WO2019099434A1 - Chiller water sampling device - Google Patents

Chiller water sampling device Download PDF

Info

Publication number
WO2019099434A1
WO2019099434A1 PCT/US2018/060889 US2018060889W WO2019099434A1 WO 2019099434 A1 WO2019099434 A1 WO 2019099434A1 US 2018060889 W US2018060889 W US 2018060889W WO 2019099434 A1 WO2019099434 A1 WO 2019099434A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
fluid
flow
valve
mixing tank
Prior art date
Application number
PCT/US2018/060889
Other languages
French (fr)
Inventor
Robert Larose
Original Assignee
Biosafe Systems, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosafe Systems, Llc filed Critical Biosafe Systems, Llc
Priority to US16/762,640 priority Critical patent/US11192809B2/en
Priority to MX2020005030A priority patent/MX2020005030A/en
Priority to CA3081360A priority patent/CA3081360C/en
Publication of WO2019099434A1 publication Critical patent/WO2019099434A1/en
Priority to US17/531,935 priority patent/US11897798B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3508Organic compounds containing oxygen containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/18Devices for withdrawing samples in the liquid or fluent state with provision for splitting samples into portions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • G01N2001/205Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping using a valve

Definitions

  • the present invention relates to devices for monitoring the level of biocide in poultry plant chillers.
  • Peroxyacetic acid is employed in food chillers, such as auger and drag type poultry chillers, which are employed in processing plants to reduce the temperature of birds which have been defeathered, eviscerated and are otherwise ready for packaging.
  • Poultry chillers are described, for example, in U.S. Patents 3,240,026; 7,281 ,384;
  • Patent 5,683,724 describes a process for inhibiting microbial growth in aqueous food process streams using a percarboxylated acid, such as peracetic acid.
  • U.S. Patent 9,414,609 discloses treating poultry carcasses with an equilibrium solution of peroxyacetic acid at an elevated temperature prior to chilling.
  • Peroxyacetic acid can be provided in the form of an equilibrium solution, or a non-equilibrium solution, such as disclosed, for example, in U.S. Patent 10,081 ,784.
  • peroxyacetic acid When peroxyacetic acid is used as an antimicrobial agent in poultry chillers, there is a need to accurately assess the level of peroxyacetic acid to ensure efficacious results.
  • the present invention relates to a chiller water sampling device.
  • the device includes a first line for fluid communication with a chiller, such that an aqueous sample can be delivered from the chiller to the device.
  • the device also includes a first flow meter for sensing fluid flow through the first line; a diverter in fluid communication with the first line for dividing the fluid flow from the first line into a second line and a third line; a second flow meter for sensing fluid flow through the second line; and a first valve for controlling fluid flow through the second line such that fluid flow from the device can be discharged through the second line.
  • the device also includes a second valve for controlling fluid flow through the third line and a mixing tank for receiving fluid flow from the third line, as well as an acid storage tank in fluid communication with the mixing tank, and a first metering device for controlling fluid flow from the acid storage tank to the mixing tank.
  • a first pH sensing device for monitoring the pH of fluid in the mixing tank is also provided. The pH first sensing device generates a first signal responsive to the pH of the fluid in the mixing tank, the first signal being applied to the first metering device for controlling fluid flow from the acid storage tank to the mixing tank.
  • a fourth line for discharging fluid from the mixing tank is also provided.
  • a second pH sensing device for monitoring the pH of fluid flowing in the fourth line is provided, as well as a fifth line in fluid communication with the fourth line for discharging fluid from the device, and a third valve for controlling fluid flow through the fourth line.
  • a sixth line in fluid communication with the fourth line for discharging fluid from the device is also provided, as well as a fourth valve for controlling fluid flow through the sixth line.
  • the second pH sensing device generates a second signal for controlling operation of the fourth valve and a third signal for controlling operation of the fourth valve.
  • a first PAA sensing device for sensing the concentration of peroxyacetic acid in fluid flowing in the sixth line
  • the first PAA sensing device has an operating range, and provides a signal in response to the concentration of sensed concentration of peroxyacetic acid signal.
  • the device further comprises a filter in the third line for filtering nonfluid material from fluid flowing from the diverter to the second valve.
  • the device further includes a seventh line for providing fluid flow to the third line, fluid flow through the seventh line being controlled by a fifth valve, the seventh line being in fluid communication with the third line between the diverter and the second valve.
  • the device also includes an overflow line, the overflow line being in fluid communication with the mixing tank for discharging fluid from the device, the overflow line being positioned on the mixing tank above a predetermined fluid level in the mixing tank.
  • the device also includes a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth line.
  • the device further includes an eighth line for providing fluid flow to the sixth line, the fluid flow in the eighth line being controlled by a sixth valve, the eighth line being in fluid communication with the sixth line between the fourth valve and the first PAA sensing device. Wash water can be provided through the eighth line.
  • the first flow meter generates a first flow control signal
  • the second flow meter generates a second flow control signal
  • the first valve is a proportional valve
  • the device further includes a controller for comparing the first signal and the second signal, and for generating a control signal for the proportional valve, such that the flow through the third line is maintained at a predetermined flow rate.
  • the present invention also provides a system for controlling the concentration of peroxyacetic acid in the contents of a chiller, the system comprising the chiller water sampling device, a source of peroxyacetic acid, a metering pump for delivering peroxyacetic acid to the chiller, and a controller for the metering pump, the controller for the metering pump being controlled by a signal from the first PAA sensing device.
  • the system further comprises a unit for controlling the pH of the contents of the chiller, the unit comprising a delivery line in fluid communication with the chiller, a pH sensing device for sensing the pH of fluid in the delivery line, and a flow meter for sensing the rate of flow of fluid in the delivery line.
  • a unit for controlling the pH of the contents of the chiller comprising a delivery line in fluid communication with the chiller, a pH sensing device for sensing the pH of fluid in the delivery line, and a flow meter for sensing the rate of flow of fluid in the delivery line.
