure PCTCN2017111993-appb-000019
其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所有子像素中最高的图像灰阶值,N为阈值灰阶的个数,为正整数。
在一些实施例中,确定所述第一、二、…、i高灰阶子像素开启设定值的方法为:
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
Figure PCTCN2017111993-appb-000020
tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素Umax所需的最短时间;或者
第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差。
本发明的装置可以用于执行本发明的方法,因此本发明的装置中各功能单元所能够实现的功能,可参考本发明方法的实施例中的相应描述,不多赘述。
在本发明所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可 以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质/单元包括:通用串行总线闪存盘(Universal Serial Bus flash disk)、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种主动发光显示设备子像素驱动方法,其特征在于,包括:
    当输入像素阵列的子像素的显示灰阶值小于预设的第一阈值灰阶值Tval1时,该子像素为低灰阶子像素,否则该子像素为高灰阶子像素;
    若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值大于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素。
  2. 根据权利要求1所述的主动发光显示设备子像素驱动方法,其特征在于,若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值小于或等于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素。
  3. 根据权利要求1所述的主动发光显示设备子像素驱动方法,其特征在于,若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二 阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,开始加载斜坡电压于相应子像素;
    其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
  4. 根据权利要求1所述的主动发光显示设备子像素驱动方法,其特征在于,若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当 该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶子像素开启设定值Sval3大于该子像素的DAC模块的加载电压计数值CNT时,不再加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下: 基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,不再加载斜坡电压于相应子像素;
    其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
  5. 根据权利要求1-4任一项所述的主动发光显示设备子像素驱动方法,其特征在于,所述子像素均为同一行的子像素。
  6. 根据权利要求3或4所述的主动发光显示设备子像素驱动方法,其特征在于,所述第一、二、…、i阈值灰阶值为由设计或制造过程决定的静态灰阶阈值或者由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
  7. 根据权利要求6所述的主动发光显示设备子像素驱动方法,其特征在于,确定所述动态阈值灰阶值的方法为:
    对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X);
    当输入的子像素的所述显示灰阶值分布函数未知时,假定图像灰阶值的范围为[A,B],所述动态阈值灰阶值由式(1)确定;
    Figure PCTCN2017111993-appb-100001
    其中,N为阈值灰阶值个数,N为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值;或者
    当输入的子像素的所述显示灰阶值分布函数已知时,假定图像灰阶值的范围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
    Figure PCTCN2017111993-appb-100002
    其中,子像素的总个数M=F(D),所述动态阈值灰阶值由式(2)确定;
    Tvali满足:
    Figure PCTCN2017111993-appb-100003
    其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所有子像素中最高的图像灰阶值,N为阈值灰阶值个数,N为正整数。
  8. 根据权利要求3或4所述的主动发光显示设备子像素驱动方法,其特征在于,确定所述第一、二、…、i高灰阶子像素开启设定值的方法为:
    第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
    Figure PCTCN2017111993-appb-100004
    tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素至Umax所需的最短时间;或者
    第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差。
  9. 一种主动发光显示设备子像素驱动装置,其特征在于,包括:
    比较控制单元,用于当输入像素阵列的子像素的显示灰阶值Vdata小于预设的第一阈值灰阶值Tval1时,判断该子像素为低灰阶子像素,否则该子像素为高灰阶子像素;以及用于若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素。
  10. 根据权利要求9所述的主动发光显示设备子像素驱动装置,其特征在于,所述比较控制单元还用于若该子像素为低灰阶子像素,并且当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素。
