WO2019098792A2 - Method for manufacture of composite separation membrane for redox flow battery and composite separation membrane for redox flow battery - Google Patents

Method for manufacture of composite separation membrane for redox flow battery and composite separation membrane for redox flow battery Download PDF

Info

Publication number
WO2019098792A2
WO2019098792A2 PCT/KR2018/014213 KR2018014213W WO2019098792A2 WO 2019098792 A2 WO2019098792 A2 WO 2019098792A2 KR 2018014213 W KR2018014213 W KR 2018014213W WO 2019098792 A2 WO2019098792 A2 WO 2019098792A2
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
redox flow
porous
membrane
weight
Prior art date
Application number
PCT/KR2018/014213
Other languages
French (fr)
Korean (ko)
Other versions
WO2019098792A3 (en
Inventor
정민석
김혜선
박상선
배수연
김대식
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2019098792A2 publication Critical patent/WO2019098792A2/en
Publication of WO2019098792A3 publication Critical patent/WO2019098792A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a process for producing a composite membrane for redox flow cells and a composite membrane for redox flow cells.
  • the power saving technique in, and be 20 more enhanced the efficiency of the power used to be more diverse and widely used renewable energy significantly affected the external condition, which is the concentration of the development of these technologies, the secondary battery of which And research and development have been increasing.
  • Redox flow cell 25 converts the chemical energy of the active substance directly sense the oxidation / reduction cell, which can switch into an electric energy, sunlight, with high quality power by storing renewable energy gross output variability depending on the wind, such as the environment Specifically, in the redox flow cell, the electrolyte including the active material causing the oxidation / reduction reaction is circulated between the opposite electrode and the storage tank, and charging / discharging proceeds.
  • the redox flow cell is basically composed of a tank storing different active materials in different oxidation states, a pump circulating the active material during charging / discharging, and a unit cell divided into 30 separation membranes.
  • the unit cell includes electrodes, 2019/098792 1 » (: 1 ⁇ ⁇ 2018/014213
  • the redox flow cell is a key material that generates current flow through the movement of ions generated in response to anodes and cathodes during charge discharge.
  • Current redox flow cells are classified into five membranes for lead-acid batteries or fuel cells Ion exchange membranes are generally used.
  • Ion exchange membranes are generally used.
  • such prior membranes cause crossover of ions between the positive and negative electrode electrolytes, degrade the energy efficiency of the cells, and are insufficient in resistance to electrolytes used, It is difficult, and there is a limit to the price competitiveness.
  • the present invention relates to a composite separator for a redox flow 15 battery having improved ion exchange capacity and hydrophilicity and capable of effectively reducing the crossover of the charged active material in the electrolyte solution and the degradation of energy mobility of the battery, To provide a process for preparing
  • Another object of the present invention is to provide a composite separator for a redox flow cell having an improved ion exchange capacity and hydrophilicity and capable of effectively reducing the crossover of the charged active material in the electrolyte solution and the energy density of the battery,
  • the present invention also provides a redox flow cell comprising the composite separator
  • Step of the present invention the cation-exchange functional groups on at least one surface on a porous polymer resin film coated with one or more substituted with a fluorine resin or a hydrocarbon-based resin coating composition 25; And a step of retaining the porous polymer resin film coated with the coating composition in a hydrogen peroxide solution sulfuric acid solution or deionized water.
  • the present invention also relates to a porous polymeric resin film; And a porous polymer 30 formed on at least one side of the resin film and having a cation exchange functional group substituted by one or more 2019/098792 1 » (: 1 ⁇ ⁇ 2018/014213
  • the present invention also provides a composite separator for a redox flow cell.
  • the present invention also provides a redox flow cell comprising a low cost composite separator
  • the cation-exchange functional groups on at least one surface on a porous polymer resin film at least one step of applying a fluorine-based resin include substituted or hydrocarbon-based resin 10 coating composition; And a step of retaining the porous polymer resin film coated with the coating composition in a hydrogen peroxide solution, a sulfuric acid solution or deionized water, and a process for producing a composite separator membrane for redox flow cells
  • the present inventors have found that when a coating composition containing a fluorinated resin in which at least one cation 15 exchange functional group is substituted is coated on one surface or both surfaces of a porous polymeric resin film and the porous polymeric resin film to which the coating composition is applied is immersed in a hydrogen peroxide solution, For 10 minutes or more.
  • the composite membrane for a redox flow battery has a crossover reduction of the charged active material due to the surface characteristics and the electrical characteristics of the coating layer and the 20 characteristics of the respective components. , Improvement of migration speed of cation or anion, improvement of hydrophilicity and conductivity, etc. were confirmed through experiments and the invention was completed.
  • the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted therein, so that the balance between the cathode portion and the anode portion of the 25 redox flow cell fractionated by the composite separator can be easily controlled
  • the composite separator for a redox flow battery can have a more improved ion exchange capacity and can prevent the crossover of the charged active material and the degradation of the energy density of the battery, and the polymer resin having high durability and chemical resistance of 30 It is easy to secure battery life by using
  • the coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted thereon may have a thickness of 1 to 300 .
  • one or more cation exchange functional groups of sulfonic acid group, carboxylic acid group or phosphoric acid group may be substituted for the fluorine-containing or 5-hydrocarbon-based resin in which the cation exchange functional group is substituted by one or more.
  • fluorine resins include fluorine resins such as polytetrafluoroethylene (PTFE) , tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA ) , tetrafluoroethylene-hexafluoropropylene copolymer ( FEP ) , 10 ethylene-tetrafluoroethylene copolymer resin ( ETFE), tetrafluoroethylene-chlorotrifluoroethylene copolymer (TFE 8: TFE) and ethylene-chlorotrifluoroethylene resin ( ECTFE) And at least one kind of polymer selected.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer resin
  • TFE 8
  • Examples of commercialized products of the fluorinated resin having one or more cation exchange functional groups include Nafion ( Dupont), Equivion 15 ( Solvay) , F lemion ( AGC chemicals company), Aciplex ( Asahi Kasei) Can be heard.
  • Roneun specific kinds of such hydrocarbon-based resins, polyethylene, polysulfone, polyphenylene oxide, polyphenylene, poly-20 can be mentioned a ketone, polyvinylidene fluoride blow at least one polymer selected from the group consisting of-ether-ether.
  • the cation-exchange functional groups but are not the molecular weight of the fluorine-based resin or a hydrocarbon resin substituted I 0 isang significantly limited and, for example may have a 10,000 to 300,000 weight-average molecular weight
  • the weight average molecular weight in the GPC method Means a weight average molecular weight in terms of polystyrene of 25 .
  • the cation exchange function () increases the electrophilic electrolyte property on the surface of the coating layer and improves the voltage efficiency by allowing fast ion movement through attraction with the zinc ions (+) in the electrolytic solution. Further, the cation exchange functional group Can also act as crossover inhibitors for active materials such as bromine (B rn-) 2019/098792 1 » (: 1 ⁇ ⁇ 2018/014213
  • the charge efficiency can also be improved.
  • the cation exchange functional group may include a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group. Due to the presence of such a cation exchange functional group, the electrolyte affinity of the surface of the composite separator for a redox flow battery of the embodiment is increased by 5, and the ion transfer in the electrolyte is accelerated through the interaction between the zinc ion and the cation exchange functional group in the electrolyte of the battery It can be improve the voltage efficiency by reducing the resistance between the electrolyte and the redox flow battery, a composite membrane wherein the cation-exchange functional groups are one or more substituted with fluorine resin or the coating composition contains a hydrocarbon-based resin is more than the above cation-exchange functional groups 110 substituted the can contain the fluorine-based resin or a hydrocarbon resin from 1 to 30% by weight of the coating composition and the like wherein the cation-exchange functional groups are one or more substituted with a fluorine-
  • a coating composition is the thickness to be coated on the porous polymer resin layer contains may vary according to the specific application purpose of the redox flow cell composite separator that is the final production For example, the coating composition may be coated on the porous polymeric resin film to a thickness of 0.1 to 1,000 pph.
  • a porous polymer resin film of hydrogen peroxide solution, sulfuric acid solution, or for more than 10 minutes in deionized water, or at least 0.5 hours or 1 hour or more, or more than 3 hours retention change the shape of the inner membrane thereby providing a separator that minimizes cross-mixing of the internal resistance of the battery and the active material causing self-discharge.
  • Hydrogen peroxide solution having a temperature of 100 [deg.] C , sulfuric acid solution or deionized water
  • the coating composition is applied a porous polymer resin film of hydrogen peroxide solution, it is the time to stay in the sulfuric acid solution or de-ionized water greatly limited, the residence time because of a too short membrane inside impurities present i on cluster swelling sufficient of the change in shape of the inner membrane 15 or connote the expected effect as such does not prevent cross-mixing of the active material is not achieved,
  • the hydrogen peroxide solution and the sulfuric acid solution may also serve to remove impurities from the inside of the membrane.
  • the hydrogen peroxide solution may have a concentration of 1 to 10 wt % .
  • the sulfuric acid solution may have a concentration of 1M to 3M
  • the deionized water may swell the ion clusters in the separation membrane.
  • the porous polymer resin film serves as a base material of the composite separator for the redox flow battery
  • the porous polymer resin film 25 can be variously used as a polymer resin which is known to be used as a separation membrane of a chemical flow battery.
  • the porous polymer resin membrane may include a polymer resin having a weight average molecular weight of 100,000 to 10,000,000. If the weight average molecular weight of the polymer resin of the porous polymer resin membrane is too small, the durability or chemical resistance Etc. If the weight average molecular weight of the polymer resin of the porous polymeric resin film is too large, the distribution of the pores formed on the separation membrane and the size of the pores themselves may become uneven.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • EVA ethylene vinyl acetate copolymers
  • PP polypropylene
  • PC polycarbonate
  • PAN poly Acrylonitrile
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • polyethersulfone polyethersul fone
  • polysulfone polysulfone
  • polyether ketone polyetherketone
  • poly-ether-ether-ketone poly-ether-ether-ketone of polyethylene Polyethylene ether nitrile, or a mixture of two or more thereof.
  • Polydopamine may be bonded to the surface of the porous polymeric resin film.
  • the polypodamine may be partially bonded to the surface of the porous polymeric resin film, or a polymer resin layer containing the polypodamine may be formed on the surface of the porous polymeric resin film.
  • the polypodamine may be bonded to the surface of the porous polymeric resin film 25 by forming a polymer resin layer having a thickness of 1 nm to 100 nm .
  • the thickness of the multiphase polymeric resin film may be determined according to the shape, size, and characteristics of the redox flow cell to be applied, and may be, for example, 10 / ffli to 600 / zm .
  • it may further comprise a porous polymer resin film of the inorganic particles dispersed therein 0.5 to 30 to 75% by weight.
  • These inorganic particles include silica, 2019/098792 1 » (: 1 ⁇ ⁇ 2018/014213
  • It can contain a silica, an organic silane compound and at least one member selected from the group consisting of titanium compounds.
  • modified silica is to be mentioned at least one selected from the group consisting of compounds of Chemical Formulas 1 to 4.
  • and is a fluorine, one or more substituted or unsubstituted alkylene group having 1 to 10 straight-chain or branched-chain ring, 3 ⁇ 4, 13 ⁇ 4, 3 ⁇ 4 and ⁇ are each a linear or branched chain of 1 to 4 carbon atoms Alkyl group