  • fluid output from the delivery line is input to the first line of the device.
  • the system further comprises an alkali storage tank for storing an alkaline fluid, an alkali controller, and an alkali feed pump for delivering the alkaline fluid to the chiller, the alkali controller receiving a signal from the pH sensing device and activating the alkali feed pump when the signal from the pH sensing device meets a predetermined condition.
  • an alkali storage tank for storing an alkaline fluid
  • an alkali controller for delivering the alkaline fluid to the chiller
  • the alkali controller receiving a signal from the pH sensing device and activating the alkali feed pump when the signal from the pH sensing device meets a predetermined condition.
  • the source of peroxyacetic acid provides equilibrium peroxyacetic acid. In another embodiment, the source of peroxyacetic acid provides nonequilibrium peroxcyacetic acid.
  • the present invention also provides a process for controlling the concentration of peroxyacetic acid in a chiller employing the chiller water sampling device.
  • the process includes providing a continuous sample of aqueous alkaline fluid from a chiller to the first line, controlling the first valve to provide a predetermined constant flow rate of the sample to the mixing tank, mixing the aqueous fluid provided to the mixing tank, monitoring the pH of the aqueous fluid in the mixing tank, and adding.acid to the aqueous fluid in the mixing tank to reduce the pH of the aqueous fluid in the mixing tank, monitoring the pH of the aqueous fluid in the fourth line, delivering aqueous fluid in the fourth line to the sixth line when the monitored pH of the aqueous fluid in the fourth line is within the working range of the first PAA sensing device; and delivering peroxyacetic acid to the chiller in response to the signal from the third sensing device.
  • the process further includes providing a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth
  • Fig. 1 is a schematic illustration of a chiller water sampling device according to the present invention.
  • Fig. 2 is a schematic illustration of a system for controlling the concentration of peroxyacetic acid in the contents of a chiller employing the device of Fig. 1.
  • the present invention provides a chiller water sampling device for assessing the level of peroxyacetic acid in the water of a poultry chiller, and a system employing the device for controlling the concentration of peroxyacetic acid in the chiller water, as well as a method for controlling the concentration of peroxyacetic acid in the chiller water.
  • PAA peroxyacetic acid
  • the chiller water sampling device 100 of the present invention includes a first line 110 for fluid communication with a chiller 300 (Fig. 2).
  • a stream of chiller water initially flows through a first flow meter 112 for sensing fluid flow through the first line 110.
  • the first flow meter 112 generates a responsive signal over a first flow control line 113.
  • a diverter 114 such as a ⁇ "- fitting, and in fluid communication with the first line 110, is provided to split the stream of chiller water into two streams, one of which flows into a second line 116, and a third line 122.
  • the "Y"-fitting permits large contaminant particles in the chller water to flow downwards through the second line 1 16.
  • the fluid flowing in the second line 116 passes though a second flow meter for sensing the fluid flow through the second line 116, then though a first, proportional valve 120 for controlling the fluid flow in the second line, and subsequently to a drain 180 for discharging fluid flow from the device 100.
  • a signal provided over the first flow control ine from the first flow meter 112 and a signal provided over a second flow control line 115 from the second flow meter 118 are compared by a flow controller 126, which is programmed to adjust the first valve 120 such that the fluid flow though the third line 122 is maintained at a predetermined rate, such as, for example, 0.3 gaL/min (1.14 liters/minute). Fluid flowing in the third line then preferably passes through a filter 124 such as a mesh screen to strain out residual large particles. The fluid flowing in the third line 122 then passes though a second valve 128 for controlling fluid flow in the third line 122 for a purpose to be described below.
  • the chiller water flowing in the third line 122 discharges to a mixing tank 130 for receiving fluid flow from the third line 122 for the purpose of adjusting the pH of the chiller water if necessary in order that the concentration of peroxyacetic acid be accurately assessed.
  • the mixing tank 130 is provided with a mixer or stirrer 132 as well as a vent 134.
  • the chiller water including the peroxyacetic acid can have a pH on the alkaline side.
  • sensors for peroxyacetic acid typically have a limited pH operating range, such as from about 1 to 9. Thus, if the chiller water is more alkaline than the operating range of the PAA sensor being employed, the PAA measurement drops to zero.
  • a first sensing device 140 for monitoring the pH of fluid in the mixing tank 130 is provided.
  • the first sensing device 140 generates a signal responsive to the pH of the fluid in the mixing tank 130.
  • the signal is applied through a first pH control line 141 to a first metering device or pump 144.
  • An acid storage tank 142 is provided in fluid communication with the mixing tank 130 through the first metering device 144, which controls fluid flow from the acid storage tank 142 to the mixing tank 130.
  • the first metering device 144 feeds acid from the acid storage tank 142 when the pH of the contents of the mixing tank 130 rise above a predeterimed level, such as a pH of 8, for the purpose of lowering the pH of the contents to a level within the working range of the PAA sensor to be employed.
  • the fluid in the mixing tank 130 is preferably maintained at a constant level 150. Should that level be exceeded, an overflow line 176 is provided for discharging the overflow from the mixing tank 130 to a drain 180.
  • a fourth line 152 is provided for discharging fluid from the mixing tank 130.
  • a second pH sensing device 154 monitors the pH of fluid flowing in the fourth line 152. If the pH of the fluid in the fourth line 152 exceeds a predetermined pH, such as a pH of 8, the second pH sensing device 154 generates signals which are transmitted over a second pH control line 155 and a third pH control line 157, such that the fluid is discharged through a fifth line 156 in fluid communication with the fourth line 152 and a third valve 158 for controlling fluid flow through the fifth line 156 to discharge fluid from the mixing tank 130 to a drain 180.
  • a sixth line 160 in fluid communication with the fourth line 152 is also provided, as well as a fourth valve 162 for controlling fluid flow through the sixth line 160.
  • the second sensing device 154 Depending on the sensed pH, the second sensing device 154 generates a signal which is applied over the second pH control line 155 for controlling operation of the third valve 158 and a signal applied over the third pH control line 157 for controlling operation of the fourth valve 162. If the pH is above a predetermined value, the third valve 158 is opened and the fourth valve 162 is closed so that the chiller water is discharged to the drain 180. If the pH is below a predetermined value, the third valve 158 is closed, and the fourth valve 162 is opened to permit the chiller water to flow through the sixth line 160.