  11. 根据权利要求9所述的主动发光显示设备子像素驱动装置,其特征在于,所述比较控制单元还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于第二阈值灰阶值Tval2、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第一高灰阶子像素开启设定值 Sval1小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第二阈值灰阶值Tval2且小于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第二高灰阶子像素开启设定值Sval2小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata大于或等于第三阈值灰阶值Tval3、该子像素的显示灰阶值Vdata大于该子像素的DAC模块的加载电压计数值CNT以及预设的第三高灰阶子像素开启设定值Sval3小于或等于该子像素的DAC模块的加载电压计数值CNT时,控制开始加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制开始加载斜坡电压于相应子像素;
    其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
  12. 根据权利要求9所述的主动发光显示设备子像素驱动装置,其特征在于,所述比较控制单元还用于若该子像素为高灰阶子像素,并且仅预设有第一阈值灰阶值Tval1的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于 该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2的情况下:该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下:当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第一高灰阶子像素开启设定值Sval1大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第二高灰阶子像素开启设定值Sval2大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;当该子像素的显示灰阶值Vdata小于或等于该子像素的DAC模块的加载电压计数值CNT和/或预设的第三高灰阶子像素开启设定值Sval3大于该子像素的DAC模块的加载电压计数值CNT时,控制不再加载斜坡电压于该子像素;
    或者,若该子像素为高灰阶子像素,在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3、…、第i阈值灰阶值Tvali的情况下:基于上述仅预设有第一阈值灰阶值Tval1的情况下,在预设有第一阈值灰阶值 Tval1、第二阈值灰阶值Tval2的情况下以及在预设有第一阈值灰阶值Tval1、第二阈值灰阶值Tval2、第三阈值灰阶值Tval3的情况下类推,控制不再加载斜坡电压于相应子像素;
    其中,预设Tval1时,要预设Sval1;预设Tval2时,要预设Sval2;以此类推,预设第i阈值灰阶值Tvali时,要预设第i高灰阶子像素开启设定值Svali;Tval1<Tval2<…<Tvali,Sval1<Sval2<…<Svali;i为序号,为正整数。
  13. 根据权利要求9-12任一项所述的主动发光显示设备子像素驱动装置,其特征在于,所述子像素均为同一行的子像素。
  14. 根据权利要求11或12所述的主动发光显示设备子像素驱动装置,其特征在于,所述第一、二、…、i阈值灰阶值为由设计或制造过程决定的静态灰阶阈值或者由一帧或几帧图像的显示灰阶值分布决定的动态阈值灰阶值。
  15. 根据权利要求14所述的主动发光显示设备子像素驱动装置,其特征在于,确定所述动态阈值灰阶值的方法为:
    对图像灰阶值为X的子像素个数进行统计,得到显示灰阶值分布函数:G=f(X);
    当输入的子像素的所述显示灰阶值分布函数未知时,假定图像灰阶值的范围为[A,B],所述动态阈值灰阶值由式(1)确定;
    Figure PCTCN2017111993-appb-100005
    其中,N为阈值灰阶值个数,N为正整数;A为G=f(X)中最低亮度子像素的图像灰阶值,B为G=f(X)中最高亮度子像素的图像灰阶值;或者
    当输入的子像素的所述显示灰阶值分布函数已知时,假定图像灰阶值的范围为[C,D],对该子像素的图像灰阶值个数进行累积,得到累积分布F(X)为:
    Figure PCTCN2017111993-appb-100006
    其中,子像素的总个数M=F(D),所述动态阈值灰阶值由式(2)确定;
    Tvali满足:
    Figure PCTCN2017111993-appb-100007
    其中,C为当前图像中所有子像素中最低的图像灰阶值,D为当前图像中所有子像素中最高的图像灰阶值,N为阈值灰阶值个数,N为正整数。
  16. 根据权利要求11或12所述的主动发光显示设备子像素驱动装置,其特征在于,确定所述第一、二、…、i高灰阶子像素开启设定值的方法为:
    第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata除以R后取整,其中,R的取值满足:
    Figure PCTCN2017111993-appb-100008
    tmax为该子像素的DAC模块的加载电压计数值CNT从0到取最大时的时间,Umax为该子像素的DAC模块的加载电压计数值CNT取最大时的电压,Δt为加载斜坡电压于该子像素至Umax所需的最短时间;或者
    第一、二、…、i高灰阶子像素开启设定值等于该子像素的显示灰阶值Vdata与固定差值E之差。
PCT/CN2017/111993 2017-11-21 2017-11-21 主动发光显示设备子像素驱动方法及装置 WO2019100184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111993 WO2019100184A1 (zh) 2017-11-21 2017-11-21 主动发光显示设备子像素驱动方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111993 WO2019100184A1 (zh) 2017-11-21 2017-11-21 主动发光显示设备子像素驱动方法及装置