  • Y is a fluorine and one or more substituted or unsubstituted alkylene group having 1 to 10 straight-chain or branched-chain ring 3 ⁇ 4 and 3 ⁇ 4 are each an alkyl group of straight or branched chain of 1 to 4 carbon atoms.
  • R is a straight or branched alkylene group having 1 to 10 carbon atoms.
  • the separator for the redox flow battery containing specific modified silica particles dispersed in the porous resin film can improve the migration rate and conductivity of the cation and the anion due to the terminal functional group included in the compounds represented by Chemical Formulas 1 to 4 .
  • the modified silica may have a number average particle diameter of 111111 to 600 ⁇ . If the number average particle size of the modified silica particles is too small, the ion crossover phenomenon due to the increase of the water content of the redox flowable battery separator may be increased. If the number average particle size of the modified silica particles is too large, And the ion conductivity of the separator for the redox flow battery may be lowered, which is technically disadvantageous
  • the surface of the modified silica may be combined with polydopamine ( 1 ) 0 1> 3 [1 ⁇ 11 ⁇ 2 ) have.
  • polypodamine may be partially bonded to the surface of the modified silica, or may form a polymer resin layer containing polypodamine.
  • the polydodamine can be bonded to the surface of the modified silica with a thickness of Iran to 100 nm to form a polymer resin layer.
  • organosilane compound examples include tetraethyl orthosilicate (TEOS), 3-hydroxyethyltriethoxysilane (MPh), polyethoxysilane (MPh), triethoxysilane (PEOS).
  • TEOS tetraethyl orthosilicate
  • MPh 3-hydroxyethyltriethoxysilane
  • MPh polyethoxysilane
  • PEOS triethoxysilane
  • titanium-based compounds include ti tanium dioxide (TiO2), ti tanium (II) oxide (TiO), or ti tanium (III) oxide (Ti203).
  • TiO2 ti tanium dioxide
  • II ti tanium oxide
  • Ti203 ti tanium oxide
  • the composite membrane for a redox-flow battery provided according to the above-described method is characterized in that the surface properties, electrical characteristics, and characteristics of each component of the coating layer reduce crossover of the charged active material, Speed improvement, hydrophilicity and conductivity improvement.
  • the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted thereon, so that the balance between the cathode portion and the anode portion of the redox flow cell fractionated by the composite separator can be easily controlled.
  • the composite separator for a redox flow battery can have improved ion exchange ability and can prevent crossover of the charged active material between the anode and the cathode electrolyte and deterioration of the energy density of the battery, and can provide high durability and chemical resistance It is easy to secure battery life by using polymer resin
  • the coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted therein may have a thickness of 1 to 300 nm.
  • a porous polymeric membrane and a coating layer formed on at least one surface of the porous polymeric resin film and including a fluorine resin substituted with at least one cation exchange functional group.
  • porous polymeric resin film side or cations 5 exchange functional group is one or more substituted with fluorine or surface characteristics and electrical characteristics of the redox flow cell composite separator having the coating layer prepared by forming the coating layer contains a hydrocarbon-based resin on both surfaces
  • 10 were confirmed through experimentation that the crossover reduction of the charged active material, the movement speed of the cation or the anion, the hydrophilicity and the conductivity were improved owing to the characteristics of the respective components.
  • the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted thereon, so that the balance between the cathode portion and the anode portion of the redox flow cell fractionated by the composite separator can be easily controlled.
  • a composite membrane can be further may have an enhanced ion exchange ability, prevent the degradation of the energy density of the cross-over and the battery of the active material filled between the positive and negative electrolytes, high durability and By using a polymer resin having chemical resistance, it is easy to secure the life of the battery.
  • the coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted thereon may have a thickness of 1 to 300 / m .
  • the fluorine-containing or hydrocarbon-based resin having one or more cation exchange functional groups substituted thereon may be substituted with a cation exchange functional group containing sulfonic acid by 251 or more.
  • fluorine-based resin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hex fluoride propylene copolymer ( ⁇ P ) , Ethylene-tetrafluoroethylene copolymer resin ( ETFE), tetrafluoroethylene- 30 chlorotrifluoroethylene copolymer ( TFE / CTFE) and ethylene- As chlorotrifluoroethylene may be mentioned at least one polymer selected from the group consisting of ethylene resin (ECTFE).
  • ECTFE ethylene resin
  • Roneun specific kinds of such hydrocarbon-based resins, polyethylene, polysulfone, polyphenylene oxide, polyphenylene X, poly- may be a ketone, a polyvinyl fluoride blow at least one polymer selected from the group consisting of-ether-ether.
  • the cation-exchange functional groups have a weight average molecular weight of the fluorine-based or hydrocarbon-based resin substituted one or more but are not greatly limited, and for example may have a 10,000 to 300,000 weight-average molecular weight
  • the weight-average molecular weight of the G PC Act Quot means the weight average molecular weight in terms of polystyrene measured by the following formula.
  • porous polymeric resin membrane has: mo, ooo to 10, ooo, ooo
  • the weight average molecular weight of the porous polymer resin membrane may be too low to ensure sufficient durability and chemical resistance of the separation membrane for the redox flow battery. If the weight average molecular weight of the resin film is too large, the distribution of the pores formed on the separation membrane and the size of the pores themselves may become uneven.
  • the porous polymeric resin film has a maximum diameter of 1 nm to 1
  • the porous polymer resin film of the inorganic particles dispersed therein from 0.5 to 7 can contain 5% by weight reuldeo.
  • the inorganic particles may include at least one member selected from the group consisting of silica, modified silica, organic silane compound and titanium 25 compound.
  • the contents of the composite separator for a redox-flow battery include those described in the production method of a composite separator for a redox-flow battery according to the embodiment described above. 2019/098792 1 » (: 1 ⁇ ⁇ 2018/014213
  • a fuel cell system including a unit cell including the composite separator and an electrode, a tank storing different active materials each in an oxidized state, and a pump circulating the active material between the unit cell and the tank during charging and discharging A redox flow cell can be provided.
  • the redox flow cell may include a module 110 (11116) including one or more unit cells.
  • the redox flow cell may use a couple of pulses as the positive electrode electrolyte and + / + couple as the negative electrode electrolyte.
  • the redox flow cell also contains a positive electrode electrolyte rovromorex couple
  • a sulfide redox couple may be used as the negative electrode electrolyte.
  • the redox flow cell may use a vanadium redox couple as the positive electrode electrolyte and a negative electrode redox redox couple.
  • the redox flow battery may use a zinc-bromine redox couple as a cathode and a cathode electrolyte.
  • the system of the redox flow battery may be included euldeo flow frame 10 ⁇ ⁇ .
  • the flow frame not only serves as a passage for the electrolyte but also provides a uniform distribution of the electrolyte between the electrode and the separator so that the electrochemical reaction of the actual cell can be performed well.
  • the flow frame may have a thickness of 0.1 to 10.0 , and may be made of a polymer such as polyethylene, polypropylene, or polyvinyl chloride.
  • an ion exchange membrane having improved ion exchange capacity and hydrophilicity
  • a method for producing a composite separator for a redox flow cell which is capable of effectively reducing crossover of a charged active material between an anode and an anode electrolyte in an electrolyte solution and lowering the energy density of the battery and having excellent durability and chemical resistance,
  • a composite separator for a redox flow battery and a redox flow cell comprising the composite separator is also provided
  • FIG. 2 is a SEM photograph of a cross section of a composite separator for a redox flow cell prepared in Example 1 including a coating layer.
  • Figure 3 shows the permeability of bromine neunsil When Example 2 and Comparative Example 1, the redox flow batteries of the respective composite membranes.
  • Example 4 is a graph showing charge voltages (solid lines) and discharge voltages (dotted lines) measured in the charge and discharge tests of the single cells including the composite separator for redox flow battery of Example 3 and Comparative Example 2 , respectively.
  • Figure 5 shows the Example 2 and Comparative Example 1, the LES redox flow cell during the charge and discharge test of the unit cell including the composite membrane are measured terminal voltage of the (solid line) and discharge voltage (broken line).
  • a Du pont Company DE521 (Nafion 5 wt% in IPA ⁇ rater) to obtain a Nafion resin solidified was dried at 80 ° C oven. Then, the resin was dissolved in an N-methyl pyrrolidone solvent to prepare a 10 wt% solution.
  • Example 2 The coated separator was dried in an oven at 80 ° C for 6 hours. The coated membrane obtained after the drying was impregnated in DI water at 80 ° C for 6 hours.
  • Example 2 The coated separator was dried in an oven at 80 ° C for 6 hours. The coated membrane obtained after the drying was impregnated in DI water at 80 ° C for 6 hours.
  • Du pont Company DE521 (Nafion 5 wt% in IPA / water) polyethylene porous 5 membrane containing the 75 / page of wet thickness, Asahi's SF-601 (silica: weight-average molecular weight: about 700,000 g / mol, about thickness 600 // m ).
  • the coated separator was dried at a temperature of 25 DEG C (for 10 hours, the other side was coated in the same manner, and dried in the same manner for 10 hours. Then, the coated separator was dried in an oven at 50 ° C for 1 hour.
  • the coated membrane obtained after the drying was impregnated in DI water at 80 ° C for 10 6 hours.
  • a Du pont Company DE521 (Nafion 5 wt% in IPA ⁇ vater) to obtain a Nafion resin solidified was dried at 80 ° C oven.
  • the additive resin was prepared by dissolving 10 wt% to 15 Meth N- ylpyrrol idone solvent solution. The solution was coated on one side of a polyethylene porous separator (weight average molecular weight: about 6,000,000 g / mol, thickness about 175 [ mu] m ) containing silica with a wet thickness of 75 /
  • the coated separator was dried in an oven at 80 ° C for 6 hours. And it was impregnated with 20 6 hours the dry coated membrane obtained after the DI water temperature 80 ° C. Comparative Example 1
  • a polyethylene porous membrane containing silica (weight average molecular weight: about 6,000,000 / 1, thickness about 175 / L) was used as a separator without any additional treatment.
  • the surface and cross-section of the membrane were analyzed by FE-SEM (Field Emission Scanning Electron Microscope , HITACHI Status 8220) in order to confirm the surface uniformity of the membranes of Examples and Comparative Examples and the thickness of the coating layer.
  • FE-SEM Field Emission Scanning Electron Microscope , HITACHI Status 8220
  • FE-state M shows that the coating layer of Example 1 had a non-desilvered coating layer formed on the surface of base coat.
  • the separator was placed between two vessels of a diffusion cell, one vessel was filled with deionized water (DI water) and the other vessel was filled with ZnCh (0.55 M), MEP-Br (0.80 M) and Br 2 .
  • DI water deionized water
  • ZnCh 0.55 M
  • MEP-Br 0.80 M
  • Br 2 Br2 concentration
  • V oltage E fficiency (VE) E nergy Effi ciency / V oltage Efficie ncy
  • the coating separator of Example 2 showed lower values than the separator of Comparative Example 1 as a result of internal resistance measurement, which resulted in improved voltage efficiency and energy efficiency as a result of charge / discharge test.
  • the coating separator of Example 2 exhibited a higher discharge voltage and an increased discharge charge as compared with the separator of Comparative Example 1.
  • the coating separator of Example 3 Comparative example 2 showed a high discharge voltage and the discharge amount increase compared to the thin separation membrane of the two more experiments porous polymer resin layer thickness above the higher the porosity was found that the increasing effect of the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a method for manufacture of a composite separation membrane for a redox flow battery, the method comprising the steps of: coating at least one surface of a porous polymer resin membrane having a weight average molecular weight of 1,000,000 to 10,000,000 with a coating composition including a fluorine- or hydrocarbon-based resin substituted with one or more cation-exchange functional groups; and keeping the coating composition-coated porous polymer resin membrane in a hydrogen peroxide solution, a sulfuric acid solution, or deionized water for 10 minutes or longer.