  • a first PAA sensing device 164 is provided, and preferably a second PPA sensing device 190, for sensing the concentration of peroxyacetic acid in fluid flowing in the sixth line 160.
  • the first PAA sensing device 164 has a predetermined operating range, and provides a PAA concentration signal in response to the concentration of sensed concentration of peroxyacetic acid over a PAA signal line 165.
  • the PAA concentration signal is employed to adjust the concentration of PAA in the chiller 300 as described below.
  • signals from the two PAA sensors 164, 190 are compared, and if the two signals differ by more than a predetermined amount, indicating malfunction, one or both PAA can be replaced.
  • the device 100 further includes a seventh line 170 for providing fluid flow, such as cleaning water, to the third line 122.
  • the fluid flow through the seventh line is controlled by a fifth valve 172.
  • the seventh line 170 is in fluid communication with the third line 122 between the diverter 114 and the second valve 128.
  • the second valve 128 In order to clean the filter 124, fluid flow from the chiller 300 is stopped, the second valve 128 is closed, and the first valve 120 is opened so that cleaning water can flow through the filter 124 and out the second line 1 16 to the drain 180. Further, if desired, the second valve 128 can be opened so that cleaning water can flow through the mixing tank 130 and then to the fourth line 152.
  • a fifth line 156 is provided in fluid communication with the fourth line 152, with flow through the fifth line 156 being controled by a seventh valve 168. If the third valve 158 and the fourth valve 162 are closed, and the seventh valve 168 is opened, cleaning water can flow from the fourth line 152 and can flow out the fifth line 156 to be discharged from the device 100 to a drain 180.
  • an eighth line 174 in fluid communication with the sixth line 160 between the fourth valve 162 and the first PAA sensor 164 is provided. The eighth line 174 is controlled by a sixth valve 178.
  • the fourth valve 162 can be closed, and the sixth valve 178 can be opened in order to permit cleaning water to flow through the eighth line 174, the sixth line 160 and the PAA sensors 164, 190.
  • the present invention also provides a system for controlling the concentration of peroxyacetic acid in the contents of a chiller 300.
  • the system includes the device 100, a PAA control system 400 which includes a PAA controller 410 a source of peroxyacetic acid, such as a PAA storage tank 402 containing an equilibrium solution of PAA, a first PAA delivery line 404 for fluid communication between the tank 402, and a PAA metering pump 406 for delivering peroxyacetic acid to the chiller 300 through a second PAA delivery line 408, and a controller 410 for the metering pump.
  • the controller for the metering pump is preferably controlled by a signal from the first PAA sensing device 164.
  • the system of the present invention also provides a unit 200 for controling the pH of the contents of the chiller 300.
  • the unit 200 includes a pH sample delivery line 206 in fluid communication with the chiller for delivering a sample of the chiller contents to a pH control sensing device 208 for sensing the pH of fluid in the delivery line 206, and a pH sample flow meter 210 for sensing the rate of flow of fluid in the delivery line 206.
  • the fluid output from a pH sample discharge line 212 is input to the first line 1 10 of the device 100 of the present invention.
  • An alkali storage tank 222 is employed for storing an alkaline fluid.
  • the alkaline fluid such as an aqueous solution of sodium hydroxide
  • the alkaline fluid is transferred to an alkali feed or metering pump 226 over a first alkali delivery line 224.
  • An alkali pump controller 230 controls the operation of the alkali metering pump 226 for delivering the alkaline fluid over to the chiller 300 over a second alkali delivery line 228.
  • the alkali controller 230 receives a signal from the pH control unit device 200 and activating the alkali feed pump 230 when the signal from the pH control unit 200 meets a predetermined condition, such as when the pH of the chiller contents drops below a predetermined level.
  • the source of peroxyacetic acid can provide an equilibrium solution of peroxyacetic acid. Equilibrium solutions of peroxyacetic acid can be prepared remotely from the processing plant employing the chiller, and stored until needed. Conversely, the source of peroxyacetic acid can be a device which generated peroxyacetic acid in situ and provides nonequilibrium peroxcyacetic acid.
  • the chiller water sampling device 100 is employed to control the concentration of peroxyacetic acid in a chiller 300.
  • a continuous sample of aqueous alkaline fluid from the chiller 300 is provided to the first line 110 of the device 100.
  • the sample can be delivered by the pH sample discharge line 212 of the pH control unit 200.
  • the first valve 120 is controlled to provide a predetermined constant flow rate of the sample to the mixing tank 130, such as 0.3 gallons/minute (1.14 liters/minute).
  • the aqueous fluid in the mixing tank 130 is mixed, preferably continuously using a mechanical stirring device or mixer 132.
  • the pH of the aqueous fluid in the mixing tank 130 is monitored with the first sensing device 140, and if the pH of the aqueous fluid exceeds a predetermined value, the acid addition flow controller 126 causes acid stored in the acid storage tank 142 to be added by the first metering device 144 to the aqueous fluid in the mixing tank 130 to reduce the pH of the aqueous fluid in the mixing tank 130.
  • peroxyacetic acid sensors have a limited range of pH in which they can operate accurately, and because the pH of aqueous fluid in the chiller may exceed the operating range of the peroxyacetic acid sensor, the pH of a sample of aqueous fluid from the chiller 300 must be reduced to within the operating range of the peroxyacetic acid sensor in order to accurately assess the level of peroxyacetic acid in the chiller 300.
  • the pH of the aqueous fluid leaving the mixing tank 130 in the fourth line 152 is monitored by the second sensing device 154.
  • the third valve 158 is closed and the fourth valve 162 is opened, and the aqueous fluid sample in the fourth line 152 is delivered to the sixth line 160 when the monitored pH of the aqueous fluid in the fourth line is within the working range of the PAA sensing devices 164, 190.
  • the measured level of peroxyaceticacid acid in the sample is then used to control the addtion of peroxyacetic acid to the chiller 300.
  • a PAA control signal is generated by the PAA sensing device 164, and peroxyacetic acid is delivered to the chiller 300 in response to the signal from the first PAA sensing device.
  • the second PAA sensing device is provided for sensing the concentration of peroxyacetic acid in the sixth line 160.
  • the second PAA sensing device 190 provides a second signal in response to the concentration of sensed concentration of peroxyacetic acid signal.
  • the signals from the first PAA sensing device 164 and the second PAA sensing device 190 can be compared. If the PAA levels measured by the two devices differ by greater than a predetermined amount, indicating a defective or damaged sensor, that sensor can be replaced.