Publications (1)

Publication Number Publication Date
WO2019100184A1 true WO2019100184A1 (zh) 2019-05-31

Family

ID=66630519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111993 WO2019100184A1 (zh) 2017-11-21 2017-11-21 主动发光显示设备子像素驱动方法及装置

Country Status (1)

Country Link
WO (1) WO2019100184A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512467A (zh) * 2002-12-26 2004-07-14 株式会社日立显示器 显示装置
CN1604163A (zh) * 2003-09-29 2005-04-06 三洋电机株式会社 显示装置
US20050140595A1 (en) * 2003-12-24 2005-06-30 Yang Yil S. Sources driver circuit for active matrix electroluminescent display and driving method thereof
CN102446501A (zh) * 2010-10-14 2012-05-09 微盟电子(昆山)有限公司 图像动态调整装置及图像动态调整方法
CN104115488A (zh) * 2011-12-08 2014-10-22 索尼公司 成像元件、控制方法和成像设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512467A (zh) * 2002-12-26 2004-07-14 株式会社日立显示器 显示装置
CN1604163A (zh) * 2003-09-29 2005-04-06 三洋电机株式会社 显示装置
US20050140595A1 (en) * 2003-12-24 2005-06-30 Yang Yil S. Sources driver circuit for active matrix electroluminescent display and driving method thereof
CN102446501A (zh) * 2010-10-14 2012-05-09 微盟电子(昆山)有限公司 图像动态调整装置及图像动态调整方法
CN104115488A (zh) * 2011-12-08 2014-10-22 索尼公司 成像元件、控制方法和成像设备

Similar Documents

Publication Publication Date Title
US20210158759A1 (en) Pixel circuitry and operation for memory-containing electronic display
US10930215B2 (en) Pixel circuit, driving method thereof, and display apparatus
US11004400B2 (en) Display device compensating for horizontal crosstalk
CN105243985B (zh) 有机发光显示器及其驱动方法
US10867548B2 (en) Systems and methods for memory circuitry in an electronic display
WO2020093685A1 (zh) 用于显示屏的补偿方法、补偿装置和显示装置
CN110459174B (zh) 像素中存储器显示器
KR20170060218A (ko) 유기 발광 표시 장치
US11049448B2 (en) Memory-in-pixel architecture
US20160275842A1 (en) Display device and method of driving a display device
CN110767170B (zh) 画面显示方法及画面显示装置
KR102245502B1 (ko) 표시 장치 및 이의 구동 방법
US20230049237A1 (en) Method and apparatus for compensating displayed picture, device thereof, and driver board for display screen
CN111340730B (zh) 拖影现象的消除方法、终端及存储介质
WO2021062604A1 (zh) 驱动器、显示装置及其光学补偿方法
KR101983526B1 (ko) 외부 픽셀 보상을 위한 시스템 및 방법
TWI709951B (zh) 用於源極驅動裝置之驅動方法及其顯示系統
WO2019100184A1 (zh) 主动发光显示设备子像素驱动方法及装置
US11984066B2 (en) Processing method and processing device for pixel data, display device, display method, and computer readable storage medium
US12033574B2 (en) Display device and method for driving the same
US20240029646A1 (en) Display device and method for driving the same
US20180240392A1 (en) Thin film transistor (tft) liquid crystal display (lcd) panel
CN110880299B (zh) 画面显示方法及画面显示装置
US12020623B2 (en) Gamma correction method for a display device
US20200365081A1 (en) Timing controller device and a method for compensating an image data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932708

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17932708

Country of ref document: EP

Kind code of ref document: A1