Description

2019/098792 1»(:1^1{2018/014213 2019/098792 1 » (: 1 ^ {2018/014213
【발명의 설명】 DESCRIPTION OF THE INVENTION
【발명의 명칭】  Title of the Invention
레독스흐름전지용복합분리막의 제조방법 및 레독스흐름전지용 복합분리막  METHOD FOR MANUFACTURING COMPOSITE SEPARATOR FOR REDOX-FLOW BATTERY
5 【기술분야】  5 【Technical Field】
관련출원(들)과의 상호 인용  Cross-reference with related application (s)
본출원은 2017년 11월 20일자한국특허출원 제 10-2017-0154713호에 기초한우선권의 이익을주장하며, 해당한국특허 출원들의 문헌에 개시된 모든내용은본명세서의 일부로서포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0154713, filed on November 20, 2017, the disclosure of which is incorporated herein by reference in its entirety.
10 본발명은 레독스흐름 전지용복합분리막의 제조방법 및 레독스 흐름전지용복합분리막에 관한것이다. The present invention relates to a process for producing a composite membrane for redox flow cells and a composite membrane for redox flow cells.
【발명의배경이 되는기술】  TECHNICAL BACKGROUND OF THE INVENTION
화석 연료를 사용하여 대량의 온실 가스 및 환경 오염 문제를 야기하는 화력 발전이나 시설 자체의 안정성이나 폐기물 처리의 문제점을 15 갖는 원자력 발전 등의 기존 발전 시스템들이 다양한 한계점을 들어내면서 보다 친환경적이고 높은 효율을 갖는 에너지의 개발과 이를 이용한 전력 공급시스템의 개발에 대한연구가크게 증가하고 있다 Using fossil fuels to environmentally friendly and high-efficiency than conventional power generation systems, such as large amounts of greenhouse gases and environmental pollution problems caused thermal power plant or facility itself, stability and waste disposal problems 15 with nuclear power plants that are throwing contains various limitations Research on the development of energy and the development of power supply system using it has been greatly increased
특히 전력 저장 기술은 외부조건에 큰 영향을 받는 재생 에너지를 보다 다양하고 넓게 이용할수 있도록 하며 전력 이용의 효율을 보다높일 20 수 있어서, 이러한 기술분야에 대한개발이 집중되고 있으며, 이들중 2차 전지에 대한관심 및 연구개발이 크게 증가하고 있는실정이다. In particular, the power saving technique in, and be 20 more enhanced the efficiency of the power used to be more diverse and widely used renewable energy significantly affected the external condition, which is the concentration of the development of these technologies, the secondary battery of which And research and development have been increasing.
레독스 흐름 전지는 활성 물질의 화학적 에너지를 직접 전기 에너지로 전환할수 있는산화/환원 전지를 의미하며, 태양광, 풍력등 외부 환경에 따라 출력변동성이 심한 신재생에너지를 저장하여 고품질 전력으로 25 변환할 수 있는 에너지 저장시스템이다 구체적으로, 레독스 흐름 전지에서는 산화/환원 반응을 일으키는 활물질을 포함한 전해액이 반대 전극과저장탱크사이를순환하며 충방전이 진행된다. Redox flow cell 25 converts the chemical energy of the active substance directly sense the oxidation / reduction cell, which can switch into an electric energy, sunlight, with high quality power by storing renewable energy gross output variability depending on the wind, such as the environment Specifically, in the redox flow cell, the electrolyte including the active material causing the oxidation / reduction reaction is circulated between the opposite electrode and the storage tank, and charging / discharging proceeds.
이라한 레독스 흐름 전지는 기본적으로 산화상태가 각각 다른 활물질이 저장된 탱크와 충/방전시 활물질을 순환시키는 펌프, 그리고 30 분리막으로 분획되는 단위셀을 포함하며, 상기 단위셀은 전극, 전해질 및 2019/098792 1»(:1^1{2018/014213 The redox flow cell is basically composed of a tank storing different active materials in different oxidation states, a pump circulating the active material during charging / discharging, and a unit cell divided into 30 separation membranes. The unit cell includes electrodes, 2019/098792 1 » (: 1 ^ {2018/014213
분리막을포함한다 Includes a separator
레독스 흐름 전지의 분리막은 충전 방전시 양극과 음극전해질에 반응되어 생성되는 이온의 이동을 통해 전류의 흐름을 발생시키는 핵심소재이다 현재 레독스 흐름 전지에는 전지 종류에 따라 납축 전지용 5 분리막 또는 연료전지용 이온 교환막을 사용하는 것이 일반적이나, 이러한 이전의 분리막은 양극과 음극 전해액 간의 이온의 크로스 오버를 발생시키고 전지의 에너지효율을 저하시키며 사용되는 전해액에 대한 내성이 충분하지 않아서 전지의 수명을 충분히 확보하기 어려우며, 가격 경쟁력 확보에도한계를가지고 있다  The redox flow cell is a key material that generates current flow through the movement of ions generated in response to anodes and cathodes during charge discharge. Current redox flow cells are classified into five membranes for lead-acid batteries or fuel cells Ion exchange membranes are generally used. However, such prior membranes cause crossover of ions between the positive and negative electrode electrolytes, degrade the energy efficiency of the cells, and are insufficient in resistance to electrolytes used, It is difficult, and there is a limit to the price competitiveness.
10 【발명의 내용】 10 Description of the Invention
【해결하고자하는과제】  [Problem to be solved]
본 발명은 향상된 이온 교환능력 및 친수성을 가지며, 전해질 용액 내 충전된 활물질의 크로스 오버 및 전지의 에너지 멀도의 저하 현상을 효과적으로 감소시킬 수 있으며, 내구성과 내화학성이 우수한 레독스 흐름 15 전지용복합분리막의 제조방법을제공하기 위한것이다 The present invention relates to a composite separator for a redox flow 15 battery having improved ion exchange capacity and hydrophilicity and capable of effectively reducing the crossover of the charged active material in the electrolyte solution and the degradation of energy mobility of the battery, To provide a process for preparing
또한 본 발명은, 향상된 이온 교환 능력 및 친수성을 가지며, 전해질 용액 내 충전된 활물질의 크로스 오버 및 전지의 에너지 밀도의 저하 현상을 효과적으로 감소시킬 수 있으며 내구성과 내화학성이 우수한 레독스흐름 전지용복합분리막을제공하기 위한것이다  Another object of the present invention is to provide a composite separator for a redox flow cell having an improved ion exchange capacity and hydrophilicity and capable of effectively reducing the crossover of the charged active material in the electrolyte solution and the energy density of the battery, To provide
20 또한 본 발명은 상기 복합 분리막을 포함하는 레독스 흐름 전지를 제공하기 위한것이다 20 The present invention also provides a redox flow cell comprising the composite separator
【과제의 해결수단】  MEANS FOR SOLVING THE PROBLEMS
본 발명은, 다공성 고분자 수지막에 적어도 일면에 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 탄화수소계 수지가 포함된 코팅 25 조성물을 도포하는 단계; 및 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 과산화수소 용액 황산 용액 또는 탈이온수 내에 체류시키는 단계;를 포함하는, 레독스 흐름 전지용 복합 분리막의 제조 방법을 제공한다. Step of the present invention, the cation-exchange functional groups on at least one surface on a porous polymer resin film coated with one or more substituted with a fluorine resin or a hydrocarbon-based resin coating composition 25; And a step of retaining the porous polymer resin film coated with the coating composition in a hydrogen peroxide solution sulfuric acid solution or deionized water.
또한, 본 발명은, 다공성 고분자 수지막; 및 상기 다공성 고분자 30 수지막의 적어도 일면에 형성되고 양이온 교환 작용기가 1이상 치환된 2019/098792 1»(:1^1{2018/014213 The present invention also relates to a porous polymeric resin film; And a porous polymer 30 formed on at least one side of the resin film and having a cation exchange functional group substituted by one or more 2019/098792 1 » (: 1 ^ {2018/014213
불소계 수지를 포함하는 코팅층;을 포함하는 레독스 흐름 전지용 복합 분리막을제공한다. And a coating layer containing a fluorine resin. The present invention also provides a composite separator for a redox flow cell.
또한 본 발명은 상가복합 분리막을 포함하는 레독스 흐름 전지를 제공한다  The present invention also provides a redox flow cell comprising a low cost composite separator
5 이하에서는발명의 구체적인 구현예에 따른 레독스흐름 전지용복합 분리막의 제조방법에 관하여 보다상세하게 설명하기로한다. 발명의 일 구현예에 따르면, 다공성 고분자수지막에 적어도 일면에 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 탄화수소계 수지가 10 포함된 코팅 조성물을 도포하는 단계; 및 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 과산화수소 용액, 황산 용액 또는 탈이온수 내에 체류시키는 단계;를 포함하는, 레독스 흐름 전지용 복합 분리막의 제조 방법이 제공될수 있다 5 The method of manufacturing the composite separator for a redox flow cell according to a specific embodiment of the present invention will now be described in more detail. According to one embodiment of the invention, the cation-exchange functional groups on at least one surface on a porous polymer resin film at least one step of applying a fluorine-based resin include substituted or hydrocarbon-based resin 10 coating composition; And a step of retaining the porous polymer resin film coated with the coating composition in a hydrogen peroxide solution, a sulfuric acid solution or deionized water, and a process for producing a composite separator membrane for redox flow cells
본 발명자들은, 다공성 고분자 수지막의 일면 또는 양면에 양이온 15 교환작용기가 1이상치환된 불소계 수지가포함된 코팅 조성물을 도포하고, 상기 코팅 조성물이 도포된 다공성 고분자수지막을과산화수소 용액, 황산 용액 또는 탈이온수내에 10분 이상 체류시키는단계를통하여 레독스흐름 전지용 복합 분리막을 제조하였으며 이러한 레독스 흐름 전지용 복합 분리막은 상기 코팅층의 표면 특성과 전기적 특성과 각각 성분에 의한 20 특성으로 인하여 충전된 활물질의 크로스오버 감소, 양이온 혹은 음이온의 이동 속도 향상, 친수성 및 전도도 향상 등의 효과가 있다는 점을 실험을 통하여 확인하고발명을완성하였다. The present inventors have found that when a coating composition containing a fluorinated resin in which at least one cation 15 exchange functional group is substituted is coated on one surface or both surfaces of a porous polymeric resin film and the porous polymeric resin film to which the coating composition is applied is immersed in a hydrogen peroxide solution, For 10 minutes or more. The composite membrane for a redox flow battery has a crossover reduction of the charged active material due to the surface characteristics and the electrical characteristics of the coating layer and the 20 characteristics of the respective components. , Improvement of migration speed of cation or anion, improvement of hydrophilicity and conductivity, etc. were confirmed through experiments and the invention was completed.
특히, 상기 레독스흐름전지용복합분리막의 코팅층은 양이온교환 작용기가 1이상 치환된 고분자을 포함하여, 상기 복합분리막으로 분획되는 25 레독스 흐름 전지의 음극 부분 및 양극 부분 간의 밸런스 조절을 용이하게 할수 있다 Particularly, the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted therein, so that the balance between the cathode portion and the anode portion of the 25 redox flow cell fractionated by the composite separator can be easily controlled
이에 따라, 상기 레독스 흐름 전지용 복합 분리막은 보다 향상된 이온교환능력을 가질 수 있으며 충전된 활물질의 크로스오버 및 전지의 에너지 밀도의 저하 현상을 방지할 수 있고 높은 내구성과 내화학성을 30 가진 고분자수지를사용함으로써 전지의 수명 확보가용이하다 상기 다공성 고분자 수지막의 적어도 1면에 형성되고, 양이온 교환 작용기가 1이상치환된 고분자를 포함하는코팅층은 1내지 300 의 두께를 가질 수 있다. Accordingly, the composite separator for a redox flow battery can have a more improved ion exchange capacity and can prevent the crossover of the charged active material and the degradation of the energy density of the battery, and the polymer resin having high durability and chemical resistance of 30 It is easy to secure battery life by using The coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted thereon may have a thickness of 1 to 300 .