Abstract

A chiller water sampling device includes a pair of flow meters and a proportional valve to provide a constant flow rate of sample water containing peroxyacetic acid from a chiller to a mixing tank. Acid can be added to reduce the pH of sample water in the mixing tank to bring the pH within the operating range of a peroxyacetic acid sensor. The sensed level of peroxyacetic acid can be used to control further addition of peroxyacetic acid to the chiller.

Description

CHILLER WATER SAMPLING DEVICE
Cross-Reference to Related Application
The present application claims the priority of U.S. Provisional Application Number 62/585,639, filed November 14, 2017, which is incorporated by reference in its entirety herein.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to devices for monitoring the level of biocide in poultry plant chillers.
2. Brief Description of the Prior Art
Peroxyacetic acid is employed in food chillers, such as auger and drag type poultry chillers, which are employed in processing plants to reduce the temperature of birds which have been defeathered, eviscerated and are otherwise ready for packaging. Poultry chillers are described, for example, in U.S. Patents 3,240,026; 7,281 ,384;
6,865,895; 9,271 ,509; all incorporated herein by reference. Various methods have been employed to reduce microbial activity in chiller water, which is typically recirculated and cooled during recirculation. For example, U.S. Patent 4,849,237 discloses sanitizing poultry carcasses using ozonated water at low temperatures. U.S. Patent Publication 2009/0208616 A1 discloses a multistage process for treating poultry processing water with chlorine and ozone. Peroxycarboxy!ic acids have been used to reduce microbial activity in poultry processing. For example, U.S. Patent 5,683,724 describes a process for inhibiting microbial growth in aqueous food process streams using a percarboxylated acid, such as peracetic acid. U.S. Patent 9,414,609 discloses treating poultry carcasses with an equilibrium solution of peroxyacetic acid at an elevated temperature prior to chilling. Peroxyacetic acid can be provided in the form of an equilibrium solution, or a non-equilibrium solution, such as disclosed, for example, in U.S. Patent 10,081 ,784.
When peroxyacetic acid is used as an antimicrobial agent in poultry chillers, there is a need to accurately assess the level of peroxyacetic acid to ensure efficacious results.
SUMMARY OF THE INVENTION
The present invention relates to a chiller water sampling device. The device includes a first line for fluid communication with a chiller, such that an aqueous sample can be delivered from the chiller to the device. The device also includes a first flow meter for sensing fluid flow through the first line; a diverter in fluid communication with the first line for dividing the fluid flow from the first line into a second line and a third line; a second flow meter for sensing fluid flow through the second line; and a first valve for controlling fluid flow through the second line such that fluid flow from the device can be discharged through the second line.
The device also includes a second valve for controlling fluid flow through the third line and a mixing tank for receiving fluid flow from the third line, as well as an acid storage tank in fluid communication with the mixing tank, and a first metering device for controlling fluid flow from the acid storage tank to the mixing tank. A first pH sensing device for monitoring the pH of fluid in the mixing tank is also provided. The pH first sensing device generates a first signal responsive to the pH of the fluid in the mixing tank, the first signal being applied to the first metering device for controlling fluid flow from the acid storage tank to the mixing tank. A fourth line for discharging fluid from the mixing tank is also provided.
Further, a second pH sensing device for monitoring the pH of fluid flowing in the fourth line is provided, as well as a fifth line in fluid communication with the fourth line for discharging fluid from the device, and a third valve for controlling fluid flow through the fourth line. A sixth line in fluid communication with the fourth line for discharging fluid from the device is also provided, as well as a fourth valve for controlling fluid flow through the sixth line. The second pH sensing device generates a second signal for controlling operation of the fourth valve and a third signal for controlling operation of the fourth valve.
In addition, a first PAA sensing device for sensing the concentration of peroxyacetic acid in fluid flowing in the sixth line is provided, the first PAA sensing device has an operating range, and provides a signal in response to the concentration of sensed concentration of peroxyacetic acid signal.
Preferably, the device further comprises a filter in the third line for filtering nonfluid material from fluid flowing from the diverter to the second valve.
Preferably, the device further includes a seventh line for providing fluid flow to the third line, fluid flow through the seventh line being controlled by a fifth valve, the seventh line being in fluid communication with the third line between the diverter and the second valve.
Preferably, the device also includes an overflow line, the overflow line being in fluid communication with the mixing tank for discharging fluid from the device, the overflow line being positioned on the mixing tank above a predetermined fluid level in the mixing tank.
Preferably, the device also includes a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth line.
Preferably, the device further includes an eighth line for providing fluid flow to the sixth line, the fluid flow in the eighth line being controlled by a sixth valve, the eighth line being in fluid communication with the sixth line between the fourth valve and the first PAA sensing device. Wash water can be provided through the eighth line.
Preferably, the first flow meter generates a first flow control signal, the second flow meter generates a second flow control signal, and the first valve is a proportional valve. Preferably, the device further includes a controller for comparing the first signal and the second signal, and for generating a control signal for the proportional valve, such that the flow through the third line is maintained at a predetermined flow rate.
The present invention also provides a system for controlling the concentration of peroxyacetic acid in the contents of a chiller, the system comprising the chiller water sampling device, a source of peroxyacetic acid, a metering pump for delivering peroxyacetic acid to the chiller, and a controller for the metering pump, the controller for the metering pump being controlled by a signal from the first PAA sensing device.
Preferably, the system further comprises a unit for controlling the pH of the contents of the chiller, the unit comprising a delivery line in fluid communication with the chiller, a pH sensing device for sensing the pH of fluid in the delivery line, and a flow meter for sensing the rate of flow of fluid in the delivery line.
Preferably, in the system fluid output from the delivery line is input to the first line of the device.
Preferably, the system further comprises an alkali storage tank for storing an alkaline fluid, an alkali controller, and an alkali feed pump for delivering the alkaline fluid to the chiller, the alkali controller receiving a signal from the pH sensing device and activating the alkali feed pump when the signal from the pH sensing device meets a predetermined condition.