한편, 상기 양이온 교환 작용기가 1이상 치환된 불소계 혹은 5 탄화수소계 수지에는 술폰산기, 카르복실산기 또는 인산기의 양이온 교환 작용기가 1이상치환될수있다. On the other hand, one or more cation exchange functional groups of sulfonic acid group, carboxylic acid group or phosphoric acid group may be substituted for the fluorine-containing or 5-hydrocarbon-based resin in which the cation exchange functional group is substituted by one or more.
이러한불소계 수지의 구체적인 종류로는,불소계 수지는폴리테트라 플루오로에틸렌(PTFE), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 테트라플루오르에틸렌-핵사플루오르프로필렌 공중합체(FEP)10 에틸렌-테트라플루오로에틸렌 코폴리머 수지(ETFE), 테트라플루오로에틸렌- 클로로트리플루오로에틸렌 공중합체(TFE八:TFE) 및 에틸렌- 클로로트리플루오로에틸렌 수지(ECTFE)로 이루어진 군에서 선택된 1종 이상의 고분자를 들 수 있다. 또한, 상기 양이온 교환 작용기가 1이상 치환된 불소계 수지의 상용화된 제품으로는 Nafion® (Dupont), Equivion® 15 (Solvay), Flemion™ (AGC chemicals company) , Aciplex™ (Asahi Kasei) 등을들수 있다. Specific examples of such fluorine resins include fluorine resins such as polytetrafluoroethylene ( PTFE) , tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA ) , tetrafluoroethylene-hexafluoropropylene copolymer ( FEP ) , 10 ethylene-tetrafluoroethylene copolymer resin ( ETFE), tetrafluoroethylene-chlorotrifluoroethylene copolymer (TFE 8: TFE) and ethylene-chlorotrifluoroethylene resin ( ECTFE) And at least one kind of polymer selected. Examples of commercialized products of the fluorinated resin having one or more cation exchange functional groups include Nafion ( Dupont), Equivion 15 ( Solvay) , F lemion ( AGC chemicals company), Aciplex ( Asahi Kasei) Can be heard.
이러한탄화수소계 수지의 구체적인 종류로는폴리에틸렌,폴리설폰, 폴리페닐렌옥사이드, 폴리페닐렌, 폴리-에테르-에테르-케톤, 폴리비닐블로라이드로 이루어진 군에서 선택된 1종 이상의 고분자를들수 20 있다. Roneun specific kinds of such hydrocarbon-based resins, polyethylene, polysulfone, polyphenylene oxide, polyphenylene, poly-20 can be mentioned a ketone, polyvinylidene fluoride blow at least one polymer selected from the group consisting of-ether-ether.
상기 양이온 교환 작용기가 I 0ᅵ상 치환된 불소계 수지 또는 탄화수소계 수지의 중량평균분자량이 크게 한정되는 것은 아니나, 예를 들어 10,000 내지 300,000 의 중량평균분자량을 가질 수 있다.상기 중량 평균분자량은 GPC법에 의해 측정한폴리스티렌 환산의 중량평균 분자량을 25 의미한다. The cation-exchange functional groups but are not the molecular weight of the fluorine-based resin or a hydrocarbon resin substituted I 0 isang significantly limited and, for example may have a 10,000 to 300,000 weight-average molecular weight The weight average molecular weight in the GPC method Means a weight average molecular weight in terms of polystyrene of 25 .
상기 양이온 교환 작용기(_)는 상기 코팅층 표면의 친전해액성 높여 주며, 전해액내의 징크 이온(+)과의 인력을 통해 빠른 이온 이동을 가능케 하여 전압 효율을 향상시키며, 또한 상기 고분자 자체의 양이온 교환 작용기가 브롬 (Brn—) 등의 활물질의 crossover 억제의 역할도 할 수 있어 2019/098792 1»(:1^1{2018/014213 The cation exchange function () increases the electrophilic electrolyte property on the surface of the coating layer and improves the voltage efficiency by allowing fast ion movement through attraction with the zinc ions (+) in the electrolytic solution. Further, the cation exchange functional group Can also act as crossover inhibitors for active materials such as bromine (B rn-) 2019/098792 1 » (: 1 ^ {2018/014213
전하량효율또한향상시킬 수 있다. The charge efficiency can also be improved.
상기 양이온 교환 작용기는 술폰산기, 카르복실산기 또는 인산기를 포함할 수 있다. 이러한 양이온 교환 작용기의 존재로 인하여, 상기 구현예의 레독스 흐름 전지용 복합 분리막 표면의 전해액 친화도가 5 높아지고, 또한 전지의 전해액 내 징크 이온과 양이온 교환 작용기 간의 상호작용을통해 전해액 내 이온 이동을 빠르게 하여 전해액과 레독스흐름 전지용복합분리막사이의 저항을감소시켜 전압효율을향상될수 있다 상기 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 탄화수소계 수지가포함된 코팅 조성물은상기 양이온교환작용기가 1이상 10 치환된 불소계 수지 또는 탄화수소계 수지 1내지 30중량%를포함할수 있다 상기 코팅 조성물은상기 양이온교환작용기가 1이상치환된 불소계 수지 또는 탄화수소계 수지 이외로 유기 용매 수용성 용매 또는 이들의 혼합 용매 등을 포함할 수 있으며 보다 구체적으로 상기 코팅 조성물에서 상기 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 탄화수소계 15 수지는 아이소프로판올05011( 31101)과 탈 이온수(( 1011126(1 아)의 혼합용매, - 메틸 피롤리돈 디메틸아세트아미드 디메틸포름아미드 디메틸설폭사이드, 또는 에틸렌 글리콜 등에 분산 혹은 용해되어 있을 수 있다 The cation exchange functional group may include a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group. Due to the presence of such a cation exchange functional group, the electrolyte affinity of the surface of the composite separator for a redox flow battery of the embodiment is increased by 5, and the ion transfer in the electrolyte is accelerated through the interaction between the zinc ion and the cation exchange functional group in the electrolyte of the battery It can be improve the voltage efficiency by reducing the resistance between the electrolyte and the redox flow battery, a composite membrane wherein the cation-exchange functional groups are one or more substituted with fluorine resin or the coating composition contains a hydrocarbon-based resin is more than the above cation-exchange functional groups 110 substituted the can contain the fluorine-based resin or a hydrocarbon resin from 1 to 30% by weight of the coating composition and the like wherein the cation-exchange functional groups are one or more substituted with a fluorine-based resin or an organic solvent-aqueous solvent or a mixed solvent other than the hydrocarbon-based resin And more specifically, The fluorine-based resin or a hydrocarbon-based 15 resin substituted at least said cation-exchange functional groups one at holy is isopropanol 0 501) 1 (3 1101) and deionized water ((1 011 1 26 (1 a) mixed solvent of methyl pyrrolidine Dimethyl dimethylacetamide, dimethyl dimethylacetamide dimethylformamide dimethyl sulfoxide, or ethylene glycol, or the like
상기 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 20 탄화수소계 수지가 포함된 코팅 조성물이 상기 다공성 고분자 수지막에 코팅되는 두께는 최종 제조되는 레독스 흐름 전지용 복합 분리막의 구체적인 용도나 목적에 따라서 달라질 수 있는데 예를 들어 상기 코팅 조성물은 다공성 고분자 수지막 상에 0.1 내지 1,000 /페의 두께로 코팅될 수있다. The cation-exchange functional groups are one or more substituted with fluorine resins or 20 hydrocarbon-based resin, a coating composition is the thickness to be coated on the porous polymer resin layer contains may vary according to the specific application purpose of the redox flow cell composite separator that is the final production For example, the coating composition may be coated on the porous polymeric resin film to a thickness of 0.1 to 1,000 pph.
25 한편, 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 과산화수소 용액, 황산 용액 또는 탈이온수 내에 10분 이상, 또는 0.5시간 이상 또는 1시간 이상 또는 3시간 이상 체류시키는 단계를 통하여, 분리막내부의 형상을 변화시켜 배터리 내부 저항과자가방전을초래하는 활물질의 교차혼합을최소화하는분리막을 제공할수 있다. 25 On the other hand, through the step of the coating composition is applied a porous polymer resin film of hydrogen peroxide solution, sulfuric acid solution, or for more than 10 minutes in deionized water, or at least 0.5 hours or 1 hour or more, or more than 3 hours retention, change the shape of the inner membrane Thereby providing a separator that minimizes cross-mixing of the internal resistance of the battery and the active material causing self-discharge.
30 구체적으로 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 과산화수소 용액, 황산 용액 또는 탈이온수 내에 10분 이상 체류시키는 단계는 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 30 내지 30 specifically, a porous polymer resin film to which the above coating composition is applied Hydrogen peroxide solution, the step of retention at least 10 minutes in a sulfuric acid solution or deionized water from 30 to porous polymer resin the coating composition coating film
100°C의 온도를 갖는 과산화수소 용액, 황산 용액 또는 탈이온수 내에Hydrogen peroxide solution having a temperature of 100 [deg.] C , sulfuric acid solution or deionized water
0.5시간내지 80시간체류시키는단계를포함할수 있다 For a period of from 0.5 to 80 hours
5 상기 코팅 조성물이 도포된 다공성 고분자 수지막이 체류하는 과산화수소 용액 황산 용액 또는 탈이온수의 온도가 크게 한정되는 것은 아니지만, 과산화수소 용액 황산 용액 또는 탈이온수의 온도가 너무 낮은 경우 분리막 내부 불순물 존재, ion cluster swelling의 불충분 등의 이유로 분리막 내부의 형상에 변화가 없거나활물질의 교차혼합을 방지하지 10 못하는등으로기대되는효과가달성되지 않을수 있다 It is 5 wherein the coating composition is applied a porous polymer resin film is a temperature of the hydrogen peroxide solution was a sulfuric acid solution or de-ionized water to stay to be significantly limited, but when the hydrogen peroxide solution, sulfuric acid solution or the temperature of the deionized water is too low membrane inside impurities present, i on cluster of insufficient swelling of such reason, the change in shape of the inner membrane, or can not help the effect expected by including not prevent cross-mixing of the active material does not achieve 10
또한 상기 코팅 조성물이 도포된 다공성 고분자 수지막을 과산화수소 용액, 황산 용액 또는 탈이온수 내에 체류하는 시간이 크게 한정되는 것은 아니지만, 상기 체류 시간이 너무 짧은 경우 분리막 내부 불순물 존재 ion cluster swelling의 불충분 등의 이유로 분리막 내부의 15 형상에 변화가 없거나 활물질의 교차혼합을 방지하지 못하는등으로 기대되는효과가달성되지 않을수 있다 In addition, the coating composition is applied a porous polymer resin film of hydrogen peroxide solution, it is the time to stay in the sulfuric acid solution or de-ionized water greatly limited, the residence time because of a too short membrane inside impurities present i on cluster swelling sufficient of the change in shape of the inner membrane 15 or connote the expected effect as such does not prevent cross-mixing of the active material is not achieved,
상기 과산화수소용액과황산용액은멤브레인 내부의 불순물 제거의 역할도할수 있다.상기 과산화수소용액은 1내지 10중량%의 농도를 가질 수 있다.상기 황산용액은 1M내지 3M의 농도를가질 수 있다 The hydrogen peroxide solution and the sulfuric acid solution may also serve to remove impurities from the inside of the membrane. The hydrogen peroxide solution may have a concentration of 1 to 10 wt % . The sulfuric acid solution may have a concentration of 1M to 3M
20 상기 탈이온수는 분리막 내의 ion cluster를 팽윤 (swel l ing)시키는 역할을할수있다.  20 The deionized water may swell the ion clusters in the separation membrane.
한편 상기 다공성 고분자 수지막은 상기 레독스 흐름 전지용 복합 분리막의 기재 역할을 하며, 상기 다공성 고분자 수지막의 재질로는 화학 흐름 전지의 분리막으로 사용될 수 있는 것으로 알려진 고분자 수지를 25 다양하게사용할수 있다. On the other hand, the porous polymer resin film serves as a base material of the composite separator for the redox flow battery, and the porous polymer resin film 25 can be variously used as a polymer resin which is known to be used as a separation membrane of a chemical flow battery.
상기 다공성 고분자수지막은 lnm내지 10 fm, 또는 lOnm내지 1 의 최대 직경을 갖는 기공을 포함할 수 있다 상기 기공의 형상은 크게 한정되는 것은 아니며 상기 다공성 고분자수지막의 단면을기준으로상기 기공의 단면의 형상이 원형, 타원형, 3이상의 다각형, 또는 이웃하는 내각 중어느하나가예각이고다른하나가둔각인 6이상의 다각형일 수 있다. 상기 다공성 고분자 수지막은 100,000 내지 10,000,000의 중량평균분자량을 갖는고분자수지를 포함할수 있다.상기 다공성 고분자 수지막의 고분자 수지의 중량평균분자량이 너무 작으면, 상기 레독스 흐름 5 전지용 분리막의 내구성이나 내화학성 등의 충분히 확보되기 어려울 수 있다.또한,상기 다공성 고분자수지막의 고분자수지의 중량평균분자량이 너무 크면, 분리막 상에 형성되는 기공의 분포도나 기공 자체의 크기가 불균일 해질수있다. It may include pores having a maximum diameter of the porous polymer resin film lnm to 10 fm, or lOnm to first shape of the pores is not necessarily to be largely limited to the shape of the cross-section of the pores with respect to the porous polymer resin layer cross-section This circle, ellipse, three or more polygons, or neighboring cabinets It may be a polygon of six or more whose middle is an acute angle and the other is an obtuse angle. The porous polymer resin membrane may include a polymer resin having a weight average molecular weight of 100,000 to 10,000,000. If the weight average molecular weight of the polymer resin of the porous polymer resin membrane is too small, the durability or chemical resistance Etc. If the weight average molecular weight of the polymer resin of the porous polymeric resin film is too large, the distribution of the pores formed on the separation membrane and the size of the pores themselves may become uneven.
구체적으로, 상기 다공성 고분자수지막은고밀도폴리에틸렌(HDPE), 10 저밀도 폴리에틸렌(LDPE), 선형저밀도 폴리에틸렌(LLDPE), 에틸렌비닐아세테이트 공중합체(EVA), 폴리프로필렌(PP), 폴리카보네이트(PC), 폴리아크릴로니트릴(PAN) 및 폴리테트라플루오르에틸렌 (PTFE), 폴리비닐리덴플로라이드 (PVDF), 폴리비닐클로라이드(polyvinylchloride) , Specifically, the porous polymer resin film of high density polyethylene (HDPE), 10 low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate copolymers (EVA), polypropylene (PP), polycarbonate (PC), poly Acrylonitrile (PAN) and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylchloride,
15 폴리비닐리덴클로라이드 (polyvinyl idene chlor ide) 폴리에테르술폰 (polyethersul fone) , 폴리술폰 (polysul fone) 폴리에테르케톤 (polyetherketone) 폴리-에테르-에테르-케톤 (poly-ether- ether e-ketone) 폴리에틸렌에테르나이트릴 (polyethylene ether nitr i le) , 또는이들의 2종이상의혼합물을포함할수있다. 15 polyvinylidene chloride (idene polyvinyl chlor ide) polyethersulfone (polyethersul fone), polysulfone (polysul fone) polyether ketone (polyetherketone) poly-ether-ether-ketone (poly-ether- e ther e- ketone) of polyethylene Polyethylene ether nitrile, or a mixture of two or more thereof.
20 상기 다공성 고분자수지막의 표면에는폴리도파민 (polydopamine)이 결합될수있다. 이러한폴리도파민은상기 다공성 고분자수지막의 표면에 부분적으로 결합될 수 있으며 또는 폴리도파민을 포함하는 고분자 수지층이 상기 다공성 고분자 수지막의 표면에 형성될 수 있다. 상기 폴리도파민은 lnm 내지 100nm의 두께로 고분자 수지층을 형성하여 상기 25 다공성 고분자수지막의표면에 결합될수있다. 20 Polydopamine may be bonded to the surface of the porous polymeric resin film. The polypodamine may be partially bonded to the surface of the porous polymeric resin film, or a polymer resin layer containing the polypodamine may be formed on the surface of the porous polymeric resin film. The polypodamine may be bonded to the surface of the porous polymeric resin film 25 by forming a polymer resin layer having a thickness of 1 nm to 100 nm .
상기 다글성 고분자 수지막은 적용되는 레독스 흐름 전지의 형상, 크기 및 특성에 따라그 두께가 결정될 수 있으며 예를 들어 10/ffli내지 600/zm, 두께를가질수있다. The thickness of the multiphase polymeric resin film may be determined according to the shape, size, and characteristics of the redox flow cell to be applied, and may be, for example, 10 / ffli to 600 / zm .
한편, 상기 다공성 고분자 수지막은 내부에 분산된 무기 입자 0.5 30 내지 75중량%를 더 포함할 수 있다. 이러한 무기 입자는 실리카, 개질 2019/098792 1»(:1^1{2018/014213 On the other hand, it may further comprise a porous polymer resin film of the inorganic particles dispersed therein 0.5 to 30 to 75% by weight. These inorganic particles include silica, 2019/098792 1 » (: 1 ^ {2018/014213
실리카, 유기 실란화합물 및 티타늄 화합물로 이루어진 군에서 선택된 1종 이상을포함할수 있다. It can contain a silica, an organic silane compound and at least one member selected from the group consisting of titanium compounds.
상기 개질 실리카의 예로는 하기 화학식1내지 화학식4의 화합물로 이루어진군에서 선택된 1종 이상을들수 있다. Examples of the modified silica is to be mentioned at least one selected from the group consisting of compounds of Chemical Formulas 1 to 4.
[화학식1  [Chemical Formula 1
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식1에서, 은 불소가 하나 이상 치환 또는 비치환된 탄소수 1내지 10의 직쇄 또는 분지쇄의 알킬렌기이고 ¾은 할로겐기이며 ¾, ¾및 ¾는각각탄소수 1내지 4의 직쇄 또는분지쇄의 알킬기이다 In the general formula (1), is a fluorine, one or more substituted or unsubstituted alkylene group having 1 to 10 straight-chain or branched-chain ring ¾ is a halogen group and ¾, ¾ and ¾ are each a linear or branched chain of 1 to 4 carbon atoms Alkyl group
Figure imgf000010_0002
Figure imgf000010_0002
상기 화학식 2에서, \ 및 은불소가하나이상치환또는비치환된 탄소수 1내지 10의 직쇄 또는분지쇄의 알킬렌기이고, ¾, 1¾, ¾및取는 각각탄소수 1내지 4의 직쇄또는분지쇄의 알킬기이다 In the above formula (2), \, and is a fluorine, one or more substituted or unsubstituted alkylene group having 1 to 10 straight-chain or branched-chain ring, ¾, 1¾, ¾ and取are each a linear or branched chain of 1 to 4 carbon atoms Alkyl group
[화학식 3] 2019/098792 1»(:1/10公018/014213 (3) 2019/098792 1 » (: 1/10/0/0 018/014213
Figure imgf000011_0002
Figure imgf000011_0002
상기 화학식3에서, Y 및 은불소가하나 이상치환또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이고 ¾¾는 각각 탄소수 1내지 4의 직쇄 또는분지쇄의 알킬기이다. In Formula 3, Y is a fluorine and one or more substituted or unsubstituted alkylene group having 1 to 10 straight-chain or branched-chain ring ¾ and ¾ are each an alkyl group of straight or branched chain of 1 to 4 carbon atoms.
[화학식4]  [Chemical Formula 4]
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식4에서 은 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다. In Formula 4 , R is a straight or branched alkylene group having 1 to 10 carbon atoms.
상기 다공성 수지막에 분산된 특정의 개질 실리카 입자를 포함하는 레독스 흐름 전지용 분리막은 화학식1 내지 화학식4의 화합물에 포함되는 말단의 작용기로 인하여 양이온과음이온의 이동 속도 및 전도도등을보다 향상시킬수 있다. The separator for the redox flow battery containing specific modified silica particles dispersed in the porous resin film can improve the migration rate and conductivity of the cation and the anion due to the terminal functional group included in the compounds represented by Chemical Formulas 1 to 4 .
상기 개질 실리카는 111111 내지 600™의 수평균입경을 가질 수 있다. 상기 개질 실리카 입자의 수평균입경이 너무 작으면, 상기 레독스 흐름 전지용 분리막의 함수율의 증가로 인한 이온 크로스 오버 현상 심화될 수 있다 또한, 상기 개질 실리카 입자의 수평균입경이 너무 크면 상기 개질 실리카 입자의 분산성이 떨어질 수 있으며, 상기 레독스 흐름 전지용 분리막의 이온 전도도가낮아질수 있어서 기술적으로불리하다 The modified silica may have a number average particle diameter of 111111 to 600 占 . If the number average particle size of the modified silica particles is too small, the ion crossover phenomenon due to the increase of the water content of the redox flowable battery separator may be increased. If the number average particle size of the modified silica particles is too large, And the ion conductivity of the separator for the redox flow battery may be lowered, which is technically disadvantageous
상기 개질 실리카 표면에는 폴리도파민(101>년애3[1^)이 결합될 수 있다. 이러한 폴리도파민은 개질 실리카 표면에 부분적으로 결합될 수 있으며, 또는 폴리도파민을 포함하는 고분자 수지층을 형성할 수 있다. 상기 폴리도파민은 Iran 내지 lOOnm의 두께로 개질 실리카 표면에 결합되어 고분자수지층을형성할수있다. The surface of the modified silica may be combined with polydopamine ( 1 ) 0 1> 3 [1 ^ ) have. Such polypodamine may be partially bonded to the surface of the modified silica, or may form a polymer resin layer containing polypodamine. The polydodamine can be bonded to the surface of the modified silica with a thickness of Iran to 100 nm to form a polymer resin layer.
한편, 상기 유기 실란 화합물의 구체적인 예로 Tetraethyl orthosi 1 icate(TEOS), 3-g 1 yc i dy 1 oxypr opy 11 r i me t hoxy s i 1 ane (G0TMS ), monophenyl tr iethoxysi lane(MPh) , 또는 polyethoxysi lane(PEOS) 등을 들 수있다.  Specific examples of the organosilane compound include tetraethyl orthosilicate (TEOS), 3-hydroxyethyltriethoxysilane (MPh), polyethoxysilane (MPh), triethoxysilane (PEOS).
상가 티타늄계 화합물의 구체적인 예로 t i tanium dioxide(Ti02) , t i tanium( I I ) oxide(TiO) , 또는 t i tanium( I I I ) oxide(Ti203)등을 들 수 있다. 한편, 상술한 바와 같이, 상기 제조 방법에 따라 제공되는 레독스 흐름 전지용복합분리막은상기 코팅층의 표면 특성과 전기적 특성과각각 성분에 의한 특성으로 인하여 충전된 활물질의 크로스오버 감소, 양이온 혹은 음이온의 이동 속도 향상, 친수성 및 전도도 향상등의 효과가 있다. 특히, 상기 레독스 흐름 전지용 복합 분리막의 코팅층은 양이온 교환 작용기가 1이상 치환된 고분자을 포함하여, 상기 복합분리막으로 분획되는 레독스 흐름 전지의 음극 부분 및 양극 부분 간의 밸런스 조절을 용이하게 할수 있다. Specific examples of commercially available titanium-based compounds include ti tanium dioxide (TiO2), ti tanium (II) oxide (TiO), or ti tanium (III) oxide (Ti203). As described above, the composite membrane for a redox-flow battery provided according to the above-described method is characterized in that the surface properties, electrical characteristics, and characteristics of each component of the coating layer reduce crossover of the charged active material, Speed improvement, hydrophilicity and conductivity improvement. In particular, the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted thereon, so that the balance between the cathode portion and the anode portion of the redox flow cell fractionated by the composite separator can be easily controlled.
이에 따라, 상기 레독스 흐름 전지용 복합 분리막은 보다 향상된 이온교환능력을가질 수 있으며 양극과음극 전해액 간의 충전된 활물질의 크로스 오버 및 전지의 에너지 밀도의 저하 현상을 방지할 수 있고 높은 내구성과 내화학성을 가진 고분자수지를사용함으로써 전지의 수명 확보가 용이하다  Accordingly, the composite separator for a redox flow battery can have improved ion exchange ability and can prevent crossover of the charged active material between the anode and the cathode electrolyte and deterioration of the energy density of the battery, and can provide high durability and chemical resistance It is easy to secure battery life by using polymer resin
상기 다공성 고분자 수지막의 적어도 1면에 형성되고 양이온 교환 작용기가 1이상치환된 고분자를 포함하는코팅층은 1내지 300_의 두께를 가질 수 있다. 한편 발명의 다른구현예에 따르면, 다공성 고분자수지막;및 상기 다공성 고분자 수지막의 적어도 일면에 형성되고, 양이온 교환 작용기가 1이상 치환된 불소계 수지를 포함하는 코팅층;을 포함하는, 레독스 흐름 전지용복합분리막이 제공될 수 있다. The coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted therein may have a thickness of 1 to 300 nm. According to another embodiment of the present invention, there is provided a porous polymeric membrane, And a coating layer formed on at least one surface of the porous polymeric resin film and including a fluorine resin substituted with at least one cation exchange functional group.