In one embodiment of the system of the present invention, the source of peroxyacetic acid provides equilibrium peroxyacetic acid. In another embodiment, the source of peroxyacetic acid provides nonequilibrium peroxcyacetic acid.
The present invention also provides a process for controlling the concentration of peroxyacetic acid in a chiller employing the chiller water sampling device. The process includes providing a continuous sample of aqueous alkaline fluid from a chiller to the first line, controlling the first valve to provide a predetermined constant flow rate of the sample to the mixing tank, mixing the aqueous fluid provided to the mixing tank, monitoring the pH of the aqueous fluid in the mixing tank, and adding.acid to the aqueous fluid in the mixing tank to reduce the pH of the aqueous fluid in the mixing tank, monitoring the pH of the aqueous fluid in the fourth line, delivering aqueous fluid in the fourth line to the sixth line when the monitored pH of the aqueous fluid in the fourth line is within the working range of the first PAA sensing device; and delivering peroxyacetic acid to the chiller in response to the signal from the third sensing device. Preferably, the process further includes providing a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth line, the second sensing device providing a second signal in response to the concentration of sensed
concentration of peroxyacetic acid signal, and comparing the signals of the first and second PAA sensing devices.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic illustration of a chiller water sampling device according to the present invention.
Fig. 2 is a schematic illustration of a system for controlling the concentration of peroxyacetic acid in the contents of a chiller employing the device of Fig. 1.
DETAILED DESCRIPTION
The present invention provides a chiller water sampling device for assessing the level of peroxyacetic acid in the water of a poultry chiller, and a system employing the device for controlling the concentration of peroxyacetic acid in the chiller water, as well as a method for controlling the concentration of peroxyacetic acid in the chiller water.
As used in this specification and claims, "PAA" means peroxyacetic acid (also referred to a "peracetic acid).
Referring to Figs. 1 and 2, wherein like reference numerals refer to like elements throughout the several views, the chiller water sampling device 100 of the present invention includes a first line 110 for fluid communication with a chiller 300 (Fig. 2). A stream of chiller water initially flows through a first flow meter 112 for sensing fluid flow through the first line 110. The first flow meter 112 generates a responsive signal over a first flow control line 113. At the end of the first line 110 a diverter 114 such as a Ύ"- fitting, and in fluid communication with the first line 110, is provided to split the stream of chiller water into two streams, one of which flows into a second line 116, and a third line 122. Preferably, the "Y"-fitting permits large contaminant particles in the chller water to flow downwards through the second line 1 16. There are fluctuations in the fluid flow through the first line 1 10, and it is desirable to provide a uniform flow rate in which the concentration of peroxyacetic acid can be sampled, the fluid flowing in the second line 116 passes though a second flow meter for sensing the fluid flow through the second line 116, then though a first, proportional valve 120 for controlling the fluid flow in the second line, and subsequently to a drain 180 for discharging fluid flow from the device 100. A signal provided over the first flow control ine from the first flow meter 112 and a signal provided over a second flow control line 115 from the second flow meter 118 are compared by a flow controller 126, which is programmed to adjust the first valve 120 such that the fluid flow though the third line 122 is maintained at a predetermined rate, such as, for example, 0.3 gaL/min (1.14 liters/minute). Fluid flowing in the third line then preferably passes through a filter 124 such as a mesh screen to strain out residual large particles. The fluid flowing in the third line 122 then passes though a second valve 128 for controlling fluid flow in the third line 122 for a purpose to be described below.
The chiller water flowing in the third line 122 discharges to a mixing tank 130 for receiving fluid flow from the third line 122 for the purpose of adjusting the pH of the chiller water if necessary in order that the concentration of peroxyacetic acid be accurately assessed. The mixing tank 130 is provided with a mixer or stirrer 132 as well as a vent 134.
The chiller water including the peroxyacetic acid can have a pH on the alkaline side. However, sensors for peroxyacetic acid typically have a limited pH operating range, such as from about 1 to 9. Thus, if the chiller water is more alkaline than the operating range of the PAA sensor being employed, the PAA measurement drops to zero.
Thus, a first sensing device 140 for monitoring the pH of fluid in the mixing tank 130 is provided. The first sensing device 140 generates a signal responsive to the pH of the fluid in the mixing tank 130. The signal is applied through a first pH control line 141 to a first metering device or pump 144. An acid storage tank 142 is provided in fluid communication with the mixing tank 130 through the first metering device 144, which controls fluid flow from the acid storage tank 142 to the mixing tank 130. The first metering device 144 feeds acid from the acid storage tank 142 when the pH of the contents of the mixing tank 130 rise above a predeterimed level, such as a pH of 8, for the purpose of lowering the pH of the contents to a level within the working range of the PAA sensor to be employed. The fluid in the mixing tank 130 is preferably maintained at a constant level 150. Should that level be exceeded, an overflow line 176 is provided for discharging the overflow from the mixing tank 130 to a drain 180.
A fourth line 152 is provided for discharging fluid from the mixing tank 130. A second pH sensing device 154 monitors the pH of fluid flowing in the fourth line 152. If the pH of the fluid in the fourth line 152 exceeds a predetermined pH, such as a pH of 8, the second pH sensing device 154 generates signals which are transmitted over a second pH control line 155 and a third pH control line 157, such that the fluid is discharged through a fifth line 156 in fluid communication with the fourth line 152 and a third valve 158 for controlling fluid flow through the fifth line 156 to discharge fluid from the mixing tank 130 to a drain 180. In addition, a sixth line 160 in fluid communication with the fourth line 152 is also provided, as well as a fourth valve 162 for controlling fluid flow through the sixth line 160.
Depending on the sensed pH, the second sensing device 154 generates a signal which is applied over the second pH control line 155 for controlling operation of the third valve 158 and a signal applied over the third pH control line 157 for controlling operation of the fourth valve 162. If the pH is above a predetermined value, the third valve 158 is opened and the fourth valve 162 is closed so that the chiller water is discharged to the drain 180. If the pH is below a predetermined value, the third valve 158 is closed, and the fourth valve 162 is opened to permit the chiller water to flow through the sixth line 160.