본 발명자들은, 다공성 고분자 수지막의 일면 또는 양면에 양이온 5 교환 작용기가 1이상 치환된 불소계 혹은 탄화수소계 수지가 포함된 코팅층을 형성하여 제조된 레독스 흐름 전지용 복합 분리막이 상기 코팅층의 표면 특성과 전기적 특성과 각각 성분에 의한 특성으로 인하여 충전된 활물질의 크로스오버 감소,양이온 혹은 음이온의 이동 속도 향상, 친수성 및 전도도 향상 등의 효과가 있다는 점을 실험을 통하여 확인하고 10 발명을완성하였다. The present inventors, porous polymeric resin film side or cations 5 exchange functional group is one or more substituted with fluorine or surface characteristics and electrical characteristics of the redox flow cell composite separator having the coating layer prepared by forming the coating layer contains a hydrocarbon-based resin on both surfaces And 10 were confirmed through experimentation that the crossover reduction of the charged active material, the movement speed of the cation or the anion, the hydrophilicity and the conductivity were improved owing to the characteristics of the respective components.
특히,상기 레독스흐름전지용복합분리막의 코팅층은 양이온교환 작용기가 1이상치환된 고분자을포함하여,상기 복합분리막으로 분획되는 레독스 흐름 전지의 음극 부분 및 양극 부분 간의 밸런스 조절을 용이하게 할수있다. In particular, the coating layer of the composite separator for a redox flow battery includes a polymer having at least one cation exchange functional group substituted thereon, so that the balance between the cathode portion and the anode portion of the redox flow cell fractionated by the composite separator can be easily controlled.
15 이에 따라,상기 레독스 흐름 전지용 복합 분리막은 보다 향상된 이온교환능력을가질 수 있으며, 양극과음극 전해액 간의 충전된 활물질의 크로스 오버 및 전지의 에너지 밀도의 저하 현상을 방지할 수 있고, 높은 내구성과내화학성을 가진 고분자수지를사용함으로써 전지의 수명 확보가 용이하다. 15 In this way, the redox flow battery, a composite membrane can be further may have an enhanced ion exchange ability, prevent the degradation of the energy density of the cross-over and the battery of the active material filled between the positive and negative electrolytes, high durability and By using a polymer resin having chemical resistance, it is easy to secure the life of the battery.
20 상기 다공성 고분자 수지막의 적어도 1면에 형성되고, 양이온 교환 작용기가 1이상치환된 고분자를 포함하는코팅층은 1내지 300/m의 두께를 가질수있다. 20 The coating layer formed on at least one surface of the porous polymeric resin film and including a polymer having one or more cation exchange functional groups substituted thereon may have a thickness of 1 to 300 / m .
상기 양이온 교환 작용기가 1이상 치환된 불소계 혹은 탄화수소계 수지에는 설포닉산 (Sulfonic acid)을 포함하는 양이온 교환 작용기가 25 1이상치환될 수 있다. The fluorine-containing or hydrocarbon-based resin having one or more cation exchange functional groups substituted thereon may be substituted with a cation exchange functional group containing sulfonic acid by 251 or more.
이러한불소계 수지의 구체적인 종류로는,불소계 수지는폴리테트라 플루오로에틸렌(PTFE), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 테트라플루오르에틸렌-핵사플루오르프로필렌 공중합체(抑P), 에틸렌-테트라플루오로에틸렌 코폴리머 수지(ETFE), 테트라플루오로에틸렌- 30 클로로트리플루오로에틸렌 공중합체(TFE/CTFE) 및 에틸렌- 클로로트리플루오로에틸렌 수지(ECTFE)로 이루어진 군에서 선택된 1종 이상의 고분자를 들 수 있다. 또한, 상기 양이온 교환 작용기가 1이상 치환된 불소계 수지의 상용화된 제품으로는 Naf ion® (Dupont ) , Equivion® (Solvay) , FlemionTM (AGC chemicals company) , AciplexTM (Asahi Kasei )Specific kind of such a fluorine-based resins, fluorine-based resin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hex fluoride propylene copolymer (抑P ) , Ethylene-tetrafluoroethylene copolymer resin ( ETFE), tetrafluoroethylene- 30 chlorotrifluoroethylene copolymer ( TFE / CTFE) and ethylene- As chlorotrifluoroethylene may be mentioned at least one polymer selected from the group consisting of ethylene resin (ECTFE). Further, as commercially available products of the fluorine-based resin is more than the substituted cation-exchange functional groups is 1 Naf ion® (Dupont), Equivion® ( Solvay), FlemionTM (AGC chemicals company), AciplexTM (Asahi Kasei)
5 등을들수있다. 5 , and the like.
이러한탄화수소계 수지의 구체적인 종류로는폴리에틸렌, 폴리설폰, 폴리페닐렌옥사이드, 폴리페닐텐, 폴리-에테르-에테르-케톤, 폴리비닐블로라이드로 이루어진 군에서 선택된 1종 이상의 고분자를들수 있다. Roneun specific kinds of such hydrocarbon-based resins, polyethylene, polysulfone, polyphenylene oxide, polyphenylene X, poly- may be a ketone, a polyvinyl fluoride blow at least one polymer selected from the group consisting of-ether-ether.
10 상기 양이온 교환 작용기가 1이상 치환된 불소계 혹은 탄화수소계 수지의 중량평균분자량이 크게 한정되는 것은 아니나, 예를 들어 10,000 내지 300,000의 중량평균분자량을 가질 수있다.상기 중량평균분자량은 GPC법에 의해 측정한폴리스티렌환산의 중량평균분자량을의미한다. 10, the cation-exchange functional groups have a weight average molecular weight of the fluorine-based or hydrocarbon-based resin substituted one or more but are not greatly limited, and for example may have a 10,000 to 300,000 weight-average molecular weight The weight-average molecular weight of the G PC Act Quot; means the weight average molecular weight in terms of polystyrene measured by the following formula.
상기 다공성 고분자 수지막은 :mo,ooo 내지 10,ooo,ooo의 Wherein the porous polymeric resin membrane has: mo, ooo to 10, ooo, ooo
15 중량평균분자량을 갖는고분자수지를 포함할수 있다.상기 다공성 고분자 수지막의 중량평균분자량이 너무 작으면, 상기 레독스 흐름 전지용 분리막의 내구성이나내화학성 등의 충분히 확보되기 어려울수 있다.또한, 상기 다공성 고분자 수지막의 중량평균분자량이 너무 크면, 분리막 상에 형성되는기공의 분포도나기공자체의 크기가불균일 해질 수 있다. The weight average molecular weight of the porous polymer resin membrane may be too low to ensure sufficient durability and chemical resistance of the separation membrane for the redox flow battery. If the weight average molecular weight of the resin film is too large, the distribution of the pores formed on the separation membrane and the size of the pores themselves may become uneven.
20 상기 다공성 고분자 수지막은 lnm 내지 1 의 최대 직경을 갖는
Figure imgf000014_0001
20 The porous polymeric resin film has a maximum diameter of 1 nm to 1
Figure imgf000014_0001
상기 다공성 고분자 수지막은 내부에 분산된 무기 입자 0.5 내지 75중량%를더 포함할수있다. The porous polymer resin film of the inorganic particles dispersed therein from 0.5 to 7 can contain 5% by weight reuldeo.
상기 무기 입자는실리카, 개질 실리카, 유기 실란화합물및 티타늄 25 화합물로 이루어진 군에서 선택된 1종 이상을포함할수 있다. The inorganic particles may include at least one member selected from the group consisting of silica, modified silica, organic silane compound and titanium 25 compound.
상술한 내용 이외로 상기 레독스 흐름 전지용 복합 분리막에 관한 내용은 상술한 일 구현예의 레독스 흐름 전지용 복합 분리막의 제조 방법에서 기재한내용을포함한다. 2019/098792 1»(:1^1{2018/014213 Other than the above-mentioned contents, the contents of the composite separator for a redox-flow battery include those described in the production method of a composite separator for a redox-flow battery according to the embodiment described above. 2019/098792 1 » (: 1 ^ {2018/014213
한편, 발명의 다른 구현예에 따르면 상기 복합 분리막과 전극을 포함하는 단위 셀;산화상태가 각각 다른 활물질이 저장된 탱크;및 충전 및 방전시 상기 단위셀과 탱크 사이에서 활물질을 순환시키는 펌프;를 포함하는레독스흐름전지가제공될수있다. According to another embodiment of the present invention, there is provided a fuel cell system including a unit cell including the composite separator and an electrode, a tank storing different active materials each in an oxidized state, and a pump circulating the active material between the unit cell and the tank during charging and discharging A redox flow cell can be provided.
5 상기 레독스 흐름 전지는 상기 단위 셀을 1이상 포함하는 모듈0110(11116)을포함할수 있다. 5 The redox flow cell may include a module 110 (11116) including one or more unit cells.
상기 레독스 흐름 전지는 양극 전해질로 肺 커플을 사용하고 음극전해질로 +/+커플을사용할수 있다. The redox flow cell may use a couple of pulses as the positive electrode electrolyte and + / + couple as the negative electrode electrolyte.
또한 상기 레독스흐름전지는 양극전해질로브로민 레독스 커플을 The redox flow cell also contains a positive electrode electrolyte rovromorex couple
10 사용하고, 음극전해질로설파이드 레독스커플을사용할수있다. 10 , and a sulfide redox couple may be used as the negative electrode electrolyte.
또한, 상기 레독스흐름전지는 양극전해질로바나듐 레독스 커플을 사용하고 음극전해질로브로민 레독스커플을사용할수있다.  In addition, the redox flow cell may use a vanadium redox couple as the positive electrode electrolyte and a negative electrode redox redox couple.
또한, 상기 레독스흐름 전지는 양극 및 음극 전해질로 아연-브로민 레독스커플을사용할수있다.  Also, the redox flow battery may use a zinc-bromine redox couple as a cathode and a cathode electrolyte.
15 상기 레독스흐름전지의 시스템은플로우프레임 10¥紅 을더 포함할수 있다. 15, the system of the redox flow battery may be included euldeo flow frame 10 ¥紅.
상기 플로우 프레임은 전해질의 이동 통로 역할을 할 뿐만 아니라, 실제 전지의 전기 화학 반응이 잘 일어날 수 있도록 전극과 분리막사이로 전해액의 고른분포를제공할수 있다.  The flow frame not only serves as a passage for the electrolyte but also provides a uniform distribution of the electrolyte between the electrode and the separator so that the electrochemical reaction of the actual cell can be performed well.
20 상기 플로우프레임은 0.1 _내지 10.0■의 두께를 가질 수 있고, 폴리에틸렌, 폴리프로필렌, 또는 폴리염화비닐 등의 고분자로 이루어질 수 있다. 20 The flow frame may have a thickness of 0.1 to 10.0 , and may be made of a polymer such as polyethylene, polypropylene, or polyvinyl chloride.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면 향상된 이온 교환 능력 및 친수성을 가지며, According to the present invention, there is provided an ion exchange membrane having improved ion exchange capacity and hydrophilicity,
25 전해질 용액 내 양극과 음극 전해액 간의 충전된 활물질의 크로스 오버 및 전지의 에너지 밀도의 저하 현상을 효과적으로 감소시킬 수 있으며, 내구성과 내화학성이 우수한 레독스 흐름 전지용 복합 분리막의 제조 방법과 이로부터 제조되는 레독스 흐름 전지용 복합 분리막이 제공되며, 아울러 상기 복합분리막을포함하는 레독스흐름전지 또한제공된다 25 A method for producing a composite separator for a redox flow cell, which is capable of effectively reducing crossover of a charged active material between an anode and an anode electrolyte in an electrolyte solution and lowering the energy density of the battery and having excellent durability and chemical resistance, There is provided a composite separator for a redox flow battery, and a redox flow cell comprising the composite separator is also provided
30 【도면의 간단한설명】 도 1 은 비교예1(위)과 실시예 1(아래)에서 제조된 레독스 흐름 전지용복합분리막의 표면의 SEM사진을나타낸것이다. 30 [Brief Description of Drawings] 1 is a SEM photograph of the surface of a composite separator for a redox flow cell manufactured in Comparative Example 1 (above) and Example 1 (below).
도2은 실시예1에서 제조된 레독스 흐름 전지용 복합 분리막의 코팅층이 포함된단면의 SEM사진을나타낸 것이다. FIG. 2 is a SEM photograph of a cross section of a composite separator for a redox flow cell prepared in Example 1 including a coating layer.
53는실시예2및 비교예1의 레독스흐름전지용복합분리막의 브롬 투과도를각각나타낸 것이다. 5 Figure 3 shows the permeability of bromine neunsil When Example 2 and Comparative Example 1, the redox flow batteries of the respective composite membranes.
4은 실시예 3 및 비교예2의 레독스 흐름 전지용 복합 분리막을 포함한 단전지의 충방전 시험시 각각 측정된 충전 전압(실선)과 방전 전압(점선)을나타낸 것이다. 4 is a graph showing charge voltages (solid lines) and discharge voltages (dotted lines) measured in the charge and discharge tests of the single cells including the composite separator for redox flow battery of Example 3 and Comparative Example 2 , respectively.