A first PAA sensing device 164 is provided, and preferably a second PPA sensing device 190, for sensing the concentration of peroxyacetic acid in fluid flowing in the sixth line 160. The first PAA sensing device 164 has a predetermined operating range, and provides a PAA concentration signal in response to the concentration of sensed concentration of peroxyacetic acid over a PAA signal line 165. The PAA concentration signal is employed to adjust the concentration of PAA in the chiller 300 as described below. Preferably, signals from the two PAA sensors 164, 190 are compared, and if the two signals differ by more than a predetermined amount, indicating malfunction, one or both PAA can be replaced.
Preferably, the device 100 further includes a seventh line 170 for providing fluid flow, such as cleaning water, to the third line 122. The fluid flow through the seventh line is controlled by a fifth valve 172. The seventh line 170 is in fluid communication with the third line 122 between the diverter 114 and the second valve 128. In order to clean the filter 124, fluid flow from the chiller 300 is stopped, the second valve 128 is closed, and the first valve 120 is opened so that cleaning water can flow through the filter 124 and out the second line 1 16 to the drain 180. Further, if desired, the second valve 128 can be opened so that cleaning water can flow through the mixing tank 130 and then to the fourth line 152. A fifth line 156 is provided in fluid communication with the fourth line 152, with flow through the fifth line 156 being controled by a seventh valve 168. If the third valve 158 and the fourth valve 162 are closed, and the seventh valve 168 is opened, cleaning water can flow from the fourth line 152 and can flow out the fifth line 156 to be discharged from the device 100 to a drain 180. Similarly, an eighth line 174 in fluid communication with the sixth line 160 between the fourth valve 162 and the first PAA sensor 164 is provided. The eighth line 174 is controlled by a sixth valve 178. In order to clean the PAA sensors 164, 190 in the sixth line 160, the fourth valve 162 can be closed, and the sixth valve 178 can be opened in order to permit cleaning water to flow through the eighth line 174, the sixth line 160 and the PAA sensors 164, 190.
The present invention also provides a system for controlling the concentration of peroxyacetic acid in the contents of a chiller 300. The system includes the device 100, a PAA control system 400 which includes a PAA controller 410 a source of peroxyacetic acid, such as a PAA storage tank 402 containing an equilibrium solution of PAA, a first PAA delivery line 404 for fluid communication between the tank 402, and a PAA metering pump 406 for delivering peroxyacetic acid to the chiller 300 through a second PAA delivery line 408, and a controller 410 for the metering pump. The controller for the metering pump is preferably controlled by a signal from the first PAA sensing device 164.
The system of the present invention also provides a unit 200 for controling the pH of the contents of the chiller 300. The unit 200 includes a pH sample delivery line 206 in fluid communication with the chiller for delivering a sample of the chiller contents to a pH control sensing device 208 for sensing the pH of fluid in the delivery line 206, and a pH sample flow meter 210 for sensing the rate of flow of fluid in the delivery line 206. Preferably, the fluid output from a pH sample discharge line 212 is input to the first line 1 10 of the device 100 of the present invention. An alkali storage tank 222 is employed for storing an alkaline fluid. The alkaline fluid, such as an aqueous solution of sodium hydroxide, is transferred to an alkali feed or metering pump 226 over a first alkali delivery line 224. An alkali pump controller 230 controls the operation of the alkali metering pump 226 for delivering the alkaline fluid over to the chiller 300 over a second alkali delivery line 228. The alkali controller 230 receives a signal from the pH control unit device 200 and activating the alkali feed pump 230 when the signal from the pH control unit 200 meets a predetermined condition, such as when the pH of the chiller contents drops below a predetermined level.
The source of peroxyacetic acid can provide an equilibrium solution of peroxyacetic acid. Equilibrium solutions of peroxyacetic acid can be prepared remotely from the processing plant employing the chiller, and stored until needed. Conversely, the source of peroxyacetic acid can be a device which generated peroxyacetic acid in situ and provides nonequilibrium peroxcyacetic acid.
The chiller water sampling device 100 is employed to control the concentration of peroxyacetic acid in a chiller 300. A continuous sample of aqueous alkaline fluid from the chiller 300 is provided to the first line 110 of the device 100. For example, the sample can be delivered by the pH sample discharge line 212 of the pH control unit 200. The first valve 120 is controlled to provide a predetermined constant flow rate of the sample to the mixing tank 130, such as 0.3 gallons/minute (1.14 liters/minute). The aqueous fluid in the mixing tank 130 is mixed, preferably continuously using a mechanical stirring device or mixer 132. The pH of the aqueous fluid in the mixing tank 130 is monitored with the first sensing device 140, and if the pH of the aqueous fluid exceeds a predetermined value, the acid addition flow controller 126 causes acid stored in the acid storage tank 142 to be added by the first metering device 144 to the aqueous fluid in the mixing tank 130 to reduce the pH of the aqueous fluid in the mixing tank 130. Since peroxyacetic acid sensors have a limited range of pH in which they can operate accurately, and because the pH of aqueous fluid in the chiller may exceed the operating range of the peroxyacetic acid sensor, the pH of a sample of aqueous fluid from the chiller 300 must be reduced to within the operating range of the peroxyacetic acid sensor in order to accurately assess the level of peroxyacetic acid in the chiller 300. In order to protect the peroxyacetic acid devices 164, 190, the pH of the aqueous fluid leaving the mixing tank 130 in the fourth line 152 is monitored by the second sensing device 154. If the pH of the sample has been sufficiently reduced, the third valve 158 is closed and the fourth valve 162 is opened, and the aqueous fluid sample in the fourth line 152 is delivered to the sixth line 160 when the monitored pH of the aqueous fluid in the fourth line is within the working range of the PAA sensing devices 164, 190. The measured level of peroxyaceticacid acid in the sample is then used to control the addtion of peroxyacetic acid to the chiller 300. A PAA control signal is generated by the PAA sensing device 164, and peroxyacetic acid is delivered to the chiller 300 in response to the signal from the first PAA sensing device.
Preferably, the second PAA sensing device is provided for sensing the concentration of peroxyacetic acid in the sixth line 160. The second PAA sensing device 190 provides a second signal in response to the concentration of sensed concentration of peroxyacetic acid signal. The signals from the first PAA sensing device 164 and the second PAA sensing device 190 can be compared. If the PAA levels measured by the two devices differ by greater than a predetermined amount, indicating a defective or damaged sensor, that sensor can be replaced.
Various modifications can be made in the details of the various embodiments of the apparatus and method of the present invention, all within the scope and spirit of the invention as defined by the appended claims

Claims

1 . A chiller water sampling device, the device including:
a first line for fluid communication with a chiller;
a first flow meter for sensing fluid flow through the first line;
a diverter in fluid communication with the first line for dividing the fluid flow from the first line into a second line and a third line;
a second flow meter for sensing fluid flow through the second line;
a first valve for controlling fluid flow through the second line;
the second line discharging fluid flow from the device;
a second valve for controlling fluid flow through the third line;
a mixing tank for receiving fluid flow from the third line;
an acid storage tank in fluid communication with the mixing tank;
a first metering device for controlling fluid flow from the acid storage tank to the mixing tank;
a first pH sensing device for monitoring the pH of fluid in the mixing tank, the first sensing device generating a first signal responsive to the pH of the fluid in the mixing tank, the first signal being applied to the first metering device for controlling fluid flow from the acid storage tank to the mixing tank;
a fourth line for discharging fluid from the mixing tank;
a second pH sensing device for monitoring the pH of fluid flowing in the fourth line;
a fifth line in fluid communication with the fourth line for discharging fluid from the device;
a third valve for controlling fluid flow through the fourth line;
a sixth line in fluid communication with the fourth line for discharging fluid from the device;
a fourth valve for controlling fluid flow through the sixth line;
the second sensing device generating a second signal for controlling operation of the fourth valve and a third signal for controlling operation of the fourth valve; and a first PAA sensing device for sensing the concentration of peroxyacetic acid in fluid flowing in the sixth line, the first PAA sensing device having an operating range, and providing a signal in response to the concentration of sensed concentration of peroxyacetic acid.signal
2. A device according to claim 1 further comprising a filter in the third line for filtering non-fluid material from fluid flowing from the diverter to the second valve.
3. A device according to claim 3 further comprising a seventh line for providing fluid flow to the third line, fluid flow through the seventh line being controlled by a fifth valve, the seventh line being in fluid communication with the third line between the diverter and the second valve.
4. A device according to claim 1 further comprising an overflow line, the overflow line being in fluid communication with the mixing tank for discharging fluid from the device, the overflow line being positioned on the mixing tank above a predetermined fluid level in the mixing tank.
5. A device according to claim 1 further comprising a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth line.
6. A device according to claim 1 further comprising an eighth line for providing fluid flow to the sixth line, the fluid flow in the eighth line being controlled by a sixth valve, the eighth line being in fluid communication with the sixth line between the fourth valve and the first PAA sensing device.
7. A device according to claim 1 wherein the first flow meter generates a first flow control signal, the second flow meter generates a second flow control signal, and the first valve is a proportional valve, the device further including a controller for comparing the first signal and the second signal, and generating a control signal for the
proportional valve, such that the flow through the third line is maintained at a predetermined flow rate.
8. A system for controlling the concentration of peroxyacetic acid in the contents of a chiller, the system comprising a device according to claim 1 , a source of peroxyacetic acid, a metering pump for delivering peroxyacetic acid to the chiller, and a controller for the metering pump, the controller for the metering pump being controlled by a signal from the first PAA sensing device.
9. A system according to claim 8 further comprising a unit for controlling the pH of the contents of the chiller, the unit comprising a delivery line in fluid communication with the chiller, a pH sensing device for sensing the pH of fluid in the delivery line, and a flow meter for sensing the rate of flow of fluid in the delivery line.
10. A system according to claim 9 wherein the fluid output from the delivery line is input to the first line of the device.
1 1. A system according to claim 9 further comprising an alkali storage tank for storing an alkaline fluid, an alkali controller, and an alkali feed pump for delivering the alkaline fluid to the chiller, the alkali controller receiving a signal from the pH sensing device and activating the alkali feed pump when the signal from the pH sensing device meets a predetermined condition.
12. A system according to claim 8 wherein the source of peroxyacetic acid provides equilibrium peroxyacetic acid.
13. A system according to claim 8 wherein the source of peroxyacetic acid provides nonequilibrium peroxcyacetic acid.
14. A process for controlling the concentration of peroxyacetic acid in a chiller employing a device according to claim 1 , the process comprising:
providing a continuous sample of aqueous alkaline fluid from a chiller to the first line,
controlling the first valve to provide a predetermined constant flow rate of the sample to the mixing tank;
mixing the aqueous fluid provided to the mixing tank;
monitoring the pH of the aqueous fluid in the mixing tank, and adding acid to the aqueous fluid in the mixing tank to reduce the pH of the aqueous fluid in the mixing tank;
monitoring the pH of the aqueous fluid in the fourth line,
delivering aqueous fluid in the fourth line to the sixth line when the monitored pH of the aqueous fluid in the fourth line is within the working range of the first PAA sensing device; and
delivering peroxyacetic acid to the chiller in response to the signal from the third sensing device.
15. A process according to claim 14, further comprising providing a second PAA sensing device for sensing the concentration of peroxyacetic acid in the sixth line, the second sensing device providing a second signal in response to the concentration of sensed concentration of peroxyacetic acid signal, and comparing the signals of the first and second PAA sensing devices .
PCT/US2018/060889 2017-11-14 2018-11-14 Chiller water sampling device WO2019099434A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/762,640 US11192809B2 (en) 2017-11-14 2018-11-14 Chiller water sampling device
MX2020005030A MX2020005030A (en) 2017-11-14 2018-11-14 Chiller water sampling device.
CA3081360A CA3081360C (en) 2017-11-14 2018-11-14 Chiller water sampling device
US17/531,935 US11897798B2 (en) 2017-11-14 2021-11-22 Chiller water sampling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762585639P 2017-11-14 2017-11-14
US62/585,639 2017-11-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/762,640 A-371-Of-International US11192809B2 (en) 2017-11-14 2018-11-14 Chiller water sampling device
US17/531,935 Continuation US11897798B2 (en) 2017-11-14 2021-11-22 Chiller water sampling device

Publications (1)

Publication Number Publication Date
WO2019099434A1 true WO2019099434A1 (en) 2019-05-23

Family

ID=66539873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/060889 WO2019099434A1 (en) 2017-11-14 2018-11-14 Chiller water sampling device

Country Status (4)

Country Link
US (2) US11192809B2 (en)
CA (1) CA3081360C (en)
MX (1) MX2020005030A (en)
WO (1) WO2019099434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220381759A1 (en) * 2021-05-31 2022-12-01 Ngk Spark Plug Co., Ltd. Liquid quality measurement apparatus and liquid quality measurement system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3081360C (en) * 2017-11-14 2023-10-03 Biosafe Systems, Llc Chiller water sampling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790943A (en) * 1987-05-07 1988-12-13 Southeastern Water Conservation Systems, Inc. Renovation of used water from poultry processing plants
US6083463A (en) * 1997-07-29 2000-07-04 Los Alamos Technical Associates, Inc Food process chiller tank with disinfection system
US20020134317A1 (en) * 2001-01-16 2002-09-26 Shane Tommy J. Pathogen management system
US20030094422A1 (en) * 2000-02-18 2003-05-22 Michael Perkins Poultry processing water recovery and re-use process
US20080305553A1 (en) * 2007-06-05 2008-12-11 Ecolab Inc. Kinetic determination of peracid and/or peroxide concentrations
US20090043123A1 (en) * 2007-08-10 2009-02-12 Fmc Corporation Dilute Stabilized Peracetic Acid Production and Treatment Process
US20130327718A1 (en) * 2011-01-26 2013-12-12 Katayama Chemical, Inc. Device and method for reducing the hydrogen peroxide and peracetic acid content in a water flow