105는 실시예 2 및 비교예1의 레독스 흐름 전지용 복합 분리막을 포함한 단전지의 충방전 시험시 각각 측정된 충전 전압(실선)과 방전 전압(점선)을나타낸것이다. 10 Figure 5 shows the Example 2 and Comparative Example 1, the LES redox flow cell during the charge and discharge test of the unit cell including the composite membrane are measured terminal voltage of the (solid line) and discharge voltage (broken line).
6는 실험예에서 제조된 단전지의 구조를 개략적으로 나타낸 것이다. 6 schematically shows the structure of the single cell produced in the Experimental Example.
15 【발명을실시하기위한구체적인내용】 15 Detailed Description of the Invention
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는본발명을 예시하는 것일 뿐, 본발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다.  The invention will be described in more detail in the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
20 [실시예및비교예: 레독스흐름전지용복합분리막의제조] 20 [Example and Comparative Example: Preparation of composite membrane for redox flow cell]
실시예 1  Example 1
Dupont사의 DE521 (Nafion 5 wt% in IPA八 rater)를 80°C 오븐에서 건조하여 고체화된 나피온 수지를 획득하였다. 그리고, 상기 수지를 N- Methyl pyrrol idone용매에 녹여서 10 wt%용액을 제조하였다. 상기 용액을 25 75 이의 wet thickness로 Asahi 사의 SF-601 (실리카를 포함하는 polyethylene 다공성 분리막: 중량평균분자량:약 700,000 g/mol , 두께 약A Du pont Company DE521 (Nafion 5 wt% in IPA八rater) to obtain a Nafion resin solidified was dried at 80 ° C oven. Then, the resin was dissolved in an N-methyl pyrrolidone solvent to prepare a 10 wt% solution. P olyethylene porous membrane containing the solution 25 to 75 an Asahi's SF-601 (silica with its wet thickness: weight-average molecular weight: about 700,000 g / mol, a thickness of about
600;·)에 코팅하였다. 상기 코팅된 분리막을 80 °C 오븐에서 6시간 건조하였다. 그리고, 상기 건조후 얻어진 코팅된 분리막을 80 °C 온도의 DI water에 6시간함침하였다. 실시예 2 600;. The coated separator was dried in an oven at 80 ° C for 6 hours. The coated membrane obtained after the drying was impregnated in DI water at 80 ° C for 6 hours. Example 2
Dupont사의 DE521 (Nafion 5 wt% in IPA/water)를 75 /페의 wet thickness,로 Asahi 사의 SF-601 (실리카를 포함하는 polyethylene 다공성 5 분리막: 중량평균분자량: 약 700,000 g/mol , 두께 약 600//m)의 일면에 코팅하였다. 상기 코팅된분리막을 25°(:의 온도에서 10시간동안건조하고, 다른일면을동일하게코팅하고동일한방법으로 10시간동안건조하였다. 그리고, 상기 코팅된 분리막을 50 °C 오븐에서 1시간 건조하였다. 그리고, 상기 건조 후 얻어진 코팅된 분리막을 80°C 온도의 DI water에 10 6시간함침하였다. 실시예 3 Du pont Company DE521 (Nafion 5 wt% in IPA / water) polyethylene porous 5 membrane containing the 75 / page of wet thickness, Asahi's SF-601 (silica: weight-average molecular weight: about 700,000 g / mol, about thickness 600 // m ). The coated separator was dried at a temperature of 25 DEG C (for 10 hours, the other side was coated in the same manner, and dried in the same manner for 10 hours. Then, the coated separator was dried in an oven at 50 ° C for 1 hour. The coated membrane obtained after the drying was impregnated in DI water at 80 ° C for 10 6 hours. Example 3
Dupont사의 DE521 (Nafion 5 wt% in IPA八 vater)를 80°C 오븐에서 건조하여 고체화된 나피온 수지를 획득하였다. 그리고, 상가 수지를 N- 15 Methylpyrrol idone용매에 녹여서 10 wt%용액을제조하였다. 상기 용액을 75 /패의 wet thickness로 실리카를 포함하는 polyethylene 다공성 분리막(중량평균분자량: 약 6,000,000 g/mol , 두께 약 175 //m)의 일면에 코팅하였다. A Du pont Company DE521 (Nafion 5 wt% in IPA八vater) to obtain a Nafion resin solidified was dried at 80 ° C oven. And, the additive resin was prepared by dissolving 10 wt% to 15 Meth N- ylpyrrol idone solvent solution. The solution was coated on one side of a polyethylene porous separator (weight average molecular weight: about 6,000,000 g / mol, thickness about 175 [ mu] m ) containing silica with a wet thickness of 75 /
상기 코팅된 분리막을 80 °C 오븐에서 6시간 건조하였다. 그리고, 20 상기 건조 후 얻어진 코팅된 분리막을 80°C 온도의 DI water에 6시간 함침하였다. 비교예 1 The coated separator was dried in an oven at 80 ° C for 6 hours. And it was impregnated with 20 6 hours the dry coated membrane obtained after the DI water temperature 80 ° C. Comparative Example 1
SF-601 (실리카를 포함하는 polyethylene 다공성 분리막)에 별도의 25 처리를하지 않고분리막으로사용하였다. 비교예 2 SF-601 (silica-containing polyethylene porous separator) was used as a separator without further treatment of 25 . Comparative Example 2
실리카를포함하는 polyethylene다공성 분리막(중량평균분자량: 약 6,000,000당/ 1, 두께 약 175 /패)에 별도의 처리를하지 않고분리막으로 사용하였다. A polyethylene porous membrane containing silica (weight average molecular weight: about 6,000,000 / 1, thickness about 175 / L) was used as a separator without any additional treatment.
<실험예: 레독스흐름전지용분리막의물성측정> <Experimental Example: Measurement of Physical Properties of Separator for Redox Flow Battery>
1.코팅충표면분석방법  1. Coating surface analysis method
실시예 및 비교예의 분리막의표면균일성과코팅층두께를확인하기 위해 분리막 표면 및 단면을 FE-SEM (Field Emission Scanning Electron Microscope, HITACHI況 8220)으로분석하였다. The surface and cross-section of the membrane were analyzed by FE-SEM (Field Emission Scanning Electron Microscope , HITACHI Status 8220) in order to confirm the surface uniformity of the membranes of Examples and Comparative Examples and the thickness of the coating layer.
FE-SEM으로 표면 관찰 결과 도 1에서 확인되는 바와 같이 실시예 1(아래)의 코팅 분리막이 비교예 1(위)의 분리막과 비교 치밀한 표면 구조를보였다.  Surface observation with FE-SEM As shown in Fig. 1, the coating membrane of Example 1 (below) showed a comparatively dense surface structure with the membrane of Comparative Example 1 (above).
그리고, 도 2에서 확인되는 바와 같이, FE-況 M으로 단면 관찰 결과 실시예 1의 코팅 분리막 표면에 base fi lm 에 탈리 없는 코팅층이 형성되었음이 확인되었다.  As can be seen in FIG. 2, FE-state M shows that the coating layer of Example 1 had a non-desilvered coating layer formed on the surface of base coat.
2. Br2투과도측정 2. Measurement of Br 2 transmittance
실시예 및 비교예의 분리막의 분리막을 통과하는 Br의 농도를 시간에 따라측정하였다 The concentration of Br passing through the separation membranes of the separation membranes of Examples and Comparative Examples was measured over time
구체적으로, Diffusion 셀의 두 용기 사이에 분리막을 위치시키고, 한용기는 deionized water (DI water)로채우고다른용기는 ZnCh (0.55 M), MEP-Br (0.80 M) , Br2 (2.285 M)을 채웠다. DI water 로 채워진 용기로부터 지정된시간에 획득한샘플의 Br2농도를측정하여 분리막의 Br2 투과도를아래의식을이용하여 계산하였다: Specifically, the separator was placed between two vessels of a diffusion cell, one vessel was filled with deionized water (DI water) and the other vessel was filled with ZnCh (0.55 M), MEP-Br (0.80 M) and Br 2 . The Br2 concentration of the sample obtained from the vessel filled with DI water was measured at a given time and the Br2 permeability of the membrane was calculated using the following equation :
Figure imgf000018_0001
Figure imgf000018_0001
VB : DI water쪽용기의용액부피 V B: solution volume of DI water container
d :분리막의두께,  d: thickness of the membrane,
CA :고농도용액용기의 Br2농도 d : 분리막의두께 C A: Br 2 concentration of the high concentration solution container d: thickness of the membrane
A : 용액에노출되어 있는분리막표면의 넓이 도 3에서 확인되는바와같이, Br2투과도분석 결과실시예 2의코팅 5 분리막이 비교예 1의분리막에 비해감소된 Br2투과도를보였다. A: Area of the surface of the separation membrane exposed to the solution As shown in FIG. 3, the analysis of Br 2 permeability showed that the coating 5 membrane of Example 2 had reduced Br 2 permeability as compared with the membrane of Comparative Example 1.
3.징크-브로민레독스흐름단전지의내부저항측정 3. Measurement of internal resistance of zinc-bromine lead flow cell
비교예 및 실시예에서 각각 제조한분리막의 Zn-Br CFB의 적합성을 평가하기 위해 단전지에 조립한 후 state of charge (SOC) 0% 의 전해액 10 ckculation 3시간 이후에 DC저항측정기 이용해서 측정하였다. 상기 단전지는도 6에나타난낸바와같은구조로채결하였다. In order to evaluate the suitability of Zn-Br CFB in the separator prepared in each of the comparative example and the example, it was assembled into a single cell, and then measured with a DC resistance meter after 3 hours of 10 ccculation of the electrolytic solution having a state of charge (SOC) of 0% . The unit cell was stuck to the same structure as shown in Fig.
내부 저항 측정 결과 실시예 2의 코팅 분리막 (223 mQ)이 비교예As a result of measuring the internal resistance, the coating separator (223 mQ)
1의분리막 (273 mQ)에 비해낮은값을보였다. 1 (273 mQ), respectively.
15 4.충방전효율측정 15 4. Measurement of charging / discharging efficiency
6에 따라 준비된 단전지에 대하여 충방전기를 사용하여 상온 조건하에서 시스템 총 충전량 2.98Ah, 충전 20mA/ cm2, 방전 20mA/cm2 의 조건으로 진행 하였으며, 또한, 충방전 1회 진행 후 1회 stripping을 1 Cycle로설정 test를진행하였다. A system under ambient conditions using a charge-discharger with respect to the unit cells prepared in accordance with a full charge 2.98Ah 6, charging 20mA / cm2, was conducted under the conditions of discharge 20mA / cm2, also, once after a one-time charge and discharge proceed stri pping To 1 C ycle .
20 * Energy Efficiency (E.E.) =방전 에너지 /충전 에너지 20 * Energy Effi ciency (EE) = discharge energy / charge energy
* Columbic Eff iciency (C.E. ) =방전전하량 (Ah) /충전전하량 (Ah) * Columbic Efficiency (CE) = discharge charge (Ah) / charge charge (Ah)
* Voltage Efficiency (V.E.) = Energy Efficiency / Voltage Efficiency * V oltage E fficiency (VE) = E nergy Effi ciency / V oltage Efficie ncy
25 하기 표1에서 확인되는 바와 같이, 내부 저항측정 결과실시예 2의 코팅 분리막이 비교예 1의 분리막에 비해 낮은 값을 보였고, 이는 충방전 시험 결과개선된 전압효율및 에너지 효율로 이어졌다. 25 As shown in the following Table 1 , the coating separator of Example 2 showed lower values than the separator of Comparative Example 1 as a result of internal resistance measurement, which resulted in improved voltage efficiency and energy efficiency as a result of charge / discharge test.
【표 1】 2019/098792 1»(:1^1{2018/014213 [Table 1] 2019/098792 1 » (: 1 ^ {2018/014213
Figure imgf000020_0001
아울러, 도 5에 나타난바와같이 실시예 2의 코팅 분리막이 비교예 1의 분리막에 비해 높은 방전 전압과 증가한 방전 전하량을 보였다.또한 도 4에 나타난 바와 같이 충방전 시험 결과 실시예 3의 코팅 분리막이 비교예 2의 분리막에 비해 높은방전 전압과증가한방전 전하량을보였다 위의 두실험 결과다공성 고분자수지막의 두께가얇고 기공율이 높을수록 코팅의 효과가증대됨을확인하였다.
Figure imgf000020_0001
As shown in FIG. 5 , the coating separator of Example 2 exhibited a higher discharge voltage and an increased discharge charge as compared with the separator of Comparative Example 1. As shown in FIG. 4 , the coating separator of Example 3 Comparative example 2 showed a high discharge voltage and the discharge amount increase compared to the thin separation membrane of the two more experiments porous polymer resin layer thickness above the higher the porosity was found that the increasing effect of the coating.
【부호의설명】 DESCRIPTION OF REFERENCE NUMERALS
1: 앤드플레이트  1: End plate
2: 흑연집전체 2 : graphite collector
3: 플로우프레임  3: Flow frame
4: 스페이서  4: Spacer
5:분리막  5: Membrane
6: 전극활성층  6: electrode active layer
7: 카본펠트 7 : Carbon felt