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240026A (en) 1963-05-13 1966-03-15 Swift & Co Poultry chilling
US4849237A (en) 1987-10-30 1989-07-18 Hurst William D Method for sanitizing poultry carcasses in a poultry processing plant utilizing ozonated water
US5683724A (en) 1993-03-17 1997-11-04 Ecolab Inc. Automated process for inhibition of microbial growth in aqueous food transport or process streams
US20040067160A1 (en) 2000-06-09 2004-04-08 Michael Perkins Intervention techniques for reducing carcass contamination
US7122149B2 (en) * 2002-07-12 2006-10-17 Applied Research Associates, Inc. Apparatus and method for continuous depyrogenation and production of sterile water for injection
US6658886B1 (en) 2003-01-24 2003-12-09 Morris & Associates, Inc. Poultry chiller having an integral sump compartment
US7281384B2 (en) 2005-04-07 2007-10-16 Morris & Associates, Inc. Poultry chiller with improved product distribution and antibacterial count
US20110247655A1 (en) * 2010-02-26 2011-10-13 Fresh Express, Inc. Systems and methods for sanitizing produce in an acidic bath
EP2607324A1 (en) * 2011-12-23 2013-06-26 Evonik Industries AG Method and device for treating ballast water onboard ships
US9089149B2 (en) 2013-03-15 2015-07-28 Cooling & Applied Technology, Inc. Poultry chiller with multi-blade long-pitch auger
US9850156B2 (en) * 2014-04-20 2017-12-26 Paul Q McLaine Side-stream particle precipitator apparatus and sustem for condenser open loop cooling system
AU2015311692B2 (en) * 2014-09-04 2020-10-08 Clean Chemistry, Inc. Method of water treatment utilizing a peracetate oxidant solution
US9414609B1 (en) 2014-11-19 2016-08-16 Zeco, Inc. Method for reduction in microbial activity in poultry processing
WO2017100284A1 (en) * 2015-12-07 2017-06-15 Clean Chemistry, Inc. Methods of microbial control
US10974211B1 (en) * 2016-02-17 2021-04-13 Zee Company, Inc. Peracetic acid concentration and monitoring and concentration-based dosing system
US11350640B1 (en) * 2016-08-12 2022-06-07 Zee Company I, Llc Methods and related apparatus for increasing antimicrobial efficacy in a poultry chiller tank
EA201892603A1 (en) 2016-05-13 2019-04-30 ЭЛТРОН РИСЕРЧ ЭНД ДИВЕЛОПМЕНТ, ЭлЭлСи METHOD OF CONTINUOUS OBTAINING PERCARBONIC ACID SOLUTIONS ON THE PLACE AND THE DEVICE FOR ITS IMPLEMENTATION
CA3033671A1 (en) * 2016-08-12 2018-02-15 Eltron Water Systems, LLC Systems and methods for the continuous on-site production of peroxycarboxcylic acid solutions
CA3081360C (en) * 2017-11-14 2023-10-03 Biosafe Systems, Llc Chiller water sampling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790943A (en) * 1987-05-07 1988-12-13 Southeastern Water Conservation Systems, Inc. Renovation of used water from poultry processing plants
US6083463A (en) * 1997-07-29 2000-07-04 Los Alamos Technical Associates, Inc Food process chiller tank with disinfection system
US20030094422A1 (en) * 2000-02-18 2003-05-22 Michael Perkins Poultry processing water recovery and re-use process
US20020134317A1 (en) * 2001-01-16 2002-09-26 Shane Tommy J. Pathogen management system
US20080305553A1 (en) * 2007-06-05 2008-12-11 Ecolab Inc. Kinetic determination of peracid and/or peroxide concentrations
US20090043123A1 (en) * 2007-08-10 2009-02-12 Fmc Corporation Dilute Stabilized Peracetic Acid Production and Treatment Process
US20130327718A1 (en) * 2011-01-26 2013-12-12 Katayama Chemical, Inc. Device and method for reducing the hydrogen peroxide and peracetic acid content in a water flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220381759A1 (en) * 2021-05-31 2022-12-01 Ngk Spark Plug Co., Ltd. Liquid quality measurement apparatus and liquid quality measurement system
EP4098993A1 (en) * 2021-05-31 2022-12-07 NGK Spark Plug Co., Ltd. Liquid quality measurement apparatus and liquid quality measurement system

Also Published As

Publication number Publication date
US11192809B2 (en) 2021-12-07
CA3081360C (en) 2023-10-03
MX2020005030A (en) 2020-08-13
US20210179460A1 (en) 2021-06-17
US11897798B2 (en) 2024-02-13
US20220081335A1 (en) 2022-03-17
CA3081360A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US11897798B2 (en) Chiller water sampling device
KR101446963B1 (en) Systems and methods for sanitizing produce in an acidic bath
WO1999039570A1 (en) Dairy chemical dispenser
KR20160112229A (en) Smart chloration system
KR101772558B1 (en) Management System and Method for A Swimming Pool
US11643341B2 (en) Antimicrobial capture system with carbon container
CN109153583B (en) Method for chlorinating drinking water on board, especially on board of passenger ship
CN215463941U (en) Online disinfectant blending and supplying device
EP3290394B1 (en) Ballast water treatment device and ballast water treatment method
CN219098849U (en) Bactericide dosing device for water treatment
CN106726576B (en) Suspension preparation and conveying system
JP6720912B2 (en) Ship and ballast water treatment method
DE102013200610A1 (en) Method and device for thermal treatment of a product
EP3867623A1 (en) A method and apparatus for monitoring microbial contaminants in an industrial process
CN218131624U (en) Online blending system of plant beverage
GB2527046A (en) Device and method for the treatment of crops
AU2008201000B2 (en) Dosing
AU2021293076B2 (en) A monitoring system
GB2597542A (en) A system and method for treating water for animal consumption
DE102015222492A1 (en) Plant and process for the treatment of liquids
DE202015106164U1 (en) Plant for the treatment of liquids
DE102013113636A1 (en) Apparatus and method for automated maintenance
CA3104151A1 (en) Systems and methods for controlling the feed rate of chemicals into a body of water
WO2022243472A1 (en) An apparatus/system and method for feeding an electrolyzer with controlled quantity and concentration of brine
EP3168195A1 (en) Assembly and method for treating liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3081360

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879320

Country of ref document: EP

Kind code of ref document: A1