Claims

2019/098792 1»(:1^1{2018/014213 2019/098792 1 » (: 1 ^ {2018/014213
【청구범위】 Claims:
【청구항 11 Claim 11
다공성 고분자수지막에 적어도 일면에 양이온 교환 작용기가 1이상 치환된 불소계 수지 또는 탄화수소계 수지가 포함된 코팅 조성물을 도포하는단계;및 The cation-exchange functional groups on at least one surface on a porous polymer resin film at least one step of applying a coating composition containing the substituted fluorine-based resin or a hydrocarbon resin; and
상기 코팅 조성물이 도포된 다공성 고분자수지막을과산화수소용액, 황산 용액 또는 탈이온수로 처리하는 단계 를 포함하는, 레독스 흐름 전지용복합분리막의 제조방법.  Treating the porous polymer resin film coated with the coating composition with a hydrogen peroxide solution, a sulfuric acid solution or deionized water.
【청구항 2] [Claim 2]
제1항에 있어서,  The method according to claim 1,
상기 다공성 고분자 수지막은 100,000 내지 10 ,000, 000의 중량평균분자량을갖는고분자수지를포함하는, 레독스흐름전지용복합 분리막의 제조방법 . Method of producing a redox flow battery, a composite membrane comprising a polymer resin having a weight average molecular weight of 100,000 to 10 million the film is a porous polymer resin.
【청구항 3] [3]
1항에 있어서, The method according to claim 1 ,
상기 코팅 조성물이 도포된 다공성 고분자수지막을과산화수소용액 황산용액 또는 탈이온수로 처리하는 단계는 10분 이상 침지하여 수행되는, 레독스흐름전지용복합분리막의 제조방법 Wherein the step of treating the porous polymer resin film coated with the coating composition with a hydrogen peroxide solution sulfuric acid solution or deionized water is performed by immersing the porous polymer resin film for 10 minutes or longer,
【청구항 4] [ 4]
1항에 있어서, The method according to claim 1 ,
상기 양이온교환작용기는술폰산기, 카르복실산기 또는인산기인, 레독스흐름전지용복합분리막의 제조방법.  Wherein the cation exchange functional group is a sulfonic acid group, a carboxylic acid group or a phosphoric acid group.
【청구항 5] [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 불소계 수지는 폴리테트라 플루오로에틸렌(肝幻, 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체作시, 2019/098792 1»(:1^1{2018/014213 The fluororesin may be at least one selected from the group consisting of polytetrafluoroethylene (hepatic phthalocyanine, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, 2019/098792 1 » (: 1 ^ {2018/014213
테트라플루오르에틸렌-핵사플루오르프로필렌 공중합체作요미, 에틸렌- 데트라플루오로에틸렌 코폴리머 수지 附的 테트라플루오로에틸렌_ 클로로트리플루오로에틸렌 공중합체0抑70¥ 및 에틸렌-
Figure imgf000022_0001
Tetrafluoroethylene-propylene copolymers, fluorine hex作Yomi, ethylene-to trad-fluoro-ethylene copolymer resin附的tetrafluoroethylene _ chlorotrifluoroethylene copolymer抑0 ¥ 70, and an ethylene-
Figure imgf000022_0001
이상의 고분자를포함하고  Containing polymer
상기 탄화수소계 수지는폴리에틸렌, 폴리설폰, 폴리페닐렌옥사이드 폴리페닐텐, 폴리-에테르-에테르-케톤 폴리비닐플루오라이드로 이루어진 군에서 선택된 1종 이상의 고분자를 포함하는 레독스 흐름 전지용 복합 분리막의 제조방법. The hydrocarbon-based resin is polyethylene, polysulfone, polyphenylene oxide, polyphenylene X, poly- method of producing a redox flow battery, a composite membrane comprising a ketone, polyvinyl fluoride at least one polymer selected from the group consisting of-ether-ether .
【청구항 6】 [Claim 6]
제 1항에 있어서  The method of claim 1, wherein
상기 코팅 조성물은상기 양이온교환작용기가 1이상치환된불소계 수지 또는탄화수소계수지 1내지 30중량%를포함하며, Wherein the coating composition comprises 1 to 30 % by weight of a fluororesin or hydrocarbon resin having at least one cation exchange functional group substituted thereon,
상기 코팅 조성물은다공성 고분자수지막상에 0.1내지 1,000 _의 두께로코팅되는 The coating composition is coated on the porous polymer resin film to a thickness of 0.1 to 1,000 &lt;
레독스흐름전지용복합분리막의 제조방법  Method for producing composite membrane for redox flow cell
【청구항 7] [ 7]
3항에 있어서, The method of claim 3 ,
상기 침지는코팅 조성물이 도포된다공성 고분자수지막을 30내지 100°:의 온도를갖는과산화수소용액, 황산용액 또는탈이온수내에 0.5 시간 내지 80시간 체류시키는 단계는 포함하는, 레독스 흐름 전지용 복합 분리막의 제조방법. Wherein the immersion is carried out by allowing the porous polymer resin film coated with the coating composition to stand in a hydrogen peroxide solution, sulfuric acid solution or deionized water having a temperature of 30 to 100 DEG C for 0.5 to 80 hours, Gt ;
【청구항 8 8.
제 1항에 있어서  The method of claim 1, wherein
상기과산화수소용액은 1내지 10중량%의농도를가지며,
Figure imgf000022_0002
2019/098792 1»(:1^1{2018/014213
The hydrogen peroxide solution has a concentration of 1 to 10 % by weight,
Figure imgf000022_0002
2019/098792 1 » (: 1 ^ {2018/014213
복합분리막의 제조방법 . A method for producing a composite membrane.
【청구항 9[Claim 9 ]
제 1항에 있어서,  The method according to claim 1,
5 상기 다공성 고분자 수지막은 111111 내지 1 의 최대 직경을 갖는 기공을포함하고 10 내지 600·의 두께를갖는, 레독스흐름전지용복합 분리막의 제조방법. 5 The porous polymeric resin film has pores having a maximum diameter of 1 11111 to 1 and a thickness of 10 to 600占 The method for producing a composite separator for a redox flow cell.
【청구항 10】 Claim 10
10 제 1항에 있어서, 10. The apparatus of claim 1,
상기 다공성 고분자 수지막은 다공성 고분자 수지막 총 중량에 대하여, 내부에 분산된 무기 입자 0.5내지 75중량%를더 포함하는, 레독스 흐름전지용복합분리막의 제조방법. Wherein the porous polymeric resin film contains 0.5 to 75 % by weight of inorganic particles dispersed therein, based on the total weight of the porous polymeric resin film.
1515
【청구항 11】 Claim 11
제 10항에 있어서,  11. The method of claim 10,
상기 무기 입자는 실리카, 개질 실리카, 및 티타늄 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는, 레독스 흐름 전지용 복합 분리막의 제조방법 Wherein the inorganic particles comprise at least one member selected from the group consisting of silica, modified silica, and titanium compounds.
20  20
【청구항 12】  Claim 12
다공성 고분자수지막; 및  Porous polymeric resin film; And
상기 다공성 고분자수지막의 적어도일면에 형성되고, 양이온교환 작용기가 1이상 치환된 불소계 수지를 포함하는 코팅층;을 포함하는, And a coating layer formed on at least one surface of the porous polymeric resin film and including a fluorine resin having one or more cation exchange functional groups substituted thereon,
25 레독스흐름전지용복합분리막. 25 Composite Membrane for Redox Flow Battery.
【청구항 13】 Claim 13
제 12항에 있어서,  13. The method of claim 12,
상기 다공성 고분자 수지막은 100,000 내지 10, 000, 000의 The porous polymeric resin film has a weight-average molecular weight of 100,000 to 10,000,000
30 중량평균분자량을 갖는 고분자 수지를 포함하는 레독스 흐름 전지용 복합 2019/098792 1»(:1^1{2018/014213 A composite for a redox flow cell comprising a polymeric resin having a weight average molecular weight of 30 2019/098792 1 » (: 1 ^ {2018/014213
분리막. Membrane.
【청구항 14 14.
12항에 있어서, 13. The method of claim 12 ,
5 상기 다공성 고분자 수지막은 111111 내지 1 /해의 최대 직경을 갖는
Figure imgf000024_0001
5 The porous polymeric resin film has a maximum diameter of 1 11111 to 1 /
Figure imgf000024_0001
분리막.  Membrane.
【청구항 15 15.
10 제 12항에 있어서, 10. The method of claim 12,
상기 다공성 고분자 수지막은 다공성 고분자 수지막 총 중량에 대하여 내부에 분산된 무기 입자 0.5내지 75중량%를 더 포함하는, 레독스 흐름전지용복합분리막. Wherein the porous polymeric resin film further comprises 0.5 to 75 % by weight of inorganic particles dispersed in the total weight of the porous polymeric resin film.
1515
【청구항 16】 Claim 16
제 15항에 있어서,  16. The method of claim 15,
상기 무기 입자는 실리카, 개질 실리카, 및 티타늄 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는, 레독스 흐름 전지용 복합 분리막. Wherein the inorganic particles comprise at least one member selected from the group consisting of silica, modified silica, and titanium compounds.
20  20
【청구항 17】  17.
12항 내지 16항 중 어느 한 항의 레독스 흐름 전지용 복합 분리막과전극을포함하는단위 셀; A unit cell comprising a composite separator for a redox flow battery and an electrode according to any one of claims 12 to 16 ;
산화상태가각각다른활물질이 저장된 탱크 및  Tanks in which oxidation states are different from each other, and
25 충전 및 방전시 상기 단위셀과 탱크 사이에서 활물질을 순환시키는 펌프;를포함하는, 레독스흐름전지 25 a pump for circulating the active material between the unit cell and the tank upon charging and discharging,
PCT/KR2018/014213 2017-11-20 2018-11-19 Method for manufacture of composite separation membrane for redox flow battery and composite separation membrane for redox flow battery WO2019098792A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0154713 2017-11-20
KR1020170154713A KR102000659B1 (en) 2017-11-20 2017-11-20 Preparation method for composite separator for redox flow batterry and composite separator for redox flow batterry

Publications (2)

Publication Number Publication Date
WO2019098792A2 true WO2019098792A2 (en) 2019-05-23
WO2019098792A3 WO2019098792A3 (en) 2019-07-11

Family

ID=66538669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014213 WO2019098792A2 (en) 2017-11-20 2018-11-19 Method for manufacture of composite separation membrane for redox flow battery and composite separation membrane for redox flow battery

Country Status (2)

Country Link
KR (1) KR102000659B1 (en)
WO (1) WO2019098792A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174937A (en) * 2023-09-14 2023-12-05 北京科技大学 Preparation method and application of functional diaphragm for improving discharge capacity of zinc-based flow battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931447B1 (en) * 2019-09-27 2021-09-08 ニダイキ株式会社 Redox flow battery diaphragm and method for manufacturing the diaphragm

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4361608B2 (en) * 1996-04-30 2009-11-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Integrated multilayer ion exchange composite membrane
KR101433233B1 (en) * 2012-11-28 2014-08-22 롯데케미칼 주식회사 Resin composition for preparing of porous membrane of zinc-bromine redox flow battery and preparation method for porous membrane of redox flow battery
KR102028534B1 (en) * 2013-09-30 2019-10-04 코오롱인더스트리 주식회사 Fluid exchange membrane, method for preparation thereof and fluid exchange membrane module comprising the fluid exchange membrane
KR101765045B1 (en) * 2014-03-13 2017-08-11 더블유스코프코리아 주식회사 A separator film for secondary battery and a redox flow battery using the same
KR101629944B1 (en) * 2014-11-27 2016-06-13 롯데케미칼 주식회사 Resin composition for preparing of porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of redox flow battery, and porous membrane of zinc-bromine redox flow battery
KR20160064429A (en) * 2014-11-28 2016-06-08 상명대학교 천안산학협력단 Composite membranes for redox flow battery electrolyte and their fabrication method
KR101752889B1 (en) * 2015-09-25 2017-06-30 롯데케미칼 주식회사 Porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of zinc-bromine redox flow battery, and zinc-bromine redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174937A (en) * 2023-09-14 2023-12-05 北京科技大学 Preparation method and application of functional diaphragm for improving discharge capacity of zinc-based flow battery
CN117174937B (en) * 2023-09-14 2024-06-11 北京科技大学 Preparation method and application of functional diaphragm for improving discharge capacity of zinc-based flow battery

Also Published As

Publication number Publication date
KR20190057591A (en) 2019-05-29
KR102000659B1 (en) 2019-07-16
WO2019098792A3 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
Ye et al. Redox flow batteries for energy storage: a technology review
Li et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications
KR101812739B1 (en) Composite separator for redox flow batterry
KR101802285B1 (en) Ion Exchange Membrane and Method for Manufacturing the Same
CN106549178B (en) A kind of organic flow battery
WO2019098792A2 (en) Method for manufacture of composite separation membrane for redox flow battery and composite separation membrane for redox flow battery
US20220093954A1 (en) Separator for redox flow battery and manufacturing method therefor
US11309564B2 (en) Method for manufacturing reinforced separator, reinforced separator manufactured using the same and redox flow battery
Hosseiny et al. Ion exchange membranes for vanadium redox flow batteries
WO2019050272A1 (en) Separation film for redox flow battery, method for preparing separation film for redox flow battery, and redox flow battery
JP6980184B2 (en) Separation membrane complex and redox flow battery
CN106716699B (en) Composite membranes comprising ion transfer polymers and methods of making the same
US20230299324A1 (en) Anion exchange polymers and anion exchange membranes for direct ammonia fuel cells
KR101549207B1 (en) Ion-exchange membbrane for redox flow batterry
WO2016154175A1 (en) Membrane assemblies, electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries therefrom
KR101864861B1 (en) Ion-exchange membbrane for redox flow batterry and redox flow battery
US11955678B2 (en) Method to improved redox flow battery performance
KR102468658B1 (en) Composite Membrane and Method for Manufacturing of Composite Membrane
CN107230792B (en) Separator plate layer for flow battery
WO2019103422A2 (en) Porous separator for redox flow battery and redox flow battery comprising same
CN106611866A (en) Fluorine-containing sulfonic acid/sulfimide-based composite proton exchange membrane and preparation method thereof
Xiang Superior Ion-Selective Polyetherimide Porous Membrane for Sustainable Zinc/4-Ho-Tempo Flow Batteries
KR20170063008A (en) Polymer electrolyte composite membrane with low permeability and high proton conductivity for redox flow battery and redox flow battery comprising the same
CN110741499A (en) Ion exchange membrane and flow battery comprising same
KR20170121369A (en) Ion-exchange membrane for redox flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879823

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 18879823

Country of ref document: EP

Kind code of ref document: A2